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This paper presents both experimental and theoretical investigations into the spectroscopy of dilute cesium
(Cs) atoms within a solid argon (Ar) matrix at cryogenic temperatures. This system is relevant for matrix isolation
spectroscopy and in particular for recently proposed methods for investigating phenomena that extend beyond
the standard model of particle physics. We record absorption spectra at various deposition temperatures and
examine the evolution of these spectra after deposition with respect to temperature changes. Taking advantage of
Cs-Ar and Ar-Ar pairwise interaction potentials, we conduct a stability study of trapping sites, which indicates
a preference for Td (tetrahedral, four vacancies) and Oh (cubic, six vacancies) symmetries. By implementing a
mean-field analysis of the long-range Cs(6s, 6p)-Ar-Ar triple dipole interaction, combined with a temperature-
dependent shift in zero-point energy, we propose effective Cs(6s, 6p)-Ar pairwise potentials. Upon integrating
these pairwise potentials with spin-orbit coupling, we achieve a satisfactory agreement between the observed
and simulated absorption line positions. The observed line broadening is reasonably well reproduced by a
semiclassical thermal Monte Carlo approach based on Mulliken-type differences between excited and ground
potential curves. Additionally, we develop a simple, first-order crystal-field theory featuring only six interaction
mode coordinates. It uses the reflection approximation and incorporates quantized (phonon) normal modes. This
produces a narrow triplet structure but not the observed amount of splitting.
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I. INTRODUCTION

Despite matrix isolation spectroscopy having been studied
since the 1950s [1–3], our understanding of the shape and
behavior of trapping environments within the matrix remains
limited. This is particularly true for even the simplest systems
comprising single valence electron atoms (alkali-metal atoms)
in rare gas matrix environments, where no consensus has yet
been reached regarding the trapping site with the host atom,
especially for heavier atoms [4–6].

Gaining a more accurate understanding of the trapping site
and the matrix’s effect on the dopant would prove invaluable
for precision spectroscopy experiments, such as magne-
tometry, spin-dependent interactions, and investigations into
physics beyond the Standard Model. These investigations may
include searches for violations of fundamental symmetries
(parity, time-reversal) like electric dipole moment (EDM) in
particles or axion-like dark matter candidates. Precision spec-
troscopy experiments utilize spin-induced transitions, which
are not directly affected by the matrix’s pure electrostatic
interaction at first order. However, a detailed study is neces-
sary to assess the precision that these experiments can attain
[7–13].

In this article, our focus is on studying cesium atoms
trapped in an argon matrix. Understanding this simple system
will help to further characterize more complex experiments.

*Corresponding author: daniel.comparat@universite-paris-
saclay.fr

Among the (stable) alkali-metal atoms, cesium is the heaviest,
making it highly sensitive to the effects of the electron EDM
[14]. We have chosen argon because it is the only rare gas
whose naturally occurring isotopes do not possess a nuclear
spin that would interact with the cesium spin.

Absorption (or transmission) spectra form the foundation
for all optical manipulations necessary for the above-proposed
experiments. Intriguingly, only a few experiments have stud-
ied Cs embedded in Ar [15,16], and only two optical
transmission spectra have been published [17,18] ([19] gives
only absorption and emission frequencies). For Cs in Ar, two
structures were observed. They could arise from 6s → 6p
transitions in two different trapping site environments: the 6p
triplet degeneracy being lifted either by a low symmetry site
[17] or by a dynamical Jahn-Teller effect in a cubic symmetry
site [18]. Reference [19] observed, in addition, 6s → 5d and
6s → 7p transitions, along with relaxation and fluorescence
from 6p and 5d levels.

In this article, we conduct experiments with the aim of rec-
onciling the discrepancies between previous measurements.
We begin by presenting the experimental setup, which enables
precise Cs density measurements in highly polycrystalline Ar
samples. Then, using Cs-Ar and Ar-Ar pairwise interaction
potentials, we first conduct a trapping site stability study. By
correcting the pairwise interaction with effective third-order
effects, we predict absorption line positions for the different
trapping sites found. We then validate, using a simple crystal-
field model, whether the found linewidths agrees with the
proposed trapping sites. Finally, we provide conclusions and
potential improvements for further exploration.
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FIG. 1. Schematic representation of the cryostat and the optical
systems utilized to monitor the matrix growth rate and to measure the
absorption and fluorescence spectra. The arrows indicate the propa-
gation directions of the beams. The laser illumination of the matrix
is imaged on CCD camera 2 to display the interference pattern.

II. EXPERIMENTAL SETUP

Figure 1 illustrates the experimental setup. The experiment
is performed under a residual gas pressure of ∼10−7 mbar
in a two-stage cryostat manufactured by Mycryofirm using
a pulsed tube cryocooler (SHI RP-082E2S). The cryogenic
matrix is grown by depositing Ar gas onto a C-cut sapphire
(Al2O3) plate, which is 20 mm in diameter and 1 mm in
thickness, and embedded in a copper frame. The cryogenic
temperature of the sample holder, ranging from 3 K to 30 K,
is regulated via resistive heating. In order to minimize thermal
disturbances caused by the kinetic energy transfer of the Ar
beam, the sample holder’s temperature is maintained at a
constant level via a PID loop.

A. Sample growth

The thickness L of the argon layer is continuously mon-
itored via 2D reflection Fizeau interferometry. A pattern
formed by the interference between the light reflected from
the front and back sides of the matrix is captured by a lens
onto a CCD camera. The 2D imaging offers numerous advan-
tages compared to previous 1D transmission or reflection laser
interferometry studies [20–22]: it features a background-free
environment ensuring excellent contrast, it is less restricted by
beam size and spatial interference narrowing, and it enables
the monitoring of the whole sample thereby ensuring the
quality of deposition.

For this Ar growth measurement, a DFB diode laser operat-
ing at λ = 852 nm was employed, providing the advantage of
also allowing the monitoring of the Cs flux through saturated
absorption.

The interference fringes at a specific point evolve as per
2nAr
λ

dL
dt , where nAr = 1.3 is the refractive index of an argon

bulk crystal at 852 nm [23].

A growth of approximately three fringes per minute is
observed, corresponding to a growth rate for an ideal argon
bulk crystal of dL

dt = 1 µm/min. After about one hour of argon
deposition, a crystal is formed with a thickness of ∼50 µm.

B. Cs density

To embed cesium into the matrix, we utilize Alfasource 3S
dispensers (Alfavakuo e.U.) loaded with a CsBi25 alloy. The
alkali-metal purity of the cesium is 99.980%. The dispenser
is situated outside the 50 K and 4 K thermal shields and is ac-
tivated by resistive current heating. The Cs vapor is funneled
to the substrate through a steel tube with an inner diameter d
of 4 mm, which pierces both thermal shields. Independently,
the tube is heated to approximately 40 ◦C via resistors to
minimize blockage from condensing Cs. We have extensively
studied in Ref. [24] the behavior of cesium atom effusion
through a collimating tube and established that, irrespective
of the tube material, Cs adheres to the wall. This results in a
well-collimated and homogeneous Cs atomic beam.

We monitor the Cs flux by recording a laser absorption
spectrum while adjusting the frequency of the low-intensity
diode laser intersecting the cesium beam. We assume that the
Cs beam diameter aligns with the inner tube diameter d and
its density n is uniform. Confirmation of this is obtained by
scanning the laser beam through the atomic beam or by a
simple 2D absorption image of the Cs in the Ar matrix, where
the cesium-doped zone creates a visible spot that is about
5 mm wide. The velocity distribution is effusive [24]: fz(vz ) =
( m√

2kBTz
)2v3

z e− mv2
z

2kBTz along z. The Cs beam is intersected by

the laser at an angle of α = 22 ◦ relative to the beam axis,
as shown in Fig. 1. Hence, the Beer-Lambert-Bouguer ab-
sorption is given by ndσ0

∫ ∞
0

1
1+( ωL−ωCs−kvz sin α

�/2 )2
fz(vz ) dvz where

σ0 = 1.4 × 10−9 cm2 is the absorption cross section for an
isotropic light polarization at the resonant 6s1/2(F = 4) →
6p3/2(F = 5) frequency h̄ωCs, which has a natural spon-
taneous decay rate of � = 1/(30.4 ns) [25]. We fit the
experimental absorption profile to this formula while scanning
the laser angular frequency ωL. The results align with and
are not highly sensitive to Tz ≈ 400 K. We then determine
the beam density n and consequently the Cs flux nπ (d/2)2v̄,
where v̄ = √

8kBTz/πm is the average velocity. We only ac-
count for the population in the hyperfine level F = 4 (which
represents only 9/16 of the total Cs(6s) population in the
beam, assuming Boltzmann-equidistribution between the nine
times degenerate F = 4 and 7 times F = 3 levels). Ultimately,
we obtain a Cs(6s) flux of a few 1012 at/s reaching the Ar
matrix. We thus anticipate a ∼10−4 atomic ratio of Cs in the
argon matrix (density on the order of 1018 cm−3) and a typical
average internuclear distance between Cs atoms on the order
of 10 nm.

To prevent Cs contamination of the window and to generate
well-defined trapping environments for all the Cs atoms, we
always initiate Cs deposition only after a few micrometers of
Ar have already been deposited.

C. Quality of the samples

Undoubtedly, the epitaxy of an fcc Ar crystal is unfeasible
on the hexagonal lattice of sapphire due to the incompatibility
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of their structural lattices [26], leading to the formation of
several crystal defects, including holes or cavities, as observed
in Ref. [26].

In theory, Cs can be trapped in various defect types such
as point defects surrounded by vacancies or line-dislocation
defects (including screw, edge, etc.), surface defects (like
stacking fault, tilt and twist grain boundaries), or volume
defects (e.g., pores, cracks, or alternate phases like hcp in-
clusions) [27].

It is known from literature that the grain size is inversely
proportional to the growth rate [28], and the deposition
temperature significantly influences the crystal quality. The
crystals contain twins, stacking faults, and dislocations [29].
At 20 K and 10 K, the interdislocation distances are roughly
8 nm and 3 nm, respectively [30,31]. This suggests the likely
presence of small crystallites comprising thousands of atoms,
separated by dislocations. Additionally, if a film is grown
at a condensation temperature greater than two thirds of the
sublimation temperature (that is 30 K for Ar), the fcc grains
are about 100 nm in size. Conversely, at one third of the subli-
mation temperature (that is about 10 K for Ar), the grain size
reduces to around 10 nm, with indications of a minority hcp
phase [28,29,32]. Furthermore, below a critical temperature
(18 K for Ar), atomic-scale cavities appear in the lattice [33].

These studies align well with our experimental observa-
tions regarding the quality of the Fizeau interference image
during crystal growth, and the reduction in light transmission
intensity due to scattering on grain boundaries. Specifically,
as described in [34], a sample turns almost opaque when the
Ar crystal grain diameter reaches around 0.1λ. We attribute
this to exactly this increased scattering.

Although we attempted annealing up to 30 K, the Ar crystal
quality showed no significant improvement. This outcome
aligns with expectations, as higher temperatures (closer to
the triple point) would be necessary [35,36] to promote va-
cancy formation or atom-vacancy exchange through diffusion
[37–39]. However, achieving such temperatures in a free-
standing sample in vacuum is not possible as sublimation
would occur prematurely due to the high vapor pressure of
solid argon.

III. ABSORPTION SPECTRA

A. Experimental spectra

In our absorption (or transmission) spectroscopy, we use an
Avantes AvaLight-HAL tungsten-halogen light source and an
Ocean Optics QE65000 spectrometer. The spectrometer was
calibrated by measuring the spectra of Hg and Kr lamps.

To measure the absorption in the doped Ar crystal, we
shine light from the lamp through the sample. The position
and shape of the light on the plate can be adjusted with irises
and mirrors and monitored via a camera.

We then compute the spectral absorbance of the sample due
to Cs as A = log10

I0
It

, where It denotes the spectral irradiance
density recorded in the presence of the Cs-Ar sample, and I0

is obtained prior to any Cs deposition.
The captured spectra from varying deposition temperatures

are presented in Fig. 2(a). Above 14 K, the spectra become

FIG. 2. (a) Absorbance spectra of Cs embedded in Ar for
deposits conducted at different temperatures. (b) Evolution with tem-
perature for a spectrum initially created at 8 K. The spectra are offset
in ordinate for better visual clarity. The positions of the 6s1/2, →
6p1/2 (left) and 6s1/2,→ 6p3/2 (right) Cs gas-phase transitions are
indicated for reference.

significantly broader, and we encountered difficulties produc-
ing any spectra for deposition temperatures above this.

Conversely, if Cs and Ar are deposited at a low temperature
[8 K in the case of Fig. 2(b)], the spectra remain visible even
when the sample is subsequently heated up to approximately
35 K, a temperature at which argon begins to sublimate under
vacuum.

The spectra show two triplet structures similar to those ob-
served by [17,18], attributed to two types of trapping sites. For
comparison, spectra of previous experiments were obtained
at 1.8 K in Ref. [18], likely performed at 4.2 K in [17] and
performed at 10 K in [19]. Typical positions and widths of the
two triplets structures at 8 K are presented in Table I. The
differing relative intensities of the two triplets in the various
samples [Fig. 2(a)] imply that depending on the deposition
conditions (deposit rate, sample density, temperature, argon
purity, etc.), one or the other trapping site is favored. It is
worth noting that we used slightly different Ar and Cs fluxes

TABLE I. Line center and width extracted from Fig. 2(b) at 8 K.
Both triplets were fitted by a sum of three Gaussians.

Line center (cm−1) Line center (nm) FWHM (cm−1)

11 220 891 310
11 780 849 360
12 170 822 350
12 770 783 400
13 400 746 380
13 850 722 400
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for different samples. The flux estimates given in the previous
section are measured for the sample deposited at 8 K, which
will be the one we focus on in the following. For other deposits
the rates used can easily vary by a factor of 3.

The temperature evolution shown in Fig. 2(b) shows a more
pronounced spectral deformation in the red site (the one be-
tween 11 000 and 12 500 cm−1) than in the blue site (the one
between 12 500 and 14 000 cm−1). The temperature changes
below 20 K are mainly reversible. In the 6–14 K temperature
range corresponding to a well-defined red triplet, there is a
slight blue shift (∼50 cm−1) of the two lower energy com-
ponents from 6 K to 14 K, while the position of the highest
energy component remains constant. The bandwidths of this
triplet structure do not depend on the temperature. Conversely,
a slight broadening of the components attributed to the blue
site can be inferred from the analysis in Gaussian bands (less
than 50 cm−1 from 6 to 20 K), while their positions do not
shift with temperature. Heating beyond 20 K typically leads
to a drop in the baseline (likely due to stronger light scattering
in the Ar), along with irreversible changes in the red triplet.
The blue site, however, remains well defined until 28 K. Due
to the lack of reproducibility, it is not possible to draw more
precise conclusions about the evolution of temperature. This
information should be handled with care.

More broadly, these types of triplet structures are well doc-
umented in alkali-metal atoms trapped in rare gas matrices.
They are not due to resolved phonon lines but are created by
homogeneous broadening and result from the lifting of the
degeneracy of the p level by the crystal environment [4]. How-
ever, due to the finite temperature, it is not straightforward to
differentiate between the splitting created by a low symmetry
crystalline field, as in dislocations or surface defects, and one
created by a (temperature-dependent) dynamical Jahn-Teller
effect in a more symmetric (cubic, tetrahedral, etc.) crystalline
field. From the shape of the lines, however, it already seems
evident that the main splitting is on the order of the fine struc-
ture splitting between 6p1/2 and 6p3/2 (of nearly 554 cm−1

in the gas phase). Then the static or dynamical electric crys-
tal field will lift the degeneracy between the |m| = 3/2 and
|m| = 1/2 of the 6p3/2 level.

B. Trapping sites

1. Potential curves

To explore potential trapping sites within an fcc lattice, we
should conduct a stability analysis.

Utilizing a Lennard-Jones potential with an equivalent
depth of ∼45 cm−1 and an equilibrium distance of ∼0.55 nm
as the X 2�+

1/2, Cs-Ar potential [40–42], generic calculations
for the accommodation of an atom in fcc and hcp rare-gas
solids [6,43] suggest that the likely trapping sites for Cs in an
Ar fcc matrix could have six, eight, or potentially ten vacan-
cies with respective symmetries of Oh, C2v, C4v. Nonetheless,
a seven-vacancy fcc lattice (C3v symmetry), a five-vacancy
trapping site located in an hcp environment, or a grain bound-
ary akin to a stacking fault accommodation (D3h symmetry)
could also emerge [5,44].

However, as depicted in Fig. 3(c), the Lennard-Jones po-
tential fails to accurately reproduce the Cs-Ar ground-state

(a)

(b)

(c)

(d)

FIG. 3. (a) Spin-orbit constant for Cs(6p)-Ar interaction.
(b) Cs(6p)-Ar potential curves. (c) Cs(6s)-Ar potential curves.
(d) Ar-Ar ground-state potential curves. The potential curves V used
in this study are adjusted by the zero-point energy VFH , and a third-
order correction V (3). The original potentials are taken from [41].
For the excited state, we chose to plot only a third-order case with
no cutoff (in analogy with the ground-state case; see text), i.e., the

two-body potential V [offset by E (6p)] multiplied by 1
3

8πρ

9
C∗

9
C∗

6
.

interaction. Consequently, we conducted our study using more
precise potentials.

For the VAr−Ar potentials, we use the simple analytical for-
mula provided by [45]. For the Cs-Ar ground state VAr−Cs =
VX 2�+

1/2
, we employed the potential curve from Ref. [41] with a

third-order interpolation between points. Due to a lack of data
points in the long-range, we incorporated parts of the potential
from [40] for internuclear distances exceeding 2 nm. These
potentials are presented in Fig. 3. Although the Lennard-Jones
approximation accurately represents the Ar-Ar potential, it is
considerably inaccurate for the Cs-Ar potential.

For comprehensive Ar-Ar and Cs-Ar interactions, we use
a simple two-body (pairwise potential) approximation. Here
the full interaction energy of a Cs-doped crystal with (N − n)
Ar atoms and n vacancies is given by the following equation,
using obvious notations:

V =
N−n∑
i=1

VAr−Cs(RCs−Ari ) +
∑

1�i< j�N−n

VAr−Ar(Ri j ). (1)
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We began by using a simple cubic grid with N = 4 × 73 =
1372 atoms (the factor 4 arises from the four atoms in the
fcc primitive cell). Convergence is achieved within 1% of the
energy for this configuration. This number of atoms enables
us to simulate a small homogeneous crystallite that would sit
between dislocations.

For a central Ar atom located at R0, the sum over all
other atoms

∑
i VAr−Ar(R0 − Ri ) reaches ≈773 cm−1 (here a

larger grid is necessary for convergence). This significantly
overestimates the experimental value for cohesive energy of
645 cm−1 [46,47]. Similarly, the equilibrium distance is es-
tablished for a lattice constant of 0.521 nm, compared to
the correct value of 0.531 nm [47]. To reproduce the cor-
rect cohesive (also called atomization −Eat) energy and the
equilibrium lattice constant, we scaled the Ar-Ar potential by
V = αVAr−Ar(βR) with α = 645/773 and β = 0.521/0.531.
Other variants of empirically modified potentials, such as
αVAr−Ar(β + R) used in Ref. [48], yielded similar outcomes.
This method is a straightforward way to retain the simple two-
body pairwise model while ensuring the appropriate cohesive
energy and equilibrium lattice constant. This is achieved by
incorporating many-body corrections and zero-point energy
effectively [47].

2. Site stability

To evaluate the thermodynamic stability of a structure
with n vacancies, we calculate a variant of the Gibbs
(or enthalpy) free accommodation energy for the structure
[43,49,50]: �EN (n) = ECs(n, N ) − EAr(N )(N − n)/N . Here
ECs(n, N ) signifies the total energy of the system when a
Cs atom is introduced into the crystal. Conversely, EAr(N )
represents the total energy of a pure Ar crystal comprising N
atoms, excluding the vacancies.

For the system to exhibit stability, it is crucial that the dis-
sociation of M systems, each containing n vacancies, into M ′
subsystems with n′ vacancies and M ′′ subsystems with n′′ va-
cancies be energetically unfavorable. This requirement can be
represented as M�EN (n) < M ′�EN (n′) + M ′′�EN (n′′), with
the condition n′′M ′′ + n′M ′ = nM ensuring the conservation
of atom numbers. For instance, two systems each with five
vacancies can evolve into a more stable configuration of one
system with four vacancies and another with six vacancies.
Thus, for n vacancies to form a stable trapping site, �EN (n)
must fall within the convex hull of the free energy curve as it
varies with the number of vacancies [50,51].

Despite its significance, �EN (n) is just one of several
vital factors, such as migration and activation energies,
needed for understanding the trapping sites. The �EN (n)
formula is primarily beneficial for small crystals, or in our
case, a small single crystallite in a polycrystal. Alterna-
tively, for N → ∞, the thermodynamic limit is often applied
with EAr(N )/N ≈ Eat, resulting in �E∞

N (n) = ECs(n, N ) −
EAr(N ) + nEat [52–56].

In order to find the most stable (minimum energy) con-
figuration at a fixed n value, we do not explore the entire
position space for the Cs atom and the vacancies through vary-
ing random initial configurations. Instead, we initialize with
preestablished defect structures in fcc crystals, using positions
sourced from existing literature [49,52–62], specifically [63].

FIG. 4. For a given number of vacancies n, the optimized config-
uration found to lower �E (n) is displayed (calculation performed
with N = 1372 atoms). The figure illustrates both �E (n) and
�E∞(n), alongside a depiction of the final structure realized for the
Cs atom and a few of the nearest-neighbor Ar atoms.

In anticipation of the necessity for further studies, such
as the Jahn-Teller dynamical effect, we permit the Cs
atoms and the initial few layers (typically ∼ 60 atoms) of
nearest-neighboring Ar atoms to move and optimize their
position to minimize �EN (n) as much as possible. We uti-
lize the Adaptive Moment Estimation (Adam) [64] and its
modified version, Nesterov-accelerated Adaptive Moment Es-
timation (Nadam) [65], collectively considered as “the best
overall choice” among gradient descent optimization algo-
rithms [66,67]. Upon nearing the optimum, employing the
second-order derivative offers a faster method to adjust the
equilibrium position of the normal coordinates [68]. This
procedure is iteratively applied, optimizing positions until a
minimum is attained. Figure 4 showcases results from such
optimized geometries. However, it should be noted that using
initial fixed (pure) fcc Ar and vacancy positions suffices to
reproduce the results with satisfactory accuracy for stable site
predictions, eliminating the need for atomic position opti-
mization.

This study’s findings contrast from the previous one carried
out using a Lennard-Jones potential [6,43]. Our study indi-
cates that the most stable trapping sites probably are Td with
four vacancies and Oh with six vacancies. This seems consis-
tent with our observation of two triplet lines in absorption.

C. Simulation of the position of the absorption lines

1. Line positions in the pairwise approach

Contrary to the observations reported by Ref. [19], our
data, as shown in Fig. 2, do not show evidence of the
Cs(6s → 5d ) transition. Only Cs(6s → 6p) triplet structures
appear visible, with minimal evidence of any other Cs lev-
els involved. Also Cs dimers seem to be absent at the low
density and temperature we are operating at. We are there-
fore confident that a simple pairwise approximation of the
diatomic-in-molecule (DIM) type of approach, involving only
the Ar ground state and Cs(6s), Cs(6p) levels, should yield ac-
curate results to simulate the Cs(6s → 6p) absorption spectra.

The detailed calculation is outlined in Appendix B. Briefly,
the energy shift of the Cs(6s) is calculated in a similar manner
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as was done for the stability study. Now, we include the 6p manifold, where the energies are the eigenvalues of the Hamiltonian.
These are calculated by summing up the interaction 〈L′M ′|V̂Cs,Ar(RCs,Ar = {X,Y, Z})|LM〉 between a Cs atom (with |6pM〉 levels
quantized along an arbitrary but fixed axis z) and each Ar atom. This interaction is defined by the matrix obtained using Wigner
rotations:

1

3
[2VΠ(R) + VΣ(R)]I3 + 1

6

VΣ(R) − VΠ(R)

R2

⎛
⎜⎜⎜⎝

|M = −1〉 |M = 0〉 |M = 1〉
X 2 + Y 2 − 2Z2 3

√
2(X + iY )Z −3(X + iY )2

3
√

2(X − iY )Z −2(X 2 + Y 2 − 2Z2) −3
√

2(X + iY )Z

−3(X − iY )2 −3
√

2(X − iY )Z X 2 + Y 2 − 2Z2

⎞
⎟⎟⎟⎠. (2)

Here we also include the spin-orbit ASO(RCs,Ar)L.S term,
where R = √

X 2 + Y 2 + Z2.
The Hund’s case (a) potential curves VΠ(R), VΣ(R), and the

spin-orbit coefficient ASO(R), where R denotes the Cs-Ar sep-
aration, are constructed as shown in Fig. 3. They are based on
the most recent VX 2Σ+

1/2
, VAΠ1/2 , VAΠ3/2 , VB 2Σ+

1/2
potentials [41].

The long-range part is taken from the potentials of Ref. [40],
which provide more points, but are calculated from a smaller
basis set and hence are less accurate at short range.

Given that the significant variation of the spin-orbit coeffi-
cient ASO(R) is limited to R values smaller than the distance
between the closest neighbours [69], as seen in Fig. 3(a), the
use of a constant spin-orbit coefficient ASO yields minimal
impact [a maximum shift difference of 10 cm−1 in the final
Cs(6s)–Cs(6p) transition lines]. Hence, in the following anal-
ysis, we simply use the VΠ,VΣ potential curves and a constant
spin-orbit coefficient ASO based on the experimental value.

The big dots in Fig. 5 display the results for the Cs(6s)–
Cs(6p) transition line positions. In this 0 K theoretical

FIG. 5. Comparison between an experimental absorbance spec-
trum (represented by the solid pink lines), for the two trapping
sites, Oh with six vacancies, and Td with four vacancies. The lower
section indicates the position of the 0 K lines employing pairwise po-
tentials, where dots correspond to the two-body cases with potentials
sourced from [41]. The influence of zero-point energy on these lines
is marginal (at most 150 cm−1). However, the incorporation of the
third-order effect (refer to the main text) results in an additional shift
that we predict to fall within the elliptical regions.

computation, only doublets emerge, not triplets as would be
anticipated in highly symmetric trapping sites, due to the lack
of thermal or dynamical broadening. Nevertheless, the exper-
imental and calculated positions show a reasonable degree of
agreement.

It may seem surprising initially that the most shifted lines,
relative to the gas phase case, are those with six vacancies.
This happens while the more constrained structure with four
vacancies appears to be hardly affected. The observation that
the red triplet is Td and the blue one is Oh is contrary to what
has been noted (or simulated) for other systems such as Na in
Ar [70,71]. This discrepancy can be qualitatively explained by
a simplified model where Cs is surrounded by Ar atoms in a
symmetric spherical environment.

In this spherical context, the average interaction term
becomes 2VΠ + VΣ [refer to matrix (2)]. Consequently, a valu-
able approach to study the shift of the 6s-6p line position
involves examining 2VΠ + VΣ − VX . This is demonstrated in
Fig. 6, along with the positions of the nearest neighbors in
both the Td and the Oh structures as found in our stability
study.

Figure 6 highlights that the blue shift, resulting from posi-
tive �V = 2VΠ + VΣ − VX values, is more pronounced in the
Oh case than in the Td scenario. This difference mainly arises
because, in the Oh situation, the first eight and second 24
nearest neighbors (the solvation-type shell) each contributes
to a blue shift of approximately 100 cm−1. Meanwhile, in
the Td case, the first shell almost causes no shift due to the

FIG. 6. Illustration of �V = 2VΠ + VΣ − VX Cs-Ar potentials
with an offset of the asymptotic values. The first R1, second R2,
and third R3 nearest-neighbor shells in the Td and Oh scenarios are
provided (for the Oh case, an example of the Cs and Ar positions is
also given).

042820-6



CESIUM ATOMS IN A CRYOGENIC ARGON MATRIX PHYSICAL REVIEW A 108, 042820 (2023)

cancellation of 2VΠ + VΣ and VX shifts, and the second shell
contains only 12 atoms. The cumulative effects of these shifts,
coupled with the redshifts produced by shells at greater dis-
tances, offer a qualitative explanation for the ∼2000 cm−1

blue shift in the Oh scenario. Also, the cancellation effect
results in Td lines appearing near the gas phase location.

In line with our approach for Ar-Ar potentials, to enhance
the comparison of the line positions, we should include the
zero-point energy and third-order many-body interactions.
However, as these factors merely provide corrections, we
didn’t use them to reoptimize the atomic positions.

2. Third-order (dipole-dipole-dipole-type) correction

To the best of our knowledge, the third-order correction has
not been previously utilized for simulating absorption spectra
[4,71]. However, this correction is non-negligible, particularly
for ground states and even more so for excited states.

We currently lack accurate three-body Cs-Ar-Ar potential
curves, leading us to approximate their contribution [72,73].
As elaborated in Appendix E, we employ two- and three-
body expressions for the pure long dipolar range part to
extrapolate an appropriate three-body potential also appli-
cable for shorter distances. Following that, we aggregate it
over all atoms. Unfortunately, the nearest neighbors play a
significant role [71], and they are in the area where our for-
mula proves to be the least accurate. Consequently, we opt
for a simpler approximation, akin to the approach used by
Mutô-Stenschke-Marcelli-Wang-Sadus [73–75]. We average
the formula, employing a mean-field approach for the position
of the third Ar atom, resulting in an effective correction to the
two-body Cs-Ar potential.

These are straightforward density-dependent expressions
that connect the averaged three-body interactions to the two-
body ones. This connection facilitates merging both types of
interactions into effective Cs-Ar two-body potential curves.
With this methodology, the final Cs-Ar potential curve is a
corrected version of the original one, offset by the effective
three-body contribution Ē (3)

12 . Ultimately, we obtain an effec-
tive two-body potential as described by Eqs. (E9) and (E11).

The influence of this adjustment can be qualitatively es-
timated from Eq. (E8). By utilizing 2VΠ + VΣ − VX as a
measure of the shift, we observe that the third-order effect
Ē (3)

12 displays a 8πρ

3R6 (C∗
9 − C9) > 0 dependence. This implies

a probable net blue shift, where ρ is the Ar density and
C9,C∗

9 represent the triple dipole coefficient for the ground
and excited states, respectively. This effect can also be inter-
preted by examining the potential curves provided in Fig. 3.
In this figure, the depicted third-order excited state poten-
tial curve is computed similarly to the ground-state case.
Hence, we have V (3)

Σ = [VΣ − E (6p)] 1
3

8πρ

9
C∗

9
C∗

6
and V (3)

Π =
[VΠ − E (6p)] 1

3
8πρ

9
C∗

9
C∗

6
.

3. Zero-point energy correction

In order to incorporate the quantum effects attributable
to the zero-point energy, we utilize the Feynman-Hibbs ap-
proach, equivalent to the Wigner-Kirkwood method. This
approach introduces a temperature-dependent effective cor-

rection to a pair potential between ground-state atoms, given

as �VFH (R) = σ 2
0 [V ′′(R) + 2V ′(R)/R], where σ0 =

√
h̄2

24μkBT

is the Gaussian width of quantum particles, as derived from
the uncertainty principle and μ is the reduced mass [76,77].

4. Absorption line positions

Upon integrating the zero-point energy and third-order
correction, we find the line positions for the absorption spec-
tra depicted in Fig. 5. In this computation, for the excited
states, we applied the effective two-body potential (two-body
corrected with three-body), and for the ground state, we ad-
ditionally incorporated the Feynman-Hibbs zero-point energy
correction, �VFH (R), assuming an experimental temperature
of 8 K. This procedure was not used for the Ar-Ar interaction,
given that we already have a well-scaled potential. However, it
is intriguing to validate this method against the known Ar-Ar
case. As Fig. 3 suggests, our method of amending a two-
body potential with �VFH (R) + V (3) accurately replicates the
scaled potential we used.

A key insight is that the zero-point energy is quite neg-
ligible (on the order of 100 cm−1), whereas the third-order
correction significantly impacts the outcome and thus should
not be disregarded. Indeed, the shift generated by the third-
order effect is extremely sensitive to the selected cutoff
parameters, and it can be either attractive or repulsive, con-
tingent on their values. As such, the induced shift should be
viewed more as an indicator of the effect rather than a precise
quantitative result, which is why we chose to represent its
effect as an uncertainty in our findings. The ellipses in Fig. 5,
acting as effective error bars, have been roughly assessed
using different cutoff values and exponents in the power of
the cutoff function (see Appendix E), along with the potential
curves V (3)

Σ and V (3)
Π shown in Fig. 3.

Despite the substantial uncertainty of the third order, we
can observe a qualitative agreement between theoretical line
positions and experimental ones, such as the Oh lines being
blue-shifted compared to the Td ones. However, the correct
line separation between Oh and Td remains elusive. Using
theoretical potential curves from Ref. [40] yielded similar re-
sults but they were blue-shifted by approximately 1000 cm−1

compared to results obtained using the more precise and re-
cent potentials from Ref. [41]). Still, this does not resolve
the issue of the line separation between Oh and Td, which
consistently remains around 1000 cm−1, half of the value ob-
served in the experiment. This discrepancy indicates the need
for further investigations to reconcile the differences between
experimental and simulated positions. High-accuracy Cs-Ar
potential curves are required, and better Cs-Ar-Ar third-order
calculations, particularly for the nearest-neighbor distances,
should be developed.

The line position alone is a good indicator of the trapping
site but is not always sufficient to confirm it. Even though
the calculated positions for the Td four-vacancy and Oh six-
vacancy cases align with the observation, it is prudent to also
consider other stable trapping sites on the convex hull such
as the single-vacancy case, where one Ar atom is replaced by
a Cs atom, and the 10-vacancy case. The simulation of the
absorption lines for the single-vacancy substitution site results
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FIG. 7. Comparison between the experimental absorption spec-
trum and theoretical semiclassical Mulliken formula (4) for the one
and 10-vacancy sites at 10 K.

in very red-shifted theoretical lines below 10000 cm−1, where
no experimental lines are observed, ruling out this case.

To study the lineshape and not just the central position, we
now need to incorporate thermal broadening of the lines due
to electron-lattice interaction.

We have already provided the results for the one- and
ten-vacancy cases in Fig. 7, confirming that they can likely be
dismissed due to the large shift for one vacancy and the overly
large and inverted triplet splitting for ten vacancies. Hence-
forth, we will focus primarily on the four- and six-vacancy
cases.

D. Lattice interaction

We must also account for the fact that the nuclei are not
stationary, due to zero-point energy and temperature effects.

1. Electron-lattice interaction for nonequilibrium positions

We employ pairwise potentials to compute the electronic
ground-state energy V (R) for the positions of the Cs and
(N − n) Ar nuclei R = {R1, . . . , RN−n+1} around the equilib-
rium point (R0), as determined by the stability study.

Subsequently, as detailed in Appendix C, we diagonalize
the mass-scaled Hessian matrix, computed via finite dif-
ference, to identify the normal mode coordinates Qn. The
Hessian matrix provides all the oscillation frequencies; this
method is a more accurate way of including the zero-point
effect than the previously used Feynman-Hibbs formula.

2. Semiclassical approximation for the transitions

To study the laser excitation of the (6s) cesium atom to-
ward the 6p manifold under the dipolar operator d̂ , we start by
noting (using the Beer-Lambert-Bouguer’s law) that the spec-
tral density optical absorption coefficient A(E ) for a photon
of energy E is given by the sum over all initial vibronic levels
|i〉, populated with probability Pi, with state |�i〉 of energy Ei,
towards all possible final ones |� f 〉 of energy E f :

A(E ) ∝
∑

f ,i

Pi|〈� f |d̂|�i〉|2δ[E − (E f − Ei )]. (3)

A(E )dE is the absorption coefficient for a photon in the en-
ergy band (E , E + dE ). Several approximations are derived
in Appendix D. For instance, we neglect the variation of the

dipole di f (Q) with the internuclear distances and assume it to
be constant (it is simply the 6s to 6p dipole transition). We
will primarily use two approximations:

A(E ) ∝
∫

Pg(Q)δ{E − [Ve(Q) − Vg(Q)]} dQ, (4)

A(E ) ∝
∑

i

Pi

∫
|�i(Q)|2δ{E − [Ve(Q) − Ei]} dQ. (5)

The first one [Eq. (4)] is called the Mulliken approximation.
The second one [Eq. (5)] is referred to as the reflection
approximation. Ve(Q) is the excited electron (6p) potential
energy curve, and Vg(Q) is the ground-state one.

Pg(Q) can be chosen by classical statistics Pg(Q) ∝
e−Vg(Q)/kBT , and the formulas are thus called classical. How-
ever, it is clearly better to choose the quantum-statistical
mechanical probability distribution Pg(Q) = ∑

i Pi|�i(Q)|2,
in which case we call them semiclassical.

Depending on the derivation chosen, the classical Mulliken
approximation can be derived from the reflection one with
an additional approximation, as in Ref. [78]. Conversely, the
reflection approximation can be derived from the Mulliken
one, as in Ref. [79]. Hence, it is not clear which formula is the
most accurate. However, proper derivation (see Appendix D)
tends to favor the (semi)classical Mulliken approximation. In-
deed, the Mulliken difference potential E − [Ve(Q) − Vg(Q)]
is known to be a quite good approximation for a Franck-
Condon factor [80,81] as it favors transitions where the kinetic
energy term is identical between ground and excited state.
This is where the phases of the ground and excited wave
functions match best, thereby favoring their overlap, as also
highlighted by the 1D WKB approximation.

Thus, we start with the semiclassical Mulliken approx-
imation. We will use Monte Carlo integration to estimate
the integrals numerically. Due to the spin-orbit interaction
and the interaction matrix we have, in the Cs(6p1/2, 6p3/2)
manifold, six eigenvalues Vi,exc(Q) (the degeneracy of which
depends on the symmetry of the trapping sites). The spectra
are simply given by summing the histograms of all eigenvalue
cases.

3. Phonons thermal effects

At temperature T , the average number of phonons with
frequency ω is given by the Bose-Einstein distribution n̄ω =

1
eh̄ω/kBT −1 . The probability of exciting this phonon mode with
n quanta [of energy En = (n + 1/2)h̄ω] is given by the
geometric distribution Pn = e−nh̄ω/kBT [1 − e−h̄ω/kBT ]. In the
semiclassical approximation, we use the true (quantum) prob-
ability distribution function of a harmonic phonon mode of
normal mode coordinate Qω and angular oscillation frequency

ω, as given by [82]: Pω(T ) = 1√
2π h̄[n̄ω+1/2]/ω

e− ω2Q2
ω

2h̄ω[n̄ω+1/2] . Thus,
if we perform the classical Mulliken calculation with a Boltz-
mann distribution at a temperature T ′ = T ′(ω) such that

T ′(ω)

T
= h̄ω

kBT
[n̄ω + 1/2] = h̄ω

2kBT

(
tanh

h̄ω

2kBT

)−1

, (6)

we will get the correct quantum spectral band contour in the
approximation of harmonic motion under the 1

2ω2Q2
ω poten-

tial, as if we had performed the full real quantum calculation
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at T . Thus, a classical Mulliken simulation at T ′ is equivalent
to a semiclassical Mulliken simulation at T . This scaled tem-
perature is a way to include phenomenologically the position
oscillation due to the zero-point energy in classical simula-
tions [83]. The scaled temperature was used, for instance,
to study Na in Ar using molecular dynamic simulation in
Ref. [70], where T = 12 K and so T ′ = 45 K was used for
the pure argon subsystem that thermalizes the Na deposition
on other Ar layers.

In argon, the Debye frequency is ωD = kB × 93.3 K/h̄,
leading to an effective temperature of T ′ ≈ 44 K at low
temperatures. Because we have several frequencies (one per
mode), we used the scaled temperature T ′(ω) for each of
them and chose the mode coordinate Qω according to the

distribution Pω(T ′(ω)) ∝ e− ω2Q2
ω

2kBT ′ (ω) . The energy levels are then
calculated for the chosen nucleus position, as done previously
for the equilibrium positions. A histogram for the energy
difference between excited levels and the ground-state one
finally gives the absorption coefficient at each energy accord-
ing to Eq. (4). For this simulation, only Ar atoms within a
specific cutoff distance Rc from the Cs atom are considered.
For all simulations presented here, convergence is obtained
for Rc = 3 nm. This corresponds to approximately 3000 Ar
atoms, the positions of which have been optimized to relax
the ground-state energy. However, already Rc = 1 nm leads
to reasonable convergence.

To benchmark our method, we compared it with Na in Ar
results from [70] and indeed found very similar absorption
spectra for the Td site.

For our Cs-Ar system, calculations are done with a bare
two-body Cs-Ar potential. We found no effect on the shape
when adding third-order corrections or when using other po-
tentials such as from [40].

The results for 10 000 samples of the semiclassical Mul-
liken simulations are given in Fig. 8 for the Oh and Td cases.
However, as discussed previously, the exact position cannot be
perfectly reproduced for all presented simulations. Therefore,
we shift the theoretical spectra for each Oh and Td cases. The
experimentally observed line broadening is well reproduced,
but the triplets are not visible because the splitting of the
6p3/2 doublet is too low to be resolved. The line positions
barely evolve with temperature and the widths only increase
by less than 20 cm−1 for the considered temperature range.
The reason that almost no temperature effect arises is that
we have a phonon angular frequencies spectral density very
similar to the one for a pure fcc Ar matrix, so ranging from
∼0 K to the Debye frequency ∼94 K. Thus, whatever the
experimental temperature from T = 6 to 14 K, the energy
Vg(Q) spanned by the ground-state motion does not vary much
with the temperature because the scaled temperature T ′(ω) is
always T ′(ω) ≈ h̄ω

2kB
and that way it is not very sensitive to the

actual experimental temperature.
It is interesting to note that a purely classical model using

T , not T ′(ω), as done for Na in Ar in Ref. [84], is able to
resolve the peak degeneracy and to show temperature effects
when T varies. This is an example of a faulty model that
gives erroneous results but that might, at first glance, look
reasonable.

FIG. 8. Comparison between experimental absorption spectra
and theoretical semiclassical Mulliken formula [Eq. (4)] at differ-
ent temperatures T = 6 K, 8 K, 10 K, 12 K, 14 K, 20 K and for
T = 0 K for the theory. The theoretical spectra are created from
a kernel density estimation of the Monte Carlo simulation results.
The results for the Td and Oh sites have been shifted in energy by
a global offset (which is 500 cm−1 and −380 cm−1 for Oh and Td,
respectively) to enable easier comparison with the experimental data.
For better visual clarity, vertical offsets have been applied to both the
experimental and the theoretical spectra.

Another intriguing aspect concerns the fact that a simple
crystal field model used in Ref. [18] was able to reproduce the
triplet structure quite well. Thus, we now study this crystal
field model based only on first-order electron-lattice interac-
tion in order to understand why a simplification of the model
might, strangely, give better results than the more complete
one we just used.

4. Crystal field: First-order electron-lattice interaction

The crystal-field model is based on the natural expectation
that, for better physical insight, it is worth linking the motional
modes to the symmetry group of a given trapping site using
the so-called crystal-field theory [85].

The normal modes Qn coordinates have been chosen
to obtain a diagonal Hamiltonian with ground-state poten-
tial energy given by 〈6s|V̂ |6s〉 = V0 + ∑

k
1
2ω2

k Qn
k

2. However,
within the Cs(6p) manifold, these coordinates Qn are not nec-
essarily the most appropriate anymore. Indeed, if we restrict
ourselves to the first-order series in nuclear coordinates, each
of the nine coefficients Vm′,m = 〈6pm′|V̂ |6pm〉 of the interac-
tion matrix (2), when summed over all Ar positions, contains
only linear combinations of the Qn. Thus, at most nine
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different so-called interaction modes matter, each of them
being a linear combination of the normal modes. These in-
teraction modes are much more appropriate than the normal
modes to give a physical insight into the Cs(6p) interaction
within the Ar matrix.

They can be calculated when the interactions, so the po-
tential curves, are known. But, in the crystal-field theory, the
Q�γ interaction mode coordinates are simply predicted using
the symmetries of the trapping site. A given trapping site is
an element of a symmetry group with irreducible represen-
tations � (and its row γ ). From it, we find the Q�γ , which
are the linear combination of the normal modes invariant
under the � symmetries. The symmetries are also reflected
by the electronic wave function that should have an adapted
basis set |�γ 〉. Finally, the electron-lattice interaction can be
written at first order (so-called crystal-field approximation) as
HCF = V (0)(r) + ∑

�γ V (1)
�γ (r)Q�γ .

Focusing on the 6p manifold, the symmetries of the zero-
order V (0)(r) potential in the cubic Oh case suggest � = T1u.
The adapted electronic basis |�γ 〉 is the 6p real (tesseral)
spherical harmonics |x〉, |y〉, |z〉. Similarly, � = T1 applies in
the Td case.

To evaluate the first-order term
∑

�γ V (1)
�γ (r)Q�γ within this

basis, we use the Wigner-Eckart theorem [86–88]:

〈�1γ1|V (1)
�γ |�2γ2〉 = 〈�1||V̂ (1)

� ||�2〉〈�1γ1|�2γ2, �γ 〉. (7)

This theorem delivers the selection rules and predicts the
nonzero coefficients 〈�1γ1|V (1)

�γ |�2γ2〉 that arise only for some
Q�γ [89–91]. The calculations’ specifics are presented in
Appendix A for multiple symmetry groups in the |x〉, |y〉, |z〉
basis. To better align with prior calculations, we also offer the
results in the |m〉 = | − 1, 0,+1〉 basis. Here the Hamiltonian
matrix MCF for the Td case [refer to Eq. (A1)] is given by

⎛
⎜⎜⎜⎝

VA1 QA1 − VE QE ,2√
3

VT2

iQT2 ,1+QT2 ,2√
2

−VE QE ,1 − iVT2 QT2,3

VT2

−iQT2 ,1+QT2 ,2√
2

VA1 QA1 + 2VE QE ,2√
3

VT2

−iQT2 ,1−QT2 ,2√
2

−VE QE ,1 + iVT2 QT2,3 VT2

iQT2 ,1−QT2 ,2√
2

VA1 QA1 − VE QE ,2√
3

⎞
⎟⎟⎟⎠. (8)

For Oh, the results are analogous, with the symmetries’ names
slightly altered. For simplicity, we maintain these notations
for both Td and Oh in the following discussions. Comparing
with the matrix (2) provides physical insight.

The A1 mode, denoted as QA1 , which varies as X 2 + Y 2 +
Z2, is a radial mode that preserves symmetry. The Eg mode is a
tetragonal distortion, represented by QE ,1 varying as X 2 − Y 2

and QE ,2 as 2Z2 − X 2 − Y 2. It transforms Oh symmetry into
D4h. The T2 mode bends the crystal to D3d or C3v , with QT,1,
QT,2, and QT,3 varying as XZ , Y Z , and XY , respectively.

Note that even if the matrix elements are linear in the
interaction mode coordinates, the eigenvalues, which are
the potential curves, are not linear. Hence, to calculate
the Cs(6s − 6p) absorption spectra, a numerical integration
method such as a Monte Carlo simulation is necessary. In
the Mulliken formula (4), we have Vg(Q) = VCs(6s)−Ar(Q) +
VAr−Ar(Q) and Ve(Q) = VCs(6p)−Ar(Q) + VAr−Ar(Q) leading to

Ve(Q) − Vg(Q) = VCs(6p)−Ar(Q) − VCs(6s)−Ar(Q). (9)

In the linear crystal-field approximation, VCs(6s)−Ar(Q) is
null (or a constant that we offset), hence Eq. (4) simplifies to

A(E ) ∝
∫ 6∑

i=1

δ[E − Xi(QΓ )]e− ∑
�γ ω2

�Q2
�γ /2kBT dQΓ , (10)

where Xi(QΓ ) are the eigenvalues of MCF plus the spin-orbit
matrix (A2), ASOL · S. This can be estimated using a Monte
Carlo method where each ω�Q�γ√

kBT
follows a standard unit nor-

mal Gaussian distribution [91].
Assuming in the Boltzmann distribution that the ground-

state energy can be written as Vg(Q) = 1
2

∑
�γ ω2

�Q2
�γ , which

isn’t usually the case as Q�γ are not the normal mode
coordinates, we found that in our study of the 6s–6p
transition, if projected to the sole “active” coordinates

QA1 , QE ,1, QE ,2, QT2,1, QT2,2, QT2,3, the ground-state Hamilto-
nian indeed takes the desired quadratic diagonal form.

In this case, as used in Refs. [90,91] (see discussion in
Appendix C 3), the oscillation frequencies ωΓ are not needed
for the Mulliken semiclassical case, because we can include
them in the definition of scaled coordinates Q̃�γ = ωΓ√

2
Q with

interaction coefficients Ṽ�γ =
√

2
ωΓ

V . This leads to V�γ Q�γ =
Ṽ�γ Q̃�γ , thus Eq. (10) becomes

A(E ) ∝
∫ 6∑

i=1

δ[E − Xi(Q̃
Γ

)]e− ∑
�γ Q̃2

�γ /kBT dQ̃
Γ
. (11)

Usually, crystal-field theory is used as an effective theory;
the parameters Ṽ�γ are adjusted to fit the data according to the
trapping site symmetry. This fitting process, along with the 6s
offset for the line position and potential fine structure splitting,
typically yields a strong agreement between experiment and
theory due to the large number of free parameters.

Compared to the Monte Carlo or molecular dynamics
methods, the crystal-field method is significantly
faster. It requires only a few parameters (in our
case, ṼA1 , ṼE , ṼT2 ) and Gaussian random distributions
(Q̃A1 , Q̃E ,1, Q̃E ,2, Q̃T,1, Q̃T,2, Q̃T,3 in our case). Furthermore,
the interaction is given by the analytical matrix (8). It is
therefore a very attractive method. As previously mentioned
in Ref. [18], the observed triplets, similar to our experimental
data, were attributed to cubic symmetry sites and were
well fitted using the matrix (8) with parameters listed in
Table II. The fit was performed at a temperature of T = 1.8 K
(classically, without any temperature scaling). Using these
crystal-field parameters, the calculated line shapes A(E )
from Eq. (11) well match the observed shape, and the triplet
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TABLE II. Crystal-field parameters, given in degrees Kelvin,
for the two types of sites. Oscillation frequencies are such that the
ground-state potential is given by 〈6s|V̂ |6s〉 = V0 + ∑

�γ
1
2 ω2

�Q2
�γ ,

while the parameters VA1 ,VE ,VT2 serve as coupling parameters for the
excited state matrix (8) incorporating linear terms of the V�Q�γ type.
For comparison, values from the experimental spectrum of Ref. [18]
are included.

Site Oh Td

Mode A1g Eg T2g A1 E T2

h̄ω�/kB 60 75 65 64 68 72
(V�/ω� )2

kB
50 120 140 110 130 150

(V�/ω� )2

kB
[18] 13 600 84 700 12 600 13 600 84 700 12 600

structure can be resolved. By varying ṼA1 , ṼE , ṼT2 for the two
sites, an almost perfect match can be achieved.

However, the coefficients VA1 ,VE ,VT2 can also be com-
puted by comparing the matrix (8) to the gradient of the
interaction matrix calculated via the summation of Cs-Ar
potentials [refer to Appendix C and formulas (C2) and (C3)
for details]. The parameter (V�/ω� )2 represents a Jahn-Teller
energy shift for the excited potential, evident from the for-

mula V�Q�γ + 1
2ω2

�Q2
�γ = 1

2ω2
� (Q�γ + V�

ω2
�

)2 − 1
2

V 2
�

ω2
�

. Results
are presented in Table II, where frequencies ω� and interac-
tion coefficients V� are displayed in temperature units using
h̄ω�/kB and (V�/ω� )2/kB.

It is noteworthy that the V� parameters derived from real-
istic interaction potentials markedly differ from those fitted in
Ref. [18]. This shows the risk of using solely crystal-field pa-
rameters for fitting, which may not align with physical reality,
leading to potential inaccuracies and misleading predictions
for subsequent studies [92]. It is therefore crucial to validate
them with an independent study, such as magnetic circular
dichroism (MCD) [92], temperature dependence of absorption
lines, or theoretical predictions [93–96].

Despite these findings, it is important to emphasize that
using our derived VA1 ,VE ,VT2 coefficients, and limiting our
absorption band shape Mulliken semiclassical simulation to
the first order in the QΓ coordinates for the excited state
interaction matrix, we achieve crystal-field results that are
nearly identical to those obtained from the full Monte Carlo
classical simulation (shown in Fig. 8). Here, excited states are
calculated from the full potentials. Indeed, for our temperature
range, the first-order matrix element values in the Monte Carlo
simulation deviate less than 10% from the actual ones.

In conclusion, both the full potential approach and the
crystal-field first-order approximation for the excited state
matrix coefficients generate almost identical results. However,
they fail to reproduce the observed triplet structure and its
temperature evolution. The problem might originate from the
inadequacy of the classical model for ground-state motion
at low temperatures where the vibrational energies are quan-
tized.

5. Reflection approximation and quantization of the energy

Classical simulations, despite temperature scaling via the
appropriate spatial Gaussian distribution �i(Q), inherently

fall short as they use a continuous energy Pg(Q) in Eq. (4). In
contrast, real systems possess quantized ground-state energy
Ei. For instance, at low temperatures with only a single zero
phonon mode occupation, the ground state exhibits a single
energy value, whereas classical simulation permits all ener-
gies from 0 to this zero-point energy.

Such a discrepancy suggests that classical simulations can
induce artificial line broadening on the order of half the De-
bye oscillation frequency. In argon, this equates to roughly
∼30 cm−1 per vibrational (phonon) mode. While this con-
stitutes an extreme case, given that the majority of lattice
vibrations between ground and excited states are similar.

This indicates that the semiclassical Mulliken approx-
imation, often employed to simulate atomic spectra in
rare gas matrices may not always be perfectly adequate
[44,51,70,71,84,97]. Previous studies have shown that this
approximation cannot adequately account for observed line
shapes, especially at low temperatures, for the A → T spectral
band shape (6s → 6p is A1g → T1u for Oh or A1 → T1 for Td )
[97–99].

In most cryogenic rare gas matrix experiments, a majority
of phonon modes exhibit energies significantly larger than the
thermal energy, h̄ω 
 kBT . As a result, vibronic transitions
often occur from zero-phonon occupation, a phenomenon
observed in heavy atoms like Eu, Sm, or Yb embedded in
Ar [100–104]. Such cases, confined to a single A1 mode,
lead to vibrational quantization that produces well-resolved
Huang-Rhys-Pekar-type peaks in the excited states due to the
displacement of the harmonic potential in the ground state
[105–108]. These peaks can only be elucidated via a full quan-
tum treatment of kinetic energy, as opposed to a semiclassical
Franck-Condon-Mulliken approximation.

We are dealing with a particularly complex case: the so-
called T ⊗ (a + e + t2) coupling, where a 6p triplet T couples
with the lattice through several modes plus spin-orbit interac-
tion. This situation bears a strong similarity to the extensively
studied Jahn-Teller T ⊗ (e + t2) coupling, which has been in-
vestigated using a variety of approximation techniques in full
quantum mechanical treatments [94,99,109–111]. Even with
some justifiable approximations for our case (see Table II), of
a p state equally coupled to E and T vibrations [97], the prob-
lem remains intricate. Nevertheless, full quantum treatments
seem to agree with classical approaches [91,112].

The optimal path forward to derive a definitive answer
would be to perform a full quantum calculation of nuclear
motion in the calculation of probability transfers. However,
this is outside the scope of this article, as our aim is to use
semiclassical expressions to calculate electronic absorption
spectra without the need to compute molecular vibrational
eigenstates.

In our scenario, most phonon energies h̄ω and Jahn-Teller
energy shifts h̄(V�/ω� )2 exceed the kinetic energy tempera-
ture kBT . Therefore, the reflection approximation in Eq. (5)
should provide greater accuracy than the Franck-Condon Mul-
liken approximation, as it treats the excited-state oscillator
classically while the ground state is quantized [78,106].

Regrettably, utilizing the reflection approximation gives
rise to numerous complexities. This is particularly true
when employing the harmonic approximation, as shown
by: Vg(Q) = VCs (6s) − Ar (Q) + VAr−Ar (Q) = ∑

k
1
2 ω2

k Qn
k

2.
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From this, we must calculate the following: Ve(Q) − Ei =
VCs(6p)−Ar(Q) − VCs(6s)−Ar(Q) + ∑

k
1
2ω2

k Qn
k

2 − Ei. In
this equation, the total quantized ground-state energy
Ei = ∑

k h̄ωk (nk + 1/2) and
∑

k
1
2ω2

k Qn
k

2 both increase
linearly with the number of modes. We can bypass this
nonphysical divergence by categorizing the modes as
either “active” or “passive,” depending on whether they
impact VCs(6p)−Ar(Q) − VCs(6s)−Ar(Q). This can be done using
symmetry-adapted coordinates, in which only the six active
coordinates significantly affect the Cs interaction with the Ar
crystal.

Unfortunately, the ground-state Hamiltonian no longer re-
mains diagonal in the interaction modes, making the energy
ill-defined. One possible solution to this problem is to use
the fact that, in the low temperature regime, the soft normal
coordinates phonon modes with low frequency (ω � kBT/h̄)
are populated. This population results in a different spatial
distribution for these normal modes and, thus, for their linear
combinations present in the six interaction mode coordinates.
For each temperature T , we scale each normal mode fre-
quency, transforming ω into ω′, where ω′2/T = ω2/T ′(ω),
to maintain the correct spatial distribution for the normal
modes. The resulting orthonormal transformation produces
diagonal ω′

�γ (T ) oscillation frequencies for the six interac-
tion mode coordinates. At this temperature T , we simulate
a spectrum using the classical Boltzmann distribution, ∝
e− 1

2 ω′
�γ (T )2Q2

�γ /kBT , for each Q�γ and a classical energy Ei =∑
�γ

1
2ω′

�γ (T )2Q2
�γ . The formula used, with Q representing

the interaction mode coordinates, is as follows:

A(E ) ∝
∑

i

Pi

∫
|�i(Q)|2δ

{
E −

[
VCs(6p)−Ar(Q)

−
∑

k

1

2
ω′2

kQn
k

2
]}

dQ. (12)

The results are presented in Fig. 9. This modified reflection
approximation restores the triplet shapes, but the splittings
do not match closely with the observed ones at the lowest
temperature of T = 6 K.

Furthermore, the simulated spectra show some
temperature-dependent evolution that does not fully align
with observed data. Experimentally, the red trapping site
(attributed to Td), and the blue trapping site (attributed to
Oh), behave differently with temperature. However, the
simulation predicts similar behaviors for Oh or Td sites, as
the Cs(6p) interaction with the Ar matrix is governed by
similar couplings (as evidenced by the similar values for the
coupling coefficients in Table II). Theoretically we observe,
for a Gaussian fit, a redshift of all lines (compare to blueshift
of some lines in the experiment) of nearly 30 cm−1 for the
temperature evolution up to 20 K. We also see a quite strong
modification (almost 50%) of the theoretical width, where
the experimental evolution is smaller in relative value. Also
care must be taken with experimental temperature calibration,
as the temperature of a matrix sample may differ from a
temperature sensor nearby [113]. There are, however, more
critical discrepancies that need to be addressed. The most
notable is the mismatch in the splitting between the peaks in
the experimental and theoretical data.

FIG. 9. Comparison of observed absorption with the simulated
one using the temperature-scaled first-order crystal-field model. The
model incorporates the modified reflection approximation [Eq. (12)],
using parameters from Table II. The theoretical spectra are generated
from a density kernel estimation of the Monte Carlo simulation
results. Results for the Td and Oh sites are shifted in energy by a
global offset for easier comparison with the experimental data (that
are 1650 cm−1 and 85 cm−1, respectively, for Oh and Td). Vertical
offsets have been applied to both experimental and theoretical spectra
to enhance visual clarity.

It remains unclear whether utilizing more sophisticated
approximations for the absorption shape would help alleviate
these discrepancies. As an example, the improved crystal-field
absorption line shape formula proposed in Ref. [98] could
be considered. Here S-P transitions are calculated for the
most general case, where the coupling of all three vibration
modes A1, Eg, T2, as well as spin-orbit interaction, are taken
into account. However, because the ω� frequencies are almost
identical for the Td and Oh case, this formula may also not
produce different temperature evolutions for the two sites.

Further, as highlighted in Ref. [114], semiclassical for-
mulas often require correction when the energy involved is
comparable to the quantization energy spacing. However, the
proposed corrected terms often have a similar order of magni-
tude, making the convergence unclear.

Hence, it may be more promising to explore other effects
to resolve this discrepancy, such as non-Born-Oppenheimer
effects like nonadiabatic coupling.

IV. CONCLUSION

In conclusion, we have observed Cs absorption spectra in
an Ar matrix containing six major resonances. These were
assigned to transitions from the 6s1/2 Cs ground state to the
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6p1/2 and 6p3/2 excited states, with lifted |m| degeneracy
and two different trapping environments. Pairwise Ar-Ar and
Cs-Ar potentials facilitated a stability study, indicating that
the two observed triplets are likely due to a four-vacancy
tetrahedral Td trapping site and a six-vacancy cubic Oh one
in an fcc Ar matrix.

To qualitatively reproduce the line locations using the
pairwise approach, we derived effective two-body potential
curves. These included zero-point energy and third-order
terms. We found that zero-point energy has a minor effect,
but adding third-order many-body corrections significantly
modifies the potentials. Our derivation of the effective two-
body potential from the long-range part of the triple dipolar
interaction, based on an exact derivation of the long-range
part, is not very accurate. More work is needed on effects such
as the Pauli repulsion, exchange interaction, and three-body
dispersion interactions for the rare gases: alkali-metal atoms,
especially in excited states and for the short-range part [115].

Our study reasonably assigns the nearly unshifted (rela-
tive to the gas phase) triplet to the four-vacancy Td site, and
the blue-shifted one to the six-vacancy cubic Oh trapping
site. Using the computationally demanding core polarization
pseudopotentials will be an interesting approach to confirm
this fact and to achieve better agreement between theory and
experiment for the line separations [71,116].

Within our current approach, we demonstrate that a triplet
shape can be reproduced only by using quantized energy
for the ground-state vibrational motions. Indeed, the classical
simulation may produce artificial broadening of the lines, on
the order of half the Debye oscillation frequency. Therefore,
in Ar this would be on the order of ∼30 cm−1. Hence, our
semiclassical Mulliken simulation fails to produce a triplet
structure, instead producing a broad doublet. A simulation
using the reflection approximation, on the other hand, yields
only a triplet at 0 K, but otherwise diverges with increasing
numbers of Ar atoms due to unphysical treatment of the
phononic modes.

Finally, a quantized simulation based on a modified reflec-
tion approximation reproduces a triplet structure. We show
that modifying the population of the soft (low-frequency)
phonon modes can also alter the absorption shapes. Using
only the matrix gradient (linear, first-order approximation)
for the excited state does not alter the quality of the results
but leads to significantly faster calculations. Moreover, at
low temperatures when only ground-state vibrational (zero-
phonon) levels are populated, the simplest crystal-field model
suffices to reproduce the observed line broadening caused by
the dynamic Jahn-Teller thermal effect. This requires only
three electron-lattice parameters given in Table II [together
with Eq. (10) and diagonalization of spin-orbit and (8) ma-
trices] [91]. The reduced number of modes is advantageous
as it leads to faster calculations than the full Monte Carlo
method and captures the essential aspects of the electrostatic
interaction, providing a powerful starting point for further
studies.

However, our work was unable to reproduce the triplet
splitting and did not provide accurate red and blue line sep-
arations. The reason for this discrepancy is unclear, but could
be due to our neglect of the dipole transition dependence on
the Q coordinates, lack of coupling with other excited states

[like Cs(5d )], or an inappropriate inclusion of the third-order
nonadditive terms in the potentials. The role of nonadiabatic
couplings should also be studied.

Following [70], modifying the potential curves, such as the
BΣ state (recently suspected to be inaccurate [117]), might
lead to better agreement between experiment and theory.
However, our preliminary attempts suggest that substantial
modification of the position and the slope of the curve in
the region near the first nearest neighbors (see Fig. 6) may
be necessary. This should be further investigated, along with
experimental and theoretical studies of other possibilities such
as trapping in other crystal defects of lower symmetry (for in-
stance, five-vacancy of D3h symmetry in the hcp phase [5,6]),
which may explain the discrepancy between experiment and
simulation.

Experimentally, many tools are available such as magnetic
circular dichroism, fluorescence, electron (paramagnetic) spin
resonance, oscillator strength determination, time-resolved
emission spectra, nonradiative branching ratios, optical pump-
ing, or bleaching studies. Comparing with the rubidium case
and using other rare gases, or even mixed ones, would be
interesting [118], to confirm that the matrix shift seen in the
S-P transitions is approximately linear with the polarizability
of the matrix host [51,70,119].

We hope that our work will be useful for further studies of
similar systems used for fundamental physics experiments in
rare gas solid crystals [120–122].
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APPENDIX A: PERTURBATION MATRICES
FOR DIFFERENT SYMMETRIES

A given trapping site is defined by the near neighbor en-
vironment of the impurity atom and by its overall crystal
orientation in the laboratory frame. We detail here the crystal-
field method that we use to simulate the absorption spectrum.

Using vector notation for the cartesian coordinate of
each position of the Cs and the (N − n) Ar nuclei R =
{R1, . . . , R3(N−n+1)} and r as the Cs valence electron coordi-
nates, the electron-lattice interaction can be written as V =
V (r, R), where for simplicity, we use in this article the same
notation for operators and their representations in coordinate
basis.

1. Crystal-field interpretation

A given single trapping site, at the equilibrium position R0,
possesses a certain symmetry group with irreducible repre-
sentation � (and its row γ ). So it is more convenient to use
coordinates, Q�γ , that transforms well under such a repre-
sentation. They are linear combinations of the Ri − R0i ones,
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such that at a linear (first-order) approximation, in the nuclear
coordinate R or QΓ , the electron-lattice interaction can be
written as V̂ = V (0)(r) + ∑

�γ V (1)
�γ (r)Q�γ . We refer to this

expression as the “crystal-field approximation.”
At zero order, the electron lattice V (0)(r) = V (r, R0)

modifies the Cs electron wave function throughout the
〈n1l1m1|V (0)|n2l2m2〉 couplings (we use here the nonrelativis-
tic wave functions, without fine structure that depend on
the spherical harmonics Y m

l ). The trapping site equilibrium
position R0 determines the symmetry group for the nuclear
environment that produces the electron lattice interaction
V (0)(r). For simplicity, we keep the same notation, as for the
nuclear coordinate representation �, and name the eigenstates
of the electronic Hamiltonian that are linear combinations
of the |nlm〉 states, |�γ 〉. They are given by the projection
operators for the irreducible representation �.

Once the Cs electronical eigenstates |�γ 〉, that are adapted
for the ground-state equilibrium position, are found, we can
use them to calculate the next order of the electron lattice
interaction

∑
�γ V (1)

�γ (r)Q�γ .

The key result [86,87] is that the 〈�1γ1|V (1)
�γ |�2γ2〉 coupling

terms can be calculated using the Wigner-Eckart’s theo-
rem 〈�1γ1|V (1)

�γ |�2γ2〉 = 〈�1||V̂ (1)
� ||�2〉〈�1γ1|�2γ2, �γ 〉. The

nonzero Clebsch-Gordan coefficient 〈�1γ1|�2γ2, �γ 〉 occurs
only if the � representation is part of the �1 × �2 represen-
tation [86,87]. Since V is real, we need to consider only the
symmetric part of the product: [�1 × �2].

Thus, group theory automatically leads to the proper ba-
sis |�γ 〉 and provides directly the useful representations �

with nonzero matrix elements V� = 〈�1||V̂ (1)
� ||�2〉 and the

Clebsch-Gordan coupling coefficients.
We will now illustrate this crystal-field procedure for sev-

eral possible trapping site symmetries that might occur for
atoms in matrices [49,52–62]. For this we use the free Mathe-
matica group theory package GTPack [88,123].

2. Cubic: Oh or Td symmetry

In fcc crystals, the one-vacancy substitution and the six-
vacancy site have both Oh symmetry (same symmetry as the
SF6 molecule) while the four-vacancy site has a Td symmetry
(as CH4).

For such symmetries, the electron-lattice potential at equi-
librium V (0)(r) does not lift the 6s nor the 6p degeneracy. This

can be understood in a simple manner by decomposing it in
spherical harmonics: V (0)(r) = ∑

l,m rlam
l Y m

l (θ, ϕ). We now
only have to take into account that this interaction potential
has necessarily the same Oh or Td symmetry as the nuclear po-
sition that creates it. Thus, most of the terms are zero, and the
potential becomes V (0)(r) = a0Y 0

0 + r4a4(Y −4
4 + √

14/5Y 0
4 +

Y 4
4 ) + · · · (a0 is not to be confused with the Bohr radius).

These leading order terms formed the so-called Devonshire’s
potential [124]. The triangle inequality |l1 − l2| � l � l1 + l2
for the Clebsch-Gordan coefficients appearing when calcu-
lating 〈n1l1m1|V (0) = ∑

l,m rlam
l Y m

l |n2l2m2〉 indicates that the
l � 4 terms cannot couple to 6s (l = 0) nor to 6p (l = 1)
states but would lift the degeneracy of the 5d (l = 2) level,
for instance.

For completeness, we indicate that the same calculation
can be done elegantly using directly the quantum states |nlm〉,
without using spherical harmonics, by directly writing the
potential V̂ (r, R0) using angular momentum operators. For
this, we simply have to replace, in the Devonshire’s potential
expression, Y 0

0 → 1, Y ±4
4 → L4

± and Y 0
4 → 35L4

z − (30L(L +
1) − 25)L2

z + 2L2(L + 1)2 − 6L(L + 1) where L is the orbital
angular momentum operator [125,126].

It would be possible to use the |6sm = 0〉 and |6pm〉 = |m〉
basis but for cubic symmetry the so-called real (or tesseral)
spherical harmonics: |x〉 = (|m = −1〉 − |m = +1〉)/

√
2,

|y〉 = i(|m = −1〉 + |m = +1〉)/
√

2, 〉, |z〉 = |m = 0〉 is
better. Indeed, the projection operator technique for the
angular momentum basis |6pm〉 under the symmetry group
Oh or Td and their representations � leads to the following:
for the 6s electronic state � = A1g (or � = A1 for Td ) and
|6sm = 0〉 forms a good basis. For the 6p electronic states
� = T1u (or � = T1 in the Td case) and the basis |�γ 〉 is just
given by |x〉, |y〉, |z〉.

Now that the zero-order symmetry |�γ 〉 basis adapted
to the nuclear equilibrium configuration is established,
we can use it to calculate the first-order correction∑

�γ 〈�1γ1|V (1)
�γ (r)|�2γ2〉Q�γ . Only the nonzero 〈6p =

T1u||V (1)||6p = T1u〉 terms are interesting. Then because
[T1u × T1u] = A1g ⊕ Eg ⊕ T2g (or [T1 × T1] = A1 ⊕ E ⊕ T2 in
the Td case ), the 〈�1γ1|V�γ |�2γ2〉Q�γ calculation leads to
the matrix (with the u, g label removed in the Td case), in the
6p manifold, for the total 〈�1γ1|V̂ = V (0) + V (1)|�2γ2〉Q�γ

crystal-field (CF) interaction:

MCF =
(

a0√
4π

+ VA1gQA1g

)
I3 +

⎛
⎜⎜⎜⎜⎝

|x〉 |y〉 |z〉
VEg

(
QEg,1 − 1√

3
QEg,2

)
VT2gQT2g,3 VT2gQT2g,2

VT2gQT2g,3 −VEg

(
QEg,1 + 1√

3
QEg,2

)
VT2gQT2g,1

VT2gQT2g,2 VT2gQT2g,1 VEg
2√
3
QEg,2

⎞
⎟⎟⎟⎟⎠. (A1)

Here we have used VA1 = 〈�1||V̂ (1)
A1

||�2〉/
√

3, VEg = 〈�1||V̂ (1)
Eg

||�2〉/
√

2, VT2g = 〈�1||V̂ (1)
T2g

||�2〉/
√

2 and performed an orthonormal
transformation for the {QEg,1, QEg,2} coordinates to obtain the same matrix as the one given in Ref. [91].

This matrix highlights again the fact that, with no thermal effect, so with Q�γ = 0, the 6p levels are not lifted by the crystal-
field, only a (a0) global shift of the free transition 6s → 6p will occur.
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In order to complete the calculation, we add the spin degree of freedom with the spin 1/2 basis sets |±〉.
The spin-orbit matrix is

HSO = ASO

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|x+〉 |y+〉 |z+〉 |x−〉 |y−〉 |z−〉
0 −i 0 0 0 1

i 0 0 0 0 −i

0 0 0 −1 i 0

0 0 −1 0 i 0

0 0 −i −i 0 0

1 i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

and the crystal-field matrix takes a simple block form:

HCF =
(

MCF 0

0 MCF

)
.

3. Hexagonal: D3h, C3v

a. Hexagonal: D3h

The D3h symmetry (as C2H6, eclipsed ethane) can arise from five-vacancy in hcp phase, for instance. Its basis vectors
are |E ′, 1〉, |E ′, 2〉, and |A′′

2〉 = |z〉. The crystal field is, at the lowest order, V (0)(r) = a0
0Y 0

0 + r2a2Y 0
2 + · · · [with Ŷ 0

2 = 3L2
z −

L(L + 1)].
And with [E ′ × E ′] = A′

1 ⊕ E ′ we have

MCF =
(

a0√
4π

)
I3 +

⎛
⎜⎜⎜⎜⎜⎝

|E ′, 1〉 |E ′, 2〉 |z〉
−〈r2〉a2√

20π
+ VE ′QE ′,1 VA′

1
QA′

1
0

VA′
1
QA′

1
−〈r2〉a2√

20π
+ VE ′QE ′,2 0

0 0 2〈r2〉a2√
20π

⎞
⎟⎟⎟⎟⎟⎠,

where 〈r2〉 = 〈6p|r2|6p〉 is the square of the size of a Cs atom in its 6p level.
Here the 6p (l = 1) degeneracy is partially lifted into two levels by the crystal field and only the spin orbit will create the

triplet structure that is then broadened and modified by the A′
1 and E ′ terms. This symmetry would likely produce a triplet

structure.

b. Hexagonal: C3v

The C3v symmetry (as the ammonia NH3 molecule), can arise from four-vacancy in an hcp phase. It is very similar to the
D3h symmetry case and can be obtained from it through the substitutions E ′ → E , A′

1 → A1, and A′′
2 → A1. Therefore, the basis

becomes |E , 1〉, |E , 2〉, |A1〉 = |z〉 and the crystal field that at lowest order is given by V (0)(r) = a0
0Y 0

0 + r2a2Y 0
2 + · · · . With

[E × E ] = A1 ⊕ E we have

MCF =
(

a0√
4π

)
I3 +

⎛
⎜⎜⎜⎜⎜⎝

|E , 1〉 |E , 2〉 |z〉
−〈r2〉a2√

20π
+ VE QE ,1 VA1 QA1 0

VA1 QA1 −〈r2〉a2√
20π

+ VE QE ,2 0

0 0 2〈r2〉a2√
20π

⎞
⎟⎟⎟⎟⎟⎠.

This is identical to the previous case, so this symmetry would likely produce a triplet structure.
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4. Tetragonal: C4v

The C4v symmetry (as SF5Cl or IF5), can arise in the ten-vacancy case. Its basis is |E , 1〉 = |x〉, |E , 2〉 = |y〉, and |A1〉 = |z〉.
The crystal field is at the lowest order: V (0)(r) = a0

0Y 0
0 + r2a2Y 0

2 + · · · , and with [E × E ] = A1 ⊕ B2 ⊕ B1 we get

MCF =
(

a0√
4π

+ VA1gQA1g

)
I3 +

⎛
⎜⎜⎜⎜⎜⎝

|x〉 |y〉 |z〉
−〈r2〉a2√

20π
− VB2 QB2 VB1 QB1 0

VB1 QB1 −〈r2〉a2√
20π

+ VB2 QB2 0

0 0 2〈r2〉a2√
20π

⎞
⎟⎟⎟⎟⎟⎠.

This is very similar to the previous cases, and this symmetry would likely produce a triplet structure.

5. Lower symmetry: C2v

The C2v symmetry (as the H2O water molecule), can arise in the eight-vacancy case and has the basis |B2〉 = |x〉, |B1〉 =
|y〉, |A1〉 = |z〉. The crystal field is at the lowest order: V (0)(r) = a0

0Y 0
0 + r2[a0

2Y 0
2 + a2

2(Y −2
2 + Y 2

2 )] + · · · . (with Ŷ ±2
2 = L2

±) and
its matrix takes a diagonal form:

MCF =
(

a0√
4π

+ VA1gQA1g

)
I3 + 〈r2〉√

20π

⎛
⎜⎜⎝

|x〉 |y〉 |z〉
−a0

2 + √
6a2

2 0 0

0 −a0
2 − √

6a2
2 0

0 0 2a0
2

⎞
⎟⎟⎠.

Here the 6p (l = 1) degeneracy is fully lifted in the three levels by the crystal field. The spin-orbit will also shift the levels,
and the triplet structure will be broadened in a symmetric way by the A1g terms.

APPENDIX B: POTENTIAL CURVES CALCULATION

We discuss here the Cs-Ar potential for Cs in its 6p excited level, the origin of the energy is taken at the 6p level in gas phase.

1. Hund’s case (a) and (c) curves

Without spin-orbit interaction the Cs(6p)-Ar interaction is diagonal in the basis |Π,±〉 = |L = 1, M = ±1〉, |Σ〉 = |L =
1, M = 0〉 with VΠ(R),VΣ(R) Hund’s case (a) potential curves, where R is the Cs-Ar separation.

When adding the spin-orbit ASO(R)L.S, the Hamiltonian becomes

⎛
⎜⎜⎜⎜⎝

|Π,+〉|ms = −1/2〉 |Σ〉|ms = 1/2〉 |Π,+〉|ms = 1/2〉
VΠ − ASO

2
ASO√

2
0

ASO√
2

VΣ 0

0 0 VΠ + ASO

2

⎞
⎟⎟⎟⎟⎠

and the matrix will be identical for the basis with opposite signs for all values of the projection of angular momenta: |Π,−〉|ms =
1/2〉, |Σ〉|ms = −1/2〉, |Π,−〉|ms = −1/2〉. The spin-orbit parameter ASO(R) is not in general constant and deviates from
the asymptotic atomic value as shown in Fig. 3 [127]. Taking the eigenvalues leads to the potential curves with spin-orbit
VΠ 1

2
,VΠ 3

2
,VΣ 1

2
with the correspondence:

VΣ = 1

3

(
2VΠ 1

2
− VΠ 3

2
+ 2VΣ 1

2
+

√
V 2
Π 1

2

+ 2VΠ 1
2
VΠ 3

2
− 2V 2

Π 3
2

− 4VΠ 1
2
VΣ 1

2
+ 2VΠ 3

2
VΣ 1

2
+ V 2

Σ 1
2

)
,

VΠ = 1

6

(
VΠ 1

2
+ 4VΠ 3

2
+ VΣ 1

2
−

√
V 2
Π 1

2

+ 2VΠ 1
2
VΠ 3

2
− 2V 2

Π 3
2

− 4VΠ 1
2
VΣ 1

2
+ 2VΠ 3

2
VΣ 1

2
+ V 2

Σ 1
2

)
,

ASO = 1

3

( − VΠ 1
2

+ 2VΠ 3
2

− VΣ 1
2

+
√

V 2
Π 1

2

+ 2VΠ 1
2
VΠ 3

2
− 2V 2

Π 3
2

− 4VΠ 1
2
VΣ 1

2
+ 2VΠ 3

2
VΣ 1

2
+ V 2

Σ 1
2

)
. (B1)

From this correspondence we have extracted the VΣ(R) and VΠ(R) [and ASO(R)] potential curves from the VΠ 1
2
,VΠ 3

2
,VΣ 1

2

ones. The calculation is done using the most recent VX 2�+
1/2

, VAΠ1/2 , VAΠ3/2 , VB 2�+
1/2

potentials [in Hund’s case (a) notation, but
calculated with fine structure included] with spin-orbit interactions from [41] and with a cubic interpolation between points and
above 2 nm the long-range part is taken from [40].
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2. Cs-Ar sum

Using the primitive cell and lattice vectors, we sum the interaction 〈L′M ′|V̂Cs,Ar (RCs,Ar )|LM〉 between a Cs atom and all Ar
ones, where |LM〉 = |LM〉z is quantized along the fixed z axis.

We then use the fixed right-handed frame, right-hand screw counterclockwise rule active interpretation (extrinsic) rota-
tion z y z convention R(α, β, γ ) = e−iαLz e−iβLy e−iγ Lz [128,129] such that R rotates the |LM〉z state to the |LM〉R(z) where
the axis z′ = R(z) is along RCs,Ar . Thus LR(z) = RLzR†. The calculation is done using active rotation of the state vec-
tor and Wigner D-matrix with the convention z〈LM ′|R(α, β, γ )|LM〉z = DL

M ′M (α, β, γ ) = e−iαm′
z〈L′M ′|e−iβLy |LM〉ze−iγ m =

WignerD[{L, M ′, M},−α,−β,−γ ] (the last notation being adapted for the Mathematica software). Using the spherical coordi-
nate, polar angle θ and azimuthal angle ϕ, for the vector RCs,Ar (from Cs to Ar) we have α = ϕ, β = θ, γ = 0.

Finally, we find the following matrix for the 〈L′M ′|V̂Cs,Ar (RCs,Ar )|LM〉 interaction [84,130]:

⎛
⎜⎜⎜⎜⎜⎝

|Π,−〉 |Σ〉 |Π,+〉
3VΠ+VΣ+(VΠ−VΣ ) cos(2θ )

4
eiϕ (VΣ−VΠ ) cos θ sin θ√

2
e2iϕ (VΠ−VΣ ) sin2 θ

2

e−iϕ (VΣ−VΠ ) cos θ sin θ√
2

VΣ cos2 θ + VΠ sin2 θ eiϕ (VΠ−VΣ ) cos θ sin θ√
2

e−2iϕ (VΠ−VΣ ) sin2 θ

2
e−iϕ (VΠ−VΣ ) cos θ sin θ√

2
3VΠ+VΣ+(VΠ−VΣ ) cos(2θ )

4

⎞
⎟⎟⎟⎟⎟⎠ (B2)

for a vector R between the Cs atom and the Ar atoms with X,Y, Z Cartesian coordinate where cos(θ ) = Z/R, e±iϕ sin(θ ) =
(X ± iY )/R. Its Cartesian form is given by Eq. (2).

We then sum over all Ar atoms, using VΣ and VΠ potentials without spin-orbit interactions in Eq. (2), and after we add a
constant spin-orbit interaction that is

HSO = ASO

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|Π− ↓〉 |Σ ↓〉 |Π+ ↓〉 |Π− ↑〉 |Σ ↑〉 |Π+ ↑〉
1
2 0 0 0 0 0

0 0 0 1√
2

0 0

0 0 − 1
2 0 1√

2
0

0 1√
2

0 − 1
2 0 0

0 0 1√
2

0 0 0

0 0 0 0 0 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B3)

APPENDIX C: VIBRATIONAL MODES

In order to study the vibronic interactions [131] and the
Jahn-Teller effect [99,109] we use several different mode co-
ordinates. We will detail here all coordinates we used:

(i) Cartesian R = {Rj}
(ii) Mass-weighted Qm = {Qm

j } = m1/2(R − R0)

(iii) Normal modes Qn = {Qn
j } = On

m
†Qm with oscilla-

tions ωn simply noted ω

(iv) Interaction modes Qint = {Qint
j } = V †

r Qn

(v) Crystal-field symmetry-adapted interaction modes
QΓ = {QΓγ } = OΓ

n
†
Qn with oscillations ωΓ

(vi) Frequency-scaled coordinates Q̃
n = 1√

2
ωQn or

Q̃
Γ = 1√

2
ωΓQΓ with unit oscillations frequencies and

their corresponding momenta conjugate, respectively,
P̂, P̂Qm , P̂Qn , P̂Qint , P̂QΓ , P̂Q̃n , P̂Q̃Γ .

1. Quantization in the normal modes

We consider the matrix elements V (R) = 〈n′l ′m′|V̂ |nlm〉
for the Cs(6s) and 6p levels.

Neglecting the anharmonic terms, the electron-lattice crys-
tal field V = V0 + ∇RV †(R − R0) + 1

2 (R − R0)†∇2
R V (R −

R0) is numerically evaluated by finite difference: ∇RVk =
∂V
∂Rk

(R0) ≈ V (R0+δRk ) −V (R0 − δRk )
2δRk

and ∇2
RVkl = ∂2V

∂ Rk∂Rl
(R0) ≈

∂V
∂Rl

(R0+δRk )− ∂V
∂Rl

(R0−δRk )

2δRk
where we have used standard

row vector R† = (R1, R2, . . . ),∇RV † = ( ∂V
∂R1

, ∂V
∂R2

, . . . )
(† being the Hermitian adjoint, that is, the conjugate
transpose) and matrix ∇2

R V notations.

In order to treat all kinetic energy terms P̂2
k

2mk
, (P̂k = −ih̄ ∂

∂Rk

being the quantized momentum conjugate coordinate) in a
similar manner, we use the 3(N − n + 1) mass-weighted
Cartesian coordinates Qm

j = (Rj − R0 j )
√

mj where mj is the
mass of the atom on which the jth coordinate resides. We
define the diagonal mass matrix m with mj j = mj and Qm† =
(Qm

1 , Qm
2 , . . . ),∇Qm

† = ( ∂V
∂Qm

1
, ∂V

∂Qm
2
, . . . ).

So the nuclear Hamiltonian in the Born-Oppenheimer ap-
proximation Ĥ = 1

2 P̂
†
m−1P̂ + V0 + ∇RV †(R − R0) + 1

2 (R −
R0)†∇2

R V (R − R0) becomes simply Ĥ = 1
2 P̂

†
Qm P̂Qm + V0 +

∇QmV †Qm + 1
2 Qm†∇2

QmV Qm, where we have used P̂Qm =
m−1/2P̂ vector notation for the momentum conjugate with
the Qm coordinates, that verifies the canonical commutation
relation [Qm, P̂Qm ] = [R, P̂] = RP̂

† − P̂R† = ih̄1.
The eigendecomposition of the Hessian matrix ∇2

QmV =
On

mω2On
m

† creates the the normal vibrational modes Qn =
On

m
†Qm with On

m the change-of-basis orthonormal matrix
and ω a diagonal matrix with the kth element being the
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(mass-scaled) oscillation angular frequency ωk . The Hamil-
tonian is thus written as

Ĥ = 1

2
P̂

†
Qn P̂Qn + V0 + ∇QnV †Qn + 1

2
Qn†

ω2Qn

=
∑

k

−h̄2 ∂2

∂2Qn
k

+ V0 + (∇QnV ∗)kQn
k + 1

2
ω2

k Qn
k

2 (C1)

with ∇QnV = On
m

†∇QmV and ˆPQn = On
m

†P̂Qm is the conjugate
momentum with [Qn, P̂Qn ] = ih̄1.

2. First order: Crystal-field coefficient

We will now use the decomposition (C1) for V (R) =
〈6pm′|V̂ |6pm〉.

a. Crystal-field coefficients

In order to determine the (real) crystal-field coefficients V� ,
that are the (∇QΓV †)m′m = 〈m′| ∂V

∂Q�γ
|m〉 coefficients present

in the 3×3 crystal-field matrix MCF, we restrict ourselves to
only the first-order series in nuclear coordinates. Thus, V =
〈6pm′|V̂ |6pm〉 contains only (V0)m′m + (∇QnV †)m′mQn type of
terms. We will put the (∇QnV †)m′m values in a 3×3 = 9 row
matrix, with each row linked to a given m′, m.

The first-order potential can be calculated using the normal
mode basis Qn or expressed in the expected MCF crystal-field
ones. Equalizing the two expressions leads to the equation
∇QΓV †QΓ = ∇QnV †Qn.

Without knowing the orthonormal transformation, QΓ =
OΓ

n
†
Qn that links the crystal-field symmetry adapted interac-

tion mode coordinates Q�γ to the normal mode coordinates
Qn

k , the use of the fact that the transformation is orthonormal
leads to a 9×9 matrix equation

∇QΓV †∇QΓV = ∇QnV †∇QnV (C2)

that, when solved, gives the crystal-field coefficients ∇Q�V .

b. Interaction mode coordinates

In order to perform Monte Carlo simulations, it might be
important to know how the crystal-field symmetry adapted
interaction mode coordinates QΓ can be calculated.

They can be found using the singular value decomposi-
tion of the nine-row matrix ∇QnV † = UWV † of rank r (the
matrix V not being confused with the potential V ). Equation
∇QΓV †QΓ = ∇QnV †Qn leads to ∇Q�

V †QΓ = (UW )(V †Qn).

We cannot simply equalize ∇Q�
V † with UW and QΓ with

V †Qn because Qint = (V †Qn) is only one choice for the in-
teraction mode coordinates, that is not necessarily the same
basis (for instance, not in the same order or same sign) as the
QΓ = {Q�γ } used to determine from symmetry consideration
the crystal-field matrix MCF. However, using the only useful
first r rows of the r-block matrix restriction (noted with index
r) of (W r )−1U†

r (∇QΓV † · QΓ ) = Qint = (V †
r Qn) leads to the

transformation QΓ = OΓ
n

†
Qn, where, for simplicity, we have

kept the same notation QΓ or Qint for the first r interaction
modes coordinates than for the 3N ones.

The important fact is that the diagonal matrix W has only
r nonzero singular values on the diagonal (so W r is square

diagonal of size r), and thus we will often be interested only
in the r relevant (r first) interaction mode coordinates.

With these coordinates it turns out that the r×r matrix
(ωΓ )2 = OΓ

n
†
ω2OΓ

n matrix is diagonal. We thus have

〈6s|V̂ |6s〉 = V0 + 1

2
QΓ †

(ωΓ )2QΓ = V0 +
r∑

�γ=1

1

2
ω2

�Q2
�γ .

(C3)
Once again, we see the advantage of using the inter-

action mode coordinates to reduce drastically the number
of modes to be calculated. The Monte Carlo simulation
becomes very simple because we have to calculate only
few (r � 9) interaction mode coordinates, such as QΓ =
{QA1 , QE ,1, QE ,2, QT,1, QT,2, QT,3} to be compared to ∼3N
modes in standard molecular dynamic simulation (almost
10 000 in our case for the ∼3000 movable atoms).

3. Frequency-scaled coordinates

Following [90,91], it might be interesting to use the oscil-
lation frequency-scaled coordinates Q̃

n = 1√
2
ωQn and Q̃

Γ =
1√
2
ωΓQΓ such that Eq. (C3) becomes

〈6s|V̂ |6s〉 = V0 + Q̃
n†Q̃

n = V0 +
∑

k

Q̃n
k

2

= V0 +
r∑

�γ=1

Q̃2
�γ .

This form is interesting, because in a pure classical
molecular dynamical simulation, the Boltzmann statistics in-
dicates that Q̃

n
follows a multivariate normal distribution

∝ e− 1
2 Q̃

n†�̃
−1

Q̃
n

with a variance �̃
n = 1

2 kBT I. That way the

interaction mode coordinate vector Q̃
Γ = OΓ

n
†
Q̃

n
follows a

multivariate normal distribution with a variance that is also
diagonal: �̃

Γ = OΓ
n

†
�̃

n
OΓ

n = 1
2 kBT I. Thus, in a standard clas-

sical Monte Carlo simulation at temperature T , each Q̃�γ√
kBT/2

coordinate has the same distribution: a standard unit normal
(Gaussian).

It is even possible to keep the normalized coordinates in
a classical simulation that includes the scaled temperature
T ′ by having Q̃

n
following a multivariate normal distribution

with a diagonal variance �̃n ′ with diagonal element given by
1
2 kBT ′(ωk ) according to Eq. (6), namely, Q̃n

k√
kBT ′(ωk )/2

. In this

case, Q̃
Γ

has simply to be chosen with a Gaussian variance
�̃

Γ ′ = OΓ
n

†
�̃

n ′OΓ
n . Another strategy, that leads to the same

final result, is to keep the unit normal distribution for Q̃n
k√

kBT/2

but change each ωk into ω′
k such that ω′2

k /T = ω2
k/T ′(ωk ).

So, as used in Refs. [90,91], such frequency-scaled coordi-
nates are useful in classical simulations because the oscillation
frequencies ωΓ (or the scaled ones ω′Γ ) of the modes are not
needed, if we include them in the definition of crystal-field
parameters ṼΓ = √

2VΓ/ω� . Then all terms in the interac-
tion matrix can be written using VΓQΓγ = ṼΓ Q̃�γ with now
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Eq. (10) becoming Eq. (11) that is

A(E ) ∝
∫ 6∑

i=1

δ[E − Xi(Q̃
Γ

)]e− ∑
�γ Q̃2

�γ /kBT dQ̃
Γ

(C4)

with the Q̃�γ√
kBT/2

coordinates having a standard unit normal
(Gaussian) distribution.

To illustrate this, we mention that the values given in
Ref. [18] for the crystal field in Table II are

A =
√

kBT/2
ASO ṼA1 =

√
kBT/2
ASO

√
2

ωA1
VA1 = 0.294,

B =
√

kBT/3
ASO ṼE =

√
kBT/3
ASO

√
2

ωE
VE = 0.6,

C =
√

kBT/4
ASO ṼT2 =

√
kBT/4
ASO

√
2

ωT2
VT2 = 0.2.

Indeed, the linear part of the potential is V�γ Q�γ =
ASO(

√
kBT/x�

ASO

√
2

ω�
V�γ

)( 1√
kBT/x�

ω�√
2
Q�γ

) (x� is 2 for the case of
� = A1, 3 for E2 and 4 for T2 [91]). In this notation, the
ground-state potential reduces to

∑
�γ

1
2ω2

�Q2
�γ = ∑

�γ Q̃2
�γ .

For the quantized simulation, this frequency-scaled coordi-
nates procedure does not work anymore because the quantized
energy levels are intrinsically linked to the frequencies, which
thus cannot be simply scaled. We could think of using the
frequency-scaled coordinates with unity frequencies such that
all modes look similar and the number of different modes
would appear to matter less. However this approach is fu-
tile because the kinetic energy of the lattice [from Eq. (C1)]
would not be diagonal in the momenta conjugate to the scaled
interaction mode anymore, as already noticed in Ref. [90].
This is not important in the classical Franck-Condon Mulliken
approximation where the kinetic energy plays no role because
there, we only need to find the positions that are determined
by the Boltzmann distribution involving only the potential
energy. It, however, becomes crucial for quantized energies,
such as in the reflection approximation.

4. Coordinate distribution

Let us mention that at T = 0 K each normal mode
|�i(Qk )|2 distribution is gaussian (ground state of the har-
monic oscillator) and so the multivariate normal distribution
∝ e− 1

2 Qn†�−1Qn
of the Qn normal modes is transformed in

a multivariate normal distribution with a variance �Γ =
OΓ

n
†
�nOΓ

n for the interaction mode. It turns out that the
marginal distribution for the six-mode coordinates is indeed a
variance that is diagonal. This is a consequence of the fact that
the projection on the six-mode coordinates on the ground-state
Hessian matrix is diagonal with the frequencies ωΓ given in
Table II. Together with the fact that the first-order approxi-
mation is quite accurate for the excited state interaction this
leads to the fact that the T = 0 K spectra can be calculated in
a pure crystal-field model with only six coordinates simply
using frequencies ωΓ to determine the Gaussian QΓ coor-
dinates using temperature scaling or the ground-state wave
function of the 1

2ω2
�γ Q2

�γ harmonic oscillator. The result for
T = 0 K gives the same spectra as the one in Fig. 9. Indeed,
at T = 0 K each Ei is constant and is the zero-point energy
of the ith modes. By offsetting to this value, we have at T =
0 K, Ei = 0 and so the reflection approximation is A(E ) ∝

∑6
i=1 Pi

∫ |�i(Q)|2δ{E − [VCs(6p)−Ar(Q) − Ei]}dQ which can
be compared to the formula (12).

APPENDIX D: SEMICLASSICAL APPROXIMATIONS

To study laser excitation of the (6s) cesium atom toward
the 6p manifold we start (due to the Beer-Lambert-Bouguer’s
law) by using the fact that the spectral density optical ab-
sorption coefficient A(E ) for a photon of energy E , is given
by the sum over all initial vibronic levels |i〉, populated with
probability Pi with wave function �i(Q) of energy Ei, towards
all possible final ones � f (Q) of energy E f :

A(E ) ∝
∑

i f

Piδ[E − (E f − Ei )]

∣∣∣∣
∫

�
†
f (Q)di f (Q)�i(Q) dQ

∣∣∣∣
2

.

(D1)
Thus A(E )dE is the absorption coefficient for a photon in the
energy band E , E + dE .

1. Semiclassical Franck-Condon approximation

In our case, the variation of the dipole transition strength
from X to Σ or Π states is on the order of 10% [40]. So we can
reasonably consider variation of the dipole di f (Q) with the
internuclear distances Q as negligible (this is the “Condon”
approximation [78]). If needed, a better approximation would
be the Herzberg-Teller centroid one with di f taken at the
point Q̄, which cancels the first-order evolution in Q. In the
following, for simplicity we will assume di f (Q) ≈ di f (Q̄) to
be constant (it is simply the 6s to 6p dipole transition and can
thus be left out of the equation). Furthermore, we can also
justify an isotropic nature of the dipole in our case because
the polycrystalline structure of our sample leads to random
orientations of the crystal axes.

In our case, after laser excitation of the Cs(6s) atom from
its equilibrium position, the Cs(6p) atom is far from being
in its equilibrium position and the excited electron potentials
are mostly linear and not quadratic. Thus the motional excited
states will be states with large vibrational quantum numbers
or even quasicontinuum one, which, according to the Bohr
correspondence principle, can be treated as approximately
classical. Thus, following [78] we can assume transitions near
the classical turning points and for the sum over f we can
replace E f in the δ function by a mean value independent of f
that is the electron excited (6p) potential energy curve Ve(Q)
so

A(E ) ∝
∑

i

Pi

∫
δ{E − [Ve(Q) − Ei]}|�i(Q)|2 dQ. (D2)

This expression is also called the reflection approximation
[79].

If many initial states (vibrational, for instance) i are in-
volved, it is convenient to use a mean-value approximation
using for the ground-state energies, the potential energy Vg(Q)
leading to the so-called semiclassical Franck-Condon formula

A(E ) ∝
∫

δ{E−]Ve(Q) − Vg(Q)]}Pg(Q) dQ (D3)

with Pg(Q) = ∑
i Pi|�i(Q)|2 is the quantum-statistical me-

chanical probability distribution. In the case where Pg(Q) is
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given by classical statistics, the expression becomes the stan-
dard classical Franck-Condon formula [78].

2. Semiclassical transition in energy or in phase space

It is useful to present the spectral density transition proba-
bility P(E0), for a transition energy E0 given by Eq. (D1), in a
state picture

P(E0) =
∑

f ,i

Pi

∣∣〈� f |d̂|�i〉
∣∣2

δ[E0 − (E f − Ei )] (D4)

because 2πP(E0)/h̄ can now be interpreted as a rate given by
Fermi’s Golden Rule [98,132,133].

This can be written simply (in the Condon or centroid
approximation where we forget about d2 from now on), for
a pure state (Pi = 1 to simplify the notation) as

P(E0) =
∑

f ,i

〈ψ f |ψi〉〈ψi|ψ f 〉〈ψ f |δ[E0 − (Ĥf − Ei )]|ψ f 〉

=
∑

f ,i

〈ψ f |ψi〉〈ψi|
∑

f ′
|ψ f ′ 〉〈ψ f ′ |δ[E0 − (Ĥf − Ei )]|ψ f 〉

=
∑

f

〈ψ f |
(∑

i

|ψi〉〈ψi|δ[E0 − (Ĥf − Ei )]

)
|ψ f 〉

= Tr

[∑
i

|ψi〉〈ψi|δ[E0 − (Ĥf − Ei )]

]

= Tr[ρ̂iδ[E0 − (Ĥf − Ei )]]

= 〈δ[E0 − (Ĥf − Ei )]〉
= 〈δ[E0 − (V̂f − V̂i ) − (Ĥi − Ei )]〉,

where Ĥi = ∑
k P̂2

k /(2mk ) + Vi(Q̂) and Ĥf = ∑
k P̂2

k /(2mk ) +
Vf (Q̂) are the Hamilton operators respectively for the
initial and final electronic state and ρ̂i = ∑

i |�i〉〈�i| is
the density matrix operator for the initial state. The formula
can also be written, in the case of a pure state as P(E0) =

1
2π h̄

∫
dtei(E0−Êi )t/h̄〈�i|�i(t )〉where |�i(t )〉 = e−iĤf t/h̄|�i〉.

This time (and Fourier transform) picture opens another way
to treat the transition using the (wave packet) time evolution
of the system to find |ψ (t )〉 [114,134–137].

One of the best approximations for the formula is clearly
to use Ĥi − Ei as a perturbation, especially when projected on
|ψi〉 because 〈ψi|Ĥi − Ei|ψi〉 = 0. Therefore the simplest nat-
ural approximation is the zero-order one for a d-dimensional
space:

P(E0) = 〈δ[E0 − (V̂f − V̂i )]〉
= (2π h̄)−d

∑
i

∫
dQ|ψi(Q)|2δ{[E − Vf (Q) + Vi(Q)]}.

(D5)

This is exactly the same as the formula (D3). But note that
this derivation differs considerably from the previous tradi-
tional derivation despite the final results being the same. For
instance, it gives a very clear physical understanding that
the reflection approximation of Eq. (5) is reproduced under

the extra approximation of δ[E − (Hf cl − Hicl )] replaced by
δ{E − [Vf (Q) − Ei]}.

A very similar derivation has been done by mov-
ing to the Wigner representation of quantum mechanics
[134,138–142] where the exact formula for P(E0) becomes,
in d dimension, simply P(E0) = (2π h̄)−d

∫
dPdQρiW δ[E0 −

(Ĥf − Ei )]W where W is designing the Wigner transform. The
leading order in h̄ is simply the semiclassical limit with Ĥf,i

replaced by their classical counterpart Hf,i = ∑
k P̂k/(2mk ) +

Vf,i(Q) and ρiW replaced by the classical phase-space den-
sity ρcl ∝ e−Hcl/kBT . It is obviously slightly better to keep the
true Wigner function ρiW (also because it is known analyti-
cally for the harmonic potential case) to have [143]: P(E ) =
(2π h̄)−d

∫
dPdQρiW δ[E − (Hf cl − Hicl )]. This is again the

same formula (D3) if using the fact that integration of the
Wigner function over P gives exactly the wave function
probability distribution |ψi(Q)|2 [139]. This derivation has
the advantage of justifying the use of the true quantum (or
Wigner) phase-space initial distribution and not the classical
one. Thus, the probability Pi has to be chosen accordingly to
the actual quantum distribution.

Another advantage of this semiclassical phase-space pic-
ture is that it allows for systematic series expansion, typically
in power of h̄-order corrections [79,134,136,138,143–146].
Finally, the method can be generalized for nonradiative
transitions, such as surface-hopping nonadiabatic effects or
electron transfer with instanton theory or other non-Born-
Oppenheimer effects [143,147–150].

APPENDIX E: THIRD-ORDER MANY-BODY TERMS

We will detail some calculations to determine the effective
two-body potential from the sum of the third-order terms.
For this, we will first derive the general expression for the
third-order terms and calculate it for the long-range dipolar
case and in a simple two-level approximation. This will allow
us to create a mean field of long-range third-order terms that
we compare to the long-range part of the two-body case. We
finally extend this comparison for all internuclear distances
to produce an effective two-body potential that includes the
third-order effect.

1. Perturbation theory up to third order

The energy shift �E of the energy E of the full system of
a given atom A (Cs in our case) in a given state |lm〉 within
the crystal formed by many other atoms (Ar in our case) can
be estimated by the perturbation theory from the full Hamil-
tonian energy H = ∑

i H0(i) + 1
2

∑
i �= j Vi j where H0(i) is the

single ith atom Hamiltonian and Vi j (ri, r j, Ri, R j ) contains all
electrostatic interactions between the ith atom and the jth with
electron coordinates ri, r j and nuclear ones Ri, R j .

We note the eigenstates of the single-atom Hamiltonian
H0(i) as |0i〉 for the initial (not necessarily the ground state
in the Cs case) state of atom i of energy E0i and |mi〉 the other
states of energy Emi .

We calculate the energy shift �E (R) that depends only
on the nuclear coordinates R by perturbation theory. Up
to the third order, the full crystal energy is 1

2

∑
AB E (2)

AB +
1
6

∑
ABC E (3)

ABC = ∑
A<B E (2)

AB + ∑
A<B<C E (3)

ABC . The first order
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is zero and the second order leads to a shift depending on atom
A given by

∑
B E (2)

AB where E (2)
12 = ∑

m1,m2
−|〈0102|V12|m1m2〉|2

�m1 (1)+�m2 (2)

with �mi (i) = Emi − E0i .

The third-order perturbation theory terms depend on three
atoms A, B, and C. Using the symmetry group S3 of permu-
tations of the three atoms A = 1, B = 2, C = 3, and using
Vi j = Vji, E (3)

ABC = E (3)
123 is the sum of six terms [see [151] (7b)]:

E (3)
123 =

∑
σ∈S3,m1,m2,m3

〈0σ (1)0σ (2)|Vσ (1)σ (2)|mσ (1)mσ (2)〉〈mσ (2)0σ (3)|Vσ (2)σ (3)|0σ (2)mσ (3)〉〈mσ (3)mσ (1)|Vσ (3)σ (1)|0σ (3)0σ (1)〉
[�mσ (1) (σ (1)) + �mσ (2) (σ (2))][�mσ (1) (σ (1)) + �mσ (3) (σ (3))]

. (E1)

2. Dipole-dipole-dipole long-range interaction

We will calculate these terms in the dipolar long-range
interaction case. We thus assume a dipolar type of inter-
action (with a fixed quantization axis labeled z). For two
atoms labeled 1 and 2 with internuclear separation R12 =
R12e12 where e12 is a unit vector, the dipole-dipole interac-
tion is V12 = e2

4πε0R3
12

{r(1) · r(2) − 3[r(1) · e12][r(2) · e12]} =
e2

4πε0R3
12

r(1) · (1 − 3e12e12) · r(2).
That can be written using the irreducible tensors notation,

rq = r
√

4π
3 Y1q(r), as

V12 = − e2

4πε0R3

√
6C(e12) · {r(1) ⊗ r(2)}2 where CM (e12) =√

4π
5 Y2M (e12) and {r(1) ⊗ r(2)}2M = ∑

q,q′ C2M
1q1q′rq(1)rq′ (2).

So

V12 = −
√

6e2

4πε0R3
12

∑
M,q1,q2

(−1)MC−M (e12)C2M
1q11q2

rq1 (1)rq2 (2).

We will often use atomic units where e2

4πε0
= 1. This can be

simply realized by changing r(i) by r(i)
√

e2

4πε0
.

a. Two-level approximation

One of the simplest approximations is to consider a single
effective atomic energy transition, in the pure case, a S ↔ P
transition for each atom [energy difference ESP(Cs) for Cs and
ESP(Ar) for Ar]. In our case, all Ar atoms are in the ground
state S, but the Cs can be either in ground S or in excited state
P. Therefore, S or P degeneracy means that, in Eq. (E1), all
energy terms are independent of mi. We write �mi (σ (i)) as
�(σ (i)) that can be factorized out of the sum in Eq. (E1).

Using Cs as atom 1 and Ar for 2 and 3, we have for i =
2, 3 |0i〉 = |l = 0m = 0〉 and |mi〉 = |l = 1m = mi〉 states.

We then follow the elegant derivation done in
Ref. [152]. We first look on terms depending on m2

so for i label for which σ (i) = 2, in Eq. (E1) we have
terms 〈02|V ( j2)|m2〉 and 〈m2|V (2k)|02〉. So using the

Wigner-Eckart theorem 〈l ′m′|r (q)
2 |lm〉 = Cl′m′

lm1q√
2l ′+1

〈l ′||r2||l〉 the∑
m2

〈02|V ( j2)|m2〉 . . . 〈m2|V (2k)|02〉 sum (the . . . are simply
here to indicate that the terms are not necessarily neighbors
in Eq. (E1)) contains

∑
m2

〈02|rq2 (2)|m2〉 . . . 〈m2|rq′
2
(2)|02〉 =

−∑
m2

C00
1m21q2

. . .
C

1m2
001q′

2√
3

〈1||r(2)||0〉2, where we have used

〈0||r(2)||1〉 = −〈1||r(2)||0〉. Then
∑m2=1

m2=−1 leads to
〈1||r(2)||0〉2

3 δq2,−q′
2
(−1)q2 . Similar results arise for atoms 3,

for j label for which σ ( j) = 3.

b. Interaction between ground-state atoms

If the Cs atom is in its ground state, the levels are |01〉 =
|l = 0 m = 0〉 and |m1〉 = |l = 1 m1〉.

The second order leads to

E (2)
12 = − C6

R6
12

,

C6 = 2

3

r2
SP(Cs)r2

SP(Ar)

ESP(Cs) + ESP(Ar)
(E2)

with rSP(Cs) = 〈1||r(1)||0〉 and rSP(Ar) = 〈1||r(2)||0〉.
For the third-order calculation, the results we just derived,

in Sec. E 2 a, indicate that, in the sum of Eq. (E1), one
numerator becomes

E = −
√

6

R3
12

√
6

R3
13

√
6

R3
23

〈1||r(1)||0〉2

3

〈1||r(2)||0〉2

3

〈1||r(3)||0〉2

3

×
∑

q1,q2,q3,q′
1,q

′
2,q

′
3

(−1)q1+q2+q3δq1,−q′
1
δq2,−q′

2
δq3,−q′

3

×
∑

M,M ′,M ′′
(−1)M+M ′+M ′′

C−M (e12)C−M ′ (e13)C−M ′′ (e23)

× C2M
1q11q2

C2M ′
1q′

11q3
C2M ′′

1q′
21q′

3
,

but using (8.4(10) and 8.7(15) from [128]) we have∑
q1,q2,q3

(−1)q1+q2+q3C2M
1q11q2

C2M ′
1−q11q3

C2M ′′
1−q21−q3

= −(−1)−M ′′

5C2−M ′′
2M2M ′ {1 1 2

2 2 1} = −(−1)−M ′′
C2−M ′′

2M2M ′
√

7/12. So

E =
√

14

9

〈1||r(1)||0〉2

R3
12

〈1||r(2)||0〉2

R3
13

〈1||r(3)||0〉2

R3
23

×
∑

M,M ′,M ′′
(−1)M+M ′

C−M (e12)C−M ′ (e13)C−M ′′ (e23)C2−M ′′
2M2M ′ ,

and finally using the z axis along e12 (so M = 0 in the previous
sum) and θi being the inner angles of the 123 triangle with
cos θ1 = e12 · e13 and cos(π − θ2) = e12 · e23. We get

E = 〈1||r(1)||0〉2〈1||r(2)||0〉2〈1||r(3)||0〉2

36R3
12R3

13R3
23

× {1 − 3[cos(2θ1) + cos(2θ2) + cos(2θ3)]}.
So when summing the six terms, this finally leads to

E (3)
123 = 4〈1||r(1)||0〉2〈1||r(2)||0〉2〈1||r(3)||0〉2

36R3
12R3

13R3
23

× {1 − 3[cos(2θ1) + cos(2θ2) + cos(2θ3)]}
× �(1) + �(2) + �(3)

[�(1) + �(2)][�(2) + �(3)][(�(1) + �(3)]
.
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In summary

E (3)
123 = C9

R3
12R3

23R3
31

1 − 3[cos(2θ1) + cos(2θ2) + cos(2θ3)]

4
,

C9 = 4

9
r2

SP(Cs)r4
SP(Ar)

ESP(Cs) + 2ESP(Ar)

2[ESP(Cs) + ESP(Ar)]2ESP(Ar)
.

(E3)

We wrote the C9 coefficient such that we can restore
the historical Axilrod-Tenner-Mutô [153,154] form
using 1 − 3[cos(2θ1) + cos(2θ2) + cos(2θ3)] = 4[1 +
3 cos(θ1) cos(θ2) cos(θ3)].

These calculations are technical but similar in a way to the
case of two atoms under the effect of a static external electric
field [155], the physical picture of the dipole of one atom (1,
for instance) interacting with the vector electric fields pro-
duced by the other dipoles (2) and (3) helps to understand that
the final result depends on the angles and distance between
atoms.

c. Interaction with Cs in an excited state |l = 1 m〉
To our knowledge, no general simple formula has been

derived for the dipole-dipole-dipole interaction with one atom
in the excited state (see, however, Ref. [156] and references
therein). We derive one formula here. For this, we start with
the fact that in this case, |01〉 = |l = 1 m〉 and |m1〉 = |l =
0 m = 0〉. So∑

m1

〈01|rq1 (1)|m1〉 . . . 〈m1|rq′
1
(1)|01〉

= 〈1m|rq1 (1)|00〉 . . . 〈00|rq′
1
(1)|1m〉

= −C00
1m1q′

1

C1m
001q1√

3
〈1||r(1)||0〉2

= δmq1δq1,−q′
1
(−1)q1

〈1||r(1)||0〉2

3
.

The second order leads to C∗
6 = 2

3
〈1||r(1)||0〉2〈1||r(2)||0〉2

�(1)+�(2) with

E (2)
12 = − 2C∗

6

3R6
12

= −C∗
6 (�)

R6
12

for m = 0,

E (2)
12 = − C∗

6

6R6
12

= −C∗
6 (�)

R6
12

for m = ±1,

C∗
6 = 2

3

r2
SP(Cs)r2

SP(Ar)

ESP(Ar) − ESP(Cs)
, (E4)

so as expected C∗
6 (Σ) + 2C∗

6 (�) = C∗
6 .

For the third order, we have for a given numerator term:

E = −
√

6

R3
12

√
6

R3
13

√
6

R3
23

〈1||r(1)||0〉2

3

〈1||r(2)||0〉2

3

〈1||r(3)||0〉2

3

×
∑

q1,q2,q′
1,q

′
2,q3,q′

3

δmq1δq1,−q′
1
(−1)q1+q2+q3δq2,−q′

2
δq3,−q′

3

×
∑

M,M ′,M ′′
(−1)M+M ′+M ′

C−M (e12)C−M ′ (e13)C−M ′′ (e23)

× C2M
1q11q2

C2M ′
1q′

11q3
C2M ′′

1q′
21q′

3
,

but using z axis along e12 (so M = 0) we have

E = −
√

8

27

〈1||r(1)||0〉2

R3
12

〈1||r(2)||0〉2

R3
13

〈1||r(3)||0〉2

R3
23

×
∑

M ′,M ′′
(−1)M ′+M ′′

C0(e12)C−M ′ (e13)C−M ′′ (e23)

× C20
1m1−m

∑
q3

(−1)q3C2M ′
1−m1q3

C2M ′′
1m1−q3

.

So E = 〈1||r(1)||0〉2〈1||r(2)||0〉2〈1||r(3)||0〉2

54R3
12R3

13R3
23

f (θ1, θ2, θ3, m) with

f (θ1, θ2, θ3, m) = −[1 + 3 cos(2θ1) + 3 cos(2θ2)

+ 9 cos(2θ3)] for m = 0, (E5)

f (θ1, θ2, θ3, m) = [5 − 3 cos(2θ1) − 3 cos(2θ2)

+ 9 cos(2θ3)]/4 for m = ±1. (E6)

Then summing the six terms (see [152]) finally leads to

E (3)
123 = 2〈1||r(1)||0〉2〈1||r(2)||0〉2〈1||r(3)||0〉2

27R3
12R3

13R3
23

× f (θ1, θ2, θ3, m)

× �(1) + �(2) + �(3)

[�(1) + �(2)][�(2) + �(3)][�(1) + �(3)]
,

so

E (3)
123 = C∗

9

R3
12R3

13R3
23

f (θ1, θ2, θ3, m)

6
,

C∗
9 = 4

9
r2

SP(Cs)r4
SP(Ar)

2ESP(Ar) − ESP(Cs)

2[ESP(Ar) − ESP(Cs)]2ESP(Ar)
.

(E7)

3. Mean-field effect and effective two-body potentials

The most accurate way to include this third-order correc-
tion for the energy of atoms A is to sum over all B and C
pairs of atoms. But due to the lack of information on the
short-range part and due to the crude (two-level) estimation
made up to now, we can simplify the problem further and use
the mean-field approach done in Ref. [74] (see also [73,157])
by creating a mean-field potential Ē (3)

AB = ∑
C E (3)

ABC such that
the full crystal energy 1

2 (
∑

AB E (2)
AB + 1

3

∑
ABC E (3)

ABC ) can be
written as sum of two-body terms E eff

AB = E (2)
AB + 1

3 Ē (3)
AB .

We can thus stay at a two-body level simply by modifying
the two-body interaction between atoms by adding 1

3 Ē (3)
AB to

the E (2)
AB potential interaction curves we already have. This

mean-field approach has been proven to be quite accurate for
pure crystals, as shown by the so-called Marcelli-Wang-Sadus
potential [73,77,157–160] and as we demonstrate in Fig. 3 in
the Ar-Ar case.

a. Mean-field homogeneous assumption

Strangely enough, almost no mathematical derivation of
the mean-field approach exists though it has been performed
as back as in the original paper by Mutô [154] (whose jour-
nal reference is almost always wrong) and by Stenschke
[74]. Following these works, we replace the sum Ē (3)

AB =
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∑
C E (3)

ABC by an integral assuming Ar atoms uniformly dis-
tributed with density ρ = N/V (for solid argon the density
ρ = a−3

0 /280 where a0 is the Bohr radius). We thus sum
over the C atoms (number 3 above); that is, we average
the potential V = ∑

j E (3)
12 j as V̄ = ρ

∫
V r2 sin θ dr dθ dϕ =

2πρ
∫

V r2 sin θ dr dθ in spherical coordinate with θ = θ1 and
r = R = R12. We found simpler to use r1 = R13, r2 = R23 co-
ordinates, as in Ref. [74], such that V̄ = 2πρ

∫
V r1r2

R dr1 dr2,
with an exclusion sphere of radius σ around the atoms A = 1
and B = 2. Equations (E3) and (E7) lead to

Ē (3)
12 = 2πρ

C9

R6

4

3
,

Ē∗
12

(3) = 2πρ
C∗

9

R6

4

9
{4 − 3 log[(R2 − σ 2)/σ 2]} for m = 0,

Ē∗
12

(3) = 2πρ
C∗

9

R6

2

9
{−1 + 3 log[(R2 − σ 2)/σ 2]} for m = ±1.

(E8)

Therefore, the triple dipole interaction does not depend on
σ only when the state is isotropic, such as the S ground state,
or when summing over m = −1, 0, 1 for the P state.

b. Effective potentials

All results are summarized by Eqs (E2)–(E8) from where
we can extract the effective potentials for the internuclear
distance R:

E eff
AB (R) = E (2)

AB (R)

(
1 − 8πρ

9

C9

C6

)
,

E∗,eff
AB (Σ) = E (2)

AB (Σ)

{
1 − 4πρ

9

C∗
9

C∗
6

[
4 − 3 log

(
R2 − σ 2

σ 2

)]}
,

E∗,eff
AB (Π) = E (2)

AB (Π)

{
1 − 8πρ

9

C∗
9

C∗
6

[
−1 + 3 log

(
R2 − σ 2

σ 2

)]}
.

(E9)

This form, derived from the long-range triple dipole interac-
tion, can however naturally be extended to the full range of the
potential by simply keeping the same formula for all R. The
only requirement is the choice of the cutoff because R > 2σ .
Because the short-range part of the potential is clearly not a
dipole-dipole one, we smoothly reduce the C∗

9 part for R < 2σ

by multiplying it in Eq. (E9), for all R, by a sharp cutoff
function 1 − e−(R/2σ )10

. A reasonable value for σ might be the
nearest-neighbor distance in the fcc crystal, the lattice size or
the first nearest-neighbor Cs-Ar atoms in a given trapping site
(see Fig. 6). This may depend on the chosen trapping site to
be studied. Another cutoff, in principle independent, should
be of the order of the LeRoy radius that corresponds to the
change in the multipole expansion at small R. In that case the
theoretical curves are too different from the long-range part,
which we used to derive the formula [161,162]. From all this,
we found that a reasonable value can be σ ∼ 8 a0. However,
all these parameters (cutoffs and the power 10 in the sharp
function) are arbitrary choices that can be optimized. We have
modified them a bit (typically by a factor of 2) to produce the
uncertainty in the line position shown in Fig. 5.

c. Approximate calculation of C6 and C9 coefficients

Our previous formulas for second-order perturbations
Eqs. (E2) and (E4), and third-order perturbations Eqs. (E3)
and (E7), contain the van der Waals interaction coefficients
C6,C∗

6 ,C9,C∗
9 , which we now need to evaluate. For this, we

will use an effective two-level approximation, known to be
25% accurate for ground-state interactions between rare-gas
and alkali-metal atoms [72,163], and that we are going to use
for the excited states as well. We will also compare the value
found by fitting them to the long-range part of our potential
curves to existing results to assess the method accuracy. From
now on, we will use atomic units for this calculation.

The atomic unit value for the C6 coefficient for Ar-
Ar, found by fitting the theoretical Ar-Ar potential curve
by −C6/R6, is 67; and 380 for Ar-Cs. Using Eq. (E2)
with the well-known experimental values, ESP(Cs) ≈ 0.0524
and ESP(Ar) ≈ 0.43 for the first excited P levels, leads to
rSP(Cs) = 5.4 and rSP(Ar) = 3.0.

These values are acceptable because they are reasonable:
the C6 Cs-Cs coefficient is 5500 (compare to the real value of
nearly 6700 [164]); C9(Ar-Ar-Ar) ≈ 650 (compared to 525
in Refs. [163,165]); and C9(Cs-Cs-Cs) ≈ 1 500 000 (com-
pared to C9(Cs-Cs-Cs) ≈ 2 200 000 in Ref. [72]). However,
these values for rSP(Cs), rSP(Ar), ESP(Cs), and ESP(Ar) lead
to quite wrong values for the excited Cs∗-Ar coefficient of
C∗

6 (�) = 2
3C∗

6 = 310 compared to 600 in our potential curves
and C∗

6 (Π) = 1
6C∗

6 = 80 compared to 270. Unfortunately, it is
not possible to solve this discrepancy for all excited states at
once simply because Eq. (E4) gives a ratio 4 between C∗

6 (�)
and C∗

6 (�) while in our case, the theoretical potential curves
give only a factor ∼2. This factor 2 is indeed found in many
other cases [166,167].

This discrepancy probably comes from the fact that we
have neglected other excited states [like Cs(7s)] that are quite
near the Cs excited (6p) level. But, because our intention is
to simulate the Cs spectrum in argon, we will focus more on
the Cs-Ar and Cs∗-Ar interaction curves than on the Ar-Ar
one in order to try to reduce the discrepancy. For this, we
choose an intermediate strategy and allow modification of
the dipole transitions rSP(Cs), rSP(Ar) and the energy level
ESP(Ar), that become effective values. This allows us to bet-
ter reproduce the long-range part of the theoretical potential
curve for Cs-Ar and Cs∗-Ar. For this, we start with fitting
the theoretical potential curve that leads to C∗

6
C6

≈ 3. Then

Eqs. (E2) and (E4) give C∗
6

C6
= ESP (Ar)+ESP (Cs)

ESP (Ar)−ESP (Cs) . This leads to

FIG. 10. Cs(6p)-Ar potential curves compared to the one with
the effective third-order effect included.
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ESP(Ar) = 2ESP(Cs) = 0.10. Then, using expression Eq. (E2)
for the C6 coefficient for Ar-Ar (67) and Ar-Cs (380) leads to
(in atomic units)

ESP(Cs) = 0.052, (E10)

ESP(Ar) ≈ 0.10,

rSP(Cs) ≈ 4.4,

rSP(Ar) ≈ 2.1,

C6 ≈ 370,

C∗
6 ≈ 1200,

C9 ≈ 9100,

C∗
9 ≈ 54 000. (E11)

The long-range parts of some potential curves are shown
in Fig. 10. These parameter values, and the modification by a
factor ∼2 for the cutoff and the power of the sharp function,
have been used in order to produce the uncertainty in the line
positions shown in Fig. 5.
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