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Nondipole electron momentum offset as a probe of correlated three-electron ionization

in strongly driven atoms
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We employ a recently developed three-dimensional semiclassical model to identify nondipole effects in triple
ionization of Ne driven by infrared laser pulses at intensities where electron-electron correlation prevails.
This model fully accounts for the Coulomb interaction of each electron with the core and avoids artificial
autoionization by employing effective Coulomb potentials to describe the interaction between bound electrons.
Using the effective Coulomb potential for bound-bound electrons (ECBB) model, we identify a prominent
signature of nondipole effects. Namely, the component along the direction of light propagation of the average
sum of the final electron momenta is large and positive. That is, we identify a positive momentum offset, absent
in the dipole approximation. We find that this positive momentum offset stems mostly from the momentum
change due to the magnetic field. To better understand this momentum change, we also develop a simple model
for the motion of an electron inside an electromagnetic field. This simple model accounts for the effect of the
Coulomb forces only as a sharp change in the momentum of the electron during recollision. We show that the
momentum change due to the magnetic field is related to the sharp change in momentum during recollision for
the recolliding electron as well as to the time of recollision for both the recolliding and bound electrons. Hence,
we demonstrate that the final electron momentum offset probes the strength of a recollision and hence the degree

of correlation in multielectron ionization.
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I. INTRODUCTION

Nonsequential multielectron ionization (NSMI) in atoms
driven by intense and infrared laser pulses is a fundamen-
tal process underlain by electron-electron correlation [1].
The theoretical study of multielectron ionization of strongly
driven systems constitutes a big computational challenge. Ac-
counting for the spatial dependence of the vector potential
A(r, t) and, consequently, for the magnetic field, B(r, t) =
V x A(r,t), adds to the computational difficulty. Hence,
most theoretical studies are formulated in the dipole approxi-
mation. However, to fully explore ionization phenomena and
identify nondipole effects in driven atoms and molecules one
needs to account for the Lorentz force Fg = gv x B exerted
on particles of charge ¢ moving with velocity v. Magnetic-
field effects have been identified in a wide range of processes,
for example, in stabilization [2], in high-harmonic generation
[3-5], and in multielectron ionization probabilities of Ne [6],
with observable effects found only for intensities two orders
of magnitude larger than the ones considered in the current
work. For the largest intensity we consider here, we find that
the amplitude By ~ U,/(2wc) of the electron motion due to
Fg is roughly 0.2 a.u., where U, is the ponderomotive en-
ergy. This is much smaller than 8; &~ 1 a.u., where, according
to Refs. [7,8], magnetic-field effects are expected to arise.
Over the last few years, there has been intense interest in
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nondipole effects [9-21]. Advanced studies [13,14] have pre-
dicted nondipole effects in correlated two-electron ionization,
which have been verified experimentally for driven Ar [16].
Nondipole effects in nonsequential double ionization were
also studied in a recent experiment on strongly driven Xe [18].
We previously reported nondipole gated double ionization,
a prominent mechanism of nondipole effects in nonsequen-
tial double ionization of strongly driven atoms [13,14]. The
magnetic field together with recollision acts as a gate that
allows double ionization to occur only for a subset of the
initial momenta of the recolliding electron along the direction
of light propagation. Namely, the recolliding electron has an
average initial momentum that is negative along the direction
of light propagation (y axis), while it is zero in the dipole
approximation. The electric field is linearly polarized along
the z axis. This negative initial momentum compensates for
the positive momentum shift induced by the Lorentz force,
allowing the recolliding electron to return to the core. As
a result, the recolliding electron just before recollision ar-
rives from the —y axis with positive momentum. For the
case of strongly driven He at high intensities, we showed
that the recollisions involved are glancing ones. As a result,
the recolliding electron just before recollision is accelerated
by the Coulomb attraction from the core, resulting in the y
component of the average sum of the final electron momenta
being large and positive [13,14]. For triple ionization of Ne,
for intensities where strong and not glancing recollisions pre-
vail, we find that nondipole gated ionization is still present;
that is, the recolliding electron has a negative average ini-
tial momentum. We demonstrate that the strong recollisions
involved for driven Ne result in a different physical mech-

Published by the American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.043111&domain=pdf&date_stamp=2023-10-23
https://doi.org/10.1103/PhysRevA.108.043111
https://creativecommons.org/licenses/by/4.0/

KATSOULIS, PETERS, AND EMMANOUILIDOU

PHYSICAL REVIEW A 108, 043111 (2023)

anism compared to that for driven He, still giving rise to a
large positive y component of the average sum of the final
electron momenta. For driven Ne, using the effective Coulomb
potential for bound-bound electrons (ECBB) model, we iden-
tify the change in momentum due to the magnetic field as
the main source of the positive momentum offset along the
y axis. To better understand this momentum change, we also
develop a simple model to describe the motion of an electron
inside an electromagnetic field. In this simple model, we take
into account the effect of the Coulomb forces via a sharp
change in the momentum of each electron during recollision.
Using this model, we show that for the recolliding electron
the value of the positive momentum offset is analogous to the
momentum change along the z axis during recollision. That
is, a strong recollision results in a large positive offset. Also,
for both a bound electron and a recolliding electron, we find
that the value of the momentum offset depends on the time
of recollision. Namely, a strong recollision that takes place
around a zero of the electric field results in a large positive
momentum offset. Hence, in this work we demonstrate that in
multielectron ionization the positive momentum offset probes
the strength of the recollision involved and hence the degree
of correlated electron-electron dynamics. We do so by finding
a larger positive momentum offset for triple compared to
double ionization and for the direct compared to the delayed
recollision pathway of driven Ne. Indeed, we show that triple
ionization is more correlated than double ionization and that
electron-electron correlation is stronger in the direct than in
the delayed pathway.

II. METHOD

In this work, we identify nondipole effects in triple and
double ionization of Ne. We use a three-dimensional (3D)
semiclassical model that employs effective Coulomb poten-
tials to describe the ECBB [22,23]. This model is developed
in the nondipole framework. Moreover, this model addresses
the main challenge that classical and semiclassical models of
NSMI face, i.e., unphysical autoionization. Due to the singu-
larity in the Coulomb potential, one of the bound electrons
can undergo a close encounter with the core and acquire
very negative energy. This leads to the escape of another
bound electron via the Coulomb interaction between bound
electrons. One way to avoid this is by softening the Coulomb
potential; see Refs. [24-26] for nonsequential triple ioniza-
tion. Alternatively, Heisenberg potentials (effective softening)
[27] are added that mimic the Heisenberg uncertainty prin-
ciple and prevent each electron from a close encounter with
the core [28,29]. However, softening the Coulomb potential
fails to accurately describe electron scattering from the core
[30,31]. This renders the softened potentials quite inaccu-
rate for high-energy recolliding electrons. In contrast, in the
ECBB model, we treat exactly the Coulomb singularity in
the interaction of an electron with the core as well as the
interaction between a quasifree electron and a bound elec-
tron. Here, quasifree refers to a recolliding electron or an
electron escaping to the continuum. To address the autoion-
ization problem, since we treat the electron-core interaction
accurately, we use an effective Coulomb potential to describe
the interaction between two bound electrons. We have already

shown that accurately treating the electron-core interaction
is of paramount importance for obtaining accurate ionization
spectra [23]. Indeed, using the ECBB model, we investigated
three-electron ionization in Ar [22] and Ne [23] driven by
infrared pulses. For triple ionization, we showed that the prob-
ability distribution of the sum of the final electron momenta
along the z axis is in very good agreement with experimental
results, especially for Ne [23]. In this work, the direction of
the linearly polarized electric field is along the z axis. In the
ECBB model, we determine on the fly whether an electron
is quasifree or bound using the following simple criteria. A
quasifree electron can transition to bound following a recol-
lision. Specifically, once the quasifree electron has its closest
encounter with the core, this electron transitions to bound if
its position along the z axis is influenced more by the core
than the electric field. Also, a bound electron transitions to
quasifree due to the transfer of energy during a recollision or
from the laser field. In the former case, this transition occurs
if the potential energy this bound electron experiences from
the core is constantly decreasing. In the latter case, if the
energy of the bound electron becomes positive and remains
positive, it transitions to quasifree. The criteria are discussed
in detail and illustrated in Refs. [22,23]. In our model, one
electron tunnel ionizes through the field-lowered Coulomb
barrier at time #y. The tunneling occurs with a nonrelativistic
quantum-mechanical tunneling rate described by the instan-
taneous Ammosov-Delone-Krainov (ADK) formula [32,33],
adjusted accordingly to account for the depletion of the initial
ground state [23]. We find ¢, in the time interval [—27, 27]
where the electric field is nonzero, using importance sampling
[34];  is the full width at half maximum of the pulse duration
in intensity. The exit point of the recolliding electron along
the direction of the electric field is obtained analytically using
parabolic coordinates [35]. The electron momentum along the
electric field is set equal to zero, while the transverse one is
given by a Gaussian distribution. This distribution represents
the Gaussian-shaped filter with an intensity-dependent width
arising from standard tunneling theory [33,36,37]. A nonrel-
ativistic ADK rate results in this Gaussian distribution being
centered around zero. In Refs. [38,39] nondipole effects were
accounted for, and the most probable transverse velocities
were obtained due to tunneling. However, these most prob-
able transverse velocities, for the intensities considered in this
work, are significantly smaller than the values of the average
momentum along the propagation direction of the laser field
obtained during time propagation; the latter average momenta
are presented in what follows. For the initially bound elec-
trons, we employ a microcanonical distribution [22], while the
core is initially at rest at the origin. We use a vector potential
of the form

E() ct—Yy 2 . N
A(y,t) = ——exp|—2In2 sin(wt — ky)Z,
w cT
(1)

where k = w/c is the wave number of the laser field. The di-
rection of the vector potential and the electric field, E(y, 1) =
—%, is along the z axis, while the direction of light prop-
agation is along the y axis. The magnetic field, B(y, 1) = V x

A(y, t), points along the x axis. The pulse duration is T =25 fs,
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while the wavelength is 800 nm. We consider intensities of
1.0, 1.3, and 1.6 PW /cm?. The highest intensity considered is
chosen such that the probability for a second electron to tunnel
ionize in Ne solely due to the laser field is very small [23].
Hence, here, electron-electron correlation prevails in triple
and double ionizations. In what follows, triple ionization (TI)
refers to nonsequential triple ionization (NSTI), and double
ionization (DI) refers to nonsequential double ionization. The
Hamiltonian of the four-body system is given by

4 ,.. 2 4
_ P — A(y, 1)] 00,
B g - ; Ir; — 1y

- Z Z (=== Q’Qf +Z Z ¢ j(t)

i=2 j=i+1 =2 j=i+1
X [Vere (8 (@), Ivr — 1) + Ve (§i(0), [ty — ;D] (2)

where Q; is the charge, m; is the mass, r; is the position vector,
and p; is the canonical momentum vector of particle i. The
mechanical momentum p; is given by

pi = Pi — QiAQ, D). 3)

In the ECBB model, all electrons and the core are allowed
to move [22,23]. However, at least to our knowledge, it is
not currently clear how the /,/c momentum due to nondipole
effects during tunneling, i.e., due to the dynamics that takes
place under the field-lowered Coulomb barrier, is shared be-
tween the core and the tunneling electron as a function of laser
intensity [11,39]. Hence, we consider the mass of the core
to be infinite and effectively fix the core in the computations
that follow. The effective Coulomb potential that an electron
i experiences at a distance |r; — r;| from the core (particle
1) due to the charge distribution of electron j is derived as
follows [22,40]. We approximate the wave function of a bound
electron j with a 1s hydrogenic wave function:

0 1/2
Y&, e —rj]) = (#) e Sl 4

with ¢; being the effective charge of particle j [22,40]. Hence,
using Gauss’s law [22,40], we find that the potential produced
due to the charge distribution — |/ (¢}, [r; — rj|)|2 is given by

— (1 4+ j|r; — 1;])e 25l
vy — i '

®)

Vett (85, 1y — 1)) =
When electron i approaches the core, i.e., [r; —r;| — 0, the
effective potential is equal to ¢;. This ensures that the en-
ergy transfer between bound electrons is finite and therefore
autoionization is prevented. The functions ¢; ;(t) determine
whether at time ¢, during propagation, the full Coulomb po-
tential or the effective Ve (i, vy — r;|) and Ve (85, 11 — 13])
potentials describe the interaction between a pair of electrons
i and j [22]. The effective potentials are activated on the fly
only when both electrons are bound. During time propagation,
to accurately account for the Coulomb singularity, we trans-
form the position and momenta using the global regularization
scheme [22,41], first introduced for the gravitational N-body
problem [41]. We propagate in time the transformed posi-
tion and momenta of all particles using the classical ECBB

1.0 PW/cm? 1.3 PW /cm? 1.6 PW /cm?
/ TI N{e /

%1073
9

s of 1/Up)

units of

Pz,i (

-3 0 3-3 0 3-3 0 3

p-; (units of /Up)

FIG. 1. For Ne, symmetrized correlated momenta p, of all three
pairs of escaping electrons for triple ionization (top row) and the one
pair of escaping electrons for double ionization (bottom row). Each
plot is normalized to 1.

Hamiltonian (see [22]). To propagate, we use a leapfrog tech-
nique that allows us to solve Hamilton’s equations when the
derivative of the position and the momentum depends on the
quantities themselves [42—44]. This technique is employed
jointly with the Bulirsch-Stoer method [45,46]. We stop the
propagation at time t;, when the energy of each particle
converges. We label the trajectory as triply or doubly ionized
if three or two electrons have positive energy and compute
the triple-ionization and double-ionization probabilities of all
events. After we label an event as triply or doubly ionized, we
identify the main pathways of energy transfer via the recolli-
sion; that is, we characterize an event as direct or delayed. We
explained in detail how to identify the pathways of triple and
double ionization in Refs. [22,23]. In this work we employ
atomic units, unless otherwise stated.

III. RESULTS
A. Correlated electron momenta in TI and DI

In Fig. 1, for TI and DI of driven Ne, we plot the sym-
metrized correlated electron momenta along the direction of
the electric field p, for all pairs of escaping electrons. That
is, we plot the correlated momenta for each pair of electrons,
regardless of the momentum of the third electron, and then
superimpose the correlated momenta of all three pairs. We
find the ratio of triple to double ionization to be equal to
186, 106, and 81 for 1.0, 1.3, and 1.6 PW/cm2 [23]. We find
that the electron-electron dynamics is more correlated in triple
ionization compared to double ionization. Specifically, for TI,
at all three intensities, we find (not shown) that recollisions
occur around a zero of the electric field and hence at an
extremum of the vector potential. This results in large final
electron momenta in TI since p, is roughly equal to minus
the vector potential at the time of recollision. Indeed, this
is seen in Figs. 1(a)-1(c), where we have a large concentra-
tion of electrons with large momenta in the first and third
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1.0 PW/cm?1.3 PW/cm? 1.6 PW /cm?
TI Ne direct (e, 3¢e7)

| TI Ne delaed
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FIG. 2. For triple ionization of Ne, symmetrized correlated mo-
menta p, for the direct (e”, 3e”) pathway (top row) and for the delayed
(e7, 2¢7) pathway (bottom row). Each plot is normalized to 1.

quadrants. Comparing Figs. 1(a)-1(c) for TI with Figs. 1(d)—
1(f) for DI, we find that the electron-electron dynamics is
more correlated for TI. This is particularly the case at the
higher intensity, 1.6 PW /cm?, where we find that for DI recol-
lisions occur more around an extremum of the field, i.e., a zero
of the vector potential. This results in smaller final electron
momenta for DI. Next, for TI and DI, we show that the
electron-electron dynamics is more correlated for recollision
pathways where more electrons ionize soon after recollision.
For TI, we find that the prevailing recollision pathways are the
direct (e7, 3¢”) and delayed (e’, 2¢”) pathways. The notation
(e, ne”) denotes n electrons ionizing shortly after recollision.
Also, DI proceeds mainly via the direct (e”, 2¢”) and delayed
(e7, e) pathways. We plot the symmetrized correlated electron
momenta p, for the prevailing recollision pathways for TI
in Fig. 2 and for DI in Fig. 3. In Fig. 2, we clearly show
that the electron-electron correlation is higher in the direct
pathway [Figs. 2(a)-2(c)] compared to the delayed pathway
[Figs. 2(d)-2(f)]. Indeed, in Fig. 2, for TI, for the direct path-
way the majority of events are concentrated in the first and
third quadrants, while for the delayed pathway the events are
more spread out. For DI, Fig. 3 clearly shows that electron-
electron correlation is higher in the direct pathway than in
the delayed pathway at all three intensities. Indeed, for DI,
events for the direct pathway are concentrated in the first
and third quadrants, while for the delayed pathway events
are concentrated around zero momentum. Also, we find that
electron-electron correlation is higher for the direct (delayed)
pathway of TI compared to the direct (delayed) pathway
of DI.

B. Positive momentum offset in TI

In Fig. 4, for TI of driven Ne, to obtain the momentum off-
set per pair of ionizing electrons, we compute the y component
(direction of light propagation) of the average sum of the final
electron momenta, and we then multiply by a factor of 2/3 as

1.0 PW/cm?1.3 PW/cm? 1.6 PW /cm?
DI Ne direct (e, 2e¢")

(b)

s of /Up)

units of

pz,i (

-3 0 3-3 0 3-3 0 3
p-.; (units of /Up)

FIG. 3. For double ionization of Ne, symmetrized correlated mo-
menta for the direct (e’, 2¢”) pathway (top row) and for the delayed
(€7, e) pathway (bottom row). Each plot is normalized to 1.

follows:

5 3
§<Z py’i>
i=1 TI

_ <(py,1 + py,2) + (py,l + py,3) + (py,2 + py,3)> (6)
= 3 .

We denote by p,; the y component of the final momentum
of electron i. The reason we compute the momentum offset
per pair of electrons for TI is to directly compare it with the
momentum offset for DI, in which there is only one pair of

3 3
zzl TI Z§1 TI
3 ( Sp)) 3 (X A)
i=1 TI i=1 TI
00 TI Ne
- +-++ - -+ A+ -+
x
~ 50
L
—

1.0 1.3 1.6
Intensity (PW /cm?)

FIG. 4. For Ne, at each intensity, the height of the red bar denotes
the momentum offset per pair of electrons for TI 2/3(2?:1 Dy,i)s
and the contributions due to the initial momentum 2/ ?)(Z:?:1 Dy.i(to))
(gray bar), the magnetic field 2/ 3(21.11 A Pfﬁ (green bar), and the
Coulomb and effective potential forces 2/ 3(Z?=1 A pﬁi) (blue bar)
are also shown. The plus (+) or minus (—) sign above each bar
denotes a positive or negative value, respectively, for the given
contribution.
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ionizing electrons. Note that the momentum offset for both
TI and DI is zero in the dipole approximation. For TI, the
momentum offset is denoted by the height of the red bars in
Fig. 4. At all three intensities, we find that the momentum
offset has a significant positive value around 0.035 a.u. We
find that this is roughly four times larger than two times (to
account for an electron pair) the momentum offset in sin-
gle ionization. Next, we identify the reason for the positive
value of the momentum offset. To do so, we write the aver-
age value of the final electron momentum (p, ;) in terms of
three contributions as follows:

(Pyi) = (Pyi(to)) + (APS;) + (APY)). @)

The first term, (p,,;(o)), is the y component of the aver-
age value of the initial electron momentum. The next term,
(Apsi), denotes the y component of the average change in
the momentum of electron i in the time interval [fo, 7] due
to the Coulomb forces and the effective potentials, while the
term (Ap];i) denotes the corresponding momentum change
due to the magnetic field. Figure 4 clearly shows that the
positive momentum offset per pair of electrons for TI is due to
the momentum change from the magnetic field (green bars).
Figure 4 also shows that the momentum change due to the
Coulomb and effective potentials forces (blue bars) is signif-
icantly less than the momentum change due to the magnetic
field. Hence, in what follows, we focus on only the momentum
change due to the magnetic field. The above discussion shows
that for NSTI in driven Ne the mechanism responsible for the
positive momentum offset along the y axis is different from
the nondipole gated ionization identified in strongly driven
He [13]. In the latter case, the significant positive momentum
offset in DI was due to the recolliding electron coming, just
before recollision, mostly from the —y direction with posi-
tive momentum p, and the Coulomb attraction from the core
acting to increase p,. However, the recollisions involved in
driven He were glancing ones. For NSTI in driven Ne, we find
that the recolliding electron also has a negative average initial
momentum along the y axis and approaches mostly from the
—y axis with positive p, momentum (Fig. 5). However, the
recollisions in driven Ne are strong ones, resulting in the most
important contribution to the y component of the momentum
change being due to the magnetic field and not to the Coulomb
attraction from the core.

C. Momentum change along the y axis
In what follows we identify the main contributions to the
term (A p‘ii) in Eq. (7) for the recolliding and bound electrons.
We find Apﬁi using a simple model of an electron inside
an electromagnetic field and account for the effect of the

J

t
Apy ity — 1) = —/ pei(t)B(yi, t)dt’

fo

Io fo

TI Ne at 1.6 PW/cm?

(a)

0 ;
-0.2 0 0.2

py(to) (units of /U,)
6

Probability distributions

t 0.8 :
(b) ()
£ 0.4 :
0 0
-0.2 0 02 -2 0 2
py(tree — T/50) (units of \/U,) 7y (trec — T/50) (a.u.)

FIG. 5. Plots of the distribution of the y component of the mo-
mentum of the recolliding electron (a) at the time of tunneling 7y
and (b) shortly before recollision at time .. — 7/50 and (c) of the y
component of the position of the recolliding electron shortly before
recollision at time t,,. — T /50 for TI of driven Ne at 1.6 PW/cm?. T
is the period of the laser field.

Coulomb forces with a sharp change during recollision in the
momentum of each electron [Ap, ;(tec)].

1. Momentum change along the y axis for a recolliding electron

The Lorentz force acting on an electron i is

Fi = —[E(yi, 1) + pi x B(y;, 1)]. ®)

The momentum of electron i at time ¢ is then given by

pi(1) = pilto) — / [Ev 1) + pi x BOs (1de’. (9)

Equation (9) does not account for the Coulomb interaction
between an electron and the core as well as between electrons.
In a simplified model for the recolliding electron, we account
for the momentum change due to a recollision and hence due
to the Coulomb forces by adding a term in (9) as follows:

pi(1) = pilto) — / [EOi, )+ pi x By, )]d’

+ H(t - trec)Api(lrec)’ (10)

where H(¢ — t,..) is the Heaviside function [47] and Ap;(t;ec)
is the momentum change due to the Coulomb forces just after
and before the recollision time #... Then from Eq. (10) it
follows that the y component of the momentum change due
to the magnetic field for ¢ > f.. takes the form

t t' t
= —/ |:pz,i([0)_/ E(yi’t//)dt//+/ py,i(t//)B()’i»t//)dt//+H(t/_trec)Apz,i(trec):|B(Yi»t/)dt/
1o

043111-5



KATSOULIS, PETERS, AND EMMANOUILIDOU

PHYSICAL REVIEW A 108, 043111 (2023)

t t t t
=- f |:Pz,i(t())_ f E(y;, t")dt" + f py,i(t/,)B(yiyt”)dt”]B()’i’t/)dt/_ Apitec) | B(yi,t')dt'

fo to 0 Irec
= ApS! A tB Ndt' = Ap®! ApB2 11
= APy (to = 1) — Apgi(trec) (yi, t')dt’ = Dy (to = 1)+ Dy (trec = 1). (1D

Trec

The term A pf”[l (toy — t) simplifies when we take into account
that in our model the initial momentum of the recolliding elec-
tron along the direction of the electric field is zero, p, ;(f) =
0. Furthermore, for the purposes of this model we neglect
terms of the order of B? since the ratio of the magnitudes of the
electric and magnetic fields is |E (y;, t)/B(y;, t)| = c. Another
approximation we make for the purposes of this model is that
we compute the integral of the magnetic and electric fields
over time at the position y; = 0. That is,

E(yi,t) # E(0,1) = E(1), 12)

B(y;,t) =~ B(0,t) = B(¢). (13)

Given the above approximations, we find that

o

Apyilty — 1) = / { / E(t”)dt“:|B(t/)dt’, (14a)

t
B(tdt'.

Trec

AP iee = 1) = —Apeilivec) (14b)

For the recolliding electron, at all three intensities for both TI
and DI, we find that the term A p (treC — tr) contributes the

most to A py,l(to — tr). We find that this is the case by using
Ap. i(trec) from our full calculations using the ECBB model.

Next, we show that pr (tree = tr) is always positive. In-
deed, we rewrite Eq. (14b) as

143 E
ﬁdt

Trec

1
= — ; APz,i(frec)[A(trec)

Apzéz(trec - tf) = _Apz,i(trec)

—A(tp)]
1
= — AP i(te)Altee), (15)

where we use E(1) = — agf’) and A(tf — oo) = 0. Moreover,

for the tunneling or recolliding electron, we find that

trec
pz,i(trec) = - / E(t)drt

fo
= —[A(tg) — A(tec)]
ZA(trec)a (16)
where we have used A(#y) = 0 since the electron tunnels at an

initial time ¢y, around an extremum of the electric field. Then
Eq. (15) can be written as

1
Ap;s.’iz(trec — tf) = _;Apz,i(trec)pz,i(trec)

1
_;[pz,i(trec + At) - pz,i(trec)]pz,i(trec)-
a7

(

During a recollision, the magnitude of the momentum of the
recolliding electron after the recollision is always smaller than
its magnitude before the recollision. Hence, we can easily
show that A pﬁf (tec — tr)is always greater than zero.

2. Momentum change along the y axis for a bound electron

Concerning a bound electron, we assume that the electron
feels the electric and magnetic fields only after it is ionized,
i.e., roughly at the recollision time. Hence, for the bound
electron, in (10) and (11) we substitute 7y by #... We also
assume that p;(t..) ~ 0. Given the above assumptions, we
find that

t t
AP® (trec — 1) = f [ / E(t”)dt”}B(t/)dt/
ZYCC frec

t
- Apz,i(l‘rec) B(l/)dl/

treu
= Apyi (tee = 1) + APy (tee — 1). (18)

For both TI and DI, at all three intensities, we find that the
term A p” (trec — tr) contributes the most to A pv,(trec — tf)
for the bound electron. Next, we show that this term is always
positive as follows:

I t
Ap}}z;l (trec = tf) = f |:/ E(Z‘/)dl‘,]B(t)d[
trec Irec

— [ [Alte) — AOIBO)
rec tf
= A(trec)

trec

B(t)dt — /fA(t)B(t)dt

(trec) E()

[Altree) — Alty)]— f a0

1 2 A2 (tf) A2 (trec)
|:A (trec) + —— 2 ) :|

1
= —A(trec) > 0, (19)
2c

where we use A(fy — 00) =0

D. Comparison of the offset between DI and T1

In Fig. 6, for DI of driven Ne, we compute the y component
of the average sum of the final momenta of the ionizing elec-
tron pair (Z?:l Dy,iypr- This momentum offset is denoted by
the height of the red bar. At intensities 1.0 and 1.3 PW/cm?
we find that the momentum offset has a positive value around
0.03 a.u. This is roughly three times larger than two time (to
account for the electron pair) the momentum offset in single
ionization. At an intensity of 1.6 PW/cm? the value of the
positive momentum offset is approximately half its value at
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(), WZML)

i=1 i=1
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E(Spit)) ER{E A0,
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Z 50
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1.0 1.3 1.6
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FIG. 6. For Ne, at each intensity, the height of the red bar denotes
the momentum offset per pair of electrons for DI (ZLI Py.i)» and
the contributions due to the initial momentum (Zl.zzl Dy,i(to)) (gray
bar), the magnetic field (Zf:l A pﬁ ;) (green bar), and the Coulomb
and effective potential forces (Zf:l A pg ;) (blue bar) are also shown.
The plus (+) or minus (—) sign above each bar denotes a positive or
negative value, respectively, for the given contribution.

the two smaller intensities. Figure 6 clearly shows that the
positive momentum offset for DI is due to the momentum
change from the magnetic field (green bars), as was the case
for T1. At all three intensities, we find that for triple ionization
2/3(Z?=1 Apf,i) ranges roughly from 0.06 to 0.07 a.u. (green

bars in Fig. 4), while for double ionization <Zi2:1 Ap'zi) is
smaller, ranging roughly from 0.04 to 0.05 a.u. (green bars in
Fig. 6).

Now, we show that the smaller positive momentum offset
due to the magnetic field in double ionization compared to
triple ionization is consistent with the simple model developed
in Sec. III C. Indeed, recollisions are stronger in TI versus DI.
This is evidenced by the higher degree of electron-electron
correlation in TT compared to DI (compare the top and bottom
rows in Fig. 1). A stronger recollision in TI translates to a
larger change in the z component of the momentum of the
recolliding electron due to the Coulomb forces during recolli-
sion, i.e., to a larger value of Ap; ;(#..) in Eq. (15). Moreover,
a stronger recollision also translates to the time of recollision
being around a zero of the electric field, resulting in an ex-
tremum of A(f..). Hence, the most important contributions
to the momentum offset, the term Apyf(trec — t¢) for the

recolliding electron [Eq. (15)] and the term A pﬁ’il (trec = 15)
for the bound electron [Eq. (19)], have larger values for TI
compared to DI

E. Momentum offset for direct versus delayed
pathways in TI and DI

In what follows, we compare the momentum offset in the
direct pathway versus the delayed pathway in both TI and DI.
In Fig. 7, for TI of driven Ne, we show the momentum offset
(red bars), the contribution to this offset from the magnetic
field (green bars), and the contribution from the Coulomb and
effective potential forces (blue bars) for the direct [Fig. 7(a)]
and delayed (e, 2¢’) [Fig. 7(b)] pathways. For the two

TI

3
(e ) ()
TI 1=
3 3
03 (S pit)) WX A)
i=1 TI i=1 TI

TI Ne Direct (e7,3€)

B T
= (a)
g 50 L -
S
0
100 TI Ne Delayed (e, 2¢7)
—~ +-4++ +- -4+ +--+
= )
g 50 L E
5
Al
0

1.0 1.3 1.6
Intensity (PW/cm?)

FIG. 7. For Ne, at each intensity, the height of the red bar denotes
the momentum offset per pair of electrons for TI 2/3 (Z?Zl Dy.i)» and
the contributions due to the magnetic field 2/ 3(2;, Ap]:l.) (green
bar), due to the initial momentum 2/ 3(2;1 Dy.i(to)) (gray bar), and
due to the Coulomb and effective potential forces 2/ 3(2;.11 A pgi)
(blue bar) are also shown. The plus (4+) or minus (—) sign above
each bar denotes a positive or negative value, respectively, for the
given contribution. (a) corresponds to the direct (e”, 3¢”) pathway,
and (b) corresponds to the delayed (e, 2¢7) pathway.

highest intensities we find that the momentum offset (red bars)
is larger in the direct pathway than in the delayed pathway.
Figure 7 clearly shows that this is mainly due to the larger
positive values of the momentum change due to the magnetic
field (green bars) in the direct pathway compared to the de-
layed pathway. That is, the term 2/3(Y7 | A py;) is larger
in the direct pathway than in the delayed pathway. Figure 8
shows that the same holds true for DI of driven Ne for all three
intensities. That is, the momentum offset, as well as the con-
tribution to this offset from the magnetic field (Zle A pﬁi), is
larger in the direct pathway than in the delayed pathway. Next,
we explain why this is the case. During recollision, the recol-
liding electron gives more energy to the bound electrons in
the direct pathway compared to the delayed pathway. That is,
the sharp momentum change in the recolliding electron during
recollision Ap, () is larger in the direct pathway than in the
delayed pathway. Hence, A pﬁ’f(tm — tr) in Eq. (15) for the
recolliding electron is larger in the direct pathway. In addition,
for the bound electrons, A p?’il (trec = tr) in Eq. (19) is larger
in the direct pathway than in the delayed pathway. The reason
is that both bound electrons in the direct pathway ionize soon
after the recollision time, which is around an extremum of the
vector potential A, i.e., maximum value of A(t..). However,
in the delayed pathway, most likely, it is one of the bound
electrons that ionizes with a delay from the recollision time,
and hence, A(f..) is smaller than its extremum value.
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m(in), m(Eo)
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50} -
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—

0 —
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= +-++ F-++ F+- -4
. (b)
&)
= 5o} :
= el e o
i

0
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FIG. 8. For Ne, at each intensity, the height of the red bar denotes
the momentum offset per pair of electrons for DI (Z?Zl Dy.i)» and
the contributions due to the magnetic field (Ziil A pﬁi) (green bar),
due to the initial momentum (Ziz:l Py,i(fo)) (gray bar), and due to
Coulomb and effective potential forces <Z,-2=1 Apﬁi) (blue bar) are
also shown. The plus (4) or minus (—) sign above each bar denotes
a positive or negative value, respectively, for the given contribution.
(a) corresponds to the direct (e, 2¢”) pathway, and (b) corresponds
to the delayed (e, ¢) pathway.

Finally, we note that the contribution of the momentum
change due to the Coulomb and effective potential forces
along the y axis %(Z?:l Apgi) (see Fig. 4) is larger for the
delayed pathway than for the direct pathway of TI. This is

consistent with the electrons spending more time around the
core in the weaker recollisions that take place in the delayed
pathway compared to the direct pathway of TI. Moreover, we
find that the contribution of the momentum change due to
the Coulomb and effective potential forces along the y axis
is larger for the delayed pathway of TI pathway than for the
delayed pathway of DI. This is consistent with the net core
charge that is seen by an escaping electron in TI being equal
to 3 versus 2 in DI

IV. CONCLUSIONS

In conclusion, we used the ECBB 3D semiclassical model
to identify nondipole effects in triple and double ionizations in
Ne driven by infrared pulses for intensities where recollisions,
i.e., electron-electron correlation, prevail. We found a large
positive average sum of the final electron momenta along
the direction of light propagation. This momentum offset is
zero in the absence of magnetic field. Most importantly, we
showed this final electron momentum offset is a probe of
the electron-electron correlation. Indeed, we found a larger
momentum offset for the more correlated electron-electron
ionization (i) in triple compared to double ionization of driven
Ne, especially at high intensities, and (ii) in the direct versus
delayed pathway of triple and double ionizations of Ne. The
nondipole effects identified here in multielectron ionization
observables can be accessed and hence verified by future
experiments.

ACKNOWLEDGMENTS

AE. and G.PK. acknowledge EPSRC Grant No.
EP/W005352/1. The authors acknowledge the use of
the UCL Myriad High Performance Computing Facility
(Myriad@UCL), the use of the UCL Kathleen High
Performance Computing Facility (Kathleen@UCL), and
associated support services in the completion of this work.

[1] A. I’Huillier, L. A. Lompre, G. Mainfray, and C. Manus, Phys.
Rev. A 27, 2503 (1983).

[2] M. Y. Emelin and M. Y. Ryabikin, Phys. Rev. A 89, 013418
(2014).

[3] C. C. Chirila, N. J. Kylstra, R. M. Potvliege, and C. J. Joachain,
Phys. Rev. A 66, 063411 (2002).

[4] M. W. Walser, C. H. Keitel, A. Scrinzi, and T. Brabec, Phys.
Rev. Lett. 85, 5082 (2000).

[5] C. H. Keitel and P. L. Knight, Phys. Rev. A 51, 1420
(1995).

[6] S. Palaniyappan, A. DiChiara, E. Chowdhury, A. Falkowski, G.
Ongadi, E. L. Huskins, and B. C. Walker, Phys. Rev. Lett. 94,
243003 (2005).

[7] H. R. Reiss, Phys. Rev. Lett. 101, 043002 (2008).

[8] H. R. Reiss, J. Phys. B 47, 204006 (2014).

[9] C. T. L. Smeenk, L. Arissian, B. Zhou, A. Mysyrowicz, D. M.
Villeneuve, A. Staudte, and P. B. Corkum, Phys. Rev. Lett. 106,
193002 (2011).

[10] A. Ludwig, J. Maurer, B. W. Mayer, C. R. Phillips, L.
Gallmann, and U. Keller, Phys. Rev. Lett. 113, 243001 (2014).

[11] S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, Phys. Rev.
Lett. 113, 263005 (2014).

[12] B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M.
Hemmer, A. Senftleben, C. D. Schréter, J. Ullrich, R.
Moshammer, and J. Biegert, Phys. Rev. X 5, 021034 (2015).

[13] A. Emmanouilidou and T. Meltzer, Phys. Rev. A 95, 033405
(2017).

[14] A. Emmanouilidou, T. Meltzer, and P. B. Corkum, J. Phys. B
50, 225602 (2017).

[15] B. Willenberg, J. Maurer, B. W. Mayer, and U. Keller, Nat.
Commun. 10, 5548 (2019).

[16] E. Sun, X. Chen, W. Zhang, J. Qiang, H. Li, P. Lu, X. Gong, Q.
Ji, K. Lin, H. Li, J. Tong, E. Chen, C. Ruiz, J. Wu, and F. He,
Phys. Rev. A 101, 021402(R) (2020).

[17] K. Lin, S. Brennecke, H. Ni, X. Chen, A. Hartung, D. Trabert,
K. Fehre, J. Rist, X.-M. Tong, J. Burgdorfer, L. P. H. Schmidt,

043111-8


https://doi.org/10.1103/PhysRevA.27.2503
https://doi.org/10.1103/PhysRevA.89.013418
https://doi.org/10.1103/PhysRevA.66.063411
https://doi.org/10.1103/PhysRevLett.85.5082
https://doi.org/10.1103/PhysRevA.51.1420
https://doi.org/10.1103/PhysRevLett.94.243003
https://doi.org/10.1103/PhysRevLett.101.043002
https://doi.org/10.1088/0953-4075/47/20/204006
https://doi.org/10.1103/PhysRevLett.106.193002
https://doi.org/10.1103/PhysRevLett.113.243001
https://doi.org/10.1103/PhysRevLett.113.263005
https://doi.org/10.1103/PhysRevX.5.021034
https://doi.org/10.1103/PhysRevA.95.033405
https://doi.org/10.1088/1361-6455/aa90e9
https://doi.org/10.1038/s41467-019-13409-6
https://doi.org/10.1103/PhysRevA.101.021402

NONDIPOLE ELECTRON MOMENTUM OFFSET AS A PROBE ...

PHYSICAL REVIEW A 108, 043111 (2023)

M. S. Schoffler, T. Jahnke, M. Kunitski, F. He, M. Lein, S.
Eckart, and R. Dorner, Phys. Rev. Lett. 128, 023201 (2022).

[18] K. Lin, X. Chen, S. Eckart, H. Jiang, A. Hartung, D. Trabert, K.
Fehre, J. Rist, L. P. H. Schmidt, M. S. Schoffler, T. Jahnke, M.
Kunitski, F. He, and R. Dorner, Phys. Rev. Lett. 128, 113201
(2022).

[19] A. Hartung, S. Eckart, S. Brennecke, J. Rist, D. Trabert, K.
Fehre, M. Richter, H. Sann, S. Zeller, K. Henrichs, G. Kastirke,
J. Hoehl, A. Kalinin, M. S. Schoffler, T. Jahnke, L. P. H.
Schmidt, M. Lein, M. Kunitski, and R. Dorner, Nat. Phys. 15,
1222 (2019).

[20] S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, Phys. Rev.
A 92, 051401(R) (2015).

[21] S. Brennecke and M. Lein, J. Phys. B 51, 094005 (2018).

[22] M. B. Peters, G. P. Katsoulis, and A. Emmanouilidou, Phys.
Rev. A 105, 043102 (2022).

[23] A. Emmanouilidou, M. B. Peters, and G. P. Katsoulis, Phys.
Rev. A 107, L041101 (2023).

[24] P.J. Ho and J. H. Eberly, Phys. Rev. Lett. 97, 083001 (2006).

[25] Y. Zhou, Q. Liao, and P. Lu, Opt. Express 18, 16025 (2010).

[26] Q. Tang, C. Huang, Y. Zhou, and P. Lu, Opt. Express 21, 21433
(2013).

[27] C. L. Kirschbaum and L. Wilets, Phys. Rev. A 21, 834 (1980).

[28] H. Jiang and F. He, Phys. Rev. A 104, 023113 (2021).

[29] H. Jiang, D. Efimov, F. He, and J. S. Prauzner-Bechcicki, Phys.
Rev. A 105, 053119 (2022).

[30] R. R. Pandit, Y. Sentoku, V. R. Becker, K. Barrington, J.
Thurston, J. Cheatham, L. Ramunno, and E. Ackad, Phys.
Plasmas 24, 073303 (2017).

[31] R. R. Pandit, V. R. Becker, K. Barrington, J. Thurston, L.
Ramunno, and E. Ackad, Phys. Plasmas 25, 043302 (2018).

[32] L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-
relativistic Theory, 2nd ed. (Pergamon, Oxford, 1965).

[33] N. B. Delone and V. P. Krainov, J. Opt. Soc. Am. B 8, 1207
(1991).

[34] R. Y. Rubinstein and D. P. Froese, Simulation and the Monte
Carlo Method, 3rd ed. (Wiley, Hoboken, NJ, 2016).

[35] B. HuP, J. Liu, and S.-G. Chen, Phys. Lett. A 236, 533
(1997).

[36] N. B. Delone and V. P. Krainov, Phys. Usp. 41, 469 (1998).

[37] L. Fechner, N. Camus, J. Ullrich, T. Pfeifer, and R.
Moshammer, Phys. Rev. Lett. 112, 213001 (2014).

[38] E. Yakaboylu, M. Klaiber, H. Bauke, K. Z. Hatsagortsyan, and
C. H. Keitel, Phys. Rev. A 88, 063421 (2013).

[39] P-L. He, M. Klaiber, K. Z. Hatsagortsyan, and C. H. Keitel,
Phys. Rev. A 105, L031102 (2022).

[40] V. J. Montemayor and G. Schiwietz, Phys. Rev. A 40, 6223
(1989).

[41] D. C. Heggie, Celestial Mech. 10, 217 (1974).

[42] P. Pihajoki, Celestial Mech. Dyn. Astron. 121, 211 (2015).

[43] L. Liu, X. Wu, G. Huang, and F. Liu, Mon. Not. R. Astron. Soc.
459, 1968 (2016).

[44] G. P. Katsoulis, M. B. Peters, A. Staudte, R. Bhardwaj, and A.
Emmanouilidou, Phys. Rev. A 103, 033115 (2021).

[45] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes: The Art of Scientific Computing,
3rd ed. (Cambridge University Press, Cambridge, 2007).

[46] R. Bulirsch and J. Stoer, Numer. Math. 8, 1 (1966).

[47] M. Abramowitz and 1. Stegun, Handbook of Mathematical
Functions: With Formulas, Graphs, and Mathematical Tables,
Applied Mathematics Series (Dover Publications, Inc., New
York, 1965).

043111-9


https://doi.org/10.1103/PhysRevLett.128.023201
https://doi.org/10.1103/PhysRevLett.128.113201
https://doi.org/10.1038/s41567-019-0653-y
https://doi.org/10.1103/PhysRevA.92.051401
https://doi.org/10.1088/1361-6455/aab91f
https://doi.org/10.1103/PhysRevA.105.043102
https://doi.org/10.1103/PhysRevA.107.L041101
https://doi.org/10.1103/PhysRevLett.97.083001
https://doi.org/10.1364/OE.18.016025
https://doi.org/10.1364/OE.21.021433
https://doi.org/10.1103/PhysRevA.21.834
https://doi.org/10.1103/PhysRevA.104.023113
https://doi.org/10.1103/PhysRevA.105.053119
https://doi.org/10.1063/1.4990555
https://doi.org/10.1063/1.5024380
https://doi.org/10.1364/JOSAB.8.001207
https://doi.org/10.1016/S0375-9601(97)00811-6
https://doi.org/10.1070/PU1998v041n05ABEH000393
https://doi.org/10.1103/PhysRevLett.112.213001
https://doi.org/10.1103/PhysRevA.88.063421
https://doi.org/10.1103/PhysRevA.105.L031102
https://doi.org/10.1103/PhysRevA.40.6223
https://doi.org/10.1007/BF01227621
https://doi.org/10.1007/s10569-014-9597-9
https://doi.org/10.1093/mnras/stw807
https://doi.org/10.1103/PhysRevA.103.033115
https://doi.org/10.1007/BF02165234

