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Entangled collective spin states of two-species ultracold atoms in a ring
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Two species of mutually interacting ultracold bosonic atoms are studied in a ring-shaped trap with a species-
selective azimuthal lattice which may rotate. We examine the spectrum and the states in a collective spin
formalism. The system can be modeled as a pair of coupled Lipkin-Meshkov-Glick Hamiltonians, and can be
used to generate a high degree of entanglement. The Hamiltonian has two components: a linear part that can be
controlled by manipulating the azimuthal lattice, and an interaction-dependent quadratic part. Exact solutions are
found for the quadratic part for equal strengths of intraspecies and interspecies interactions. In different regimes
the Hamiltonian can emulate a beam splitter or a two-mode squeezer of quantum optical systems. We study
entanglement properties of the ground state of the Hamiltonian in dependence on various parameters with the
prospect of possible quantum information and metrology applications.
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I. INTRODUCTION

The coherent state in a closed loop is a defining paradigm
of quantum mechanics, tracing back to de Broglie’s explana-
tion of quantization of electronic states in atoms [1]. With the
creation of coherence in many-body systems, such as with
Bose-Einstein condensates (BECs), and progress in trapping
them in toroidal configurations, that seminal configuration can
be translated to macroscopic scales. The closed topology and
the natural superfluidity associated with degenerate cold gases
have focused most of the interest in this matter on the physics
of persistent flows [2,3]. However, the coherent flow in a loop
intrinsically comes with angular momentum, and with the cir-
culating modes parallels can be drawn with states of electrons
within atoms, including spin and orbital momenta [4]. The
many-body nature [5] of such macroscopic coherent media
and rich nonlinear behavior due to interactions [6] means that
such ring systems can be a versatile simulator of collective
spin states [7] and the rich physics associated with them. This
paper aims to explore the features of entanglement generated
in such systems.

Multiple pathways exist for creating ring traps for atoms
[2,8–16], some conveniently adaptable to include azimuthal
lattice structures, such as the use of Laguerre-Gaussian beams
[17,18]. While numerous experiments [3,19,20] have been
conducted with cold atoms in ring traps, proportionate efforts
with the inclusion of lattices are overdue, notwithstanding
the rich physics indicated by continuing theoretical works
[21–36].

In previous work, we have shown that a single species in
a ring can lead to rich physics: The dynamics can display co-
herent oscillations between various modes coupled by a lattice
[4], nonlinear dynamical behavior like self-trapping is evident
[6,36], and creation of spin squeezed states and simulation of
Lipkin-Meshkov-Glick dynamics are possible [35,37]. How-
ever, to examine quantum correlations associated with multi-
particle entanglement [38] that touch on the most intriguing

aspects of quantum mechanics, such as Einstein-Podolsky-
Rosen and Bell inequalities, that analog in a ring is best
implemented with two species of atoms. Simulation of such
intrinsically quantum phenomena with the macroscopic states
of a ring motivates this paper. The common collective spin de-
scription also allows for analogous macroscopic realizations
of nonclassical states of collective atomic spins for applica-
tions in metrology [39,40] and for quantum computation [41].
Here, we focus on the spectrum and the degree of entangle-
ment of the relevant quantum states in the system, preliminary
to examining the dynamics in our continuing work.

In Sec. II, we describe our system and derive the
two-species Hamiltonian, and transform it to a collective
spin description; subsequently in Sec. III we provide physical
interpretation of the various features of the model and justify
some of the assumptions we make in our analysis. We set up
the states and the measure of entanglement for the system in
Sec. IV. Then in Sec. V, we derive analytical expressions for
the eigenvalues and for the associated states for the quadratic
Hamiltonian that creates entanglement, and we consider
various special cases. Section VI highlights limiting cases
where the system behavior is analogous to a beam splitter and
a spin squeezer in turn. In Sec. VII, the density of states for
the full Hamiltonian is shown to display features of a phase
transition as the Hamiltonian is continuously changed from
the linear limit to the quadratic limit. In Sec. VIII, we present
analysis and estimates, using parameters based on existing
technologies, to demonstrate feasibility of implementation
of our model in experiments. We conclude in Sec. IX with
a discussion of the broader relevance and with an outlook of
our ongoing work on dynamical applications of these results.

II. SYSTEM AND MODEL

We consider two species of BEC composed of N1 and N2

atoms in a toroidal trap as shown in Fig. 1. The variables for
the two species will be indexed by subscripts i = 1, 2. We take
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FIG. 1. Two species of atoms labeled i = 1, 2 are trapped in a
toroidal trap with the option of an azimuthal lattice potential of
period 2π/q. The two lowest counterpropagating modes for each
species are denoted by letters a and b. The torus is taken as a wrapped
cylinder with our choice of coordinates r = (s, r, ϕ) shown.

the minor radius r of the torus to be much smaller than its
major radius R so that the system can be treated as a cylinder
r = (s, r, ϕ) with periodic boundary condition on the circum-
ferential coordinate s. We assume the confinement along (r, ϕ)
transverse to the ring circumference to be sufficiently strong to
keep the atoms in the ground state ψi(r, ϕ) for those degrees of
freedom, so that the three-dimensional bosonic field operator
can be written in the factorized form �̂i(s)ψi(r, ϕ). Integrating
over the transverse degrees of freedom yields an effective
one-dimensional (1D) Hamiltonian:

Ĥ =
∫ 2πR

0
ds

⎡
⎣∑

i=1,2

�̂
†
i

(
− h̄2

2mi
∂2

s + Ui + gi

4π l2
i

�̂
†
i �̂i

)
�̂i

+ g12

2π l2
12

�̂
†
1 �̂

†
2 �̂1�̂2

]
(1)

where gα = 4π h̄2aα/mα is the interaction strength defined by
the s-wave scattering length aα , with α ∈ {1, 2, 12}, and li
is the harmonic oscillator length for the transverse confine-
ment for the two species. The interspecies counterparts are

l12 = √
l1l2 and the reduced mass of the two species m12 =

m1m2/(m1 + m2).
The potential along the ring is taken to be a periodic

lattice. Assuming species selective lattice potential we allow
for different strengths for the potentials Ui experienced by
each species. However, we assume the same rate of rotation
for both, which will allow us to treat the Hamiltonian as
stationary:

Ui(s, t ) = h̄uxi cos

[
2q

(
s

R
− �t

)]

+h̄uyi sin

[
2q

(
s

R
− �t

)]
. (2)

We have allowed for two lattices, one symmetric (x) and
one antisymmetric (y) relative to the coordinate origin. This
allows for a general formalism in terms of collective spin
operators.

We can eliminate the explicit dependence on the time in
the Hamiltonian, by transforming to a frame rotating with
the lattice. This transforms the potential to have arguments
s
R − �t → s

R , but adds an angular momentum term to the
Hamiltonian:

Ĥ → Ĥ + ih̄�

∫ 2πR

0
ds�̂†

i ∂s�̂i. (3)

We now expand the field operator in the eigenstates of the
ring:

�̂i(s) =
∑

n

ĉinψn(s), ψn(z) = 1√
2πR

ein(s/R), (4)

where the field amplitudes ĉin for the modes for each species
satisfy the bosonic commutator rules [ĉin, ĉ jm] = δi jδmn. The
first index is the species index while the second index is
the mode index. Thereby, we can write the time-independent
Hamiltonian in the rotating frame as

Ĥ =
∑

n

(h̄ωn − h̄n�)(ĉ†
1nĉ1n + ĉ†

2nĉ2n) + 1
2 h̄

∑
n,m,k,p

n+m−k−p=0

[χ1ĉ†
1nĉ†

1mĉ1k ĉ1p + χ2ĉ†
2nĉ†

2mĉ2k ĉ2p + 2χ12ĉ†
1nĉ†

2mĉ1k ĉ2p]

+
∑

n

h̄[u1−ĉ†
1nĉ1(n−2q) + u1+ĉ†

1nĉ1(n+2q)] +
∑

n

h̄[u2−ĉ†
2nĉ2(n−2q) + u2+ĉ†

2nĉ2(n+2q)]. (5)

Here eigenenergies associated with the circulating modes of
the ring are h̄ωn = h̄2n2

2mR2 , and we have defined the effective
1D interaction strengths χα = gα

4h̄π2l2
αR and the linear combina-

tion of the lattice depths ui± = 1
2 (uxi ± iuyi ). Note, we put a

parentheses around (n ± 2q) to indicate that the “2” inside is
a multiplicative factor and not a species index unlike the other
numerical subscripts.

At this point, we assume that the ring is sufficiently small
and the density low enough such that the energy gaps h̄ωn

are large compared to the energy scale of the interatomic in-
teractions χαNα/(2πR), where N12 = √

N1N2. This means the
interaction will not significantly couple modes with different

energies. We therefore consider two degenerate modes that
match the lattice periodicity n = ±q in Eq. (4), that is, e±iqs/R.
Then in the nonlinear terms, if we set the indices n, m, k = ±q
the fourth index p = ±q and ± 3q. Likewise the lattice also
couples ±q and ± 3q, but we assume a weak lattice that only
couples mutually degenerate modes. Therefore, we will ne-
glect the coupling to the ±3q and consider only the subspace
of two modes ±q. We have previously shown [36] that, for
experimentally feasible parameters, single species dynamics
justifies this assumption, with negligible loss of population
from the two-mode subspace as the system evolved. By fo-
cusing on the two-mode subspace, we can remove the modal
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summation in Eq. (5) and have the effective Hamiltonian

Ĥeff =
∑
i=1,2

[−h̄q�(â†
i âi − b̂†

i b̂i ) + h̄(ui−â†
i b̂i + ui+b̂†

i âi )

+ 1

2
h̄χi(â

†
i â†

i âiâi + 4â†
i b̂†

i âib̂i + b̂†
i b̂†

i b̂ib̂i )]

× h̄χ12[â†
1â†

2â1â2 + â†
1b̂†

2â1b̂2 + â†
1b̂†

2b̂1â2

+ b̂†
1â†

2â1b̂2 + b̂†
1â†

2b̂1â2 + b̂†
1b̂†

2b̂1b̂2]. (6)

Here we have set h̄ωq = 0 as the energy reference and we
relabeled the operators for the ±q modes for each species
ĉi(n=+q) = âi and ĉi(n=−q) = b̂i respectively. The terms in the
Hamiltonian have ready physical interpretation: As regards
the linear terms, the lattice couples counterpropagating modes
of the same species, while the rotation shifts the relative
energies of modes. The nonlinear terms describe the mutual
scattering of two modes of the same species or of different
species.

In order to continue the analysis, we recast the Hamiltonian
in terms of the collective spin operators

Ĵxi ≡ 1

2
(â†

i b̂i + âib̂
†
i ),

Ĵyi ≡ 1

2i
(â†

i b̂i − âib̂
†
i ),

Ĵzi ≡ 1

2
(â†

i âi − b̂†
i b̂i ), (7)

so that the Hamiltonian takes the form

Ĥeff =
∑
i=1,2

[−2h̄q�Ĵzi + h̄uxiĴxi + h̄uyiĴyi]

+ h̄
∑
i=1,2

χi
[
Ĵ2

xi + Ĵ2
yi

] + 2h̄χ12[Ĵx1Ĵx2 + Ĵy1Ĵy2]

(8)

where some constant terms have been left out taking into
account that Ĵ2

xi + Ĵ2
yi + Ĵ2

zi = Ni
2 ( Ni

2 + 1) commute with the
Hamiltonian and do not influence the dynamics. For each
species separately, the linear terms together with the self-
interaction quadratic terms form a generalized version of
the so called Lipkin-Meshkov-Glick (LMG) Hamiltonian that
was originally introduced to model particular systems in nu-
clear physics [37], but later found application in many other
branches of physics. For collective spins, the quadratic part
corresponds to the one-axis-twisting dynamics proposed by
Kitagawa and Ueda [7] that was used to generate spin squeez-
ing in cold atomic samples [39,40]. We have studied the LMG
dynamics in ring traps with bosons in our previous work
[35,36]. The bilinear terms proportional to χ12 containing
the cross terms Ĵx1Ĵx2 + Ĵy1Ĵy2 are new and represent a fur-
ther generalization of the LMG model to two coupled LMG
systems. Although similar coupling of two collective spin
samples through an interaction Ĵz1Ĵz2 has been proposed for
trapped atoms inside coupled optical resonators by one of us
[41], the interspecies coupling in Eq. (8) for orbital or external
degree of freedom has not been previously explored and will
be in the center of further considerations in this paper.
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FIG. 2. [(a), (b)] The eigenvalues of the Hamiltonian in Eq. (8)
are plotted as the weight w of the quadratic Hamiltonian is varied
from the linear limit to the quadratic limit. In the quadratic limit the
ground state, marked by a red circle, is (a) nondegenerate when N1 =
N2 and (b) degenerate when N1 �= N2; this is true even for different
values for the interaction strengths as used here, χ1 = 1, χ2 = 1.5,
and χ12 = 2. In the linear limit, we use ĤL = (Ĵx1 − Ĵx2) in Eq. (8),
corresponding to an azimuthal lattice with no rotation.

III. PHYSICAL PICTURE AND ASSUMPTIONS

The linear part of the Hamiltonian in Eq. (8) generates
rotations of the Bloch spheres of the two species. It can be
controlled and even completely turned off with the lattice
strength and the rotation �. Whereas the rotations around the
Jx and Jy can be performed independently for the two species,
rotation around the Jz axis is common and governed by the
physical rotation of the system. Nevertheless, this does not
inhibit the option to achieve independent rotations around Jzi

by sequences of switching on and off the uxi and uyi lattices,
realizing the Trotter sequence of Jzi = i(JyiJxi − JxiJyi ) (see
for example in Ref. [42]). The quadratic part can be likewise
controlled or made to vanish with the interaction induced
nonlinearity.

In an experiment, it would be convenient to initialize the
system in the ground state of the linear Hamiltonian and
adiabatically transition to the ground state of the quadratic
Hamiltonian. For example, we can start with � = 0, a static
lattice, and choose uy1 = uy2 = 0 and parametrize the non-
vanishing amplitudes by ux1 = −ux2 = 1 − w. Then we can
write the Hamiltonian as (1 − w)ĤL + wHQ, with a linear
part ĤL = Ĵx1 − Ĵx2 and a quadratic part HQ defined as in
the second line of Eq. (8), with χα → χα/w. Physically this
choice means that in the limit of only linear interaction, the
two species have ground states that are standing waves that
avoid each other (on the corresponding Bloch spheres, on the
equator but on opposite sides). Adiabatic transition from the
linear to the quadratic regime would then keep the system
in the ground state with the two species avoiding each other,
and arrive at the maximally entangled state analogous to the
singlet state of two particles.

It is implicit that the nonlinear strengths χα change pro-
portionately to w; in practice, that can be accomplished by
any number of ways, such as tuning close to Feshbach reso-
nances or reducing density, creating relative displacement of
the two species, or by adjusting the transverse confinement.
The parameter w therefore serves as a measure of the relative
strengths of the linear and the quadratic part, and we plot the
variation of the spectrum as a function of this parameter in
Fig. 2. In order to maintain comparable scales, the quadratic
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part is scaled in the figure by the average particle number
ĤQ → 2ĤQ/(N1 + N2).

The ground state is found to have two distinct behaviors.
For N1 = N2, the ground state remains nondegenerate from
purely linear to purely quadratic, whereas for N1 �= N2 at the
quadratic limit the ground state is always double degener-
ate. However, when the linear limit has copropagating modes
in the two species, the gap may close before reaching the
quadratic limit. Still, the state can be initially prepared to
sustain the gap so that almost total adiabatic transfer can
be achieved from the ground state of the linear Hamiltonian
to that of the quadratic Hamiltonian for systems with equal
number of particles of both species.

If the intra- and interspecies couplings are identical, χ1 =
χ2 = χ12 = χ , which can be true to a good approximation for
example for 87Rb atoms [43], we can express the Hamiltonian
as the sum of linear and quadratic parts Ĥ = ĤL + ĤQ:

ĤL =
∑
i=1,2

[−2q�Ĵzi + uxiĴxi + uyiĴyi],

ĤQ = χ (Ĵx1 + Ĵx2)2 + χ (Ĵy1 + Ĵy2)2. (9)

This form assumes units to be used in all our numerical
simulations; we will take the major radius R as the length
unit, energy of the lowest circulating mode h̄ω1 = h̄2

2mR2 as the
energy unit, and associated frequency ω1 as the frequency unit.

We define the collective operators Ĵp± = Ĵp1 ± Ĵp2, with
p ∈ {x, y, z} so the quadratic part simply becomes ĤQ =
Ĵ2

x+ + Ĵ2
y+. The quadratic part is of more significance because

it changes the shape of the states, and we will focus on that.
In addition to N1 and N2, the quadratic part also clearly com-
mutes with Ĵz+ ≡ Ĵz1 + Ĵz2. In the rest of the paper when we
primarily focus on the quadratic Hamiltonian, without loss
of generality, we set χ = 1, which would simply imply a
rescaling of the energy units.

IV. STATES AND ENTANGLEMENT ENTROPY

The system can be described in Fock basis, that speci-
fies the occupation of each of the four modes |na1, nb1〉 ⊗
|na2, nb2〉. More specifically, we can write the basis as a direct
product of Dicke states, the collective spin analog of Fock
states, of the two species | j1, m1〉 ⊗ | j2, m2〉. For fixed particle
number, we have ji = Ni/2. The second quantum number
specifies eigenstates of

Ĵzi| ji, mi〉 = mi| ji, mi〉, mi = −Ni

2
,−Ni

2
+ 1, · · · Ni

2
.

(10)

We can further simplify to a basis of eigenstates of Ĵz± that we
denote by

Ĵz±|z+, z−〉 = z±|z+, z−〉. (11)

Since z+ is a conserved quantum number for the quadratic
part of the Hamiltonian in Eq. (8), we can consider subspaces
of fixed z+ independently within which the states are uniquely
labeled by a single quantum number z−:

na1 = 1
2 (N1 + z+ + z−),

nb1 = 1
2 (N1 − z+ − z−),

Max Entropy
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Analytical Entropy+ ln|2|

Optimized Entropy
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FIG. 3. The effect of imbalance in particle number of the two
species is illustrated for the ground state of the quadratic Hamiltonian
ĤQ, by plotting the associated entropy of entanglement as a function
of particle number N2 of the second species, with that of the first
one fixed at N1 = 50. The maximum entropy is set by that of the
lower particle count. The dotted red line is computed analytically
from the exact ground state in Eq. (18); the dashed green line has
ln|2| added to account for the twofold degeneracy, which however is
an overestimate close to N1 = N2. The circle markers are numerical
calculations for an optimal superposition of the degenerate states in
Eq. (18).

na2 = 1
2 (N2 + z+ − z−),

nb2 = 1
2 (N2 − z+ + z−). (12)

The density matrix ρ corresponding to the ground state of
the quadratic Hamiltonian of the composite system can be
expressed in this basis. We measure the degree of entangle-
ment between the two species by computing the von Neumann
entanglement entropy [44] using the reduced density matrix
ρ2 = Tr1(ρ) or ρ1 = Tr2(ρ):

S(ρ2) = −Tr[ρ2 ln(ρ2)] = −
∑

i

[εi ln(εi )]. (13)

The last step follows from assuming the density matrix can
be diagonalized and εi are its eigenvalues. The entropy is not
sensitive to the choice of the reduced density matrix S(ρ1) =
S(ρ2).

We compute the variations of the entropy with respect to
the imbalance of the particle number and present them in
Fig. 3. This underscores another advantage of a system of
equal number of particles in both species. The entropy is
maximized when N1 = N2, as shown for two separate values
of N1 fixed as N2 is varied. The maximum entropy is set by
the smaller particle number Smax = ln | min(N1, N2)|. The en-
tanglement entropy is computed analytically from the solution
that appears in Eq. (18) in the next section. An inherent degen-
eracy present in the ground state for unequal particle number
underestimates the entropy for any specific ground state. We
correct for this by adding ln |2| to allow for the degeneracy.
When the imbalance is high, we find this matches almost ex-
actly the numerically computed entropy that optimizes for the
linear combination of the degenerate ground states, suggesting
equal weight maximizes the entropy. However, close to equal
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FIG. 4. The entanglement entropy of the ground state of the quadratic Hamiltonian is seen to be maximized when all the interaction
strengths are the same, χ1 = χ2 = χ12, as assumed in Eq. (9). (a) The rate of decline with deviation from that is faster at (a) larger values of
an intraspecies χ2 and (b) smaller values of interspecies interactions χ12. For N1 �= N2 optimizing the superposition (green dashed line) can
raise the entanglement entropy to be almost the same as for equal particle numbers (solid purple line with markers). (c) Degeneracies in the
spectrum, that mark crossing of spectral lines that include the ground state, coincide with discontinuous jumps in the entropy, shown here for
an example in panel (b).

number of particles, addition of ln |2| generally overestimates
the entropy and the optimal entropy is not necessarily an equal
weight combination of the degenerate analytical solutions.

In Fig. 4, we probe the sensitivity to our assumption of
equal interaction strengths, by plotting the entanglement en-
tropy as we vary one of χα keeping the other two fixed. When
we vary χ2 keeping χ1 and χ12 fixed, for both equal and
unequal number of atoms, we find as seen in panel (a) the
entropy decreases faster when χ2 is larger. On the other hand
when we vary χ12 with the other two fixed, panel (b) shows
that the entropy drops off faster when χ12 is larger. Therefore
we can conclude that if there is a difference in the interaction
strengths, it is better to have the interspecies interaction to
be stronger than the intraspecies ones. The numerical com-
putation of the entropy occasionally displays discontinuous
jumps. We illustrate in Fig. 4(c) that those jumps correspond
to degeneracies where the ground state changes identity due
to different spectral lines crossing.

V. ANALYTICAL EIGENVALUES AND STATES

In the case of all the couplings being the same, the
quadratic Hamiltonian ĤQ in Eq. (9) can be diagonalized
exactly. In the basis |z+, z−〉 defined above the Hamiltonian
acquires a block-tridiagonal structure:

ĤQ|z+, z−〉 = (
na1nb1 + na2nb2 − 1

2 N
)|z+, z−〉

+
√

na1(nb1 + 2)(na2 + 2)nb2|z+, z− − 2〉
+

√
(na1 + 2)nb1na2(nb2 + 2)|z+, z− + 2〉,

(14)

where the ni are given by Eq. (12), and we define the total
particle number N = N1 + N2. Each block of fixed z+ has
tridiagonal form comprising a set by the allowed z− values.
We determine the eigenvalues to be given by

En = n(n + 1) + |z+|(2n + 1),

z+ = 0,±1,±2, · · · ± 1

2
N even N,

z+ = ±1

2
,±3

2
, · · · ± 1

2
N odd N (15)

where n ∈ {nmin, nmin + 2, · · · , nmax}, with

nmin = max
(

1
2 |N2 − N1| − |z+|, 0

)
,

nmax = 1
2 N − |z+|. (16)

This confirms explicitly some of the conclusions of the
numerical results displayed in Fig. 2: When N1 = N2, the
expressions above show that the ground state is indeed unique
corresponding to z+ = 0, n = 0, and energy E0 = 0. But,
when N1 �= N2, the lowest-energy state is doubly degenerate,
corresponding to n = 0, but with

z+ = ±N1 − N2

2
, E0 = |N1 − N2|

2
. (17)

The eigenvalues depend on the atomic numbers N1,2 only
through the limits for the index n, as illustrated in Fig. 5.
Since all the eigenvalues are integers or semi-integers with
their smallest nonzero difference being 1, the evolution of any
state is periodic with period 2π , assuring periodic behavior.
This contrasts with a semiclassical description that will be
reported in an upcoming work which suggests that the period
should go to infinity.

Without loss of generality, we assume N1 � N2, and the
ground state for arbitrary particle numbers for the two species
can be expressed in terms of the basis states |z+, z−〉 as

|ψ0,±〉 =
N1∑

k=0

αk

∣∣∣∣±1

2
(N2 − N1),∓

[
1

2
(N2 − 3N1) + 2k

]〉
,

αk

αk−1
= −

√
N2 − N1 + k

k
, (18)

where the coefficients αk are defined recursively. This formula
also covers the special case N1 = N2 = 1

2 N , when the ground
state becomes nondegenerate, with energy E0 = 0 and z+ = 0.
The expressions then reduce to a simpler form which can be
written as a superposition of states |z−〉:

|ψ0〉 =
√

2√
N

1
2 N∑

k=0

(−1)k

∣∣∣∣−1

2
N + 2k

〉
. (19)

Beyond the ground state, in the special case of equal num-
ber of particles, N1 = N2 = 1

2 N , and in the subspace of z+ =
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FIG. 5. The eigenvalues of ĤQ are shown in the space of z+ and n. The allowed eigenvalues are shown by colored shading. (a) For
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natural numbers including zero are excluded, creating a boomerang shape. The energy is plotted as a function of z+ and n for (c) equal particle
number N1 = N2, when there is no gap at n = 0, and for (d) unequal particle number N1 �= N2 when a gap emerges for lower z+ values.

0, which means there is an equal number of counterpropagat-
ing atoms as well, the energy is simply En = n(n + 1) and the
complete set of states in the subspace is given by

|z−〉 = ∣∣ − 1
2 N + 2n

〉
, n ∈ {

0, 1, · · · 1
2 N

}
. (20)

This has an interesting implication for the dynamics. Since
now all the eigenvalues are even integers and the minimum-
energy difference is 2, the evolution of any state is periodic
with half the period compared to the more general case above,
where the level spacing is unity as seen Eq. (15)

For minimal asymmetry, N2 = N1 + 1, the ground states
have energy E0 = 1

2 and correspond to z+ = ± 1
2 . Expressed

as superpositions of states |z+, z−〉 they are

|ψ0,±〉 =
√

2√
N (N + 1)

N1∑
k=0

(−1)k
√

k + 1

×
∣∣∣∣±1

2
,±

(
N1 − 1

2
− 2k

)〉
. (21)

We conclude the section with an intuitive picture of the
reason for the degeneracy of the ground state when particle
numbers are different. With equal particle numbers there are
complete pairs of counterpropagating modes, with unequal
numbers there can be unbalanced modes, but in the absence of
rotation both orientations of rotation have identical energies
leading to a degeneracy. There can be interesting dynami-
cal effects of the degeneracy; for example, if the system is
prepared in the ground state of the linear Hamiltonian as
in Fig. 2(b), adiabatic change w = 0 to 1 to the completely
nonlinear regime and back again to the linear regime can result
in superposition of the lowest pair of states that happen to be
degenerate when w = 1.

VI. LIMITING CASES

We now underscore the broad relevance of this Hamilto-
nian by identifying some limiting cases for the quadratic part
ĤQ. For this purpose, it is more transparent to express it in
terms of the creation and annihilation operators:

ĤQ = â†
1â1b̂†

1b̂1 + â†
2â2b̂†

2b̂2 + 1
2 (N1 + N2)

+ â1b̂†
1â†

2b̂2 + â†
1b̂1â2b̂†

2. (22)

A. Beam splitter limit

If almost all the atoms in both species are circulating in the
same direction, such that b modes b1 ≈ b†

1 ≈ √
N1 and b2 ≈

b†
2 ≈ √

N2, then the Hamiltonian reduces to

ĤQ ≈ N1â†
1â1 + N2â†

2â2 + 1
2 (N1 + N2)

+√
N1N2(â1â†

2 + â†
1â2). (23)

The last term corresponds to a beam splitter (or linear coupler)
which destroys one quantum (photon, for optical implemen-
tation) in one mode while creating one quantum in another
mode (for details of the transformation, see, e.g., Ref. [45]).
The first two terms are responsible for the time-dependent
change of phase in the two modes, the prefactors N1,2 play-
ing the role of frequencies of the modes. For N1 = N2 ≡ N
(matched frequencies) the Hamiltonian leads to oscillations of
the mode occupations with period π/N so that for time equal
to π/(2N ) the atomic states are exchanged and for time equal
to π/(4N ) the transformation corresponds to a 50 : 50 beam
splitter which can be used as a component to implement a
Mach-Zehnder interferometer. In Bloch sphere representation,
the two species would be both lined towards the same pole.

B. Two-mode squeezer limit

If almost all the atoms in the two species are circulating
in opposite directions modes b̂1 � b̂†

1 � √
N1 and â2 � â†

2 �√
N2 (in Bloch sphere representation, the two species would

be both lined towards opposite poles), we have

ĤQ ≈ N1â†
1â1 + N2b̂†

2b̂2 + 1
2 (N1 + N2)

+√
N1N2(â1b̂2 + â†

1b̂†
2). (24)

Here the last term creates or destroys pairs of quanta in anal-
ogy to a parametric amplifier or a two-mode squeezer [45].
This element could be used, e.g., to create highly entangled
states of the atomic samples with metrological applications.
If one can vary the sign of the nonlinearity, one can build
a SU(1,1) interferometer [46] as a sequence of steps where
first a squeezing Hamiltonian is applied, then a phase shifter
(the phase of which is to be determined), and finally an
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FIG. 6. The distribution of energies is shown for the case of N1 =
N2 = 59, as we vary the full Hamiltonian in Eq. (9) from being purely
linear, Ĥ = ĤL , in panel (a) to being purely quadratic Ĥ = ĤQ in
panel (f). In the linear limit, we assume ĤL = (Ĵx1 − Ĵx2) in Eq. (9),
corresponding to a rotating ring with no azimuthal lattice.

unsqueezing Hamiltonian, which will require the opposite
sign of the nonlinearity χ12.

VII. DENSITY OF STATES

While the variation of the spectrum in ranging from the
linear to the quadratic Hamiltonian showed the degeneracy
structure of the ground state, other significant differences can
be identified by examining the density of states. In Fig. 6,
we plot the distribution of the energies as we adjust from the
purely linear to the purely quadratic Hamiltonian. There is a
marked difference. In the linear limit, the distribution shows a
peak in the middle of the spectrum stemming from the fact
that the energy eigenstates are the Dicke states of the two
species with flat energy spectra. Combining these two indi-
vidual spectra yields the largest number of possibilities for the
middle value of the energy. In the purely quadratic limit, the
distribution is strongly skewed towards the ground state. This
follows from the energy function as shown in Fig. 5 where
large areas of parameters z+ and n correspond to small energy
values. There is a gradual morphing of the distribution as we
transition from one limit to the other. The disappearance of the
peak and occurrence of a monotonously decreasing spectrum
is suggestive of an excited-state quantum phase transition in
the system [47].

VIII. EXPERIMENTAL FEASIBILITY

We now confirm the feasibility of our model and its as-
sumptions in the context of experimental parameters currently
available. The analytical results for the quadratic Hamiltonian
assume the interatomic interactions strengths to be equal:
χ1 = χ2 = χ12. This is not an essential or limiting assump-
tion, as we will further elaborate on later in this section.
However, regimes close to equal strengths can be accessed for
example with the hyperfine states |F, mF 〉 = |1,−1〉 and |2, 1〉
for 87Rb, taken as the two species, for which all the scattering
lengths are close to a = 100 a0 [43]. We will assume this value
for our estimates of experimental parameters.

We consider a ring of major radius R ≈ 10 μm such as
used in a recent experiment with ring traps [2], and a strong
transverse trap frequency of ωr = 2π × 2000 Hz along the
minor radius r, noting that such kilohertz range confinement
is typical for creating quasi-1D systems [48]. Assuming 87Rb,
our energy unit set by the lowest circulating mode evaluates
to h̄ω1 = 3.85 × 10−34 J, with corresponding frequency unit
ω1 = 3.65 Hz. This yields an interaction energy scale of h̄χ =
ah̄ωr/(πR) = 1.10h̄ω1, and puts the system definitely in the
1D regime with the ratio of the azimuthal to transverse energy
scale being ω1/ωr � 3 × 10−4.

If we take the lattice to have periodicity q = 5, the system
can be easily maintained in the two-mode regime: As dis-
cussed in Sec. II, for the interatomic interactions we ignored
scattering to ±3q, which for our value of q will imply a mini-
mal energy gap between the relevant modes of h̄ω1[(3q)2 −
q2]/2 = 100h̄ω1 far larger than the interaction energy h̄χ

estimated above. By Bloch’s theorem, for q = ±5 the energet-
ically closest modes the lattice can couple are n = 0 and ±10
so that the minimal energy gap separating ±q modal subspace
from other possible coupled modes is h̄ω1(q2/2) = 12.5h̄ω1.
Using a separate independently tunable potential to generate
it, the lattice can be made sufficiently weak to satisfy this
condition. In general current technology allows for all of the
parameters to be adjusted substantially, but this underscores
the general experimental feasibility of our results.

With two species there can be phase separation, with
Thomas-Fermi estimates that neglect the kinetic energy, set-
ting the criterion �χ = χ12 − √

χ1χ2 that separates regimes
of miscibility (�χ < 0) and immiscibility (�χ > 0) [49].
In our model the two species need to maintain interspecies
interaction, implying reasonable overlap of the densities of
the two species. We provide a brief analysis to show that
this remains valid within our assumptions, by computing the
density-density correlation as a function �χ . Defining the
two-mode density operator for each species i = 1, 2,

ρ̂i(s) ≡ 1

2π
(â†

i e−is + b̂†
i eis)(âie

is + b̂ie
−is), (25)

the overlap of the species can be gauged by

Ô ≡
∫

2π

〈ρ̂1ρ̂2〉ds = N1N2

2π
+ 1

π
〈Ĵx1Ĵx2 + Ĵy1Ĵy2〉, (26)

where we have assumed length unit R and the expectation is
taken with respect to the ground state of the quadratic part
of the Hamiltonian in Eq. (8), but setting χ1 = χ2 = χ so
that �χ = χ12 − χ . The maximum and minimum eigenvalues
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of the operator Ĵx1Ĵx2 + Ĵy1Ĵy2 determine through the above
expression the range in which the overlap of the two species
can occur. We benchmark our results with a semiclassical
approximation of the density operator in Eq. (25):

O =
∫

2π

ρ1ρ2ds,

ρi(s) = Nk

2π
[1 + Vi cos(2s + γi )], (27)

where Vk ∈ [0, 1] is a measure of visibility of the interference
pattern and γi is a phase determining the angular orientation
of the pattern. For pure states, the case Vi = 0 corresponds to
a uniform density for all atoms orbiting in the same direction,
whereas Vi = 1 corresponds to a standing wave where half
of the atoms orbit clockwise and the other half orbit counter-
clockwise.

Three special cases are relevant.
(i) For strongly repulsive interaction, �χ/χ  1, two

species form pronounced standing waves where the density
minima of one species coincide with the maxima of the other,
such that γ1 − γ2 = π .

(ii) For a strongly attractive interaction, �χ < 0 and
|�χ/χ |  1, the interference patterns of the two species will
tend to maximally overlap with γ1 − γ2 = 0.

(iii) For vanishing interaction χ12 = 0, or �χ/χ = −1,
each species will have a uniform distribution with Vi = 0.
These cases yield

χ12  χ : O = N1N2

4π
,

χ12 � −|χ | : O = 3N1N2

4π
,

χ12 = 0 : O = N1N2

2π
. (28)

We plot our results in Fig. 7 for two different numbers
of particles N1 = N2 = 8 and 25, with the exact calculations
using Eq. (26) plotted in solid red lines, with horizontal
dashed blue lines marking the three semiclassical limiting
cases above. One can see that with increasing particle number

quantum calculations approach the semiclassical estimates in
the corresponding limits.

What is relevant for us is that even though there is clearly
a transition in the density correlation at �χ = 0 when all the
interaction strengths are identical, the overlap remains finite
and nonvanishing, set by the lowest semiclassical values in
Eq. (28). This means that our assumption of equal nonlinear
strengths is not a constraint at all, although that regime can
be experimentally accessed and allows for analytical calcula-
tions. The primary physical impact will be a reduction in the
degree of entanglement possible in proportion to any decline
in the interspecies interaction strength. The inset in Fig. 7
also shows that in a small ring where the kinetic energy
cannot necessarily be neglected, the transition is not sharp
at �χ = 0, but gradual over a relevant range of variation
of about |�χ/χ | � 20%. Finally, we should note that these
calculations here and similar ones in much of the literature
are done in the absence of a lattice, but there have been
several experiments such as in Ref. [48] with two interacting
species of atoms without phase separation being a limiting
obstacle, and the lattice can have an impact in suppressing
phase separation.

IX. CONCLUSIONS AND OUTLOOK

Our analysis here shows that two species of ultracold atoms
in a ring trap can provide a viable alternate platform to exam-
ine nontrivial quantum features that rely on entanglement. The
model can be viewed as two Lipkin-Meshkov-Glick systems
coupled by two bilinear terms formed as products of compo-
nents of collective spin operators. Here we mapped out the
static and spectral properties as a necessary preliminary to
examining the dynamical phenomena that can exploit the en-
tanglement, which we are actively exploring in our continuing
work. Among such applications, we already identified here
certain limiting cases that can be adapted for interferometry
as well as for generating two-mode squeezing.

One relevant way to use the entangled states in this system
would be to implement quantum teleportation [50], particu-
larly the transition regime from small to large atomic numbers
where the continuous variable limit for teleportation [51] can
be expected. With regards to all such quantum phenomena
involving entangled states, the ring system offers the op-
portunity to study them in the context of motional states
encapsulated in circulating modes in the ring, rather than with
internal states like spin typically utilized in the majority of
platforms studied. This can facilitate a natural scaling up of
the system size and the time scales involved, that can help bet-
ter understand some of the most intriguing aspects of quantum
mechanics.
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