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Effect of multiphoton processes on the asymmetric fluorescence spectrum and spectral correlations
of a two-level atom driven bichromatically by two strong laser fields
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We focus on the influence of multiphoton effect on the fluorescence spectrum and photon statistics of the
bichromatically driven two-level atomic system. The influence of the multiphoton effect of the weaker driving
field on the system and spontaneous emission are revealed by Schrieffer-Wolff perturbation theory, respectively.
The physical origin of the multiphoton process affecting the fluorescence spectral asymmetry characteristics is
fully investigated by studying the population distribution and the dressed atomic transition weight. Further, the
suppression condition of the central peak of the central band is investigated. The photon statistical properties
of the system are revealed by studying the frequency-resolved correlations between different sidepeaks and the
central peak and sidepeak, respectively. In particular, the physical picture of the asymmetry of the two-photon
correlation signal that is affected by the multiphoton process of the weaker driving field affecting the timing
detection is fully revealed by the two methods of correlation moment and conditional quantum state, respectively.
These results of ours provide a theoretical approach for studying multiphoton processes in multichromatically
driven quantum systems, as well as for developing quantum simulation techniques such as spin locking.
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I. INTRODUCTION

It is well known that study of the fluorescence spectrum
is not only an excellent platform for understanding atom-
light interactions but also provides a feasible method for the
preparation of single photon sources [1,2], quantum sens-
ing [3] in quantum information [4]. In the last two decades,
due to the experimental research of artificial atoms, such
as quantum dots [5–11], superconducting qubits [12], and
nitrogen-vacancy centers [13], the study of the fluorescence
spectrum has attracted renewed interest. In particular, the fluo-
rescence spectrum of bichromatically driven two-level atomic
systems has been well studied both experimentally [9,14,15]
and theoretically [16–18], mainly due to the existence
of richer spectral features than monochromatically driven
systems.

The two-level atom driven by a bichromatic field exhibits a
range of nonlinear and multiphoton dynamics of light-matter
interaction [19,20]—that is what we focus on. The fluores-
cence spectrum has been calculated for equal-amplitude field
components symmetrically or asymmetrically detuned from
the atomic frequency, and components having unequal ampli-
tudes [18,21–28]. In these studies, basically most researchers
only considered the perturbation of the system by the weaker
driving field when analytically calculating the fluorescence
spectrum while ignoring its multiphoton correction for spon-
taneous emission, so that the spectrum has obvious symmetry.
This is limited because the high-resolution spectroscopy re-
cently obtained by Gustin et al. [29] by an InGaAs quantum
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dot driven bichromatically by two strong coherent fields is
inherently asymmetric. However, no clear analytical explana-
tion has been given for the asymmetry of the spectrum. To
solve this issue we apply the Schrieffer-Wolff perturbation
theory (SWPT) [30,31] to deal with the effective Hamiltonian
and spontaneous emission of two-level atomic systems driven
by a strong bichromatic field and give analytical expression
for the generation of the asymmetric spectrum. This analytical
solution basically agrees with the numerical results of Ficek
and Freedhoff [18], and also reveals the physical origin of
the asymmetric spectrum of the experimental results of Gustin
et al. [29]. Meanwhile, the multiphoton correction [32] of the
system and spontaneous emission by the weaker driving field,
and the resulting asymmetric high-order harmonic spectrum,
provide a feasible route for high-order harmonic generation
(HHG) [33–35]. One of the most important applications is the
generation of attosecond pulses [36].

Can the multiphoton process accompanied by the system
correction by the weaker driving field provide a feasible
solution for the preparation of a multiphoton nonclassical
state? To answer that question it is particularly important to
analyze the statistical properties of photon among the high-
order harmonic spectral components. Most previous studies
on frequency-filtered photon correlation of fluorescence have
focused on single-laser driving field [37–40]; few researchers
focused on the bichromatic driving field [35,41]. The optical
cavity weakly coupled with the system is used to simulate the
Lorentz filter [42], and the physical origin of the asymmetric
photon statistical signal is revealed.

In this paper we investigate the influence of the mul-
tiphoton process on the fluorescence spectrum and photon
statistics by a bichromatically driven two-level atomic system.
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FIG. 1. System consisting of a two-level atom driven by a bichro-
matic field with different amplitudes and frequencies.

To reveal the physical nature of the weaker driving field af-
fecting the spectral characteristics of the system, the effective
Hamiltonian of the system, the spontaneous emission after
multiphoton correction, the population distribution, and the
fluorescence spectrum under different conditions are deduced,
respectively. To investigate the frequency-resolved correlation
characteristics of the system, the time-domain photon correla-
tion signals between different components of the fluorescence
spectra are studied. The paper is structured as follows: In
Sec. II we describe the theoretical model that produces asym-
metric high-order harmonic resonance fluorescence, and at the
same time, the physical mechanisms of the asymmetry of the
spectrum are discussed. In Sec. III, the frequency-resolved
correlation features of different spectral combinations are
discussed. The correlation moment method and conditional
quantum state are used to analyze the asymmetry that occurs
in the correlation signal. Finally, we conclude our discussion
in Sec. IV.

II. BICHROMATIC LASER-DRIVEN TWO-LEVEL
SYSTEM AND FLUORESCENCE SPECTRUM

A. Theoretical model

We consider the two-level atom with excited state |e〉
and ground state |g〉 separated with frequency ω0, which is
driven by a bichromatic laser field (see Fig. 1) with different
amplitudes and frequency components ω1 and ω2. The Rabi
frequencies of the coupling between the bichromatic field and
the atom are 2�1 and 2�2(�1 > �2), respectively. The Rabi
frequency ratio of the two components of the bichromatic
field is α = �2/�1. The strong driving field resonates with
the atomic transition frequency, i.e., ω1 = ω0. In the rotating
frame with the frequency ω1 of the strong laser field, the
Hamiltonian of the system is given by

HAL = �1(σ+ + σ−) + �2(σ+e−i�t + σ−ei�t ), (1)

in which HAL describes the interaction of the atom with the
bichromatic driving field. The transition operator is σ− =
σ

†
+ = |g〉〈e|. The detuning of the weaker field and the atomic

transition frequency are � = ω2 − ω1 with the relationship
δ = ω2 − ω1 − 2�(|δ| � 2�).

To gain further insight, the system enters the first dressed
representation of the strong field interacting with the atom.

The eigenvalues and eigenstates of this representation are
±� and |±〉 = 1√

2
(|g〉 ± |e〉), respectively. The first dressed

transformation Ud1 is introduced [43]

Ud1 = 1√
2

[
1 −1
1 1

]
, (2)

and the Hamiltonian in the first dressed representation is ob-
tained by H ′

AL = U †
d1HALUd1, i.e.,

H ′
AL = �Rz + �2

2
[(Rz + R+ − R−)e−i�t + H.c.], (3)

in which Rz = |+〉〈+| − |−〉〈−| is the atomic inversion op-
erator and R− = R†

+ = |−〉〈+| are the transition operators in
the first dressed representation. After unitary transformation
U� = e−2iRzt , the Hamiltonian in the interaction picture of the
first dressed representation is obtained by

H ′
I = �2

2
[Rz(e−2i�t + e2i�t ) − R−e−4i�t − R+e4i�t ]

+ �2

2
(R+ + R−) + δ

2
Rz. (4)

To reveal the multiphoton effect of the weaker driving field on
the system and spontaneous emission, the Hamiltonian Eq. (4)
will be dealt with in the following perturbation theory.

B. Multiphoton correction of system with weaker driving field

In general, when the intensity of the weaker component
of the driving field is much smaller than the strong one
(α � 1), the time-dependent term of the Hamiltonian in
Eq. (4) can be ignored by applying the rotating-wave ap-
proximation. However, when �2 is strong and α � 1 is not
satisfied, the influence of the weaker driving field on the
system needs to be further considered.

The high-order correction effect of the weaker driving field
on the system has been observed in experiments by Gustin
et al. [29]. Although they have given a numerical expla-
nation of the experiment through the Floquet theory, so far
no transparent analytical explanation has been given for the
asymmetric spectrum that appears in bichromatically driven
experiments. Here, the SWPT is used to calculate the effective
Hamiltonian of the system and analyze the correction of the
system by the weaker field in detail.

The Schrieffer-Wolff transformation UK = e−iK (t ) is used
to get an effective Hamiltonian Heff(t ) = U †

K [H ′
I (t ) − i∂t ]UK .

The parameter K (t ) is the generator of the Schrieffer-Wolff
transformation, i.e., K (t ) = ∑

n λnKn(t ), where λ means the
order of the perturbation with the weaker field coupling, and
Kn(t ) represents the solution of the generator at the order
λn [30,31,44,45]. In the interest of brevity, only the conclusion
is given:

H ′
eff =

∑
j=1,2,3

H ′( j)
eff , (5)

with

H ′(1)
eff = �2

2
(R+ + R−) + δ

2
Rz, (6a)

H ′(2)
eff = �2

2

α

8
Rz, (6b)

H ′(3)
eff = −�2

2

25α2

64
(R+ + R−). (6c)
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FIG. 2. Multiphoton process in effective Hamiltonian. |+〉 and
|−〉 are the atomic energy levels of the first dressed representation,
respectively. Blue ellipse: initial trigger state; red ellipse: intermedi-
ate state; green ellipse: final state. Solid arrows indicate absorption
or emission of photons of frequency ω2. (a) The single-photon
process corresponding to the first-order effective Hamiltonian. (b)
The two-photon process corresponding to the second-order effec-
tive Hamiltonian. (c) The three-photon process corresponding to the
third-order effective Hamiltonian.

In the first dressed representation, the strong driving field
splits each atomic energy level equidistantly with energy 2�.
The effective Hamiltonian of different orders in Eqs. (6a)–(6c)
correspond to multiphoton correction of different orders by
the weaker driving field. From these equations it can be found
that as the value of α increases, the correction effects of
the weaker driving field on the system, such as two-photon
and three-photon processes, cannot be ignored, namely, the
influence of the weaker driving field on the system can-
not be simply ignored. The specific processes are shown in
Fig. 2.

Figure 2(a) depicts the single-photon resonance process
corresponding to the first-order effective Hamiltonian (6a),
where the operator R+ means the first dressed atom absorbs
a photon of frequency ω2 from the dressed state |−〉 to |+〉,
as shown in channel (1) in Fig. 2(a). The dressed atom can
also emit a photon of frequency ω2 from another transition
channel (2) |+〉 to |−〉, corresponding to the second term R−
in Eq. (6a).

The second-order effective Hamiltonian (6b), correspond-
ing to the two-photon correction of the weaker driving field to
the system, which is the energy shift term, also known as the
AC stark effect [46,47], is shown in Fig. 2(b). Take channel
(3) as an example. The dressed atom transits from the initial
state |−〉 to the intermediate state |+〉 and emits a photon with
frequency ω2 into the weaker driving field. Since the single
photon does not resonate, the dressed atom immediately ab-
sorbs a photon of the same frequency ω2 and returns to the
initial state |−〉. This second-order nonlinear process can also
be achieved through another Raman transition in Fig. 2(b), of
course.

The three-photon correction of the weaker field to the sys-
tem is shown as the third-order effective Hamiltonian (6c),
corresponding to the third-order nonlinear process in Fig. 2(c).
Such as transition (4), the dressed atom absorbs a photon of
frequency ω2 from the weaker field and undergoes a transi-
tion |−〉 → |−〉, and then continues to absorb a photon of
frequency ω2 to jump to state |+〉. Since the entire cascaded
two-photon process is nonresonant, the dressed atom immedi-
ately emits a photon of frequency ω2 and undergoes transition
from state |+〉 to state |+〉. This cascaded Raman process with
one common transition constitutes a three-photon correction
process. This process forms part of the first term in Eq. (6c),
R+ = |+〉〈−|, which can also be achieved through another
channel as shown or other channels not shown in Fig. 2(c).
This correction of the system by the three-photon process
appears as a saturation effect [48].

In order to investigate the influence on the system when the
weaker field coupling strength is strong, the Hamiltonian (5)
is diagonalized to enter the second dressed representation. The
eigenvalues and eigenstates of this representation are ±�3

and |+′〉 = s2|−〉 + c2|+〉, |−′〉 = c2|−〉 − s2|+〉 with s2
2 =

1/2 − �2
2/32��3 and c2

2 = 1/2 + �2
2/32��3, respectively.

The second dressed transformation Ud2 is introduced,

Ud2 =
[

c2 −s2

s2 c2

]
, (7)

and the Hamiltonian of the second dressed representation is
obtained by H ′′

AL = U †
d2H ′

effUd2, i.e.,

H ′′
AL = �3R′

z, (8)

with

�3 =
√(

�2
2

16�
+ δ

2

)2

+ �2
2

4

(
1 − 25α2

64

)2

, (9)

where R′
z = |+′〉〈+′| − |−′〉〈−′| is the atomic inversion op-

erator and �3 is a generalized Rabi frequency in this
representation. The saturation effect of the Hamiltonian (6c)
will affect the secondary splitting of energy levels in the
second dressed representation.

C. Multiphoton correction of spontaneous emission
by weaker driving field

The Hamiltonian of the interaction between the atom and
the spontaneous emission reservoir in the original representa-
tion is

HAR =
∑

k

gk (a†
kσ−ei(ωk−ω1 )t + H.c.), (10)

in which parameter gk is the coupling constant of the mode k
in the spontaneous emission reservoir to the atom. Operator
ak is the annihilation operator for the mode-k photon in the
spontaneous emission reservoir.

1. Spontaneous emission process in first dressed representation

After the operator σ− in the Hamiltonian (10) undergoes
the first dressed transformation, the rotation transformation
with the frequency of 2�, and the perturbation transformation
(i.e., U1 = Ud1U�UK ), the atomic operator of the third-order
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perturbation in the first dressed representation is

U †
1 σ−U1 =

∑
j=0,±

k=0,...,±4

[
M ( j)

2k R j
]
e2ik�t , (11)

where the coefficient M ( j)
2k is the transition weight with third-

order perturbation. For specific expressions see Eq. (A2) in
Appendix. It is not difficult to conclude from Eq. (11) that
with the coupling of the weaker field, the weaker field gener-
ates high-order correction to the atomic transition operator of
spontaneous emission, so that the corresponding high-order
harmonic generated in the dressed representation, and each
high-order harmonic split into triplet again. As a result, a
richer high-order harmonic spectrum than the familiar Mollow
triplet can be obtained.

It can also be seen from Eq. (A2) that the different mul-
tiphoton process with a weaker driving field has different
effects on the transition weights of the atom in the first dressed
representation. Here we take the three peaks of the central
band as an example, i.e.,k = 0, and the detailed expression
is

M(0)
0 Rz + M(+)

0 R+ + M(−)
0 R−, (12)

with

M(0)
0 = 1/2 − α2/64, (13a)

M(+)
0 = α/4 + 77α3/1536, (13b)

M(−)
0 = −α/4 + 17α3/1536. (13c)

According to Eq. (12) and Eqs. (13a)–(13c), the weaker driv-
ing field has different orders of corrections to the central peak
and sidepeaks of the central band. What is more noteworthy
is that its first-order corrections −α/4 and α/4 for the peaks
on both sides are just the opposite, which is the main factor
for the appearance of asymmetric spectra of the system. The
detailed analysis is shown in Fig. 3.

Figure 3(a) shows the first-order correction of the weaker
driving field to the sidepeaks of the central band, correspond-
ing to the first terms of Eqs. (13b) and (13c), respectively.
Take channel (1) as an example. The dressed atom transits
from state |+〉 to state |+〉 and emits a photon with frequency
ω2 into the weaker driving field. The dressed atom then im-
mediately transits from the intermediate state |+〉 to the final
state |−〉 and emits a photon of frequency ω1 due to single-
photon nonresonance. This cascaded two-photon process [32]
constitutes a part of the third term R− = |−〉〈+| in Eq. (12).
Similarly, the Raman two-photon processes depicted in chan-
nel (2) constitute the first-order correction of the weaker
driving field in the second term R+ = |+〉〈−| in Eq. (12). The
cascaded process and Raman process show that the effect of
the weaker driving field on the first-order correction of spon-
taneous emission is just opposite. This is also the main reason
for the unequal population of dressed-state energy levels. The
two transition channels in Fig. 3(c) describe the third-order
correction of the sidepeaks by the weaker driving field, which
will not be described in detail here.

Figure 3(b) describes the second-order correction of the
weaker driving field on the central peak of the central band.
This process corresponds to the first term Rz in Eq. (12). Take

FIG. 3. Multiphoton correction process of the central band of
spontaneous emission in the first dressed representation by weaker
driving field. |+〉 and |−〉 are the atomic energy levels of the first
dressed representation, respectively. Blue ellipse: initial states; red
ellipse: intermediate state; green ellipse: final state. Weaker driving
field frequency (solid arrow) is ω2; emission frequency (wavy arrow)
ωs of the central band of the spontaneous emission fluorescence spec-
trum. (a) First-order correction process, (b) second-order correction
process, and (c) third-order correction process.

channel (3) as an example. The dressed atom emits a pho-
ton with frequency ω2 from state |−〉, and then immediately
absorbs a photon with the same frequency ω2 coming to the
state |+〉. Since the two-photon does not resonate, it imme-
diately emits a photon with frequency ω1 to the final state
|−〉, completing a transition |−〉 → |−〉. These multiphoton
correction processes directly or indirectly affect the system
fluorescence spectrum and photon statistical properties.

2. Spontaneous emission process in second dressed representation

Equation (11) undergoes a new dressed transformation Ud2

into the second dressed representation read by

U †
d2U

†
1 σ−U1Ud2 =

∑
j=0,±

k=0,...,±4

[



( j)
2k R′

j

]
e2ik�t , (14)

in which coefficient 

( j)
2k is transition weight with third-order

perturbation in second dressed representation. For specific
expressions, see Eq. (A3) in Appendix. Take the three peaks
of the central band as an example also, that is, k = 0. The
detailed expression is



(0)
0 R′

0 + 

(+)
0 R′

+ + 

(−)
0 R′

−, (15)

where



(0)
0 =

(
1

2
− α2

64

)(
c2

2 − s2
2

) − 47α3

768
s2c2, (16a)



(−)
0 =

(
1 − α2

32

)
s2c2 − α

4
+ 17α3

1536
c2

2 − 77α3

1536
s2

2, (16b)



(+)
0 =

(
1 − α2

32

)
s2c2 + α

4
− 17α3

1536
s2

2 + 77α3

1536
c2

2. (16c)

From the expressions of 

(+)
0 and 


(−)
0 , the first-order cor-

rection of the weaker driving field is the main factor for the
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FIG. 4. Two-photon correction of the central band of sponta-
neous emission in the first dressed representation and the second
dressed representation by the weaker driving field. |+〉 and |−〉
are the atomic energy levels of the first dressed representation,
respectively. |+′〉 and |−′〉 are the atomic energy levels of the sec-
ond dressed representation, respectively. First dressed representation:
(a) cascaded two-photon process; (c) Raman two-photon process.
Second dressed representation: (b) six cascaded two-photon pro-
cesses; (d) six Raman two-photon processes. ω2, weaker driving
field frequency (solid arrow); ωs spontaneous emission fluorescence
frequency (wavy arrow). Blue ellipse: initial states; red ellipse: inter-
mediate state; green ellipse: final states.

asymmetry of the sidepeaks in the central band. Of course, as
the strength of the weak driving field increases, higher-order
effects will gradually appear.

As analyzed in the Sec. II C 1, the cascaded two-photon
process described in Fig. 4(a) is a first-order correction pro-
cess of one of the sidepeaks in the central band in the first
dressed representation by the weaker driving field. The transi-
tion operators Rz, R+, and R− in Eq. (12) are expanded in the
second dressed representation, then one cascaded two-photon
process in the first dressed representation is decomposed into
six cascaded two-photon processes in the second dressed
representation, as shown in Fig. 4(b). Figures 4(c) and 4(d)
respectively correspond to the Raman two-photon correction
process of the sidepeaks of the central band in two dressed
representations by the weaker driving field. Based on these,
the first-order correction of the central peak of the central
band by the weaker driving field has an important effect in
both dressed representations. As the strength of the weaker
driving field increases, the influence of higher-order correc-
tions gradually emerges, which is also the main factor of the

FIG. 5. The steady-state population distribution of the second
dressed representation. ρ̃+′+′ (red solid line), ρ̃−′−′ (blue dotted line).

fluorescence spectrum asymmetry discussed later. The pro-
cess of the first-order correction of the high-order sidebands
by the weaker driving field is discussed in Appendix.

D. Fluorescence spectrum

Under conditions of the atomic radiation rate γ0,± � 2�

and secular approximation, Eqs. (8), (10), and (14) are substi-
tuted into the Lindblad master equation [49,50] in the second
dressed representation, i.e.,

˙̃ρ = −i[H ′′
AL, ρ̃] +

∑
j=0,±

γ j

2
L[R′

j]ρ̃, (17)

where L[c]ρ̃ = 2cρ̃c† − c†cρ̃ − ρ̃c†c, and the parameter γ j is
the atomic radiation rate in the second dressed representation.
The specific expression is

γ j = γ
∑

k=0,±1,···±4

[



( j)
2k

]2
( j = 0,±). (18)

From the master equation (17) the time evolution of the pop-
ulation of the second dressed representation can be found as

d

dt
ρ̃+′+′ = γ+ρ̃−′−′ − γ−ρ̃+′+′ ,

d

dt
ρ̃−′−′ = −γ+ρ̃−′−′ + γ−ρ̃+′+′ . (19)

The steady-state solution of Eq. (19) is easily obtained by

ρ̃+′+′ = γ+
γ+ + γ−

, ρ̃−′−′ = γ−
γ+ + γ−

. (20)

According to Eq. (20), it can be found that the population
distribution of the upper and lower energy levels of the second
dressed representation is related to the transition rates γ+ and
γ− of the secondary dressed atom, respectively. From the
analysis in the Sec. II C, it can be seen that the multiphoton
correction of different orders of spontaneous emission by the
weaker driving field makes γ+ and γ− unequal, which leads
to the unequal population distribution of the upper and lower
energy levels in the second dressed representation.

As shown in Fig. 5, when the coupling strength of the
weaker driving field is large, the populations of the upper and
lower energy levels are obviously unequal. When the intensity
of the weaker driving field is much smaller than the strong
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one, the effect of the weaker field can be ignored according
to the rotating-wave approximation, and the population dis-
tribution of the upper and lower energy levels of the second
dressed representation is equal. This matches what is shown
in Fig. 5, when α ∼ 0.02, ρ̃+′+′ ≈ ρ̃−′−′ = 0.5, so the fluores-
cence spectrum has symmetry. This result is consistent with
the analytical interpretation of Ficek and Freedhoff [18]. With
the intensity of the weaker driving field strengthened, that is,
with the increase of α, the correction by the weaker field on
the system and spontaneous emission becomes stronger and
stronger, and its accompanying multiphoton process makes
the population distribution of the upper and lower energy lev-
els of the second dressed representation no longer equal, with
the increase of α the difference between the ρ̃+′+′ and ρ̃−′−′

increased also. As shown in Fig. 5, when α > 0.1, there is a
clear difference in the values of |+′〉 and |−′〉. Therefore it can
be preliminarily judged that the incoherent spectrum of the
system has asymmetry. This conclusion is inconsistent with
the analytically calculated symmetric spectrum mentioned by
Ficek and Freedhoff [18]. This is because they only consid-
ered the correction of the system by the weaker driving field
but ignored its multiphoton correction of spontaneous emis-
sion. Next, the characteristics of the fluorescence spectrum are
analyzed in detail.

The incoherent resonance fluorescence spectrum of the
atom can be expressed by the term of the two-time correlation
function of the atomic operators [51],

Sin(ω) = Re
∫ ∞

0
dτe−iωτ lim

t→∞ 〈δσ+(t + τ )δσ−(t )〉, (21)

where δσ± = σ± − 〈σ±〉. Applying the master equation (17),
the average values of dressed atomic operators satisfy the
following set of equations:

d

dt
〈R′

+〉 = (2i�3 − γc)〈R′
+〉,

d

dt
〈R′

−〉 = (−2i�3 − γc)〈R′
−〉, (22)

in which relaxation coefficient γc is defined by γc = 1
2 (4γ0 +

γ+ + γ−). Applying the quantum regression theory, we can
get the analytical solution of the steady-state incoherent
spectrum

Sin(ω) =
∑

k=0,±1···±4

[
4


(0)2

2k

ρ+′+′ρ−′−′γ1

(ω + 2k�)2 + γ 2
1

+

(−)2

2k ρ+′+′
γc

(ω − 2k� − 2�3)2 + γ 2
c

+

(+)2

2k ρ−′−′
γc

(ω + 2k� + 2�3)2 + γ 2
c

]
, (23)

where γ1 = (γ+ + γ−). Our analytical solution is consistent
with the numerical results of Rudolph et al. [20] and the
experimental results of Gustin et al. [29]. Meanwhile, when
the coupling strength �2 of the weaker driving field is small,
our analytical solution is consistent with that of Ficek and
Freedhoff [18].

The fluorescence spectrum of this case is more complex
than that driven by a monochromatic field. When there is only

one strong driving field, the fluorescence spectrum is a stan-
dard Mollow triplet structure, and the frequency of each peak
is {ω,ω ± 2�}, corresponding to Hamiltonian (3). Due to the
multiphoton correction of the nonresonance weaker driving
field, the Mollow triplet band structures are corrected into a
multipeak structure, and the frequency of each peak is {ω,ω ±
2k�}(k = 0, . . . , 4), corresponding to Hamiltonian (5). Each
peak splits again into three smaller peaks with a frequency
interval of 2�3, corresponding to Hamiltonian (8), as shown
in Figs. 6(a)–6(c). When δ = 0, with the increase of intensity
of the weaker driving field, the asymmetry of the spectrum
becomes more and more obvious. This solution is consistent
with the numerical results Ref. [18]. According to the spon-
taneous emission atomic transition operator Eq. (11) and the
incoherent fluorescence Eq. (23) in the second dressed repre-
sentation discussed above, we find that the intensity of each
peak largely depends on population distribution ρ̃±′±′ and
transition weight 


(0,±)
2k (k = 0,±1, · · · ± 4). It can be seen

that the weaker field is very important for the modification of
the system and the spontaneous emission. Equation (23) also
shows the intensity of the central-band triplet is proportional
to 4


(0)2

0 ρ+′+′ρ−′−′ , 

(−)2

0 ρ+′+′ and 

(+)2

0 ρ−′−′ , respectively;

when α = 0.4, it is not difficult to get 

(−)2

0 ρ+′+′ ∼ 0.098 and



(+)2

0 ρ−′−′ ∼ 0.133. This ratio is basically consistent with the
ratio of the most obvious high-frequency peak to the low-
frequency peak in the central band shown in Fig. 6(b).

Additionally, when α is small, the central peak of the
central band is barely visible. As the value of α in-
creases, the intensity of the three peaks at frequencies ω =
{ω1 ± 2k�}, (k = 2, 3, 4) will become stronger and stronger,
and the peak at frequency ω1 will emerge. Just as shown in
Figs. 6(a), 6(b) and 6(c), when α = 0.2, the central peak at
ω1 does not appear; when α = 0.4 the central peak at ω1

emerges, and when α = 0.6 the central peak is already very
obvious. What needs to be emphasized here is that if only
the second-order modification is considered, according to the
expression of effective Hamiltonian Eq. (6), in conditions of
2� = 40, α = 0.4, δ = 0.4, the central peak of the central
band is completely suppressed. And the effective Hamilto-
nian expression of the system is consistent with the effective
Hamiltonian mentioned by Wang et al. in Ref. [52] on spin
locking. Therefore the method of using SWPT to deal with
the Hamiltonian of the similar system is also meaningful for
the realization of spin locking.

Based on the fact that α ∼ 0.5 in this paper, the peaks
of the frequencies at ω = {ω1 ± 4�, ω1 ± 6�, ω1 ± 8�,} in
the spectra are not prominent, so the follow-up discussion will
mainly focus on first-order harmonics (ω = ω1 ± 2�). Corre-
sponding to nine kinds of spontaneous emission of atoms in
the second dressed representation,

σ− → R′
Ff + R′

Fr + R′
Ft + R′

Rf + R′
Rr + R′

Rt + R′
Tf + R′

Tr + R′
Tt,

(24)
in which the index “F′′, “T′′, “R′′ represents the low-frequency
sideband, high-frequency sideband, and the central band, and
“f′′, “r′′, “t′′ represent the left, middle and right peaks of the
three bands above. In the next section we present the filtered
photon statistical properties of resonance fluorescence consid-
ered under the condition of two-photon resonance.
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FIG. 6. The incoherent fluorescence spectrum for 2� = 50γ ,
and different α = �2/�1 and δ: (a) α = 0.2, δ = 0; (b) α =
0.4, δ = 0; (c) α = 0.6, δ = 0; (d) α = 0.4, δ = 0.5.

III. TEMPORAL INTENSITY CORRELATIONS

Having discussed the properties of the incoherent fluores-
cence spectrum of the two-level atom which is driven by a
bichromatic field with different frequencies, we continue with
the characteristic of the frequency-resolved photon correlation
between the individual components of this incoherent spec-
trum, which have been researched by Ben-Aryeh et al. [41].
However, since they did not consider the correction of the
spontaneous emission operator with the weaker field coupling,

the population distribution of the second dressed state is equal.
Through the detailed analytical calculation in Sec. II, with the
coupling of the weaker field and the increase of the intensity,
the upper and lower energy-level population distribution of
the second dressed representation are no longer equal, which
makes the spectrum appear obvious asymmetry. Therefore it
can be deduced that the time-frequency resolved correlated
signals between different components in the incoherent fluo-
rescence spectrum also exhibit asymmetry.

Two single-mode cavities with frequencies ωa and ωb

are weakly coupled to a quantum emitter to simulate the
Lorentzian filter [42]. The coupling strength of two cavities
is g1 and g2, respectively. The dissipation coefficients of two
cavities are κa, κb, respectively. In order to reveal the photon
statistical characteristics of the quantum filter system more
intuitively, κa = κb = κ and g1 = g2 = g are taken without
loss of generality. Meanwhile, the filter system satisfies the
condition

√
κγ � {g1, g2} [42], so that the quantum emitter

is weakly coupled to two filtering cavities, and the back action
of the cavity to the atom is negligible.

So far, the whole quantum filtering system consists of two
parts: a quantum emitter which is modeled by the system
mentioned in Sec. II, and two single-mode filtering cavities.
The probability to detect one photon at time t followed by an-
other photon at time (t + τ ) is proportional to the normalized
second-order correlation function between modes a and b,

g2(a, b, τ )= 〈a†(t )b†(t + τ )b(t + τ )a(t )〉
〈a†(t )a(t )〉〈b†(t + τ )b(t + τ )〉 = G(2)(a, b, τ )

G(1)
a G(1)

b

,

(25)

in which G(2)(a, b, τ ) is the un-normalized second-order cor-
relation function between two modes, and G(1)

a and G(1)
b are the

first-order correlation functions in two modes, respectively.
The master equation of the time evolution of density operator
ρ in the dipole approximation and rotating-wave approxima-
tion [51] are written as

ρ̇ = −i[Hs, ρ] + LAρ + LCρ, (26)

where the last two terms denote the dissipation of the atom
and the cavity, respectively. The Hamiltonian of the quantum
filtering system is

Hs = 1
2ω0σz + ωaa†a + ωbb†b

+ �1(σ+e−iω1t + H.c.)

+ �2(σ+e−iω2t + H.c.)

+ g(a†σ− + H.c.) + g(b†σ− + H.c.). (27)

After unitary transformation U = Ud1U�UKUd2, the Hamil-
tonian of the quantum filtering system in the second dressed
representation can be expressed as

H ′
s = �3R′

0 + �aa†a + �bb†b

+ g
∑

β=0,±
k=0,±1

(
a†


(β )
2k R′

βe2ik�t + H.c.
)

+ g
∑

m=0,±
l=0,±1

(
b†


(m)
2l R′

me2il�t + H.c.
)
, (28)
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where �a = ωa − ω1 and �b = ωb − ω1 are the detuning of
frequency of two filtering cavities and frequency of the driving
field, respectively. With the different value of the coefficients
k, β, l, m, two single-mode filter cavities target different spec-
tral filtering, which will be discussed below.

A. Complete frequency selection

We suppose that each filter cavity is placed in front of one
spectral component, having a bandwidth κ such that �1 >

�2 > �3 > κ , and κ � γ � g. The first inequality implies
that each filter selects only one particular component of the
spectra. Since there are no coherent terms to contribute to
the signal, it can be completely described in terms of the
population [41]. The second inequality shows that each target
spectral line can be completely covered by the corresponding
filter. Next, two methods will be applied to analyze photon
statistics between different spectral components. First, by cal-
culating the correlation moment and applying the quantum
regression theorem and Laplace transform to obtain the nor-
malized two-mode second-order correlation function. Then,
under the condition of κ � γ � g [53] and short-time de-
tection, the short-delay signal characteristics of two-photon
correlation are analyzed by using the conditional quantum
state and wave function [54,55].

For the convenience of subsequent discussion, the nine
peak frequencies in the spectra can be marked as

ωFf = ω1 − 2� − 2�3, ωFr = ω1 − 2�,

ωFt = ω1 − 2� + 2�3, ωRf = ω1 − 2�3,

ωRt = ω1 + 2�3, ωTf = ω1 + 2� − 2�3,

ωTr = ω1 + 2�, ωTt = ω1 + 2� + 2�3,

ωRr = ω1, (29)

where ωFt is the high-frequency component of the triplet cen-
tered at the low-frequency component of the original Mollow
triplet. Next, two typical examples are used to further investi-
gate the influence of the nonlinear multiphoton effect by the
weaker driving field on the photon statistical properties of the
system.

1. Filtering between different sidepeaks

The a-mode filter is centered at frequency ωFf and the b-
mode filter is centered at frequency ωTt, as shown in Fig. 8(a).
In this situation the specific form of the Hamiltonian (28) in
the second dressed representation is

H ′′
s = �3R′

0 + (�a + 2�)a†a + (�b − 2�)b†b

+ g
(+)
2 (a†R′

+ + H.c.) + g
(−)
−2 (b†R′

− + H.c.). (30)

The master equation of the system, including the filtering
process, is

ρ̇ = − i[H ′′
s , ρ] + κ

2
(Laρ + Lbρ) +

∑
i=0,±

γi

2
L[R′

i]ρ. (31)

According to the master equation in the second dressed
representation, we derive the equation of motion of the
two-mode atom-photon correlation moment of the type
〈a†m

α b†n
β bp

βaq
αR′

stλ〉(α = Ff, β = Tt, and R′
stλ is the transition

FIG. 7. Time-frequency resolved correlated signals between dif-
ferent components in the fluorescence spectra. The parameters � =
40γ , κ = 8γ , δa = −δb = 2γ ; (a): α = 0.1, (c): α = 0.6, (b) and
(d): α = 0.4. The red solid line presents the normalized g(2)(b, a, τ ),
the blue dotted line present the normalized g(2)(a, b, τ ). (a), (b), and
(c) a-mode filter centered at frequency ωFf and b-mode filter centered
at frequency ωTt; (d) a-mode filter centered at frequency ωRr and
b-mode filter centered at frequency ωTt.

operator in the second dressed state, s, t ∈ {+′,−′},
d

dt

〈(
a†m

α b†n
β bp

βaq
αR′

stλ

)
(t )

〉 = Tr

(
a†m

α b†n
β bp

βaq
αR′

stλ

dρ̃

dt

)
. (32)
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FIG. 8. Transition paths and time ordering of two-photon res-
onant cascaded emission of photon pair (a,b), in which channel 1
and channel 2 are independent time-ordering channels, and channel
3 and channel 4 display interference involving a common initial
dressed state and a final dressed state. Black and red arrows represent
the photon emissions in modes a and b, respectively.

Then the single-mode second-order correlation of two optical
cavities can be obtained by

d

dt
〈b†(τ )b(τ )〉 = − ig
(−)

−2 (〈b†(τ )R′
−(τ )〉 − 〈b(τ )R′

+(τ )〉)

− κ〈b†(τ )b(τ )〉,
d

dt
〈a†(τ )a(τ )〉 = − ig
(+)

2 (〈a†(τ )R′
+(τ )〉 − 〈a(τ )R′

−(τ )〉)

− κ〈a†(τ )a(τ )〉. (33)

In this way the filtered intensity of the target spectrum can be
obtained by

〈a†a〉s = g2

(+)2

2 (κ + 2γc)ρ−−

κ
[(

κ
2 + γc

)2 + δ2
a

] ,

〈b†b〉s = g2

(−)2

−2 (κ + 2γc)ρ++

κ
[(

κ
2 + γc

)2 + δ2
b

] , (34)

in which δa = �a + 2� + 2�3 and δb = �b − 2� − 2�3 are
the detuning of two filters and the target line, respectively.

Applying the quantum regression theorem and Laplace
transform, the normalized two-mode second-order correlation
functions g(2)(a, b, τ ) and g(2)(b, a, τ ) can be gotten accord-
ing to Eq. (33), as shown in Fig. 7(b). In addition to the
bunching behavior displayed in the figure, the other obvious
feature is the significant asymmetry in the time ordering of
the two-mode second-order correlation function, which dif-
fers significantly from the correlation signal of the familiar
Mollow spectrum [56].

Since the correlation moment cannot give a clear physical
picture, for this reason, under the condition of κ � γ and
short-time detection, the wave function and the conditional
quantum state are used to explain the system analytically. The
un-normalized two-mode and second-order correlation func-
tion for detecting one a-mode photon at time t and followed by
detecting one b-mode photon at time (t + τ ) can be expressed
as

G(2)(a, b, τ ) = Tr[b†bρr (τ )], (35)

in which ρr (τ ) = [a†ρ(∞)a]τ is the conditional quan-
tum state of the quantum filter system after detecting
one a-mode photon, which can be expressed as ρr (τ ) =
e−iHt [a(0)ρ(∞)a†(0)]. This means that if a cavity preselects
an a-mode photon, then only the possibility of another filter
cavity producing a b-mode photon needs to be considered. The
system state function is expanded as follows:

|ψ+′ (t )〉 = |+′, 0a, 0b〉 + B1−′ |−′, 0a, 1b〉
+ A2+′ |+′, 1a, 1b〉,

|ψ−′ (t )〉 = |−′, 0a, 0b〉 + A1+′ |+′, 1a, 0b〉
+ B2−′ |−′, 1a, 1b〉, (36)

where B1−′ and A2+′ denote the conditional probability ampli-
tudes for successive emission of b-mode photons and a-mode
photons from the dressed atom in the second dressed repre-
sentation |+′〉 to |+′〉, corresponding to channel 1 in Fig. 8(a).
This is the reverse timing channel, that is, the detection
ordering is opposite to the emission ordering. Channel 2
is a positive timing channel, that is, the emission ordering
is the same as the detection ordering. By substituting the
Hamiltonian (36) into the Schrödinger equation, a steady-state
solution for the conditional probability magnitude can be ob-
tained by

A1+′ = ig
(+)
2

κ
2 + iδa

, B1−′ = −ig
(−)
−2

κ
2 + iδb

,

B2−′ = g2

(−)
−2 


(+)
2[

κ
2 + i(δb + δa)

](
κ
2 + iδa

) ,

A2+′ = g2

(−)
−2 


(+)
2[

κ
2 + i(δb + δa)

](
κ
2 + iδb

) . (37)

Because the filter system satisfies the two-photon resonance
δa + δb = 0, the single-mode intensities of the two filter
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cavities are

〈a†a〉s = g2

(+)2

2 ρ−′−′(
κ
2

)2 + δ2
a

,

〈b†b〉s = g2

(−)2

−2 ρ+′+′(
κ
2

)2 + δ2
b

. (38)

This conclusion is consistent with Eq. (34), which is solved by
the equation of the correlation moment in case the dissipation
of the atom is ignored. It can be seen that under the condition
of short-delay detection, the results of the two methods can
be in good agreement. Then the initial value of the density
operator of the conditional quantum state can be expressed as

ρr,a(0) = ρ+′+′ |A2+′ |2|+′, 0a, 1b〉〈+′, 0a, 1b|
+ ρ−′−′ (A2+′ |+′, 0a, 0b〉 + B2−′ |−′, 0a, 1b〉)

× (A∗
2+′〈+′, 0a, 0b| + B∗

2−′〈−′, 0a, 1b|). (39)

Equation (39) shows that after the a-mode photon is detected,
the conditional quantum state for the collapse of the quantum
filter system is the a-mode vacuum state. Then we focus on
the evolution of the second term |+′, 0a, 0b〉 in Eq. (39) to
produce a b-mode photon,

|ψ ′
+′ (t )〉 = |+′, 0a, 0b〉 + B′

1−′ (t )|−′, 0a, 1b〉, (40)

in which B′
1−(t ) is the probability amplitude of a b-mode

photon emitted by the reverse timing channel 1 in Fig. 8(a).
Substitute Eq. (30) and Eq. (40) into Schrödinger’s equa-
tion to get B′

1−(t ), and its concrete form is B′
1−(t ) =

−g
(−)2

−2 [1 − e−( κ
2 +iδb)t ]/κ

2 + iδb. Now, the evolution of the
conditional quantum state can be written as

ρr,a(τ ) = ρ+′+′ |C1(τ )|2|+′, 0a, 1b〉〈+′, 0a, 1b|
+ ρ−′−′ (|+′, 0a, 0b〉 + C2(τ )|−′, 0a, 1b〉)

× (〈+′, 0a, 0b| + C∗
2 (τ )〈−′, 0a, 1b|), (41)

with

C1(τ ) = g2

(+)2

2 

(−)2

−2
κ
2 + iδb

e−( κ
2 +iδb)τ

κ + i(δa + δb)
,

C2(τ ) = g2

(+)2

2 

(−)2

−2(
κ
2 + iδa

)(
κ
2 + iδb

)[
(1 − e−( κ

2 +iδb)τ )

+
(

κ
2 + iδb

)
e−( κ

2 +iδb)τ

κ + i(δa + δb)

]
. (42)

The un-normalized two-mode correlation function can be ex-
pressed by

G(2)(a, b, τ ) = ρ+′+′ |C1(τ )|2 + ρ−′−′ |C2(τ )|2. (43)

The un-normalized correlation function is the incoherent
superposition of the emitted photon intensities of positive-
time-ordering and reverse-time-ordering channels. However,
Eq. (39) shows that the second dressed atom is collapsed
according to channel 2, which is a channel of positive time
ordering, and the information of the reverse-time-ordering
channel 1 is not intuitively reflected. It can be seen from
Eq. (39) that the dressed atom is more likely to be trapped in

the positive-time-ordering channel, which is also the preferred
channel for the filter detection system. The normalized two-
mode and second-order correlation function is

g(2)(a, b, τ ) = 1

ρ−′−′

(
κ
2

)2 + δ2
a

κ2 + (δa + δb)2 e−κτ

+ 1

ρ+′+′

∣∣∣∣∣1 −
(

κ
2 + iδa

)
e−( κ

2 +iδb)τ

κ + i(δa + δb)

∣∣∣∣∣
2

. (44)

If the filter detects one b-mode photon at time t and is
followed by detection of one a-mode photon at time (t + τ ),
the density operator of the conditional quantum state reads

ρr,b(τ ) = ρ+′+′ (|−′, 0a, 0b〉 + C′
1(τ )|+′, 1a, 0b〉)

∗ (〈−′, 0a, 0b| + C′∗
1 (τ )〈+′, 1a, 0b|)

+ ρ−′−′ |C′
2(τ )|2|−′, 1a, 0b〉〈−′, 1a, 0b|, (45)

where the conditional time ordering transition amplitudes are
given by

C′
1(τ ) = g2


(+)2

2 

(−)2

−2(
κ
2 + iδa

)(
κ
2 + iδb

)[
(1 − e−( κ

2 +iδa )τ )

+
(

κ
2 + iδa

)
e−( κ

2 +iδa )τ

κ + i(δa + δb)

]

C′
2(τ ) = g2


(+)2

2 

(−)2

−2
κ
2 + iδa

e−( κ
2 +iδa)τ

κ + i(δa + δb)
. (46)

The two-mode correlation can be expressed as

G(2)(b, a, τ ) = ρ+′+′ |C′
1(τ )|2 + ρ−′−′ |C′

2(τ )|2. (47)

The normalized two-mode and second-order correlation func-
tion can be written by

g(2)(b, a, τ ) = 1

ρ−′−′

∣∣∣∣∣1 −
(

κ
2 + iδb

)
e−( κ

2 +iδa )t

κ + i(δa + δb)

∣∣∣∣∣
2

+ 1

ρ+′+′

(
κ
2

)2 + δ2
b

κ2 + (δa + δb)2
e−κt . (48)

The quantum filtering system preferentially selects the in-
formation of the positive-time-ordering channel (1) with the
same ordering of detection.

Comparing Eqs. (44) and (48), the two-mode correlation
signal is mainly based on the channel preferentially selected
by the filter, that is, it has a lot to do with the photon popula-
tion of the upper and lower energy levels of the second dressed
state. Due to the multiphoton correction of the weaker driving
field, the population of the upper and lower energy levels of
the second dressed representation is not equal. This leads to
a significant asymmetry in the correlation signal when the
ordering of the detection is different. Thus it is not difficult
to analyze under the condition of two-photon resonance. In
the case of constant driving field strength, i.e., α = 0.4, as
long as the two filters are near resonance with frequency ωif

and ω jt(i, j = F,R,T), respectively, the correlation signals of
different time ordering obtained should be exactly the same, as
shown in Fig. 7(b). As the strength of the weaker driving field
changes, the asymmetry of the photon’s correlation signal
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changes. When the value of α gets bigger and bigger, namely,
the strength of the weaker driving field gets stronger and
stronger, the population distribution difference between the
upper and lower energy levels of the second dressed state also
gets bigger and bigger, as shown in Fig. 5. The asymmetry in
the correlation signal of the detected photon will also increase
accordingly, as shown in Figs. 7(a), 7(b), and 7(c). It is further
shown that the population distribution has an important impact
on the asymmetry of the correlation signal of the detected
photon.

2. Filtering between central and sidepeaks

The method of conditional quantum states can also be used
to analyze the situation of one of the filters being near resonant
with the frequency of ωir(i = F,R,T), that is, one filter near-
resonates with the frequency of any one of the central peaks in
the nine peaks of the incoherent spectrum. Let us consider the
a-mode filter centered at frequency ωRr and the b-mode filter
centered at frequency ωT t as an example. If a-mode photons
are detected at time t and b-mode photons are detected at
time (t + τ ), the time evolution operator of the conditional
quantum state can be expressed as

ρr,a(τ ) = ρ+′+′ [(|+′, 0a, 0b〉 + C1(τ )|−′, 0a, 1b〉)

∗ (〈+′, 0a, 0b| + C∗
1 (τ )〈−′, 0a, 1b|)

+ |C2(τ )|2|−′, 0a, 1b〉〈−′, 0a, 1b|], (49)

with

C1(τ ) = A1+′A1−′ [1 − e−( κ
2 +iδb)τ ],

C2(τ ) = (−iδa + iδb)
A1+′A1−′e−( κ

2 +iδb)τ

κ + i(δa + δb)
, (50)

where A1+′ = − ig
(0)
0

κ
2 +iδa

and A1−′ = − ig
(−)
−2

κ
2 +iδb

are conditional
probability amplitudes for reverse-time-ordering and positive-
time-ordering detection for the b-mode photon, respectively.

The un-normalized two-mode and second-order correlation
function is written by

G(2)(a, b, τ ) = ρ+′+′ |C1(τ ) + C2(τ )|2. (51)

Then the normalized two-mode and second-order correla-
tion function is given by

g(2)(a, b, τ ) =
∣∣∣∣∣ 1(

κ
2 + iδa

)(
κ
2 + iδb

)
[

1 −
(

κ
2 + iδa

)
e−( κ

2 +iδb)τ

κ + i(δa + δb)

−
(

κ
2 + iδa

)
e−( κ

2 +iδb)τ

κ + i(δa + δb)

]∣∣∣∣∣. (52)

The same process calculates the two-mode correlation
function of detecting b-mode photons, followed by detect-
ing a-mode photons, and the normalized correlation function
reads as

g(2)(b, a, τ ) =
∣∣∣∣∣ 1(

κ
2 + iδa

)(
κ
2 + iδb

)
[

1 −
(

κ
2 + iδb

)
e−( κ

2 +iδa )τ

κ + i(δa + δb)

−
(

κ
2 + iδb

)
e−( κ

2 +iδa )τ

κ + i(δa + δb)

]∣∣∣∣∣. (53)

First, under the condition of two-photon resonance δa +
δa = 0 and short-time detection, the two-mode second-order
correlation functions obtained by Eqs. (52) and (53) are ex-
actly the same, corresponding to the blue dotted line and red
solid line in Fig. 7(d). Then we can analyze this conclusion
from Fig. 8(b). The dressed atom in the two emission channels
in Fig. 8(b) are triggered by common energy atomic states |+′〉
and terminated by common energy atomic states |−′〉, thereby
establishing timing interference. Combining with Eq. (51), it
is not difficult to conclude that when the filtered peak contains
the central peak of any band, the correlation signal has time
symmetry in short-time detection in Fig. 7(d).

In the case of κ � γ and τ ∼ κ−1 � γ −1, the methods of
wave function and conditional quantum state are used to ana-
lyze the above two complete filtering situations. The quantum
filtering system preferentially selects the information of the
positive time ordering, that is, the photon information with
the same ordering of detection, so as to affect the two-photon
correlation signals of different detection ordering. If the initial
state and final state of different detection ordering channels
are different, the population of the priority detection channel
is the main factor, which makes the two-photon correlation
signals of different timings asymmetrical; if the initial state
and final state of different channels are all the same, and
even if the detection ordering is different, the two-photon
correlation signals still remain symmetrical.

Here we evaluate the experimental feasibility of the param-
eters of our system. In Ref. [29] the frequency of the central
peak of the first-order harmonic for the emission spectrum of
a QD dressed by a resonant laser with drive strength �1 =
30 µeV and a second laser with drive strength �2 = 20 µeV is
ω = 30 µeV. When analyzing incoherent spectra in Sec. II D,
our theoretical parameter is 2�1 = 50γ , and when α = 0.6,
the theoretically calculated spectra are basically consistent
with the experimental result. In Ref. [57], it mentions that in
order to ensure that the correlation peaks of the three photons
can be observed separately, �/2π = 15 GHz for the radiative
linewidth of a single quantum dot �/2π = 0.2 GHz, i.e., � =
75γ . When discussing the two-photon statistical signal of the
system in Sec. III, the parameters of our system are 2� =
80γ , κ = 0.8γ . At present, the photon statistical properties
of two photons, three photons, and even n-photons of a two-
level atom driven by a single laser have been fully studied,
both experimentally and theoretically [2,57,58]. It is worth
noting that, so far, most of the theoretical and experimental
photon statistical properties show obvious symmetry [37–39].
Therefore our theoretical model provides a feasible theoretical
support for the experimental observation of asymmetric two-
photon correlation of the two-level atomic system driven by
the bichromatic field.

IV. CONCLUSIONS

We fully study the fluorescence spectrum and frequency-
resolved photon statistics of bichromatically driven two-level
atoms. Through the Schrieffer-Wolff perturbation theory
and the effective Hamiltonian theory, the multiphoton effect
of the weaker driving field is intuitively revealed, which
affects the energy and coherence of the system and the phys-
ical nature of spontaneous emission. The physical origin of
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unequal energy-level population distribution and the physi-
cal picture of spectral asymmetry are further revealed. The
Raman two-photon process and the cascaded two-photon pro-
cess of the weaker driving field have opposite effects on the
opposite sidepeaks of the central band, the central peak of
the first-order harmonic, and the opposite sidepeaks of the
second-order harmonic, so that the fluorescence spectrum
appears to have obvious asymmetry. The second-order and
third-order corrections of the weaker driving field have a
greater influence on the higher-order harmonics. Therefore,
as the strength of the weaker driving field increases, so does
the strength of the higher-order harmonics of the fluorescence
spectrum. Our analytical results are basically consistent with
the numerical solutions of Ficek and Freedhoff [18] and the
experimental results of Gustin et al . [29]. Next, the influ-
ence of the multiphoton effect of the weaker driving field
on the frequency-resolved photon correlation signals between
different components of the spectra is discussed in detail.
To fully reveal the physical source of the asymmetry of the
time-domain correlation signal, two methods of correlation
moment and conditional quantum state are used to analyze
the frequency-resolved timing detection process.

These results of ours further suggest that the impact of mul-
tiphoton effects on fluorescence spectra and photon statistics
is important and not negligible in strongly coupled systems.
Our work is not limited to natural atomic systems but has a
certain theoretical guiding significance for the study of quan-
tum manipulation [59] and quantum simulation [60] based on
multichromatically driven technology in solid-state devices
such as quantum dots.
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APPENDIX: THE EXPANSION OF THE TRANSITION
OPERATOR IN THE DRESSED REPRESENTATION

In Sec. II C the atomic operator of the third-order perturba-
tion in the first dressed representation is

σ− →
∑

j=0,±
k=0,...,±4

[
M ( j)

2k R j
]
e2ik�t , (A1)

where the specific expanded form of the transition weight
is given by Eq. (A2). The effects of the opposite first-order
correction on the opposite sidepeaks of the central band by
the cascaded two-photon process and the Raman two-photon
process of the weaker driving field are analyzed in detail.
Figure 9 analyzes the first-order correction of the weak driving
field to the high-frequency transition of spontaneous emission.

Figure 9(a) is the first-order correction of M (0)
2 and M (0)

−2
by the weaker driving field. Take channel (1) as an example.
The dressed atom absorbs a photon of frequency ω2 from
the weaker driving field and transits from the initial state
|+〉 to the intermediate state |−〉. Since the single photon
nonresonates, it immediately emits a photon of frequency

FIG. 9. First-order correction process for n-order harmonics by
weaker driving field (n=1,2). The solid arrow represents the emitted
or absorbed photon of frequency ω2. The wavy arrow represents the
frequency of the radiated fluorescence, ωs1, ωs1′ : two first-order har-
monic sidepeak frequencies; ωs2, ωs2′ : two second-order harmonic
sidepeak frequencies. Blue ellipse: initial state; red ellipse: inter-
mediate state; green ellipse: final states. (a) First-order correction
of the weaker driving field for first-order harmonic; (b) first-order
correction of the weaker driving field for second-order harmonic.

ω1 + 2� back to the initial state |+〉, completing a Raman
two-photon transition. The weight of the dressed atom to
complete the transition R++ = |+〉〈+| corresponds to the first
term in M (0)

−2 , which is the first-order correction of the weaker
driving field. The cascaded two-photon transition of channel
(2) corresponds to the first term in M (0)

2 , which is a first-order
correction of the weaker driving field. The dressed atom emits
a photon of frequency ω2 from the initial state |−〉 and then
immediately emits a photon of frequency ω1 − 2� to the final
state |−〉 to the weaker driving field, due to single photon
nonresonance. Complete a cascaded two-photon transition
R−− = |−〉〈−|. It can be seen that the first-order corrections
of M (0)

2 and M (0)
−2 by the cascaded and Raman two-photon

processes are opposite, which is also the main reason for the
asymmetry of the central peak of the first-order harmonic of
the spectrum. In the same analysis, the Raman two-photon
process of channel (3) and the cascaded two-photon process of
channel (4) in Fig. 9(b) correspond to the first-order correction
of M (−)

−4 and M (+)
4 by the weaker driving field.

Take channel (3) as an example. The dressed atom ab-
sorbs a photon of frequency ω2, then immediately emits a
fluorescent photon of frequency ω1 + 4�. This Raman two-
photon process corresponds to a first-order correction of M (−)

−4
by the weaker driving field. The two-photon process of the
weaker driving field in channel (3) and channel (4) has the
opposite effect on M (−)

−4 and M (+)
4 , which makes the opposite

sidepeaks of the second-order harmonic of the spectrum show
asymmetry. It can be seen from Eqs. (A2) and (A3) that the
second-order and third-order corrections of the weaker driving
field have a greater influence on the higher-order harmonics
in the spectrum. As shown in Fig. 6, as the strength of the
weaker driving field increases, the strength of the higher-order
harmonics will also increase accordingly.
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The specific expansion of the transition weights of the
dressed atom in the first dressed representation and the second
dressed representation are as follows:

M (0)
0 = 1

2
− α2

64
, M (+)

0 = α

4
+ 77α3

1536
, (A2a)

M (−)
0 = −α

4
+ 17α3

1536
, M (0)

2 = − α

16
− 55α3

3072
,(A2b)

M (+)
2 = −1

2
− 15α2

128
, M (−)

2 = −3α2

64
, (A2c)

M (0)
−2 = α

16
+ 215α3

3072
, M (−)

−2 = 1

2
− 49α2

128
(A2d)

M (+)
−2 = −13α2

64
, M (0)

4 = −5α2

96
, (A2e)

M (+)
4 = −α

8
− 25α3

384
, M (−)

4 = 35α3

2304
, (A2f)

M (0)
−4 = 5α2

96
, M (+)

−4 = 55α3

2304
, (A2g)

M (−)
−4 = 3α

8
− 11α3

384
, M (0)

6 = −47α3

6144
, (A2h)

M (+)
6 = −5α2

384
, M (0)

−6 = 239α3

6144
, (A2i)

M (−)
−6 = 37α2

384
, M (+)

8 = − 7α3

9216
, (A2j)

M (−)
−8 = 97α3

9216
. (A2k)

The transition weight of the dressed atom in the second
dressed representation is as follows:



(0)
0 =

(
1

2
− α2

64

)(
c2

2 − s2
2

) − 47α3

768
s2c2, (A3a)



(−)
0 =

(
1 − α2

32

)
s2c2 − α
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+ 17α3

1536
c2

2 − 77α3

1536
s2

2, (A3b)



(+)
0 =

(
1 − α2

32

)
s2c2 + α

4
− 17α3

1536
s2

2 + 77α3

1536
c2

2, (A3c)
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2
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)
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(
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)(
c2

2 − s2
2
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8
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