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Control of spin polarization through recollisions
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Using only linearly polarized light, we study the possibility of generating spin-polarized photoelectrons from
xenon atoms. No net spin polarization is possible, since the xenon ground state is spinless, but when the
photoelectrons are measured in coincidence with the residual ion, spin polarization emerges. Furthermore, we
show that ultrafast dynamics of the recolliding photoelectrons contribute to an apparent flipping of the spin of the
photoelectron, a process that has been completely neglected so far in all analyses of recollision-based processes.
We link this phenomenon to the “spin-orbit clock” of the remaining ion. These effects arise already in dipole
approximation.
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I. INTRODUCTION

Generation of spin-polarized photoelectrons using intense
circularly polarized light has recently become a topic of great
interest [1–5]. Since the rare gases commonly employed in
strong-field ionization experiments are spinless in the ground
state, linearly polarized light cannot generate net spin polar-
ization. In this article we show that when the photoelectron
is measured in coincidence with the final ion state, the spin
polarization approaches 100 % in the individual ionization
channels (resolved on J and MJ ). Furthermore, we link the
resulting spin polarization to the rescattering electron imaging
the ultrafast hole motion, providing an intuitive picture of
electron trajectories that contribute to an apparent spin flip of
the detected electron—a signature of recollision-driven cou-
pling between continua with different spins. We find that the
spin-flip recollisions are very significant, and that we may ex-
ercise precise control over the outcome. This effect, which has
so far been overlooked, is important in all recollision-based
imaging techniques such as laser-induced electron diffraction
[6], electron holography [7], and orbital tomography [8,9].

This article is arranged as follows: Sec. II introduces the
computational tools we employ in the calculations, presented
in Sec. III. Section IV concludes the article.
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II. THEORY

Our method consistently treats multielectron spin dy-
namics in strong laser fields, and is thus suitable for our
chosen target, xenon. It is based upon the time-dependent
configuration-interaction singles (TD-CIS) [10–12]. The
equations of motion (EOMs) describe the time evolution of
the amplitude c0 for the Hartree-Fock (HF) reference state,
and the particle orbital |k̃〉 emanating from the initially oc-
cupied (time-independent) orbital |k〉. Below, we employ
Hartree atomic units. Quantities appearing on one side only
are summed or integrated over. The different particle-hole
channels can couple via both the laser interaction and the
Coulomb interaction:

i∂t c0 = 〈k|V̂L|k̃〉,
i∂t |k̃〉 = (−εk + f̂ )|k̃〉 + c0V̂L|k〉 − 〈l|V̂L|k〉|l̃〉

− (Ĵlk − K̂lk )|l̃〉 − λk̃m|m〉, (1)

where εk is the eigenvalue of the initially occupied orbital |k〉.
The Fock operator is defined as f̂

def= ĥ + Ĵmm − K̂mm, with the
one-body Hamiltonian containing the interaction with the ex-
ternal laser field, ĥ

def= p2/2 + V̂C (r) + V̂L, V̂L
def= F(t ) · r, and

Ĵcd and K̂cd are the direct and exchange interaction potentials,
respectively (see Appendix A 1). The Lagrange multipliers
λk̃m in Eq. (1) ensure that |k̃〉 at all times remains orthogonal
to all initially occupied orbitals |m〉. To implement spin-
orbit coupling, instead of resorting to the full four-component
Dirac-Fock treatment (RTDCIS [13]), we rely on the phe-
nomenological two-component treatment of Peterson et al.
[14]. It includes corrections due to scalar-relativistic effects,
and at the same time reduces the number of electrons we need
to treat explicitly. It replaces the scalar potential V̂C by the
relativistic effective core potential (RECP), which models the

2469-9926/2023/108(4)/043104(8) 043104-1 Published by the American Physical Society

https://orcid.org/0000-0002-1230-4496
https://orcid.org/0000-0002-5274-1009
https://orcid.org/0000-0002-8817-2469
https://orcid.org/0000-0002-7746-5733
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.043104&domain=pdf&date_stamp=2023-10-06
https://doi.org/10.1103/PhysRevA.108.043104
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


STEFANOS CARLSTRÖM et al. PHYSICAL REVIEW A 108, 043104 (2023)

FIG. 1. Top row: Angularly resolved ATI spectra from xenon, correlated to different ionic channels. Middle row: Spin polarization of the
photoelectrons; for MJ < 0, the spin polarization is exactly the opposite of the positive case. Blue color means excess of spin-up (spin-down)
for +S (−S), and vice versa for red. The overlaid concentric circles indicate momenta at the detector corresponding to kinetic energies 2Up,
4Up, and 10Up, respectively. The offset circles mark the contribution of recolliding electrons with the maximum possible return energy Wk,max.
Bottom row: Lineouts along the Wk,max circles in the middle row; the black solid (red dashed) line corresponds to initial ionization towards
positive (negative) pz.

atomic nucleus and the 1s–3d electrons of xenon according to

V̂ RECP(r) = V̂ scalar(r) + μV̂ s-o
� j (r). (2)

The RECP allows us to identify effects associated with spin-
orbit dynamics by scaling the spin-orbit splitting as

�Es-o(μ) ≈ μ�Es-o(1), (3)

where �Es-o(1) ≈ 1.4 eV is the nominal spin-orbit splitting
of the ionic ground state at the CIS level; the dependence is
essentially linear in μ (see Appendix A 2).

The spin polarization is given by

SI (E , θ )
def= PIα (E , θ ) − PIβ (E , θ )

PIα (E , θ ) + PIβ (E , θ )
,

where PIσz (E , θ ) is the ion-, kinetic energy-, angle-, and spin-
resolved photoelectron distribution (see Appendix A 3).

III. CALCULATIONS

We study above-threshold ionization (ATI) from xenon,
with the following ionization channels included: 5p−1

3/2, MJ =
±3/2,±1/2, and 5p−1

1/2, MJ = ±1/2 [15]. Ionization from 5s
and lower-lying orbitals is strongly suppressed in the laser
fields we consider [h̄ω = �Es-o(1) and I0 = 44 TW/ cm2 ].
The spin-mixed channels 5p−1

3/2, MJ = ±1/2 (formed from lin-
ear combinations of p0α, p+β and p0β, p−α, respectively) are
preferentially ionized, since ionization in linearly polarized
fields is dominated by p0 [16].

The weaker channels 5p−1
3/2, MJ = ±3/2 are expected to

be spin pure, since in order to form the orbitals 5p3/2,
mj = ±3/2, the orbital- and spin-angular momenta must be
maximally aligned (p+α and p−β, respectively). Linearly

polarized electric fields preserve spin, and thus we expect
that the outgoing electron is spin-pure as well. However, the
results of our numerical simulations are surprising: only di-
rect, on-axis photoelectrons maintain their expected spin (see
Fig. 1). In contrast, electrons that have undergone recollision
with the parent ion, and are able to travel off-axis, exhibit
substantial amounts of the opposite spin.

To explain this behavior, we posit that this effect results
from the recollision of the returning electron off of the ion,
which in the spin-mixed channels has time-evolving spin
[1,5]. Directly after ionization, the ion has a spin opposite that
of the photoelectron, yielding vanishing spin overall. If upon
return, the electron finds an ion with a spin different from that
at the time of ionization, inelastic scattering into the spin-pure
channels 5p−1

3/2, MJ = ±3/2 may contribute to photoelectrons
of opposite spin in these channels. Furthermore, this apparent
spin flip will predominantly occur when �Es-oτ ≈ π , where
τ is the excursion time of the electron, see Fig. 2 and the SI
(see Appendix B). This dynamic corresponds to the spin-orbit
clock in the ion undergoing half a revolution.

To investigate this hypothesis in a minimally invasive man-
ner, we tune the spin-orbit splitting �Es-o by changing the
value of μ in (2), while keeping all remaining parameters
constant. We then find

π ≈ �Es-o(μ)τ = �Es-o(μ)

ω
ωτ = �Es-o(μ)

�Es-o(1)
ωτ, (4)

since we chose the photon energy to be in resonance with the
nominal spin-orbit splitting, ω = �Es-o(1). Using (3), we get

μ ≈ �Es-o(μ)

�Es-o(1)
≈ π

ωτ
. (5)
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FIG. 2. Sketch of the proposed spin-flipping mechanism; the
electron moves along a rescattering trajectory with an excursion
phase of ωτ , which in the example is chosen such that the tra-
jectory with maximum return energy Wk,max, shown as the heaviest
line, matches half a revolution of the spin-orbit clock, illustrated as
Bloch spheres. The classical trajectories start at the tunnel exit of a
Coulombic barrier.

For electrons returning with maximal kinetic energy, Wk,max,
which return at ωτ ≈ 3.71, we obtain μ ≈ 0.85. It is easy
to find those final momenta (combinations of pz and px)
which result from trajectories recolliding with Wk,max [17]
(see Appendix B); these are marked in Fig. 1 with circles
in the forward (pz > 0) and backward (pz < 0) directions. If
we take lineouts of the spin polarization along these circles,
we predominantly measure the contribution of trajectories
returning with Wk,max kinetic energy. The red streaks in Fig. 1
that indicate the opposite spin do not fall perfectly on the
Wk,max circle; this is mostly due to the circle being derived
for classical trajectories with no potential present. The slight
shift in momentum for the apparent spin flips is a result of
Coulomb focusing.

We thus expect large amounts of opposite spin in the
high-rescattering region (|Wk| > 4Up), for μ ≈ 0.85, since
the spin-orbit clock has undergone half a revolution by
the time the electron returns. In Fig. 3 we see that this
is indeed the case in the spin-pure channels 5p−1

3/2, MJ =
±3/2. Generalizing this argument, for μ ≈ nπ

ωτ
= 0.85, 1.69,

2.54, 3.40, 4.23, 5.07, . . ., we expect to see enhancement and
suppression of the opposite spin for odd n and even n,
respectively.

It is also interesting to note that for μ = 0, the photoelec-
trons in the spin-pure channel are spin-pure as well. In this
case, the period of the spin-orbit clock is 2π

�Es-o (0+ ) = +∞, and
the hole remains forever in its initial spin state, preventing
any opposite spin appearing in the spin-pure channels. To fur-
ther explore the proposed mechanism, we selectively remove
the Coulomb repulsion interaction from the EOMs (1); first
we exclude exchange-type interactions between ionization
channels by dropping the K̂lk term, and then the direct-type
interchannel interactions Ĵlk . Dropping the self-interaction
correction K̂mm does not influence the spin polarization appre-
ciably (see Appendix C 1). The intrachannel interactions Ĵmm

must remain, since otherwise the problem would reduce to a

FIG. 3. Lineouts along the Wk,max circles in Fig. 1, for a range of
values of the spin-orbit scaling parameter μ [see Eq. (3)], plotted as
a function of pz; note that 2Wk = p2

z + p2
x , and the lineouts are not

taken along constant px . As in Fig. 1, for MJ < 0, the spin polariza-
tion is exactly −S. Each row corresponds to a specific ion channel;
top row: spin-pure channel 5p−1

3/2, MJ = +3/2; middle row: 5p−1
3/2,

MJ = +1/2; bottom row: 5p−1
1/2, MJ = +1/2. The left column shows

emission in the forward direction, i.e., positive final pz [due to the
long pulse duration, τ = 15 fs, the spin polarization is almost sym-
metric about pz = 0 (see Appendix B 1)]. The right column shows
the integrated spin polarization along the lineout, from p2/2 = 4Up

to pmax; the solid black line corresponds to forward emission, and
the dashed red to backward emission. The right ordinate indicate the
expected positions corresponding to n ≈ μωτ/π half-revolutions of
the spin-orbit clock, for ωτ ≈ 3.71 (see main text).

hydrogenic one with a bare xenon nucleus. We compare these
instrumented calculations with the full Hamiltonian in Fig. 4.
As we see in the figure, the largest effect is the removal of
Ĵlk , which is the only term of the three which is long range
(K̂ , being traceless, decays at least as quickly as r−2). We
also note that the removal of K̂lk quantitatively changes the
angular distribution of the spin polarization, even enhancing
it, which suggests that K̂lk actually works counter to the pro-
posed mechanism.

We now understand the mechanism leading to the oppo-
site spin in the spin-pure channel better: The hole in this
channel is also spin pure, and as such does not undergo any
spin oscillation in the spin-orbit clock. However, the holes in
the other channels are spin mixed, and the spin-orbit clock

oscillates with the period Ts-o
def= 2π

�Es-o (μ) . After rescattering
at the right moment, we may observe opposite spins due
to inelastic scattering into 5p−1

3/2, MJ = ±3/2. Removing Ĵlk

from the EOMs (1) suppresses inelastic scattering, and thus
precludes any transfer of spin between channels, as we see in
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FIG. 4. Effect on the spin polarization when gradually removing the Coulomb electron-electron repulsion interaction from the EOMs (1).
Top row: K̂lk dropped; bottom row; K̂lk, Ĵlk dropped. See the second row of Fig. 1 for the case where all terms in the Hamiltonian are included.

Fig. 4. This mechanism can be semiquantitatively investigated
by considering the explicit time-spin dependence of Ĵlk and
K̂lk in LS coupling, where the orbitals l and k change their
spin with the period Ts-o (see Appendix C 2).

IV. CONCLUSIONS

In conclusion, we have demonstrated that we can generate
spin-polarized electrons, even when ionizing using linearly
polarized light, as long as we detect the photoelectrons in
coincidence with the ion. Furthermore, due to the recolli-
sion mechanism in strong-field ionization, we are also able
to control the spin of the photoelectron, by tuning the ratio
of the spin-orbit splitting and the angular frequency of the

FIG. 5. Spin-orbit splitting �Es-o(μ)
def= ε3/2(μ) − ε1/2(μ) be-

tween 5p−1
3/2 and 5p−1

1/2, as a function of the scaling parameter μ in
Eq. (2).

driving field. This mechanism has important implications for
recollision-based imaging techniques such as laser-induced
electron diffraction, which use the energy- and angle-resolved
distribution of the photoelectron to infer the state of the ion;
through the spin-orbit interaction, the spin of the photoelec-
tron would reveal additional information on the entangled
photoion.
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APPENDIX A: METHODS

1. Coulomb repulsion

The direct and exchange interaction potentials are defined
by their action on a spin-orbital

Ĵcd |e〉 def= χe(ς1)
∫

dς2

|r1 − r2|χ
∗
c (ς2)χd (ς2),

K̂cd |e〉 def= χd (ς1)
∫

dς2

|r1 − r2|χ
∗
c (ς2)χe(ς2) ≡ Ĵce|d〉, (A1)

where ς1,2 refer to both the spatial and spin coordinates.
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TABLE I. Calculated ionization potentials of the 5s, 5p elec-
trons of xenon, compared with their experimental and relativistic
configuration-interaction singles (RCIS) values.

Hole IP (eV) Exp. (eV) � (eV) RCIS IP (eV)

5p−1
3/2 12.026 12.130a −0.104 11.968c

5p−1
1/2 13.483 13.436b 0.047 13.404c

5s−1
1/2 27.927 23.397b 4.530 27.485c

aReference [20].
bReference [21].
cReference [13].

2. Scaling the spin-orbit interaction

The explicit form of the RECP (2) is

V̂ RECP(r) = V̂ scalar(r) + μV̂ s-o
� j (r),

V̂ scalar(r)
def= −Q

r
+ V̂�(r)P̂�,

V̂�(r)
def= 1

2� + 1

[
�V̂�,|�− 1

2 |(r) + (� + 1)V̂�,�+ 1
2
(r)

]
,

P̂�
def= P̂

�,

∣∣�− 1
2

∣∣ + P̂�,�+ 1
2
,

V̂ s-o
� j (r)

def= �V̂�(r)

2� + 2
[�P̂�,�+1/2−(� + 1)P̂�,�−1/2],

�V̂�(r)
def= V̂�,�+1/2(r) − V̂�,�−1/2(r),

V̂� j
def= Bk

� j exp
(−βk

� j r
2), (A2)

where Q = 26 is the residual charge, P̂� j is a projector on the
spin-angular symmetry � j, and Bk

� j and βk
� j are numeric co-

efficients found by fitting to multiconfigurational Dirac-Fock
all-electron calculations of the excited spectrum [18,19].

In Fig. 5, we show the effect of scaling the spin-orbit in-
teraction in the RECP (A2). The resultant spin-orbit splitting
is essentially proportional to μ. In Table I, the calculated
ionization potentials for the case μ = 1 are compared with
experimental values from the literature.

3. Photoelectron spectra

The photoelectron distributions, resolved on ion state I ,
photoelectron energy E , the angle θ with respect to the po-
larization axis, and with spin projection σz, are obtained by
tracing over the reduced density matrix:

PIσz (E , θ )
def=

∫
dφ〈σz|ρ̂II (E , θ, φ)|σz〉. (A3)

The density matrix is formed from the outer product of the
wave function with itself,

ρ̂(E , θ, φ)
def= |�(k)〉〈�(k)|, (A4)

using the close-coupling ansatz [22] for the wave function

|�(k)〉 = cIkσzA|I〉|kσz〉, (A5)

where |I〉 is the state of the ion,

k =
⎡
⎣k sin θ cos φ

k sin θ sin φ

k cos θ

⎤
⎦, k =

√
2E

is the asymptotic momentum of the photoelectron, σz the spin
projection of the photoelectron, and A the antisymmetrization
operator. The reduced density matrix is obtained from the full
density matrix by projecting on specific ion states:

ρ̂IJ
def= 〈I|ρ̂|J〉. (A6)

The decomposition (A5) is computed [12] using the time-
dependent surface flux (tSURFF) [23–27] and infinite-time
surface flux (iSURFV) [28] techniques, with Volkov asymp-
totics.

APPENDIX B: CLASSICAL TRAJECTORIES

Here we rederive the classical trajectories of a free electron
in a monochromatic electric field

F(t ) = F0 cos(ωt );

these results have been presented many times, most notably
by Corkum [29].

We introduce the free oscillation range and the velocity
amplitude:

α
def= F0

ω2
; v0

def= F0

ω
;

(we note that v2
0 = 4Up), as well as the phases φ = ωt , φi =

ωti, and φr = ωtr , δφ = φr − φi ≡ ωτ , etc.
We find the trajectories by integrating Newton’s equations

a(t ) = −F(t ), neglecting the influence of the atomic poten-
tial:

v(t ) = −F0

∫ t

ti

dt ′ cos φ′ = −v0(sin φ − sin φi),

r(t ) = r0 + α[cos φ − cos φi + (φ − φi) sin φi].

The phase of ionization φi is found for each rescattering phase
φr by requiring that the electron returns to the origin before
rescattering:

r(tr ) = 0,

which we solve numerically using the gradient method.
The kinetic energy of the electron (before rescattering) is

given by

Wk (t ) = v2(t )

2
≡ 2Up(sin φ − sin φi )

2. (B1)

We may choose the initial position at the tunnel exit

rtri
0 = − Ip

F0
,

or rCoul
0 = − Ip

2F0
−

√(
Ip

2F0

)2

− 2Ip

F0
, (B2)

which will give maximal kinetic energies at the time of rescat-
tering, rather different from when the electron starts at the
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TABLE II. Influence of the initial position on the maximal ki-
netic energy upon rescattering, for F0 = 3.5408 × 10−2 au and ω =
0.0535 Ha.

Barrier r0 (bohr) Wk,max (Up) φi (rad) φr (rad) δφ (rad)

None 0.0 3.17 0.31 4.40 4.08
Triangular −12.96 4.69 0.68 4.27 3.59
Coulomb −10.49 4.36 0.59 4.30 3.71

origin r0 = 0 (see Table II and Fig. 6), and in turn influence
the final momenta on the detector which upon rescattering
had the maximal kinetic energy (see Fig. 7). Accounting for
the initial position is an important improvement compared to
starting at the origin as done by Spanner et al. [17], since it
allows us to correctly sample the off-axis spin-flip features as
seen in Fig. 1 of the main text; for the figures shown there, we
use the initial position rCoul

0 for a Coulombic barrier.

Lineouts in the backward emission direction

In Fig. 8, the lineouts along the Wk,max circles in the back-
ward emission direction are shown. Due to the long pulse
duration (τ = 15 fs), the spin polarization in the backward
direction is almost a perfect mirror image of the forward
distribution, as evidenced by the similarity of the integrated
lineouts also shown in the figure.

APPENDIX C: SCATTERING MATRIX ELEMENTS

1. Effect of removing K̂mm

See Fig. 9 for the effect of removing K̂mm from the EOMs;
the results do not change appreciably.

FIG. 6. Kinetic energy upon rescattering as a function of ex-
cursion phase, for three different choices of initial starting position
(given in Table II).

FIG. 7. Final electron momenta corresponding to maximal ki-
netic energy upon rescattering, for three different choices of initial
starting position (line patterns are the same as in Fig. 6).

2. Time-dependent scattering matrix elements

Our numerical treatment is done in the j j coupling basis.
We wish to derive an expression for the time-dependent spin
flip. The natural basis for this process, the spin-orbit clock,
is LS coupling, where the spin of the hole is “breathing” in
time, due to the nondiagonal ionic Hamiltonian. For the np6

multiplet, the transform between LS and j j coupling is given

FIG. 8. Similar to Fig. 3 of the main manuscript, but the lineouts
are instead along the Wk,max circles in the backward direction, i.e.,
negative final pz.
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FIG. 9. The effect of removing K̂mm from the EOMs does not
appreciably affect the spin-flipping mechanism; cf. Fig. 4 of the main
manuscript.

by (see Table 8.1 of Ref. [30])

j m j p+α p+β p0α p0β p−α p−β
3
2

3
2 1

3
2

1
2

√
1
3

√
2
3

1
2

1
2

√
2
3 −

√
1
3

3
2 − 1

2

√
2
3

√
1
3

1
2 − 1

2

√
1
3 −

√
2
3

3
2 − 3

2 1

(C1)

which clearly shows that the J = 3
2 , MJ = ± 3

2 channels are
spin pure. Similarly, the ionic spin-orbit Hamiltonian within

this multiplet is in j j coupling

Ĥ ( j j)
s-o =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

−�Es-o

0
−�Es-o

0

⎤
⎥⎥⎥⎥⎥⎥⎦, (C2)

the propagator of which in LS coupling is given exactly by

exp
[−i Ĥ (LS)

s-o (t − ti )
] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
a b
b c

c b
b a

1

⎤
⎥⎥⎥⎥⎥⎥⎦, (C3)

where

a
def= 1

3
(1 + 2eiφ ), b

def=
√

2

3
(1 − eiφ ), c

def= 1

3
(2 + eiφ ),

(C4)

and φ = �Es-o(t − ti ).
The matrix element responsible for the inelastic scattering

between channels is given by

[l k̃||kl̃] ≡ [l k̃|kl̃] − [l k̃|l̃k], (C5)

the first term of which corresponds to the direct interaction
and the second term to the exchange interaction. As shown
in the above, when dropping Ĵlk from the EOMs, the spin-
flipping mechanism was almost completely suppressed, which
is why we will focus on [l k̃|kl̃], from which Ĵlk originates [12].

Assume we initially ionize the |l (ti)〉 = |p+β〉 orbital (a
component of the j = 3/2, mj = 1/2 orbital); then, neglect-
ing any effect of the spin-orbit interaction on the free electron,
|l̃〉 will be a β electron, while the associated hole will evolve
in time according to

|l (t )〉 = a|p+β〉 + b|p0α〉. (C6)

Simultaneously, the channel we consider scattering into, the
spin-pure j = 3/2, mj = 3/2, has a time-independent hole,
also in LS coupling:

|k(t )〉 = |p+α〉. (C7)

From this, we deduce that the direct part of the scattering
matrix element (C5), responsible for the apparent spin flip,
is

|[l k̃|kl̃]|2 =
∣∣∣a [p+β; k̃σz|p+α; l̃β]︸ ︷︷ ︸

0

+b[p0α; k̃σz|p+α; l̃β]
∣∣∣2

=
∣∣∣∣
√

2

3
(1 − eiφ )

∣∣∣∣2

|[p0α; k̃σz|p+α; l̃β]|2δσzβ

= 4

9
[1− cos �Es-o(t−ti )]|[p0α; k̃σz|p+α; l̃β]|2δσzβ,

(C8)

which will have its maximum when �Es-o(t − ti ) =
(2q + 1)π , i.e., odd multiples of π .
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We would reach a similar conclusion if we instead assumed
ionization to start from |l (ti)〉 = |p0β〉. This argument can
trivially be extended to the exchange interaction [l k̃|l̃k], and
hence also |[l k̃||kl̃]|2. As a side note, since the orbitals in the

first coordinate of [l k̃|kl̃] in (C8) are both p electrons, only
even orders in the multipole expansion of Ĵlk will contribute.
Furthermore, since the orbitals have different components (p0

versus p+), the lowest order is the quadrupole.
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