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We theoretically investigate three-body correlations on the top of a Fermi sea in one-dimensional spinless
fermions with antisymmetrized two- and three-body attractive interactions. By investigating the variational
problem of three-body states above the Fermi sea, we illuminate the fate of the in-medium three-body cluster
states (namely, Cooper triples in the presence of Fermi sea) in the special case with pure attractive three-body
interaction as well as in the case with the coexistence of two- and three-body interactions. Our results testify that
the fermion-dimer repulsion is canceled by including the three-body interactions, and stable three-body clusters
can be formed. We further feature a phase diagram consisting of the p-wave Cooper pairing and Cooper tripling
phases in a plane of p-wave two- and three-body coupling strengths.
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I. INTRODUCTION

A clean and controllable cold-atomic Fermi gas is one of
the best candidates to investigate the unconventional states in
quantum many-body systems in a systematic way. A remark-
able feature of this system is the adjustable s-wave interaction
via the Feshbach resonance [1]. It is well known that in a
three-dimensional s-wave superfluid Fermi gas, the pairing
superfluid undergoes a crossover from a Bardeen-Cooper-
Schrieffer (BCS) regime with weak-coupling Cooper pairs to
a Bose-Einstein condensation (BEC) regime of tightly bound
molecules [2–4].

The p-wave interaction is also tunable near the p-wave
Feshbach resonance [1], and a large number of related ex-
periments have been performed towards the realization of
p-wave Fermi superfluids [5–8]. In this regard, an ultracold
Fermi gas near the p-wave Feshbach resonance may pave
a promising way to systematically investigate the role of
strong p-wave interactions in unconventional superfluids [9].
However, the p-wave superfluid has not been achieved ex-
perimentally yet due to the difficulty associated with strong
atomic losses [7,10–14]. The p-wave Fermi superfluid state
is shown to be unstable against three-body clustering in the
three-dimensional system even without the Fermi degeneracy
[15], which leads to the three-body recombination accom-
panying a strong particle loss. Indeed, strong three-body
losses in three-dimensional Fermi gases near the p-wave Fes-
hbach resonance have been observed in experiments [13,16].
In contrast, the suppression of the three-body loss in the
one-dimensional p-wave system has been predicted theoret-
ically [17], and a similar result has also been found in our
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previous work [18]. In this regard, the systems under the
low-dimensional confinement [19] and the lattice geometry
[20] have been studied experimentally to suppress the atomic
loss. On the other hand, such a suppression of the atomic
loss in the one-dimensional system is still under experimental
investigation [19,21,22]. Indeed, the quasi-one-dimensional
geometry may induce the s-wave interaction between identical
fermions using the orbital degrees of freedom [22]. Moreover,
the three-body clustering with coexistence of s- and p-wave
interactions in one dimension has also been found theoreti-
cally [23].

The stability against the three-body clustering is deeply
related to the properties of the interactions and quantum statis-
tics. While the s-wave superconductivity and superfluidity
involve the formation of spin-singlet Cooper pairs consisting
of two fermions with antiparallel spins due to the fermionic
antisymmetrization [24], the p-wave counterpart can induce
the Cooper pairs consisting of two identical fermions in spite
of the Pauli exclusion principle. In such a case, one cannot
exclude the possibilities of more-than-two-body clustering
correlations such as three- and four-body clusters, in contrast
with a spin-1/2 Fermi gas with strong s-wave attractive in-
teraction where the BCS-BEC crossover is realized without
any larger clusters due to the Pauli exclusion principle. To
investigate larger clusters, the generalized Cooper problem
has been further applied to in-medium cluster states such
as Cooper triples [18,23,25–29] and even Cooper quartets
[30–34], which can be regarded as three- and four-body coun-
terparts of a Cooper pair.

Moreover, the three-body force gives a significant in-
fluence on the properties of one-dimensional systems. An
important example is the emergence of a quantum anomaly
in one-dimensional fermions with the three-body interaction
[35], where even an infinitesimally small three-body attraction
can cause the three-body bound state. In such a case, the three-
body clusters may survive even in the high-density regime

2469-9926/2023/108(4)/043303(11) 043303-1 ©2023 American Physical Society

https://orcid.org/0000-0002-0815-144X
https://orcid.org/0000-0001-5247-7116
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.043303&domain=pdf&date_stamp=2023-10-09
https://doi.org/10.1103/PhysRevA.108.043303


YIXIN GUO AND HIROYUKI TAJIMA PHYSICAL REVIEW A 108, 043303 (2023)

where fermions are quantum degenerate [29,36]. Another
example is the broken integrability [37], which is recently
discussed in terms of the transport coefficient [38]. Also,
the three-body interaction is needed to maintain the Bose-
Fermi mapping in one dimension [39]. For the cases of
one-dimensional bosonic systems, the three-body interactions
lead to the formations of quantum droplet states and excited
few-body bound states [40–43]. Based on the Bose-Fermi
mapping [39,44–46], the counterpart of such unconventional
states in bosonic systems are also expected to exist in one-
dimensional fermions. In bosonic systems, the controllable
three-body force has been proposed theoretically [47] and
demonstrated experimentally [48].

While the present authors showed the absence of both
in-medium (in the presence of Fermi sea) and in-vacuum
three-body bound states in the one-dimensional system with
only two-body p-wave interaction due to the in-medium
fermion-dimer repulsion [18], if some additional three-body
forces exist, the in-vacuum three-body bound state can
be induced as found in Ref. [39]. Indeed, by including
the dimensionless three-body coupling in the atom-dimer
scattering, we found the solution of the binding energy
for the in-medium three-body bound state in the previous
paper [18].

In this way, it is expected that the three-body ground
state can be found by further introducing the three-body
interactions. However, the detailed investigation of the three-
body force is still lacking because a specific form of the
three-body interaction was phenomenologically introduced
in Refs. [18,39]. In this regard, we start with an antisym-
metrized three-body interaction with minimal momentum
dependence which can be a leading-order contribution at the
low-energy limit and investigate the three-body clustering in
one-dimensional spinless fermions with the coexistence of
two- and three-body interactions. Our results can be further
testified in future cold-atomic experiments via three-body loss
measurements. Such an antisymmetrized three-body interac-
tion might be achieved through the quasi-one-dimensionality
[38] or Rabi coupling [48]. In addition, it might also be
possible via the medium-induced interaction as we proposed
recently by preparing an additional medium [49]. While
the above approaches were performed in the bosonic sys-
tems, they are also expected to be realized in the fermionic
ones. The systematic studies of the effects of two- and
three-body forces in fermionic systems would also be useful
for understanding the role of three-body forces in nu-
clear systems [50], which have been examined in recent
experiments [51].

This paper is organized as follows: In Sec. II, we first
introduce the Hamiltonian for the one-dimensional spinless
fermions with the coexistence of two- and three-body forces.
After that, we calculate the expectation value of the energy
and derive the corresponding variational equation. The re-
sults and discussion will be given in Sec. III. In detail, we
first investigate the in-medium three-body problem in one-
dimensional spinless p-wave fermions with pure three-body
interaction in Sec. III A. As a step further, by also including
the two-body interaction, we study the in-medium three-body
clustering in the general case with the coexistence of two- and
three-body interactions in Sec. III B. Finally, we summarize

this paper in Sec. IV. In the following, we take h̄ = c = kB =
1. The system size is taken to be unity.

II. THEORETICAL FRAMEWORK

We consider one-dimensional spinless fermions with two-
and three-body interactions described by the Hamiltonian

H = K + V2 + V3, (1)

where the kinetic term K and two-body interaction V2 are
given as

K =
∑

k

ξkc†
kck, (2)

V2 = U2

2

∑
k1,k2,k′

1,k
′
2

(
k1 − k2

2

)(
k′

1 − k′
2

2

)

× B†
k1,k2

Bk′
2,k

′
1
δk1+k2,k′

1+k′
2
, (3)

respectively. Here, ξk = k2/(2m) − μ is the single-particle
energy with momentum k, atomic mass m, and chemical
potential μ. The two-body interaction adopted here cor-
responds to the short-range p-wave type with a coupling
constant U2, which is related to the zero-range limit of the
two-channel model for the Feshbach resonance [52,53]. The
relation between U2 and the p-wave scattering length a is
obtained from the two-body T matrix as [45,52]

1

U2
−

∑
p

mp2

k2 + iδ − p2
= m

2

(
1

a
− 1

2
reffk

2 + ik

)
, (4)

where reff is the effective range and δ is an infinitesimally
small number. reff is associated with the momentum cutoff
� = 4/πreff . Taking the consideration of the antisymmetry
and parity for the form factor, we introduce an antisym-
metrized attractive three-body interaction as

V3 =
∑
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k′
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′
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1
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1+k′
2+k′

3
, (5)

where U3 is the coupling constant of the three-body interac-
tion. Moreover, by introducing the pair operator

B†
k1,k2

= c†
k1

c†
k2
, Bk1,k2 = ck2 ck1 , (6)

and the trimer operator

F †
k1,k2,k3

= c†
k1

c†
k2

c†
k3
, Fk1,k2,k3 = ck3 ck2 ck1 , (7)

one can rewrite V3 as
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∑

k1,k2,k3
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′
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′
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)
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Such a kind of three-body interaction would be the leading
order of the antisymmetrized attractive ones at low energy in
the sense of the derivative expansion.

We note that the two- and three-body interactions consid-
ered in the Hamiltonian (1) can also be related to the scattering
hypervolume DF [54], which is a three-body analog of the
two-body scattering length. In general, DF can be extracted by
solving the three-body Schrödinger equation numerically at
zero energy and matching the resultant wave function with the
asymptotic expansions of wave function [55]. In this regard,
since the calculation of DF for given U2 and U3 is not so
straightforward and moreover DF has not been experimentally

measured yet in contrast to the two-body scattering length, we
measure U3 by using the critical coupling strength Uc where
the three-body bound state appears only with the three-body
attraction in vacuum. Accordingly, Uc may be regarded as the
resonant coupling where DF diverges [55].

In a way similar to the previous works [18,26,28], the trial
wave function for the three-body cluster on the top of the
Fermi sea is given by

|�3〉 =
′∑

p1,p2,p3

δp1+p2,−p3�p1,p2 F †
p1,p2,p3

|FS〉, (9)

where �p1,p2 is the variational parameter and the three-body
state with zero center-of-mass momentum (p1 + p2 + p3 =
0) is considered. Hereafter, we introduce the momentum sum-
mation restricted by the Pauli blocking as

′∑
k1,k2,...

F (k1, k2, . . . )

=
∑

k1,k2,...

θ (|k1| − kF)θ (|k2| − kF) · · · F (k1, k2, . . . ), (10)

for an arbitrary function F (k1, k2, . . . ), where kF = √
2mEF

is the Fermi momentum.

From the variational principle with the in-medium three-body energy E3, we obtain

δ〈�3|(H − E3)|�3〉
δ�∗

p1,p2

= δ〈�3|(K + V2 + V3 − E3)|�3〉
δ�∗

p1,p2

= 0. (11)

Detailed results for the expectation values of each term in the Hamiltonian are given in Appendix A. The resulting variational
equation reads

2(ξp1 + ξp2 + ξp3 − E3)[�p1,p2 + �p2,p3 + �p3,p1 ]

= −U2

2

′∑
q

[(p1 − p2)(2q + p3)(2�p3,q + �q,−q−p3 ) + (p2 − p3)(2q + p1)(2�p1,q + �q,−q−p1 )

+ (p3 − p1)(2q + p2)(2�p2,q + �q,−q−p2 )]

− 9U3

16

′∑
p′

1,p′
2

(p1 − p2)(p′
1 − p′

2)(p1 + 2p2)(p′
1 + 2p′

2)(2p1 + p2)(2p′
1 + p′

2)�p′
1,p′

2
. (12)

III. RESULTS AND DISCUSSION

A. Pure three-body interaction (without two-body interaction)

First, let us consider the case without two-body interaction
(U2 = 0). In this case, the variational equation (12) can be
recast into

2(ξp1 + ξp2 + ξp3 − E3)[�p1,p2 + �p2,p3 + �p3,p1 ]

= 9U3

16
Xp1,p2,p3C, (13)

where for convenience we introduced

Xp1,p2,p3 = (p1 − p2)(p2 − p3)(p3 − p1), (14)

and

C = −
′∑

p′
1,p′

2,p′
3

δp′
1+p′

2+p′
3,0Xp′

1,p′
2,p′

3
�p′

1,p′
2
. (15)

Consequently, we can obtain the equation regarding the am-
plitude of the trial wave function �p,k as

Xp1,p2,p3 [�p1,p2 + �p2,p3 + �p3,p1 ]

= 9U3

16

X 2
p1,p2,p3

C
2(ξp1 + ξp2 + ξp3 − E3)

. (16)

Finally, by further taking the momenta summations with
−δp1+p2+p3,0, the three-body equation with only the
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FIG. 1. The relation between three-body state energy E3 and
three-body interaction strength U3. The critical coupling strength Uc

is a coupling strength where the three-body bound state appears in
vacuum. In this figure, � is taken as 10kF.

three-body interaction reads

1 = −3U3

16

′∑
p1,p2

X 2
p1,p2,p3

2(ξp1 + ξp2 + ξp3 − E3)
, (17)

where the constraint |p3| = | − p1 − p2| � kF is used in
Eq. (17).

The solution of the in-medium three-body energy in the
case with the pure three-body interaction (17) is shown in the
solid line in Fig. 1 with a shift of 3EF, where the ultraviolet
momentum cutoff � is taken as 10kF. For comparison, the
solution of the in-vacuum three-body energy is also plotted
in the dashed line. The three-body coupling constant U3 is
normalized by the in-vacuum critical coupling Uc, where the
three-body bound state starts to appear in vacuum. The results
indicate that the in-medium three-body bound state assisted
by the Fermi-surface effect does not exist in the absence of
the in-vacuum counterpart, which is different from the three-
component Fermi gas with two-body s-wave interactions in
three dimensions [28]. However, there is still a regime (around
1.38 < U3/Uc < 1.41) with positive E3 + 3EF in medium,
which corresponds to the so-called squeezed Cooper triple

regime in the three-dimensional s-wave case [28]. In anal-
ogy with the pairing state in the BCS-BEC crossover [3,4],
actually there is no noticeable structural change of Cooper
triples. In this sense, the regime with positive E3 + 3EF in
medium (around 1.38 < U3/Uc < 1.41) in Fig. 1 can be still
regarded as the Cooper triple phase but may have a relatively
smaller cluster size due to a strong attraction as to ensure a
three-body cluster would be bound in vacuum. We note that
the in-medium three-body bound states do not always require
a stronger three-body coupling than the case in vacuum, and
one can find the loosely bound Cooper triples due to the
interplay between two- and three-body interactions, which is
shown in the latter section.

Finally, the in-medium three-body binding energy E3 +
3EF turns out to negative when U3/Uc is around 1.41. Such
a regime corresponds to the formation of three-body bound
states which are dominated by the strong three-body interac-
tion. The coupling strength U3/Uc � 1.41, where E3 + 3EF =
0, is analogous to the region where the chemical potential
changes the sign in the BCS-BEC crossover [3,4]. Although
in this work we consider a three-body system on top of the
Fermi sea, our results can describe the qualitative features of
both the weak- and strong-coupling limits appropriately by the
variational equation in a unified manner [28].

B. Coexistence of two- and three-body interactions

In this subsection, we further investigate the general case
with the presence of both two- and three-body interactions.
To simplify the expressions, besides C as given in Eq. (15),
here we also introduce

A(p1, p2) =
′∑
q

(p1 − p2)(2q + p3)(2�p3,q + �q,−q−p3 ),

(18)

B(p2) =
′∑

p1,p3

(�p1,p2 + �p3,p1 + �p2,p3 )

× (p3 − p1)δp1+p2+p3,0, (19)

where

A(p1, p2) = (p1 − p2)B(p3). (20)

With the help of above notations, we obtain the closed equa-
tion for B(p) and E3 as

B(p2)

⎡
⎣ 1

U2
+

′∑
p1

(p1 + p2/2)2

ξp1 + ξp2 + ξp3 − E3

⎤
⎦ =

′∑
p1

(p1 + 2p2)(p1 + p2/2)B(p1)

ξp1 + ξp2 + ξp3 − E3

+
9U3
16

∑′
p1

Xp1,p2 ,p3 (p3−p1 )
2(ξp1 +ξp2 +ξp3 −E3 )

1 + 3U3
16

∑′
p1,p2

X 2
p1,p2 ,p3

2(ξp1 +ξp2 +ξp3 −E3 )

′∑
p1,p2

(p2 + p1/2)Xp1,p2,p3B(p1)

2(ξp1 + ξp2 + ξp3 − E3)
(21)

from the full variational equation (12). In Eq. (21), we take p3 = −p1 − p2 because of the momentum conservation at the
center-of-mass frame of the three-body system as in Eq. (17). The detailed derivations for Eq. (21) can be found in Appendix B.
For convenience, we rewrite Eq. (21) as

B(p2)

[
1

U2
+ I2(p2, E3)

]
= I3(p2, E3) + I4(E3)I5(p2, E3)

1 + I6(E3)
, (22)
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where the integrals read

I2(p2, E3) =
′∑

p1

(p1 + p2/2)2

ξp1 + ξp2 + ξp3 − E3
, (23)

I3(p2, E3) =
′∑

p1

(p1 + p2/2)(p1 + 2p2)B(p1)

ξp1 + ξp2 + ξp3 − E3
, (24)

I4(E3) =
′∑

p1,p2

(p2 + p1/2)Xp1,p2,p3B(p1)

2(ξp1 + ξp2 + ξp3 − E3)
, (25)

I5(p2, E3) = 9U3

16

′∑
p1

Xp1,p2,p3 (p3 − p1)

2(ξp1 + ξp2 + ξp3 − E3)
, (26)

I6(E3) = 3U3

16

′∑
p1,p2

X 2
p1,p2,p3

2(ξp1 + ξp2 + ξp3 − E3)
, (27)

respectively, where we apply the constraints |p3| ≡ |p1 + p2| � kF in each momentum summation. We note that 1 + I6(E3) = 0
corresponds to the three-body equation (17) for the case with pure three-body interaction discussed in Sec. III A. In addition, the
right-hand side of Eq. (21) can be recast into

′∑
p1

(p1 + 2p2)(p1 + p2/2)B(p1)

ξp1 + ξp2 + ξp3 − E3
+

9U3
16

∑′
p1

Xp1,p2 ,p3 (p3−p1 )
2(ξp1 +ξp2 +ξp3 −E3 )

1 + 3U3
16

∑′
p1,p2

X 2
p1,p2 ,p3

2(ξp1 +ξp2 +ξp3 −E3 )

′∑
p1,p2

(p2 + p1/2)Xp1,p2,p3B(p1)

2(ξp1 + ξp2 + ξp3 − E3)

=
′∑

p1

⎡
⎢⎣ (p1 + 2p2)(p1 + p2/2)

ξp1 + ξp2 + ξp3 − E3
+

9U3
16

∑′
p1

Xp1,p2 ,p3 (p3−p1 )
2(ξp1 +ξp2 +ξp3 −E3 )

1 + 3U3
16

∑′
p1,p2

X 2
p1,p2 ,p3

2(ξp1 +ξp2 +ξp3 −E3 )

′∑
p2

(p2 + p1/2)Xp1,p2,p3

2(ξp1 + ξp2 + ξp3 − E3)

⎤
⎥⎦B(p1)

≡ −m

2

′∑
p1

[tF(p1, p2, E3) + V3(p1, p2, E3)]B(p1), (28)

where

tF(p1, p2, E3) = − 2

m

(p1 + 2p2)(p1 + p2/2)

ξp1 + ξp2 + ξp3 − E3
(29)

corresponds to Eq. (38) in Ref. [18] and

V3(p1, p2, E3) ≡ − 2

m

9U3
16

∑′
p1

Xp1,p2 ,p3 (p3−p1 )
2(ξp1 +ξp2 +ξp3 −E3 )

1 + 3U3
16

∑′
p1,p2

X 2
p1,p2 ,p3

2(ξp1 +ξp2 +ξp3 −E3 )

′∑
p2

(p2 + p1/2)Xp1,p2,p3

2(ξp1 + ξp2 + ξp3 − E3)
. (30)

From the above discussion, one can find that V3(p1, p2, E3)
corresponds to the dimensionless constant three-body (atom-
dimer) coupling V3 = 2 introduced in Refs. [18,39], while
instead V3(p1, p2, E3) has the momentum and energy
dependence.

In the practical calculation, we solve Eq. (22) with an
iteration method numerically evaluating I2(p2, E3), I3(p2, E3),
I4(E3), I5(p2, E3), and I6(E3). We start the iteration from the
initial value B(p) = 1 for a given value of E3, since E3 is
unchanged by the scale transformation of the solution B(p)
in Eq. (22). For the convergence of B(p), we have required

∑
n

[Bin(n) − Bout (n)]2

Bin(n)2
� 10−8, (31)

where Bin(n) [Bout (n)] is the input (output) during the iteration
for Eq. (22). n is the number of the discretized momentum

p = n	p + kF used in the Newton-Cotes integration with
	p = (� − kF)/N . We have confirmed that N = 1000 is suf-
ficient for the convergence in the regime of interest here.
For the momentum cutoff, as the same as that in the pure
three-body interaction case, � is also taken as 10kF in the
ensuing calculations.

Figure 2 shows the numerical solution of E3 as a func-
tion of 1(kFa), where U3 is taken as the in-medium critical
coupling U med

c for the formation of the in-medium three-body
bound state 1/(kFa) = −1.0. From the result shown in Fig. 2,
E3 monotonically decreases due to the increasing two-body
coupling strength. In addition, as shown in the lower panel of
Fig. 2, where 1/(kFa) = −0.6 is adopted, while E3 exhibits
a cutoff dependence, the qualitative behavior of the binding
energies (e.g., E3 < E2,p) is unchanged. As a result, we con-
clude that �/kF = 10 is sufficient for understanding physical
properties of in-medium bound states in the present system.
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FIG. 2. (a) In-medium three-body energy E3 as a function of
1/(kFa) solved from Eq. (22). The three-body coupling constant
U3 is taken as in-medium critical coupling U med

c = 0.986Uc at
1/(kF a) = −1.0. (b) Momentum cutoff dependence of E2,p and E3 at
1/(kFa) = −0.6.

To see the effect of the renormalized three-body coupling,
tF(p1, p2, E3) + V3(p1, p2, E3) defined in Eq. (28) is shown
as a function of p1 for the cases with V3(p1, p2, E3) = 0,
V3(p1, p2, E3) = 2 (i.e., the constant three-body coupling pro-
posed in Ref. [39]), and the form of Eq. (30), respectively,
in Fig. 3, where we take p2 = kF and E3 = −3.18EF. In
the case with V3 = 2, one can find the fermion-dimer re-
pulsion induced by the three-body kernel tF(p1, p2, E3) is
canceled by the constant coupling V3 = 2, when compar-
ing it with the result of V3 = 0. On the other hand, the
momentum-dependent coupling V3(p1, kF, E3) generated by
U3 in Eq. (30) exhibits the low-energy attraction at p1 � 5kF,
leading to the in-medium three-body bound state. While it
shows a cutoff dependence at large momenta due to the
present form factor in the three-body interaction, such a high-
momentum repulsion is weakened when the cutoff increases.
This result is consistent with the cutoff dependence of E3

shown in Fig. 3(b). Eventually, even though the fermion-dimer
repulsion is present in the high-momentum regime, the low-
momentum attraction near the Fermi surface (i.e., p1 � kF

and p2 � kF) associated with U3 induces the in-medium three-
body bound states.

To see the role of U3 in detail, E3 as a function of three-
body coupling strength U3 at 1/(kFa) = −1.0 solved from

FIG. 3. Dimensionless three-body interaction kernel
tF(p1/kF, p2/kF, E3/EF ) + V3(p1/kF, p2/kF, E3/EF ) as functions
of p1 with p2/kF = 1 and E3/EF = −3.18 for different V3. The
three-body coupling constant U3 is taken as in-medium critical
coupling U med

c at 1/(kF a) = −1.0.

Eq. (22) is also shown in Fig. 4. U3 is normalized in the
reference scheme of the critical coupling strength Uc. From
Fig. 4, it is seen that the three-body clusters gradually become
more tightly bound with the increase of three-body coupling
constant. While pure three-body force case always exhibits
squeezed Cooper triples, it is not always true in the presence of
two-body attraction. It is seen that E3 becomes finite here even
when U3/Uc < 1. On the other hand, indeed, the definition of
the boundary of the crossover between Cooper triple phase
and squeezed one also involves an ambiguity.

For comparison, we also show p-wave Cooper pairing en-
ergies E2,p in Figs. 2 and 4, which can be obtained from the
in-medium two-body equations for the p-wave pairing [18]

1 + U2

′∑
k

k2

ξk + ξ−k − E2,p
= 0. (32)

FIG. 4. In-medium three-body energy E3 as a function of dimen-
sionless coupling constant of three-body interaction U3 at 1/(kFa) =
−1.0 solved from Eq. (22). U3 is normalized in the reference scheme
of the critical coupling strength Uc.
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FIG. 5. Phase diagram of p-wave pair phase (|E2,p| > |E3|) and
Cooper triple phase (|E3| > |E2,p|) in the plane of U3/Uc and 1/(kFa).
Namely, the Cooper triple (p-wave pair) phase is more stable in the
regime above (below) the solid line.

In Fig. 5, we summarize the ground-state phase diagram of
p-wave Cooper pairing states and the Cooper tripling state in
the present model. The phase boundaries are determined in
such a way that the boundary between tripling and p-wave
pairing is given by E3 = E2,p. Such a phase diagram captures
the competition between p-wave pairings and tripling. Fig-
ure 5 shows that the transition line between p-wave pair and
Cooper triple phase monotonically decreases with the increas-
ing two-body interaction. However, this critical three-body
coupling cannot trivially become zero at the strong-coupling
limit [1/(kFa) → +∞], as we have figured out that the solu-
tion of three-body bound state cannot be found in the absence
of three-body interaction [18]. Consequently, there is a thresh-
old for the transition line at a certain two-body coupling
strength [around 1/(kFa) � 2 in our calculation] due to the
competition between the fermion-dimer repulsion and U3 in
the strong-coupling regime. We note that such a threshold is
not expected to be universal and would be associated with
a detailed high-momentum structure of the interactions. The
quantitative investigation of such a behavior point and the
properties in stronger coupling regimes are out of the scope
in this paper.

While the values of � and U3 should be clarified to com-
pare our results with the experiments, our phase diagram
would be useful to understand the qualitative features of sys-
tems with the coexistence of two- and three-body interactions.
Since the three-body ground-state energy depends on both the
two- and three-body coupling constants, one can explore the
competition between pairing and tripling phases by tuning the
interactions in cold atomic systems.

IV. SUMMARY AND PERSPECTIVES

In this paper, we have investigated the in-medium three-
body correlations (i.e., in the presence of Fermi sea) in
one-dimensional spinless fermions with two- and three-body
interactions. We solve the in-medium three-body equation

derived from the variational approach based on the gener-
alized Cooper problem. In contrast to the previous works
[18,39], where a specific form of the constant three-body
interaction was phenomenologically introduced, we have em-
ployed the antisymmetrized three-body interaction which
involves a minimal momentum dependence as the leading-
order contribution at low energy.

We first studied the simplified case with U2 = 0, namely,
the pure three-body interaction case. The three-body en-
ergies have been obtained for both the in-medium and
in-vacuum cases. Unlike three-dimensional three-component
Fermi gases, it has been found that the in-medium three-body
bound state assisted by the Fermi-surface effect does not exist
in the absence of the in-vacuum counterpart and the two-body
interaction. However, there is still a nontrivial regime corre-
sponding to the squeezed Cooper-triple phase and moreover,
the one which originates from the Fermi-surface effect found
in Ref. [28] in the presence of two-body attractions. Similar
to the BCS-BEC crossover in the three-dimensional s-wave
superfluid Fermi gas [2–4], the three-body cluster also un-
dergoes a crossover from the Cooper tripling regime in the
weak-coupling side to a regime of tightly bound trimers in the
strong-coupling side when the attractive interactions increase.

We have also investigated the general case with the coex-
istence of two- and three-body interactions. In our previous
work [18], the one-dimensional fermions were found to be
stable against the three-body clustering when only two-body
attractive p-wave interaction was considered. Meanwhile, by
including the dimensionless constant three-body coupling,
it was found that an in-medium three-body state similar to
a squeezed Cooper triple appears. Similarly, in the present
work, with further consideration of the antisymmetrized at-
tractive three-body interaction, the stable three-body clusters
survive as expected. The in-medium three-body cluster is
found to be more tightly bound with the increase of the three-
body coupling strength. Finally, we have featured a phase
diagram consisting of the p-wave Cooper-pair and Cooper-
triple phase in the plane of p-wave two-body coupling and
three-body coupling strengths. One can explore the com-
petition between pairing and tripling phases by tuning the
interactions in cold-atomic systems.

Our results would be useful for further investigation of
unconventional superconductors and superfluids. Moreover,
an in-medium three-body bound state with the existence of a
non-negligible three-body interaction also paves a promising
way for the study of higher-order clusters associated with the
Fermi-surface effect. The medium effect on bound trimers in
higher dimensions such as the super Efimov state [56] would
also be an interesting topic. More detailed studies on quantum
correlations would also be worth investigating [57].
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APPENDIX A: EXPECTATION VALUE OF HAMILTONIAN

In this Appendix, we show the detailed expressions for the expectation values of each term in the Hamiltonian. By applying
the trial wave function (9) to the Hamiltonian (1), the expectation values for the kinetic and two-body interaction parts are then
obtained as [18]

〈�3|K|�3〉 =
′∑

p1,p2,p3,p′
1,p′

2.p
′
3

�∗
p1,p2

�p′
1,p′

2
(ξp1 + ξp2 + ξp3 )εp1,p2,p3εp′

1,p′
2,p′

3
δp′

3,−p′
1−p′

2
δp3,−p1−p2

= 2
′∑

p1,p2

(ξp1 + ξp2 + ξ−p1−p2 )�∗
p1,p2

[�p1,p2 + �p2,−p1−p2 + �−p1−p2,p1 ], (A1)

with the Levi-Civita symbol εp1,p2,p3 and

〈�3|V2|�3〉 = U2

2

′∑
k1,k2

′∑
k′

1,k
′
2

′∑
p1,p2,p3

′∑
p′

1,p′
2,p′

3

(
k1 − k2

2

)(
k′

1 − k′
2

2

)
�∗

p1,p2
�p′

1,p′
2
δp1+p2,−p3δp′

1+p′
2,−p′

3

× 〈FS|Fp1,p2,p3 B†
k1,k2

Bk′
1,k

′
2
F †

p′
1,p′

2,p′
3
|FS〉

≡ 2v21 + v22, (A2)

respectively, where we defined

v21 = U2

2

′∑
p1,p2,q

�∗
p1,p2

[(p1 − p2)(2q − p1 − p2)�−p1−p2,q + (2p2 + p1)(2q + p1)�p1,q

+ (−2p1 − p2)(2q + p2)�p2,q], (A3a)

and

v22 = U2

2

′∑
p1,p2,q

�∗
p1,p2

[(p1 − p2)(2q − p1 − p2)�q,−q+p1+p2 + (2p2 + p1)(2q + p1)�q,−q−p1

+ (−2p1 − p3)(2p1 + p2)�q,−q−p2 ]. (A3b)

At last, the expectation value for the three-body interaction part reads

〈�3|V3|�3〉 = U3

′∑
k1,k2,k3

′∑
k′

1,k
′
2,k

′
3

′∑
p1,p2,p3

′∑
p′

1,p′
2,p′

3

(
k1 − k2

2

)(
k′

1 − k′
2

2

)(
k2 − k3

2

)(
k′

2 − k′
3

2

)(
k3 − k1

2

)(
k′

3 − k′
1

2

)

× �∗
p1,p2

�p′
1,p′

2
δk1+k2+k3,k′

1+k′
2+k′

3
δp1+p2,−p3δp′

1+p′
2,−p′

3
〈FS|cp3 cp2 cp1 c†

k1
c†

k2
c†

k3
ck′

3
ck′

2
ck′

1
c†

p′
1
c†

p′
2
c†

p′
3
|FS〉

= 9U3

16

′∑
p1,p2

′∑
p′

1,p′
2

(p1 − p2)(p′
1 − p′

2)(p1 + 2p2)(p′
1 + 2p′

2)(2p1 + p2)(2p′
1 + p′

2)�∗
p1,p2

�p′
1,p′

2
. (A4)

APPENDIX B: DERIVATION OF EQ. (21)

In this Appendix, we show the detailed derivations of Eq. (21). The amplitude �p1,p2 can be expressed in terms of A(p1, p2),
B(p2), and C as,

�p1,p2 + �p2,p3 + �p3,p1 = −
U2
2 [(p1 − p2)B(p3) + (p2 − p3)B(p1) + (p3 − p1)B(p2)]

2(ξp1 + ξp2 + ξp3 − E3)

+ 9U3

16
C Xp1,p2,p3

2(ξp1 + ξp2 + ξp3 − E3)
. (B1)

The above equation can be also recast into

B(p2)

⎡
⎣1 + U2

2

′∑
p1

(p3 − p1)2

2(ξp1 + ξp2 + ξp3 − E3)

⎤
⎦ = −U2

′∑
p1

(p2 − p3)(p3 − p1)B(p1)

2(ξp1 + ξp2 + ξp3 − E3)
+ 9U3

16
C

′∑
p1

Xp1,p2,p3 (p3 − p1)

2(ξp1 + ξp2 + ξp3 − E3)
.

(B2)
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By multiplying Xp1,p2,p3δp1+p2+p3,0 on both sides in Eq. (B1) and taking the momentum summation with respect to p1, p2, p3,
one has

−3C = − U2

2

′∑
p1,p2

Xp1,p2,p3 [(p1 − p2)B(p3) + (p2 − p3)B(p1) + (p3 − p1)B(p2)]

2(ξp1 + ξp2 + ξp3 − E3)

+ 9U3

16
C

′∑
p1,p2

X 2
p1,p2,p3

2(ξp1 + ξp2 + ξp3 − E3)
. (B3)

Since the antisymmetric tensor Xp1,p2,p3 satisfies

Xp2,p1,p3 = (p2 − p1)(p1 − p3)(p3 − p2) = −(p1 − p2)(p2 − p3)(p3 − p1) ≡ −Xp1,p2,p3 , (B4)

the first term in the right-hand side of the above equation can be recast into,

′∑
p1,p2

Xp1,p2,p3 (p2 − p3)B(p1)

2(ξp1 + ξp2 + ξp3 − E3)
+

′∑
p1,p2

Xp1,p2,p3 (p3 − p1)B(p2)

2(ξp1 + ξp2 + ξp3 − E3)
+

′∑
p1,p2

Xp1,p2,p3 (p1 − p2)B(p3)

2(ξp1 + ξp2 + ξp3 − E3)

= 3
′∑

p1,p2

Xp1,p2,p3 (p2 − p3)B(p1)

2(ξp1 + ξp2 + ξp3 − E3)
. (B5)

In this way, we obtain

C =
⎡
⎣1 + 3U3

16

′∑
p1,p2

X 2
p1,p2,p3

2(ξp1 + ξp2 + ξp3 − E )

⎤
⎦

−1

U2

2

′∑
p1,p2

(p2 − p3)Xp1,p2,p3B(p1)

2(ξp1 + ξp2 + ξp3 − E3)
. (B6)

By combining Eqs. (B2) and (B6), we obtain the closed equation for B(p) and E3 as

B(p2)

⎡
⎣ 1

U2
+

′∑
p1

(p1 + p2/2)2

ξp1 + ξp2 + ξp3 − E3

⎤
⎦ =

′∑
p1

(p1 + 2p2)(p1 + p2/2)B(p1)

ξp1 + ξp2 + ξp3 − E3

+
9U3
16

∑′
p1

Xp1,p2 ,p3 (p3−p1 )
2(ξp1 +ξp2 +ξp3 −E3 )

1 + 3U3
16

∑′
p1,p2

X 2
p1,p2 ,p3

2(ξp1 +ξp2 +ξp3 −E3 )

′∑
p1,p2

(p2 + p1/2)Xp1,p2,p3B(p1)

2(ξp1 + ξp2 + ξp3 − E3)
. (B7)
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