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Non-Hermitian Stark many-body localization
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Utilizing exact diagonalization techniques, we investigate a one-dimensional, nonreciprocal, interacting hard-
core boson model under a Stark potential with tail curvature. By employing the nonzero imaginary eigenenergies
ratio, half-chain entanglement entropy, and eigenstate instability, we numerically confirm that the critical points
of spectral real-complex (RC) transition and many-body localization (MBL) phase transition are not identical,
and an examination of the phase diagrams reveals that the spectral RC transition arises before the MBL phase
transition, which suggests the existence of a non-MBL-driven spectral RC transition. These findings are quite
unexpected, and they are entirely different from observations in disorder-driven interacting non-Hermitian sys-
tems. This work provides a useful reference for further research on phase transitions in disorder-free interacting
non-Hermitian systems.
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I. INTRODUCTION

Non-Hermitian quantum systems have garnered a surge
of research interest over the past two decades [1–32]. This
is due to their unique ability to host a range of novel quan-
tum phase transitions (QPTs) without Hermitian counterparts,
such as the spectral RC transitions, the topology phase transi-
tions, and non-Hermitian skin effects, among others [33–44].
The introduction of non-Hermiticity in quantum systems is
typically achieved through the modulation of gain and loss
in on-site energies or by manipulating nonreciprocal hop-
ping. These two approaches exhibit distinct symmetries: the
former maintains PT symmetry (referred to as NH-PT sys-
tems), while the latter aligns with time-reversal symmetry
(NH-TRS systems). In NH-PT systems, Ref. [1] reports
that, where the on-site energies possess gain and loss, the
eigenenergies are real if the system exhibits PT symme-
try. Notably, the breaking of PT symmetry plays a crucial
role in controlling the spectral RC transition observed in the
eigenenergies. Conversely, NH-TRS systems exhibit another
spectral RC transition induced by MBL. This was initially
addressed in Refs. [45,46]. Further investigations by Ref. [47]
unveiled a comparable MBL-driven spectral RC transition
in one-dimensional interacting NH-TRS systems subjected
to a quasiperiodic potential. Remarkably, the critical points
associated with the spectral RC transition and the MBL phase
transition coincide in the thermodynamic limit [48] for both
random and quasiperiodic potentials [46,47]. Despite the fact
that disorder-induced systems, encompassing both random
and quasiperiodic scenarios, do not belong to the same univer-
sality class from the perspective of the renormalization group

*These authors contributed equally to this work.
†jxzhong@xtu.edu.cn

(RG), disorder emerges as the overarching factor inducing
MBL in both cases.

However, it is important to note that disorder is not the
sole mechanism leading to MBL (Anderson localization [49],
AL) in many-body (single-particle) systems. In the context of
single-particle scenarios, the application of a gradient external
electric field can give rise to states reminiscent of AL, exhibit-
ing an exponential decay of localization in a system initially
in an extended state. This phenomenon is known as Wannier-
Stark localization [50], with the applied external electric field
referred to as the Stark potential. Similarly, in the realm of
many-body systems, the behavior of Stark many-body local-
ization (SMBL) [51], akin to MBL, has been observed in
both the static and dynamic responses of systems subjected
to a Stark potential. Notably, compared with disorder-induced
systems, these disorder-free systems exhibit cleaner and sim-
pler characteristics, as evinced by experimental observations
[52,53] and numerical simulations [54,55]. Consequently,
they provide a fresh platform for the exploration of MBL and
offer promising prospects for a range of applications. Recent
experimental realizations in ion traps [53] and superconduct-
ing circuits [52] have further demonstrated the feasibility of
studying SMBL, underscoring the potential and exciting av-
enues for future exploration in this field.

Naturally, several significant questions arise: Can MBL
phase transitions and MBL-driven spectral RC transitions
occur in disorder-free non-Hermitian many-body systems?
Given the notable advantages offered by SMBL systems,
including their suitability for experimental observations and
numerical simulations, as well as their capacity to host novel
QPTs, addressing this question is of significant interest and
not to be underestimated.

To address the aforementioned question, in this work, we
investigate the spectral RC transition and MBL phase tran-
sition in a one-dimensional interacting NH-TRS hard-core
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bosonic chain model subjected to a Stark potential with a
tail curvature. Through the large-scale ED simulations, we
observe the coexistence of the MBL and spectral RC transition
in the phase diagram. However, we suggest that the critical
points associated with the spectral RC transition and MBL
phase transition might be distinct in the thermodynamic limit.
Notably, our analysis reveals the presence of a spectral RC
transition that is not triggered from MBL. These findings
present a striking departure from those observed in disorder
NH-TRS many-body systems.

The rest of the paper is organized as follows: Section II
contains an overview of the interacting NH-TRS model under
Stark potential and the numerical methods employed. Sec-
tion III presents the numerical results, identifies the physical
quantities necessary for detecting spectral RC transition and
MBL phase transition, and provides the phase diagram of
NH-SMBL. The resolution is described in Sec. IV. Additional
data supporting our numerical calculations can be found in the
Appendixes.

II. MODEL AND METHOD

We consider a one-dimensional, NH-TRS hard-core boson
chain with a Stark potential. This model consists of L sites and
is represented as follows, under periodic boundary conditions
(PBCs):

Ĥ =
L∑

j=1

[−t (e−gb̂†
j+1b̂ j + egb̂†

j b̂ j+1) + Un̂ jn̂ j+1 + � j n̂ j].

(1)

In the given context, L denotes the length of the lattice. The
terms tL ≡ teg and tR ≡ te−g represent the nonreciprocal
hopping strengths towards the left and right, respectively,
where g is the strength of nonreciprocal hopping. The
parameter U characterizes the strength of the nearest-neighbor
interaction. The term � j embodies the Stark potential with
tail curvature, which is given as follows:

� j ≡ −γ j + α( j/L)2. (2)

Here, γ symbolizes the strength of the Stark potential and α

signifies the curvature of its tail. The operator b̂ j and b̂†
j denote

the annihilation and creation operations of hard-core bosons at
the site j, respectively. They conform to the commutation re-
lation [b̂k, b̂†

l ] = δkl . The number operator for particles is de-
noted as n̂ j ≡ b̂†

j b̂ j , signifying the count of particles at site j.
In this model, we highlight several key features: (a)

In the case where U = 0 and g = 0, the model reverts
to a Hermitian, single-particle scenario. Under these con-
ditions, a Stark potential can induce what is known as
Wannier-Stark localization. (b) The non-Hermitian setting
of our model is pertinent to the scenario of continuously
monitored quantum many-body systems. Our focus lies on
single quantum trajectories without quantum jumps; that
is, the postselection of pure states as the outcome of the
measurement. This approach provides a contrast to the Gorini-
Kossakowski-Sudarshan-Lindblad equation methods for open
system dynamics [56,57], which yield average results. (c)
The tail curvature parameter α confers stability to the MBL

properties of systems under Stark potentials. For more details,
please refer to Appendix B.

In this paper, we use the ED method, with the aid of
the QUSPIN package [58], to numerically derive the solutions
pertaining to Eq. (1). The parameters of the model are chosen
as follows: t = 1.0, U = 1.0, α = 0.5, and g = 0.1. A fixed
particle-number subspace with M = L/2 particles is consid-
ered, which corresponds to a half-filled system. We assert
that the spectral RC transitions in Eq. (1) are robust against
changes in the boundary conditions. We have placed the nu-
merical results and discussions for open boundary conditions
(OBCs) in Appendix C.

III. NUMERICAL RESULTS

A. Spectral real-complex transitions

Eigenenergies with a nonzero imaginary part ratio serve as
a robust probe for detecting spectral RC transitions throughout
the entire energy spectrum [46]. It is defined across the whole
spectrum as

fIm = DIm/D. (3)

Here, DIm represents the number of eigenenergies with
nonzero imaginary components. To remove potential in-
accuracies arising from numerical techniques, we define
eigenenergies Eα to have nonzero imaginary parts when
Im(Eα ) � C (C = 10−13). Simultaneously, D denotes the to-
tal number of eigenenergies. If all eigenenergies are purely
real, it corresponds to fIm = 0, while in the extreme case
where all eigenenergies are complex, this occurs at fIm = 1. It
is important to note that the critical point and critical exponent
in this case differ substantially from those of disorder-driven
systems, suggesting that they are not part of the same universal
class of criticality.

The spectral RC transition of eigenenergies at size L = 12
under γ = 0.2 and γ = 4.0 is depicted in Figs. 1(a) and
1(b), respectively. Owing to the TRS, all eigenenergies with
imaginary parts are symmetrically distributed along the real
axis. Notably, when γ = 0.2, there are a greater number of
eigenenergies with nonzero imaginary parts. Conversely, in
a deeper MBL region, specifically when γ = 4.0, almost all
eigenvalues fall on the real axis. Figure 1(c) illustrates a crit-
ical point, γ

f
c ≈ 0.42 ± 0.15, beyond which the value of fIm

decreases as γ increases. We confirm that the critical scaling
collapse as a function of (γ − γ

f
c )L1/ν , as utilized in Fig. 1(d),

reveals a critical exponent of ν ≈ 0.78 ± 0.10.

B. Many-body localization phase transitions

Level-spacing statistics provide an effective method to
probe the energy spectra of quantum systems, revealing
characteristics of the Hamiltonian such as integrable-chaotic
spectra, QPTs, and symmetry-breaking phenomena. Nev-
ertheless, due to differences in Hermitian properties, the
level-spacing statistical analysis applied in Hermitian sys-
tems cannot be directly utilized for non-Hermitian systems
[59–61]. As a result of changes in matrix symmetries, the
10-fold symmetry classification in Hermitian systems expands
to a 38-fold classification in the non-Hermitian realm [62–64].
Given that eigenvalues in non-Hermitian systems are points
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(a)

(c) (d)

(b)

FIG. 1. Spectral RC transition. The eigenenergies of Eq. (1)
for (a) γ = 0.2 and (b) γ = 4.0 are shown. The parameters are
L = 12 (lattice size), g = 0.1 (non-Hermitian strength), and U =
1.0 (interaction strength). (c) Results from Eq. (3) for lattice sizes
L = 10, 12, 14, 16. (d) Data points are fit using the scale function
(γ − γ f

c )L1/ν , yielding a critical point at γ f
c ≈ 0.42 ± 0.15 and a

critical exponent ν ≈ 0.78 ± 0.1.

distributed across a two-dimensional (2D) complex plane,
the unfolding nearest-neighbor level spacing sα serves as the
statistical data.

First, we stipulate that the minimum distance in the com-
plex plane for the eigenvalue Em is denoted as

s1,m ≡ min
l

|Em − El |. (4)

Then, we define a local mean density of eigenvalues, denoted
as ρ̄, which is

ρ̄ = n
/(

πs2
n,m

)
, (5)

where n is a larger than unitary (approximately 30), and sn,m

represents the nth-nearest-neighbor distance from Eα . Finally,
we obtain the unfolding normalized nearest-neighbor level
spacing,

sα = s1,m
√

ρ̄. (6)

We use it for the calculation of level spacing statistics in the
following.

Contrasting with standard level statistics methods, in
the realm of complex eigenvalue space, concerns over
the influence of local eigenvalue density on level-spacing
become obsolete [46,61,65]. Now, we can do the statis-
tics of unfolding normalized nearest-neighbor spacing
using sα .

In the delocalization phase, the non-Hermitian probability
distribution p(s) follows the Ginibre distribution PC

Gin(s) =
cp(cs). This distribution characterizes an ensemble of non-
Hermitian Gaussian random matrices [61]. The specific form

of this distribution is given by

p(s) = lim
N→∞

[
N−1∏
n=1

en(s2)e−s2
N−1∑
n=1

2s2n+1

n!en(s2)

]
, (7)

where

en(x) =
n∑

m=0

xm

m!
(8)

and

c =
∫ ∞

0
dssp(s) = 1.1429 · · · . (9)

For the MBL phase, with the eigenenergies being localized
on the real axis during this stage, the level-spacing statistics
follow a Poisson distribution [61], denoted

PR
Po(s) = e−s. (10)

In analyzing the level-spacing statistics of non-Hermitian
systems, we concentrate on eigenenergies situated at the cen-
ter of the spectrum. We include both real and imaginary parts
within a ±10% range, as specified in Ref. [46]. As depicted in
Fig. 2(a), the distribution conforms to the Ginibre distribution
when the Stark potential strength is set to γ = 0.2. Yet, when
the Stark potential strength is increased to γ = 4.0, the distri-
bution transitions to follow the Poisson distribution, as shown
in Fig. 2(b). This finding suggests that the system undergoes
a MBL phase transition in response to variations in the Stark
potential strength γ .

Upon confirming the existence of an MBL phase tran-
sition in the system, we turn to get the critical informa-
tion. First, we consider the static half-chain entanglement
entropy, restricting our calculations to normalized right
eigenstates |εr

n〉, i.e., 〈εr
n|εr

n〉 = 1. The specific form is as
follows:

Sn = −Tr
[
ρn

L/2 ln ρn
L/2

]
. (11)

Here, the reduced density matrix for the half chain is obtained
by performing a trace over half of the system,

ρn
L/2 = TrL/2

[∣∣εr
n

〉〈
εr

n

∣∣]. (12)

As demonstrated in Figs. 2(c) and 2(d), these figures depict
the relationship between the average entanglement entropy
per system size 〈S〉/L for selected right eigenstates from the
middle of the real part spectrum (specifically within a ±4%
range) and the Stark potential strength γ , as a function of
system size L. In Fig. 2(c), it is clearly visible that there
is a transition from volume law to area law for the entan-
glement entropy around the critical point. We have set the
function form for the critical-scaling collapse as (γ − γc)L1/ν .
Figure 2(d) presents the rescaled curve, from which we have
identified the range of the critical point as γc ≈ 1.92 ± 0.24,
and the critical exponent as ν ≈ 0.90 ± 0.10.

However, for interacting NH-TRS Hamiltonians, the
choice of right eigenstates can significantly impact the quanti-
tative results of critical values [66]. A more effective method
to understand MBL phase transitions is through the ex-
amination of eigenstate instability. A defining feature of
localized eigenstates is their robustness against local dis-
turbances [67,68]. In the realm of non-Hermitian quantum
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(e)

(f)

(a)

(b)

(c)

(d)

FIG. 2. The MBL phase transition. (a) Depicts the level-spacing distribution for γ = 0.2, with the red solid line indicating the Ginibre
distribution. (b) Displays the level-spacing distribution for γ = 4.0, with the red solid line corresponding to the Poisson distribution.
(c) Illustrates the relationship between the average entanglement entropy per system size 〈S〉/L of selected right eigenstates within a central
range of the real part of the spectrum (specifically those within ±4% of the middle), and the Stark potential strength γ , across different system
sizes L. (d) Offers a data collapse fit to the data from (c) using the scaling function (γ − γc )L1/ν , yielding a critical point γc ≈ 1.92 ± 0.24
and critical exponent ν ≈ 0.90 ± 0.10. (e) Portrays the dependence of eigenstate instability on the Stark gradient potential γ for different sizes
L. (f) Presents a fit of the data in (e), with the approximated critical point being γ MBL

c ≈ 2.17 ± 0.10 and the approximated critical exponent
being ν ≈ 0.63 ± 0.11.

many-body systems that uphold TRS, localization prompts
the clustering of imaginary eigenenergies onto the real axis.
Therefore, introducing localized perturbations to examine the
stability of eigenstates against such perturbations becomes
critical. This approach serves as a way to identify MBL phase
transitions in Hermitian systems. Within the non-Hermitian
framework, we can define a stability index for the eigenstates
as follows:

G = ln

∣∣〈εl
a+1

∣∣V̂NH

∣∣εr
a

〉∣∣
|ε′

a+1 − ε′
a|

. (13)

Here, |εl
a〉 and |εr

a〉 represent the left and right eigenstates of
the non-Hermitian Hamiltonian Ĥ , respectively, which sat-
isfy 〈εl

a|εr
b〉 = δab. The perturbation term is given by V̂NH =

b̂†
j b̂ j+1. We obtain ε′

a = εa + 〈εl
a|V̂NH|εr

a〉. And the set of {ε′
a}

is also positive and sorted in ascending order. For the ergodic
phase, ∂G/∂L > 0 is valid [69,70], whereas for the localiza-
tion phase, ∂G/∂L < 0 is observed [71].

For the choice of the local operator V̂NH, we follow the
same form as described in Ref. [46]. As depicted in Fig. 2(e),
the results showcase the dependence of the eigenstate stability
G on γ . Before the critical point γ MBL

c , G increases with the
increase in size L, indicating an ergodic phase represented by
G ∼ ζL. However, after the critical point γ MBL

c , G decreases
as the size L grows, signifying a MBL phase represented by
G ∼ −ηL. Here, η and ζ represent coefficients that are greater
than zero. As illustrated in Fig. 2(f), we have identified the

critical value as γ MBL
c = 2.17 ± 0.10 and the critical exponent

is ν ≈ 0.63 ± 0.11.
The observed numerical behavior contrasts significantly

with what is typically seen in disorder-induced interacting
NH-TRS systems, where the spectral transition and MBL
transition usually occur concurrently. However, under a Stark
potential with tail curvature, the interacting NH-TRS system
initially undergoes a spectral RC transition, followed by an
MBL phase transition. This sequence does not contradict the
concept that MBL can induce coalescence of imaginary en-
ergies. It is distinctly different from the behavior observed in
disorder-induced interacting NH-TRS systems. However, the
fact that MBL occurs after the spectral RC transition suggests
that the Stark potential begins to influence the spectral RC
transition even before the onset of the MBL phase transi-
tion. This directs the system through a previously unexplored
intermediate phase, where the spectrum is real and ergodic,
and the spectral RC transition is not principally driven by
the MBL.

We choose not to delve into an extensive discussion about
this observation in the current work, but we anticipate a
systematic investigation of this intriguing issue in future stud-
ies. Moreover, although the topological phase transition is
not closely related to the primary focus of our study, we
do observe its presence in the interacting Stark system with
nonreciprocal hopping. However, the behavior of topologi-
cal phase transitions in non-Hermitian interacting systems is
complex. Therefore, for the benefit of the readers, we have
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Im

Re

Im

Re

FIG. 3. (a) Schematic of the three phases under Stark potential,
(b) phase diagrams of nonreciprocal hopping strength g and Stark
potential strength γ , and (c) interaction strength U and Stark poten-
tial γ . In panel (a), we denote by CE phase in which the spectrum is
complex and occupies an ergodic phase. The term RE is used for a
phase featuring a real spectrum also in an ergodic phase. Meanwhile,
the acronym RMBL characterizes a phase with a real spectrum, but
in a MBL phase. In panels (b) and (c), the blue markers stand for
the numerical outcomes procured through ED, with the associated
error bars calculated based on each respective data point. The blue
dotted line, a result of fitting efforts, signifies the spectral transition
boundaries. The black markers, on the other hand, are indicative
of eigenstate instability outcomes. The black dashed line, another
fitting result, serves to demarcate the border between MBL and
ergodic phase.

included the numerically observed results obtained using ED
in Appendix A.

C. Phase diagram

The phase diagrams and transitions [72] for Stark po-
tential strength γ in Eq. (1) are obtained by performing
ED simulations with sizes L = 10, 12, 14, 16, as shown in
Fig. 3. Figure 3(a) provides a schematic of the three phases
under the Stark potential: complex spectrum and ergodic
(CE), real spectrum and ergodic (RE), and real spectrum with
many-body localization (RMBL). Here, 〈n̂(x)〉 represents the
average number of particles at different positions. In Fig. 3(b),
we fix the interaction strength at U = 1.0. The blue dashed
line on the left represents the increase of eigenenergies with a
nonzero imaginary part ratio of eigenvalues fIm as the size
L increases. Conversely, on the right, it corresponds to the
decrease of fIm with increasing L. The black dotted line on
the left signifies the growth of the eigenstate stability G with
increasing L, whereas, on the right, it signifies the decrease of
G as L expands. The CE phase (the yellow region), character-
ized by a complex spectrum, depicts an area where both G and
fIm increase with the enlargement of dimension L, signifying
that the system resides in an ergodic phase. The RE phase (the
green region), marked by a real spectrum, represents an area
where G decreases and fIm increases with the expansion of
dimension L, indicating that the system inhabits an ergodic
regime. The RMBL phase (the purple region), distinguished
by a real spectrum, corresponds to an area where both G and
fIm decrease as dimension L expands, denoting that the system

is in MBL regime. In Fig. 3(c), with nonreciprocal strength g
set at g = 0.1, we identify three regions. CE is characterized
by an increase in both G and fIm as the size L expands.
Conversely, RE depicts a scenario where G diminishes with
an enlarging L, while fIm continues to rise. Lastly, RMBL
signifies an area where both G and fIm decrease in response
to the growth of L. The error bars are deduced from the shifts
at the transition points across various system sizes. In the
noninteracting limit where U = 0, the transitions coincide,
aligning with the conclusions of Ref. [73]. This alignment
implies that the spectral transition behavior demonstrated by
the MBL phase transition is consistent with RC transition.
Nevertheless, in the presence of interactions, these two tran-
sitions diverge as U increases. This divergence suggests that
an intermediate phase arises as U intensifies, a phase solely
observed in non-Hermitian SMBL systems.

D. Dynamics of transitions

We now focus to the dynamical behavior of the system
in response to phase transitions. The dynamics of entangle-
ment entropy S(t ). In a non-Hermitian quantum system with
no quantum jump [74], we can evolve a given initial state
|ψ0〉 = |10101 · · · 〉 as

|ψ (t )〉 = e−iĤt |ψ0〉
||e−iĤt |ψ0〉||

. (14)

Here, ||e−iĤt |ψ0〉|| = (〈ψ0|eiĤ†t e−iĤt |ψ0〉)1/2. The time-
dependent reduced density matrix of the half chain is

ρL/2(t ) = TrL/2[|ψ (t )〉〈ψ (t )|]. (15)

The dynamics of entanglement entropy S(t ) is given by

S(t ) = −Tr[ρL/2(t ) ln ρL/2(t )]. (16)

As illustrated in Fig. 4(a), we examine the dynamic tra-
jectory of the half-chain entanglement entropy in both the
Hermitian boundary case (g = 0) and the non-Hermitian sce-
nario (g = 0.1). We do this for two distinct phases: an ergodic
phase with γ = 0.2 < γ MBL

c and a localized phase with γ =
4.0 > γ MBL

c . In Fig. 4(a), during the ergodic phase, a notable
difference emerges between the Hermitian case g = 0 (repre-
sented by the blue dashed line) and the non-Hermitian case
g = 0.1 (represented by the green solid line). For g = 0, the
entanglement entropy S(t ) initially exhibits linear growth and
then stabilizes around S(t ) ≈ 3.4. In contrast, for g = 0.1,
S(t ) initially grows linearly until t ≈ 20 and then decreases
and eventually stabilizes at S(t ) ≈ 1.5. Conversely, in the
MBL phase (γ = 4.0), both g = 0 and g = 0.1 exhibit slow
logarithmic growth of S(t ). This observation is consistent
with the dynamics of entanglement entropy in disorder-driven
MBL systems [46,47]. In the MBL phase, the influence of g
merely results in an overall upward shift of S(t ), as indicated
by the gray dotted line. The distinctive behavior between the
Hermitian and non-Hermitian cases in the ergodic phase can
be attributed to the eigenstates of complex eigenvalues. For
non-Hermitian systems in the ergodic phase, we observe an
unusual decrease following a certain growth in the half-chain
entanglement entropy. As the system enters the ergodic phase,
the number of complex eigenenergies increases, leading to a
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(a) (b) (c)

FIG. 4. Dynamics of the transitions with the initial state |ψ0〉 = |10101 · · · 〉. (a) The dynamics of the half-chain entanglement entropy
S(t ) for U = 1.0, g = 0.1, γ = 0.2 (green solid line), U = 1.0, g = 0, γ = 0.2 (blue dashed line), U = 1.0, g = 0.1, γ = 4.0 (red solid line),
U = 1.0, g = 0, γ = 4.0 (lime dashed line), and U = 1.0, g = 0.8, γ = 0.2 (blue dashed line). (b) The evolution of ER(t ) for γ ranging from
0.1 to 1.0. The color bar shows the values of different γ . (c) �ER(t ) as a function of γ .

gradual reduction in entanglement over time. Ultimately, the
entanglement entropy stabilizes at a specific value, denoting
the influence of non-Hermiticity on entanglement dynamics
in the ergodic phase. However, in the MBL phase, in the
absence of eigenstates with nonzero imaginary parts of their
eigenenergies, both the Hermitian and non-Hermitian cases
exhibit similar behavior.

When exposed to extreme disorder or intense Stark po-
tentials, highly excited eigenenergies transition to purely
real values. This transition induces a significant shift in
the dynamic properties of the system. A primary mea-
sure of this transformative dynamic behavior is reflected
in the evolution of the real part of the energy within the
system [46],

ER(t ) = Re[〈ψ (t )|Ĥ |ψ (t )〉]. (17)

Figure 4(b) depicts the response of the real part of the
eigenenergy, denoted as ER(t ), to the phase transition. For
γ � γ

f
c , a decrease in ER(t ) around t = 10 followed by

stabilization is observable. However, this behavior is absent
when γ > γ

f
c . Additionally, we examined the fluctuation

of ER(t ), as presented in Fig. 4(c), defined as �ER(t ) =
| max ER(t ) − min ER(t )|, across different γ parameters. No-
tably, a sharp drop in �ER(t ) starting around γ = 0.4

was observed. This feature echoes the vicinity of γ
f

c in
static situations, signaling the onset of the spectral RC
transition.

IV. CONCLUSION AND OUTLOOK

In conclusion, through ED simulations, we have examined
the critical behavior of spectral RC transition and MBL phase
transition in a one-dimensional interacting NH-TRS hard-core
boson chain subjected to Stark potential. By employing the
ratio of nonzero imaginary eigenenergies and eigenstate in-
stability as indicators, we have constructed a ground-state
phase diagram spanning CE, RE, and RMBL phases. As
the Stark potential intensifies, we identified the critical point
for the MBL phase transition at γ MBL

c ≈ 1.92 ± 0.24 and
for the spectral RC transition at γ

f
c ≈ 0.42 ± 0.15. More-

over, we have analyzed the dynamical behavior of both the
real part of the eigenenergy and the entanglement entropy.
Unexpectedly, our study revealed that in an interacting NH-
TRS system with Stark potential, the critical points for the
spectral RC transition and MBL phase transition suggest the
possibility of not being identical at the thermodynamic limit.
Most notably, Upon evaluating the phase diagram, we find
that the spectral RC transition occurs before the MBL phase

(a) (b) (c)Im[det|H(Φ)|/det|H(0)]|

Re[det|H(Φ)|/det|H(0)]| Re[det|H(Φ)|/det|H(0)]|

Im[det|H(Φ)|/det|H(0)]|

FIG. 5. The dependence of detH (�)/|detH (0)| on ω�, with ω� varying from 0 to 2π , is shown for (a) γ = 0.3 and (b) γ = 0.45. The red
points represent the origin point EB = 0. (c) The function of the winding number ω� and γ is shown for L = 10, 12, 14, 16. As γ increases,
ω� gradually decreases, eventually dropping to zero. The topological phase transition critical point is at γ T

c ≈ 0.40 ± 0.10.
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transition. This suggests the existence of a non-MBL-driven
mechanism for spectral RC transitions in interacting NH-TRS
systems with Stark potential. Such a discovery sharply con-
trasts with disordered interacting NH-TRS systems, where
the spectral RC transition and MBL phase transition suggest
a potential simultaneous occurrence in the thermodynamic
limit. (The rigorous stability of the MBL phase in the ther-
modynamic limit is a subject of ongoing debate [75,76].
Therefore, based on our numerical results from finite-size
systems, we can only suggest the potential existence of the
MBL phase in the thermodynamic limit based on observed
trends.) The theoretical foundation of this finding could be
further elucidated in future work. Our discoveries open up
a new avenue for the exploration of a novel nonequilib-
rium QPT in disorder-free interacting non-Hermitian quantum
systems.

Note added. Recently, a follow-up study [77], also finds
alignment with our results in a similar model utilizing PBCs.
This serves to further validate and underline the robustness of
our findings within non-Hermitian many-body systems under
the influence of a Stark potential.
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APPENDIX A: TOPOLOGICAL PHASE TRANSITIONS

In one-dimensional interacting non-Hermitian systems, the
winding number, defined on the complex plane, functions
as the effective topological invariant. Gauge transformations
b̂ j → ei �

L j b̂ j and b̂†
j → e−i �

L j b̂ j are introduced alongside the
parameter � (commonly interpreted as magnetic flux) to
transform the model Hamiltonian into an effective form,

H (�) =
L∑

j=1

[−t
(
e−ge−i �

L j b̂†
j+1b̂ j + egei �

L j b̂†
j b̂ j+1

)
(A1)

+ Un̂ j n̂ j+1 + � j n̂ j
]
.

Based on this transformation, the winding number is defined,
denoted as

ω� =
∫ 2π

0

d�

2π i
∂�{H (�) − EB}. (A2)

Note that EB refers to a specified reference point rather
than the ground-state energy. Departing from the traditional
bulk-edge correspondence found in Hermitian systems, ω�

is used to compute the count of complex eigenenergy tra-
jectory encirclements around the reference point EB as the
phase � transitions from 0 to 2π . Here, detH (�)/|detH (0)|

is employed to characterize the winding number around
the reference point EB [78]. As a result, the winding
number ω� does not directly pertain to topological edge
states but can be harnessed to unveil topological phase
transitions.

Next, we examine spectral RC transition. We have plotted
the eigenvalues at size L = 12 under γ = 0.2 and γ = 4.0,
as shown in Figs. 5(a) and 5(b), respectively. Since the TRS,
all eigenvalues with imaginary parts are symmetrically dis-
tributed along the real axis. It can be seen that, when γ = 0.2,
there are more eigenvalues with nonzero imaginary parts.
However, when in a deeper MBL region, i.e., γ = 4.0, almost
all eigenvalues fall on the real axis.

We also identify the winding number of the energy spec-
trum and plotted the winding number detH (�)/|detH (0)|
over the complex energy spectrum encircling the origin point
EB = 0. The value of ω� in Eq. (A2) is derived from the
number of times the loop encircles the origin. Figures 5(a) and
5(b) illustrates the loop of complex energy winding around the
origin point EB. In Fig. 5(a), we depict the scenario when γ =
0.3, while Fig. 5(b) presents the case for γ = 0.45. Evidently,
the winding number around EB diminishes as γ increases,
ultimately reaching zero. Furthermore, we have tallied the
winding number for system sizes L of 8, 10, 12, and 14,
as demonstrated in Fig. 5(d). It reveals a phase transition
from a nonzero to zero winding number as the Stark gradient
potential escalates. The critical point progressively stabilizes
at γ T

c ≈ 0.40 ± 0.10 with increasing system size, eventually
reaching a plateau at L = 14. The critical point for topological
phase transition in interacting NH-TRS system under Stark
potential is still considerably detached from that of the MBL
phase transition, possibly linked to the complex topological
characteristics inherent in non-Hermitian interacting systems.
But the critical point of spectral RC transition is closely
approached.

APPENDIX B: TAIL CURVATURE OF STARK POTENTIAL

The most important function of the tail curvature term
in the Stark potential is to weakly break the translational
invariance in order to achieve a degeneracy removal effect. We
have computed the variation of eigenvalues nonzero ratio fIm

and stability of eigenstate G with respect to the system size L
when the tail curvature parameter α = 0, 0.2, 1.5 cases. In the
case of a pure linear Stark potential α = 0, each eigenstate
is localized around a site with an inverse localization length
that remains energy independent, even deep into the localized
phase. This results in a spectrum forming an ordered ladder.
Therefore, we can weakly break translation invariance by
introducing a small tail curvature or adding small disorder
to resolve degeneracy and achieve robust localization. In this
paper, we chose to weakly break translational symmetry by
adding a quadratic tail α. The term 1/L2 ensures that the linear
term plays the dominant role in the thermodynamic limit. As
depicted in Fig. 6, for the linear case (γ = 0), an RC transition
is apparent [Fig. 6(a)], yet G does not exhibit any noticeable
crossover behavior across different system sizes L [Fig. 6(b)].
In Fig. 6, under the condition of α = 0.2, the RC transition
persists, while the system starts to exhibit an MBL transition
as the translation symmetry is weakly broken [see Figs. 6(b)
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(a) (b) (c)

(d) (e) (f)

FIG. 6. Effects of tail curvature α on NH-SMBL system’s phase transitions. When α = 0, as depicted in panel (a), the system exhibits a
spectral RC transition. (d) While the MBL transition remains undetectable due to unbroken translation symmetry. (e) When α increases to 0.2,
as shown in panel (b), the spectral RC transition persists and the MBL transition begins to appear as translation symmetry is weakly broken.
(f) Further increasing α to 1.5, as represented in panel (c), shows a minor shift in the critical points of both the spectral RC transition and the
MBL transition. This underscores the role of weakly broken translational symmetry, induced by tail curvature, in achieving the robustness of
SMBL.

and 6(e)]. As α increases further to 1.5, both the RC transition
and the MBL transition see a minor shift in their respective
critical points [see Figs. 6(c) and 6(f)]. Therefore, α = 0.5 is
not a special selection for our system. Therefore, the primary
role of the tail curvature is to weakly break translational sym-
metry, thereby achieving the robustness of SMBL by lifting
the degeneracy.

APPENDIX C: SPECTRAL REAL-COMPLEX
TRANSITIONS AND MANY-BODY LOCALIZATION PHASE
TRANSITIONS UNDER OPEN BOUNDARY CONDITIONS

In this section, we consider Eq. (1) with the boundary
conditions changed to OBCs. The Hamiltonian is as follows:

Ĥ =
L−1∑
j=1

[−t
(
e−gb̂†

j+1b̂ j + egb̂†
j b̂ j+1

) + Un̂ jn̂ j+1
]

+
L∑

j=1

� j n̂ j . (C1)

The meanings of the parameters symbolized in this equa-
tion remain unchanged. In previous reports concerning
disordered, non-Hermitian systems, it has been observed
that spectral RC transitions occur simultaneously in both
PBCs and OBCs [79]. This leads us to question whether
the speactral RC transitions and MBL phase transitions in
non-Hermitian SMBL systems with OBCs could also demon-
strate such robustness. Here, we have conducted numerical
calculations under OBCs, revealing that in the context of
OBCs, spectral RC transitions necessitate a higher nonre-
ciprocal strength g and Stark potential strength γ to persist.
As depicted in Figs. 7(a)–7(c), under the condition of g =
0.1, complex energy levels do not emerge for γ ranging
from zero to ten. However, when g = 4, spectral RC tran-
sitions are discernible, as shown in Figs. 7(d)–7(f), 7(g),
and 7(j). In the case of the MBL phase transition at
g = 0.1, both the critical point and the critical exponent re-
main virtually unchanged, as demonstrated in Figs. 7(h) and
7(k). When the parameter is adjusted to g = 4, the MBL
phase transition disappears, as can be seen in Figs. 7(i)
and 7(l).
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(a) (b) (c)

(d) (e) (f)

(g)

(j)

(h)

(k)

(i)

(l)

FIG. 7. Spectral RC transitions and MBL phase transitions under OBCs. Panels (a)–(c) depict the distribution of eigenenergies under
various conditions defined by parameters g and γ . Panels (g) and (j) show fIm for g = 0.1 and g = 4, respectively. Panels (h) and (k) present
G at g = 0.1, exhibiting a critical point and critical exponent estimated to be γ MBL

c ≈ 2.13 ± 0.10 and ν ≈ 0.66 ± 0.14, respectively. Finally,
panels (i) and (l) display G and 〈S〉/L, respectively, at g = 4. All the aforementioned situations occur under the condition of U = 1.
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