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We show the possibility of implementing a deep dissipative optical lattice for neutral atoms with a macroscopic
period. The depth of the lattice can reach magnitudes comparable to the depth of the magnetooptical traps
(MOT), while the presence of dissipative friction forces allows for the trapping and cooling of atoms. The
area of localization of trapped atoms reaches submillimeter size, and the number of atoms is comparable to
the number trapped in MOT. As an example, we study lithium atoms for which the macroscopic period of the
lattice � = 1.5 cm. Such deep optical lattices with a macroscopic period open up the possibility for developing
effective methods for cooling and trapping neutral atoms without the use of magnetic field as an alternative to
MOT. This is important for developing compact systems based on cold atoms.
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I. INTRODUCTION

Magnetooptical traps (MOT) are the basic instruments for
laser cooling and trapping of neutral atoms [1,2]. The opera-
tion of MOT is based on a combination of dissipative forces of
spontaneous light pressure and a deep macroscopic potential
(of the order of several K) in a spatially nonuniform magnetic
field. Cold atoms obtained in MOT have a wide range of
applications, including the development of quantum sensors
based on matter wave interference [3], in laser metrology
for developments of ultra-precise frequency standards (atomic
clocks) [4–7], and others. However, in many cases the fast
turn-off of the magnetic field used in MOT and the precise
control over the residual magnetic field are required, which
may be technically difficult to realize. Therefore, the devel-
opment of alternative methods of primary laser cooling and
trapping of neutral atoms without using a magnetic field is
an important direction in creating compact and mobile ultra-
precision devices based on cold atoms.

It is well known that optical lattices allow for atom trap-
ping without a magnetic field. Dissipative and nondissipative
optical lattices are distinguished [2,8,9]. The regime of dis-
sipative lattices [2,9–16], which combines atom trapping and
laser cooling, is realized for small detunings, when the light-
field frequency is close to the atom transition resonance with
natural linewidth γ . However, since the frequency is cho-
sen close to the atomic transition and the intensities of light
waves required for deep cooling should be small, the depth
of the dissipative lattice is usually small and comparable
to the temperature of Doppler or sub-Doppler cooling. The
absence of a deep macroscopic potential does not allow the
use of such lattices for efficient primary laser cooling and
trapping. Nondissipative deep optical lattices are created by
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intense light waves with a sufficiently large detuning. Their
depth is determined by the technical capabilities of laser
systems and can reach hundreds of microkelvin [2,4,17].
However, dissipative laser cooling mechanisms are negligi-
ble here, which requires the use of MOT to load atoms into
them.

The use of bichromatic waves opens up new possibilities
to form a deep dissipative potential of macroscopic scale. The
first theoretical studies of atomic kinetics in the presence of
two monochromatic fields were done in [18,19], where the
effect of rectification of the dipole force was demonstrated.
In such fields the atom acquires momentum �p = 2h̄k due to
induced absorption of photons of one of the counterpropagat-
ing waves and induced emission into the opposite wave. Since
the rate of induced processes is not directly related to the line
width γ , the force on the atom can significantly exceed the
spontaneous light pressure force from a single wave, which
can be used for effective control of atomic beams [20–23].

Moreover, in the bichromatic field, the force averaged over
the wavelength is not equal to zero, making it possible to
create a deep optical potential with a macroscopic period � =
π/�k, determined by the spatial beating of the two frequency
components (�k is difference in wave vectors). In this case,
the parameters of the light field can be chosen so that the
dissipative mechanisms of laser cooling lead to cooling and
trapping of the atoms in the area of minimum of macroscopic
potential [24,25]. However, because both field frequencys are
resonant with the same optical transition, the difference in
wave vectors is extremely small and � is very large. For
example, for a frequency difference of 10 to 100 MHz is
required for near-resonant interaction and the macroscopic
period is about 1 to 10 meters. In such fields, the curvature in
the minimum of the macroscopic potential (∝ �k/k) is small
and does not allow to reach a distinct localization of atoms
inside cell of centimeter size since the spatial phase difference
of the fields at such scales is practically unchanged.
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In this work, to reduce the period of the macroscopic po-
tential in a bichromatic field and increase its curvature, we
propose to use light waves, which are resonant to different
transitions between fine and hyperfine components of atomic
levels. As an example, we investigate lithium atoms, for which
the fine splitting of the 2P3/2 and 2P1/2 levels is about 10 GHz,
determining the macroscopic lattice period of � = 1.5 cm. In
this case, each field component is near-resonant to the D1 and
D2 lines, which leads to significant dipole forces and allows
for the realization of a deep optical potential with a macro-
scopic period even in the low-intensity field. The presence
of dissipative effects in such an optical lattice leads to laser
cooling and trapping of neutral atoms with a submillimeter
localization area near the minimum of the macroscopic po-
tential. The results of our theoretical analysis show that the
depth of the macroscopic potential is comparable to the depth
of the magnetooptical trap (approximately 1 K in tempera-
ture units or more), and laser cooling temperatures can reach
sub-Doppler values. These studies open up the possibility of
implementing deep dissipative optical traps for neutral atoms
as an alternative to MOT.

II. KINETICS OF LITHIUM ATOMS IN A RESONANT
BICHROMATIC FIELD

In this section, we describe the kinetics of lithium atoms in
a bichromatic light field with frequencies ω1 and ω2

E(r, t ) = Re{E(1)(r)e−iω1t + E(2)(r)e−iω2t }, (1)

where vector amplitudes E(1) and E(2) are determined by a
superposition of running waves

E(n)(r) =
∑

m

E(n)
m eik(n)

m ·r, n = 1, 2. (2)

The directions of the waves’ propagation are given by wave
vectors k(n)

m . The frequencies of the light-field components
ω1 and ω2 are near the resonance lines D2 and D1 of lithium
atoms, respectively. The scheme of energy levels and optical
transitions used for laser cooling of 6Li atoms is shown in
Fig. 1.

It should be noted that the hyperfine splitting of the 2P3/2

and 2P1/2 states for lithium atoms is comparable to the natural
linewidth γ /2π = 5.9 MHz. Moreover, the hyperfine com-
ponents of the 2P3/2 state are within the natural linewidth
γ , which requires the use of a model taking into account
the interaction of light waves with all hyperfine components.
Further, to simplify notation, we introduce the indices eα

(α = 1, . . . , 5) for the hyperfine components of the excited
states 2P3/2 and 2P1/2, and gn (n = 1, 2) for the hyperfine
components of the ground state 2S1/2 (see Fig. 1). Note that
7Li and 6Li isotopes have a similar level structure. Here we
perform our analysis for the 6Li atoms that have lower values
of total angular momentum. However, the results can also be
generalized for 7Li atoms as well.

The kinetics of atoms in light fields is described by the
quantum kinetic equation for the atomic density matrix

∂

∂t
ρ̂ = − i

h̄
[Ĥkin + Ĥint + Ŵ (t ), ρ̂] + 
̂{ρ̂}, (3)
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FIG. 1. Level structure of 6Li atom.

where Ĥkin = p̂2/2M is the kinetic part, Ŵ (t ) = −d̂ · E(t)
describes the interaction with the field in the dipole approx-
imation (where d̂ is the dipole moment operator), and Ĥint is
the Hamiltonian of a free atom in the rest frame

Ĥint =
∑

α=1,...,5

Eeα
P̂(eα ) +

∑
n=1,2

Egn P̂(gn ), (4)

where Eeα
and Egn are energies of the excited states |eα〉 and

ground states |gn〉. Here P̂(eα ) and P̂(gn ) are projection opera-
tors onto the Zeeman components of the hyperfine level |eα〉
and |gn〉,

P̂(eα ) =
Feα∑

μeα =−Feα

|Feα
, μeα

〉〈Feα
, μeα

|, α = 1, . . . , 5

P̂(gn ) =
Fgn∑

μgn =−Fgn

|Fgn , μgn〉〈Fgn , μgn |, n = 1, 2. (5)

The operator 
̂{ρ̂} describes the relaxation of an atom due to
spontaneous emission.

To use the resonant approximation in a bichromatic field
(1), let us introduce the operator

T̂ = exp

[
−i t

( ∑
α=1,2,3

ω1 P̂(eα ) +
∑

α=4,5

ω2 P̂(eα )

)]
, (6)

where the summation is taken over all components of the
levels 2P3/2 and 2P1/2. For the transformation (6), the evolution
equation for the transformed density matrix ˆ̃ρ = T̂ †ρ̂ T̂ takes
a similar form to (3)

∂

∂t
ˆ̃ρ = − i

h̄
[Ĥkin + ̂̃H int + ̂̃W , ˆ̃ρ] + 
̂{ ˆ̃ρ}. (7)

However, the resonance approximation allows to eliminate the
time dependence in the interaction operator and divide it into
the sum of contributionŝ̃W = h̄V̂ (1) + h̄V̂ (2) + H.c., (8)
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determined by the interaction with two frequency compo-
nents: E(1) is close to the resonance with D2 line and E(2) is
close to the resonance with D1 line (Fig. 1)

V̂ (1) = V̂ e1g1 + V̂ e2g1 + V̂ e3g1 , V̂ (2) = V̂ e4g2 + V̂ e5g2 . (9)

Here, the operator blocks V̂ eαgn are defined as

V̂ eαgn = −(E(n) · D̂eαgn )d̄/h̄, (10)

where d̄ is the reduced matrix element of the dipole moment
operator and D̂eαgn are the matrix blocks of dipole moment
operator

d̂ = D̂ d̄ + H.c.. (11)

Thus the the matrix blocks D̂eαgn are

D̂eαgn = P̂(eα ) D̂ P̂(gn ). (12)

The decomposition of the dipole moment operator D̂ in circu-
lar basis

D̂ =
∑

q=0,±1

D̂q eq, (13)

is determined by the corresponding matrix elements
〈I, Jeα

; Feα
, μeα

|D̂q|I, Jgn ; Fgn , μgn〉 for atomic states with elec-
tronic angular momenta of the ground and excited states:
Jgn = 1/2 and Jeα

= 1/2, 3/2 (Fig. 1). Here I is the nuclear
spin (I = 1 for 6Li atoms). According to the Wigner-Eckart
theorem [26], matrix elements are expressed through Clebsch-
Gordan coefficients and 6- j symbols

〈I, Jeα
; Feα

, μeα
|D̂q|I, Jgn ; Fgn , μgn〉

= CFeα ,μe

Fgn ,μgn ; 1,q (−1)(Jeα +Fgn +I+1)
√

(2Fgn + 1)(2Jeα
+ 1)

×
{

Jeα
1 Fgn

Jgn I Jeα

}
. (14)

The non-Hamiltonian evolution of the system due to spon-
taneous emission of the light-field photons is described by

̂{ ˆ̃ρ} in the equation for the density matrix (3) and (7). Taking
into account the recoil effects, this contribution has the form
(see, for example, [15,16])


̂{ ˆ̃ρ} = −γ

2
(P̂(e) ˆ̃ρ + ˆ̃ρ P̂(e) ) + γ̂ { ˆ̃ρ}, (15)

with

γ̂ { ˆ̃ρ}

= γ
3

2

〈 ∑
ξ=1,2

(D̂ · eξ (kξ ))†e−ikξ ·r̂ ˆ̃ρ eikξ ·r̂(D̂ · eξ (kξ ))

〉
�ξ

.

(16)

Here the operator P̂(e) = ∑
α P̂(eα ) is a projector onto excited

states (the summation is taken over all states of the 2P3/2

and 2P1/2 levels), 〈. . . 〉�ξ
means averaging over the angles

of spontaneously emitted photons with two orthogonal po-
larizations eξ , (ξ = 1, 2), the wave vectors kξ are specifying
the direction of spontaneously emitted photon, and r̂ is the
position operator.

The Hamiltonian of a free atom in the rest frame in the
rotating basis (6) takes the form

̂̃H int = −h̄
∑

α=1..5

�α P̂(eα ), (17)

where

�α = ω1 − ωeαg1 , for α = 1, 2, 3,

�α = ω2 − ωeαg2 , for α = 4, 5, (18)

are detunings from resonance for light-induced transitions
between hyperfine levels of D2 and D1 lines caused by two
frequency components Fig. 1. Here ωeαgn = (Eeα

− Egn )/h̄ is
the transition frequency between states |eα〉 and |gn〉.

Note that the kinetics of lithium atoms is characterized
by enough of a small recoil parameter εR = ER/h̄γ � 0.01
(ER = h̄2k2/2M is the recoil energy) that makes it possible
to use the semiclassical approximation. Indeed, for such a
small recoil parameter, the semiclassical approximation gives
a good agreement with quantum treatment based on the di-
rect numerical solution of the density matrix equation (7) in
monochromatic light [27,28]. Within the semiclassical ap-
proximation, the equation for the density matrix (7) can be
reduced to the Fokker-Planck equation (see, for example,
[29–31])(

∂

∂t
+ p

M
· ∇

)
F = −

∑
i

∂

∂ pi
fi(r, p)F

+
∑
i, j

∂2

∂ pi ∂ p j
Di j (r, p)F , (19)

for the distribution function of atoms in the phase space
F (r, p) = Tr{ρ̂(r, p)}, where the trace is taken over the in-
ternal degrees of the atom density matrix in the Wigner
representation. Here ∇ is the spatial gradient, fi are the Carte-
sian components of the light force on atoms, and Di j are the
Cartesian components of the diffusion tensor in momentum
space. The force and diffusion tensor can be obtained in a
process of reduction of the density matrix equation (3) to the
Fokker-Plank equation (19).

III. BICHROMATIC OPTICAL LATTICE
FOR LITHIUM ATOMS

The light force on atom in a light field is determined by the
spatial gradients of the interaction operator (8)

fi(r, v) = −Tr{(∇i
̂̃W (r)) σ̂ (r, v)}, (20)

where σ̂ (r, v) is the stationary solution of equation (7) in zero
order by the recoil effects

(v · ∇ ) σ̂ (r, v)=− i

h̄
[̂̃H int + ̂̃W (r), σ̂ (r, v)]+
̂(0){σ̂ (r, v)},

(21)

with the normalization condition Tr{σ̂ } = 1. The opera-
tor of spontaneous relaxation in zeroth order by recoil
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is


̂(0){σ̂ } = −γ

2
(P̂(e)σ̂ + σ̂ P̂(e) ) + γ̂ (0){σ̂ },

γ̂ (0){σ̂ } = γ
∑

q=0,±1

D̂†
q σ̂ D̂q. (22)

Let us note, that expression (20) defines the general expression
for the force as a function of atom position r and velocity
v. The optical lattice, the optical potential for atoms is deter-
mined by the force on moveless atom v = 0. The expression
for the force can be obtained numerically based on the so-
lution of (21) for the density matrix σ̂ , however, analytical
solutions are of the greatest interest for analysis.

The force, by its nature, is divided into two components:
the induced force, associated with the transmission of mo-
mentum from the light field to an atom in the processes of
stimulated absorption or emission of photons between dif-
ferent spatial modes of the field, and the spontaneous light
pressure force, associated with the transfer of momentum to
atoms in the cycle of induced absorption and the spontaneous
emission of photons. Both components of the force can lead to
the formation of an optical potential, or the so-called optical
lattice [2,8,9,32].

For analysis of the optical potential in a bichromatic field,
we can get the analytical expression for the force on slow
atoms kv < γ in the light fields of low intensity

S(n) = |�(n)(r)|2
γ 2 + 4δ2

n

� 1, n = 1, 2, (23)

where

�(n)(r) = −|E(n)(r)|d̄
h̄

, (24)

is the local Rabi frequency for nth frequency component (2)

δ1 = ω1 − ωe3g1 , δ2 = ω2 − ωe5g2 , (25)

are the main detunings from the resonances, which are de-
termined by the frequency ωe3g1 of the transition 2P3/2(F =
5/2) → 2S1/2(F = 3/2) for component E(1) and the fre-
quency ωe5g2 of the transition 2P1/2(F = 1/2) → 2S1/2(F =
1/2) for component E(2) as shown in Fig. 1.

In the limit (23), the populations of the excited states are
small, and for slow atoms kv < γ equation (21) can be re-
duced to the equation for the density matrices of two ground
states 2S1/2 with angular momenta F = 3/2 and F = 1/2,

σ̂ (n) = P̂(gn )σ̂ P̂(gn ), n = 1, 2. (26)

In this case, the equations for these matrices take the form

(v · ∇)σ̂ (1) = −i
[
Ĥ (1)

eff , σ̂ (1)] + P̂(g1 ) γ̂ (0){σ̂ ee} P̂(g1 ),

(v · ∇)σ̂ (2) = −i
[
Ĥ (2)

eff , σ̂ (2)
] + P̂(g2 ) γ̂ (0){σ̂ ee} P̂(g2 ). (27)

The Hamiltonian evolution here is described by two effective
Hamiltonians

Ĥ (1)
eff =

∑
α=1,2,3

�α − iγ /2

|να|2 (V̂ eαg1 )†V̂ eαg1 ,

Ĥ (2)
eff =

∑
α=4,5

�α − iγ /2

|να|2 (V̂ eαg2 )†V̂ eαg2 . (28)

Here we use the notation να = γ /2 − i �α . The density ma-
trix of the excited states σ̂ ee in the zeroth order by recoil for
slow atoms is divided into a sum of two blocks

σ̂ ee = σ̂ ee
1 + σ̂ ee

2 ,

σ̂ ee
1 =

∑
α,α′=1,2,3

1

να ν∗
α′

V̂ eαg1 σ̂ (1) (V̂ eα′ g1 )†,

σ̂ ee
2 =

∑
α,α′=4,5

1

να ν∗
α′

V̂ eαg2 σ̂ (2)(V̂ eα′ g2 )†. (29)

Note, that for sufficiently large detunings that exceed the
hyperfine splitting in excited states 2P3/2 and 2P1/2 and the
natural width γ , i.e.,

δ1 � (ωe1e2 , ωe2e3 , γ ), δ2 � (ωe4e5 , γ ), (30)

the following approximation can be used

�α � δ1 for α = 1, 2, 3, �α � δ2 for α = 4, 5. (31)

In this case, the effective Hamiltonians (28) are substantially
simplified and reduced to the shift operators for the hyperfine
components of the ground states

Ĥ (n)
e f f (r) = δn S(n)(r) Û (n)(r), n = 1, 2,

Û (1)(r) = 2

3
|A1(r)|2 P̂(g1 ) − i

3

(
[A∗

1(r) × A1(r)] · F̂
Fg1

)
,

Û (2)(r) = 1

3
|A2(r)|2 P̂(g2 ) − i

9

(
[A∗

2(r) × A2(r)] · F̂
Fg2

)
,

(32)

are determined by the spatial configuration of local po-
larization vectors for each frequency component A1(r) =
E(1)(r)/|E(1)(r)| and A2(r) = E(2)(r)/|E(2)(r)|. Here F̂ is the
total angular momentum operator and [A × B] denotes the
cross product of the vectors A and B. Expressions (32) are
written in the invariant form and valid for an arbitrary nuclear
spin (i.e., they are also applicable to 7Li atoms). Note that
the expression for Û (1) corresponds to the optical lattice light
shift in [33,34] obtained for the monochromatic light field far
detuned to the optical resonance D2 line of Cs atoms.

In the considered limit (23), the force on atoms can be
represented as a sum of two parts

f = h̄ Tr{f̂1 σ̂ (1)} + h̄ Tr{f̂2 σ̂ (2)}, (33)

where the force vector operators f̂n are determined by the
spatial gradients

f̂n = −∇Ĥ (n)
eff , n = 1, 2. (34)

It should be noted that a distinctive feature of the consid-
ered bichromatic configuration, compared to optical lattices
formed by monochromatic fields, is the presence of an ad-
ditional shift Û (2) with a spatial dependence that may be
different from Û (1). Spatially nonuniform optical pumping of
the ground state levels |g1〉 and |g2〉, defined by equation (27)
under the motion in two potentials, leads to the rectification of
the dipole force (33) on the wavelength scale. As a result, the
optical potential with a macroscopic period can be formed. To
demonstrate this, we consider several examples below.
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FIG. 2. Double lin||lin field configuration.

A. One-dimensional optical lattices created
by a bichromatic field

Let us consider the general form of a one-dimensional
bichromatic field configuration created by counterpropagating
waves of equal scalar amplitude along the z axis

E(n)(z) = E (n)
0 (A(n)

+ eik(n)z + A(n)
− e−ik(n)z ), n = 1, 2. (35)

Here E (n)
0 are scalar amplitudes and A(n)

± are unit polarization
vectors of the counterpropagating light waves of different fre-
quency components (n = 1, 2), which can be elliptical in the
general case. If we denote k(2) = k and �k = k(1) − k(2) > 0,
then the field (35) can be rewritten as

E(1)(z) = E (1)
0 (A(1)

+ eikz+i�φ + A(1)
− e−ikz−i�φ ),

E(2)(z) = E (2)
0 (A(2)

+ eikz + A(2)
− e−ikz ). (36)

Since �k = k(1) − k(2) � k, the relative spatial phase

�φ = �k z, (37)

can be considered constant over the wavelength scale λ =
2π/k. The spatial polarization configurations of different fre-
quency components are determined by the mutual spatial
orientation of the polarization vectors A(n)

+ and A(n)
− . Below

we consider several configurations.

1. Double lin||lin field configuration

For a bichromatic field created by standing waves with
identical linear polarizations A(1)

± = A(2)
± = A = A∗ (the so-

called double lin||lin configuration, see Fig. 2), the effective
Hamiltonians (32) in the limit of large detunings (30) are
reduced to the scalar light shifts u1 = 2δ1S1|A|2/3 and u2 =

δ2S2|A|2/3 with a spatial dependence represented by standing
waves of each frequency component

Ĥ (n)
eff = un P̂(gn ), for n = 1, 2,

u1 = 8

3
δ1 s1 cos2 (kz + �φ),

u2 = 4

3
δ2 s2 cos2 (kz). (38)

Here s1 and s2 are the saturation parameters per one running
wave, sn = |�(n)

0 |2/(4δ2
n + γ 2), where �

(n)
0 = −E (n)

0 d̄/h̄ are
the corresponding Rabi frequencies. The optical potential of
the light field is determined by the force (20) and (33) on the
atom at rest. The solution of (27) for v = 0 in this field leads
to an isotropic distribution on each of the ground levels |g1〉
and |g2〉

σ̂ (1) = cos2(kz) s2

2s1 cos2(kz + �φ) + 4s2 cos2(kz)
P̂(g1 ),

σ̂ (2) = cos2(kz + �φ) s1

2s1 cos2(kz + �φ) + 4s2 cos2(kz)
P̂(g2 ), (39)

since [A∗
n × An] = 0 in (32) for this field configuration Fig. 2.

Thus, the force (33) resulting in the formation of an optical
potential is divided into two contributions from each of the
frequency components

f = f1 + f2,

f1 = h̄k
16

3

δ1s1s2 sin(2kz + 2�φ) cos2(kz)

s1 cos2(kz + �φ) + 2s2 cos2(kz)
,

f2 = h̄k
4

3

δ2s1s2 sin(2kz) cos2(kz + �φ)

s1 cos2(kz + �φ) + 2s2 cos2(kz)
. (40)

As was mentioned above, due to the different spatial
dependencies of the light shifts u1, u2 and the spatially inho-
mogeneous optical pumping of |g1〉 and |g2〉 states, the effect
of force rectification on the wavelength scales appears. This
rectification effect is similar in nature to those described for a
two-level atom in a bichromatic field [18,20,24,25], as well as
in monochromatic fields formed by counterpropagating waves
with elliptical polarizations [35]. Thus, the average over the
wavelength force

f̄ (�φ) = 1

λ

∫ λ

0
f (z) dz = f̄1(�φ) + f̄2(�φ), (41)

in the general case is not equal to zero, and its magnitude and
sign are determined by the relative spatial phase �φ

f̄1 = h̄k
16

3

δ1s1 s2 sin(2�φ)

[8s1s2 cos2(�φ) + (2s2 − s1)2]2

{| sin(�φ)|
√

2s1s2[(2s2 + 3s1)(2s2 − s1) − 8s2s1 cos2(�φ)]

+16s2
2s1 cos2(�φ) − s1(6s2 + s1)(2s2 − s1)

}
,

f̄2 = h̄k
4

3

δ2 s1 s2 sin(2�φ)

[8s1s2 cos2(�φ) + (2s2 − s1)2]2

{| sin(�φ)|
√

2s1s2[(6s2 + s1)(2s2 − s1) + 8s2s1 cos2(�φ)]

−8s2s2
1 cos2(�φ) − 2 s2 (2s2 + 3s1)(2s2 − s1)

}
. (42)

043107-5



O. N. PRUDNIKOV et al. PHYSICAL REVIEW A 108, 043107 (2023)

FIG. 3. Macroscopic optical potential U (z) in units of h̄γ of a
bichromatic lattice formed by the field of double lin||lin configura-
tion. The solid line represents the solution based on the analytical
expressions obtained in the approximation of small saturation and
large detunings (40), while the dotted line represents the optical
lattice potential obtained by direct numerical solution for the force
(20), i.e., outside the indicated approximations. The detunings are
δ1 = −2γ and δ2 = −3γ , the saturation parameters are s1 = s2 =
0.1 (i.e., Rabi per one wave �

(1)
0 � 1.3γ , �

(2)
0 � 1.9γ ). The depth

of macroscopic optical potential for considered parameters reaches
�U = 1720 h̄γ that corresponds � 0.5 K in temperature units.

As the result, on a distance exceeding the wavelength, the
rectified force components f̄1 and f̄2 form a deep macroscopic
potential

U (z) = −
∫

f̄1(�φ(z)) dz −
∫

f̄2(�φ(z)) dz

= U1(z) + U2(z), (43)

with a period corresponding to the change of the relative
spatial phase �φ from 0 to π , which, for the lithium atoms
in the one-dimensional field (35) is � � 1.5 cm (see Fig. 3).
In this case, the positions of the global maxima and minima
of the potentials Un (43) correspond to position where �φ =
0,±π/2, . . . . The depth of each term in (43) is determined by

�Un = 1

�k

∫ π/2

0
f̄n(�φ) d�φ, n = 1, 2, (44)

which results the following expressions for potentials depth:

�U1 = h̄δ1
k

�k
s1μ1(s2/s1),

�U2 = h̄δ2
k

�k
s1μ2(s2/s1). (45)

The µ1 and µ2 here are dimensionless functions of the ratio
a = s2/s1 (see Fig. 4)

μ1(a) = −8

3
a

[
ln

(
2 a + 1

(
√

2a + 1)2

)
+ 2√

2a + 1

]
,

μ2(a) = 1

3

[
ln

(
2 a + 1

(
√

2a + 1)2

)
+

√
8a√

2a + 1

]
, (46)

which allow to estimate the depth of the macroscopic potential
(43) for various light-field parameters.

The relatively large depth of the macroscopic potential,
which significantly exceeds the magnitude of the light shifts

FIG. 4. The functions µ1(s2/s1) and µ2(s2/s1), which determine
the depth of macroscopic potentials U1 and U2 in the field of double
lin||lin configuration.

of each frequency component, is provided by the multiplier
k/�k (for lithium atoms k/�k � 4.4 × 104). As the result,
for parameters of Fig. 3, the depth of the macroscopic poten-
tial reaches � 0.5 K in temperature units. However, for the
localization of trapped atoms, the curvature at the points of
the minimum macroscopic potential plays a significant role. In
the case of bichromatic field it is proportional to �k/k, which
allows to localize the trapped Li atoms at submillimeter scales
(see below).

For the bichromatic field with detunings δ1, δ2 near the res-
onant lines D2 and D1, the presence of the dissipative Doppler
force potentially allows trapping and cooling of atoms directly
from the room temperature vapor. The Doppler mechanisms
of laser cooling are the result of the imbalance of spontaneous
light pressure forces from counterpropagating waves on mov-
ing atoms [2] and acts on atoms over the all points of the
macroscopic potential. Figure 5 shows the dependence of the
force on lithium atoms as a function of atomic velocity. In
particular, the force f (v) for considered detunings δ1 = −2γ

and δ2 = −3γ takes on maximum values for the velocity
groups of atoms near resonance lines, near |v| � 3γ /k. As can
be seen here the force has a sufficiently wide velocity range,
comparable to the dissipative force in a standard MOT. The
result for the force here is obtained on the basis of (20), i.e.,

FIG. 5. The force on lithium atoms in bichromatic field as func-
tion of velocity in the region of the global minimum of the optical
potential. The field parameters correspond to Fig. 3.
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FIG. 6. The Wigner function of (a) the atomic phase distribution
F (z, p) and (b) the momentum distribution of cold atoms in the
macroscopic potential of the bichromatic field of double lin||lin
configuration. The field parameters correspond to Fig. 3.

beyond the limit of the low field intensity (23) and slow atoms
kv < γ .

Figure 6 shows steady-state Wigner function F (z, p) and
the momentum distribution of atoms in the trap, obtained
by solving the Fokker-Planck equation (19) by taking into
account the nonlinear dependence of the force (see Fig. 5) and
diffusion coefficients on the atom’s velocity. For the consid-
ered parameters, the momentum distribution of atoms is well

approximated by a Gaussian distribution with temperature
T � 1.1 h̄γ /kB � 300 µK and corresponds to temperatures
near the Doppler limit of laser cooling. The size of the cold
atom cloud in a macroscopic potential can be defined as

βz =
√∫

z2F (z, p) dzd p, (47)

where the integration by coordinate is taken over the macro-
scopic period. For the parameters of Fig. 6 the size of the
atomic cloud is βz � 320 µm.

2. Double lin ⊥ lin field configuration

To achieve laser cooling below the Doppler limit, the light
fields with polarization gradients are required. In our case,
such a field can be formed with counterpropagating waves
with different polarizations [31,35,36]. For example, the well-
known lin ⊥ lin field configuration, formed by waves with
orthogonal linear polarizations, and σ+ − σ− configuration,
formed by waves with opposite circular polarizations [10].
However, the σ+ − σ− field does not lead to spatial modu-
lation of light shifts according to (32) in the limit of large
detunings (30), and the rectification effect is absent.

In this section, we consider the double lin ⊥ lin configu-
ration (see Fig. 7), where A(1)

+ = A(2)
+ = ex is the unit vector

along the x axis, and A(1)
− = A(2)

− = ey is the unit vector along
the y axis

E(n)(z) = E (n)
0 (exeik(n)z + eye−ik(n)z ), n = 1, 2. (48)

For this field, as well as for the double lin||lin configuration,
a deep macroscopic potential can be realized. The effective
Hamiltonians (32) take the forms

Ĥ (1)
eff = 2 δ1s1

(
2

3
P̂(g1 ) − 1

3
sin(2kz + �φ)

F̂

Fg1

)
,

Ĥ (2)
eff = 2 δ2s2

(
1

3
P̂(g2 ) − 1

9
sin(2kz)

F̂

Fg2

)
. (49)

The force on an atom in this field can also be divided into the
sum of two parts

f1 = −h̄k
8

3

δ1s1s2

Q
cos(2kz + 2�φ)[sin(2kz + 2�φ) sin(2kz) + 5][2 sin(2kz + 2�φ) + sin(2kz)],

f2 = −h̄k
4

3

δ2s1s2

Q
cos2(2kz + 2�φ) cos(kz)[2 sin(2kz + 2�φ) + sin(2kz)],

Q = s19 cos2(2kz + 2�φ) + s2[20 − cos(4kz) − cos(4kz + 4�φ) + 14 sin(2kz) sin(2kz + �φ)]. (50)

As in the case above, the rectified force in the double lin ⊥ lin
field configuration creates a macroscopic potential that takes
zero values at points where the relative phase of the fields is
�φ = 0,±π/2,±π, . . . . The macroscopic potential is deter-
mined by the average force over the wavelength (43). For the
double lin ⊥ lin configuration, the analytical expression for

the depths of the macroscopic potentials �Un [see Eq. (44)]
are quite complicated. However, they can also be represented
in the form (45), where the dependencies of the dimensionless
functions µ1 and µ2 on the saturation parameter ratio s2/s1 are
presented in Fig. 8.
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FIG. 7. Double lin ⊥ lin field configuration.

The macroscopic potential for the double field lin ⊥ lin
is presented in Fig. 9. The main feature of the double
lin ⊥ lin configuration is the presence of polarization gra-
dient cooling mechanisms, which lead to the possibility of
sub-Doppler cooling [10]. Indeed, for low field intensity we
observe narrow distributions of trapped atoms in the phase
space, as shown in Fig. 10. Note that, in the conditions
of sub-Doppler cooling, the distribution of atoms in the
momentum space is essentially nonequilibrium and gener-
ally cannot be described in terms of temperature. However,
as shown in [37], the momentum distribution of atoms is
well approximated by two-temperature Gaussian functions.
The momentum distribution of trapped atoms presented in
Fig. 10(b) is approximated by a two-temperature Gaussian
function with temperature TC � 0.035 h̄γ /kB � 10 µK for the
“cold” fraction of atoms NC � 20%, and temperature TH �
0.5 h̄γ /kB � 140 µK for the “hot” fraction of atoms NH �
80%. For the parameters of Fig. 9 the size of the trapped
atom’s cloud (47) in the macroscopic potential is βz � 45 µm.
Thus, the sub-Doppler cooling mechanisms allow to signifi-
cantly decrease the trapped atom’s cloud size in comparison
with the double lin||lin configuration.

B. Multidimensional optical lattices created
by a bichromatic field

In general, by combining bichromatic waves, as well as
for monochromatic fields, one can create sufficiently complex
spatial configurations of multidimensional optical lattices [8].
The spatial topology of light shifts (32) for each frequency
component ω1 and ω2 depends not only on the chosen geom-
etry of the waves and their polarizations, but may also depend

FIG. 8. The functions µ1(s2/s1) and µ2(s2/s1), which determine
the depth of macroscopic potentials U1 and U2 in the field of double
lin ⊥ lin configuration.

FIG. 9. Macroscopic optical potential U (z) in units of h̄γ of a
bichromatic lattice formed by the field of double lin ⊥ lin configu-
ration. The detunings are δ1 = −1.5γ and δ2 = −γ , the saturation
parameters are s1 = 0.1, s2 = 0.3. The depth of the macroscopic op-
tical potential for the considered parameters reaches �U = 890 h̄γ

that corresponds � 0.25 K in temperature units.

on the relative phases of the light waves forming the field of
each frequency component separately. The phase dependence
of the topology of optical lattices poses certain challenges for
their experimental implementation and requires some efforts
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FIG. 10. The Wigner function of (a) the atomic phase distribu-
tion F (z, p) and (b) momentum distribution of cold atoms in the
macroscopic potential of the bichromatic field of double lin ⊥ lin
configuration. The waves’ parameters correspond to Fig. 9.
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FIG. 11. Two-dimensional configuration of bichromatic optical
lattice with phase-independent topology.

to control and stabilize the phase of the light waves forming
the field [38]. Nevertheless, among all the diversity, it is
possible to distinguish phase-independent configurations of
optical lattices. Thus, in the case where the number of waves
M forming the field for each of the frequency components
exceeds the dimension of the space N by 1, M = N + 1, then
the light shifts formed by each frequency component (32)
have a phase-independent topology [8]. We also note that the
processes of optical pumping between the ground-state levels
|g1〉 and |g2〉 are determined by quadratic combinations of the
amplitudes of the light waves of each frequency component
individually (27) to (29), and are not dependent on the rela-
tive temporal phases between different frequency components
of the bichromatic field. Thus, for the field configuration
leading to the phase-independent topology of monochromatic
lattices, the bichromatic field configuration will also lead to
a phase-independent topology for a bichromatic lattice with a
macroscopic period for lithium atoms.

An example of a two-dimensional (2D) configuration of
fields forming a phase-independent bichromatic optical lattice
is presented in Fig. 11, where the angles between the wave
vectors of the running waves are 120◦. Figure 12 shows the
spatial dependencies of the optical potentials formed by three
pairs of waves in a symmetric configuration of Fig. 11. There
are two cases represented: the waves with linear polarization
along the z axis [see Fig. 12(a)], and the waves with linear
polarizations oriented at an angle ϕ = π/4 to the z axis [see
Fig. 12(b)]. In the second case, the field, in addition to spatial
nonuniform intensity, also has spatial nonuniformity of the
local polarization parameters (ellipticity and orientation) of
the fields E(1)(r) and E(2)(r). As is well known, the spatial
nonuniformity of polarization leads to sub-Doppler mecha-
nisms of laser cooling [11,12]. The periods of macroscopic
potential formed by three pairs of light waves in Fig. 11 along
the x and y axes are

�x = λ

3

k

�k
� 1.9 cm, �y = λ√

3

k

�k
� 3.4 cm. (51)

Note that the depths of the bichromatic potentials Figs. 12(a)
and 12(b) in order of magnitude correspond to the potential
depths for the one-dimensional configurations in Figs. 3 and, 9
respectively.

An alternative way to avoid phase dependence in the
topology of the multidimensional optical trap formed by a
combination of bichromatic standing waves is to use the
waves along different directions with slightly shifted frequen-
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FIG. 12. (a) Macroscopic 2D optical potential formed by a
bichromatic field of light waves with linear polarization along the
z axis. The parameters of the waves correspond to the parameters
of Figs. 3. (b) Macroscopic 2D optical potential generated by a
bichromatic field of linearly polarized light waves oriented at an
angle ϕ = π/4 to the z axis. The parameters of the waves correspond
to the parameters of Fig. 9.

cies. For the frequency shift of a few MHz the mutual phase
gets enough fast oscillation and is much faster then the rate of
the kinetic evolution processes. In this case the atom’s motion
will be determined by the phase-averaged dissipative force
that also forms 2D or three-dimensional (3D) optical traps
with macroscopic period.

The presented deep macroscopic potentials can be used
as an alternative to magnetooptical traps for the cooling and
simultaneous trapping of lithium atoms. The number of atoms
trapped from vapors can be estimated using the relation pre-
sented in [39,40]

Nc = L2

σc

(vc

u

)4
, (52)

where vc is the capture velocity, u = (2kBT/m)1/2 is the most
probable speed, L is the size of the trap determined by the
size of the laser beam, and σc is the cross section for an
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FIG. 13. The phase-space trajectory of an atom entering to the
macroscopic trap formed by double lin ⊥ lin configuration of bichro-
matic field. The red (lower) line corresponds to atom trajectory in the
trap with parameters of Fig. 9 (δ1 = −1.5γ , δ2 = −γ , s1 = 0.1, s2 =
0.3). The initial velocity of atoms on the trap boundary v = 7 γ /k �
25 m/s. The green (upper) line corresponds to the atom’s trajectory
in the trap with δ1 = −10γ , δ2 = −2.5γ , s1 = 0.05, s2 = 0.5. The
initial velocity of atoms on the trap boundary v = 17 γ /k � 60 m/s.
The blue arrows define the direction of the trajectory evolution.

atom to eject atom from a trap. The capture velocity can be
found from the analysis of trajectories of atoms coming to the
trap with different velocities, separating those that lead to the
capturing of atoms. This analysis can be done on the basis of
Langevin equations (see, for example, [13,41]) describing the
atom trajectory under the light force and associated stochastic
diffusion. Here we used numerical expressions for the force
and diffusion as functions of velocity and the position of the
atom. Figure 13 demonstrates the trajectory in the phase space
of the atom captured in the macroscopic potential formed by
the bichromatic field of the double lin ⊥ lin configuration.
The direct numerical analysis results in vc � 10 k/γ � 35
m/s for the traps with parameters of Fig. 9, which leads to
an estimation of Nc � 107 for the number of trapped atoms.
We additionally note that the number of trapped atoms Nc is
determined not only by the capture velocity vc, which can
be increased by adjusting the parameters of the bichromatic
field, but also by the most probable velocity at which atoms
enter the trap u in (52). For lithium atoms loaded from vapors
u � 900 m/s (at temperature T = 300 K) is sufficiently large
compared to the heavy elements (190 m/s for Cs atoms and

240 m/s for Rb atoms at temperature T = 300 K). Therefore,
in many works, the methods of precooling and slowing down
of atoms are used to increase the number of lithium atoms
in MOT [42–44]. A similar technique can also be used to
increase the number of atoms loaded into a bichromatic trap.

IV. CONCLUSION

In this paper, we present an idea of a deep pure-optical trap
for neutral atoms based on a dissipative bichromatic optical
lattice. For lithium atoms, as an example, a low-intensity
bichromatic field (about 5 mW/cm2) allows for the creation
of a deep optical potential with a macroscopic period of
centimeter scale, which provides laser cooling and trapping
of atoms. The analysis, which was carried out within the
one-atom approximation, showsed that the temperature of
laser cooling can reach values comparable to and below the
Doppler limit (which is approximately � 140 µK for lithium
atoms). At the same time, the localization of trapped atoms
reaches submillimeter sizes and the number of trapped atoms
is comparable to the number trapped in MOT.

It should also be noted that the presented idea of a deep
dissipative lattice with a macroscopic period in a bichromatic
field can be generalized to other neutral atoms. For example,
for Rb and Cs atoms’ transitions between hyperfine compo-
nents of the D2 line can be used as resonant transitions for two
frequency components of the bichromatic lattice. In this case,
the period of the macroscopic potential will be determined
mainly by the splitting between the hyperfine components
of the ground state 2S1/2 and gives � � 4.9 cm for 85Rb,
� � 2.2 cm for 87Rb, and � � 1.6 cm for 133Cs. Also, for odd
isotopes of mercury atoms 199Hg and 201Hg, the intercombina-
tion transition 1S0 → 3P1 (λ = 253.7 nm, γ /2π = 1.3 MHz)
can be used, where the hyperfine splitting of the upper level
3P1 exceeds 20 GHz that allows to create a bichromatic lattice
with a macroscopic period of � � 0.7 cm.

Such a deep pure-optical macroscopic potential can be
used for the cooling and trapping of atoms in compact devices
with low power consumption.
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