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Low-energy tests of Delbrück scattering
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We present a theoretical study of elastic photon scattering by atomic targets. This process is of special interest
since various channels from atomic and nuclear physics as well as quantum elctrodynamics contribute to it. In
this work, we focus on Delbrück scattering which proceeds via production of virtual e+e− pairs. In particular, we
explore whether and how the Delbrück channel can be “seen” in present synchrotron experiments which employ
strongly linearly polarized light in the energy range of a few hundred keV. In order to answer this question,
detailed calculations have been performed for the scattering of 300- and 889.2-keV photons off helium-like tin
ions. Based on these calculations, we argue that the Delbrück scattering for the energies below the threshold for
e+e− pair creation leads to a shift in the angular distribution and the polarization of the scattered photons which
can be observed by state-of-the-art solid-state detectors.
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I. INTRODUCTION

The elastic scattering of photons by atomic targets is one of
the most fundamental processes in the interaction of light and
matter. There are a number of contributions to this process,
related to different fields of modern physics. Indeed, the inci-
dent photons can be scattered by the bound atomic electrons
(Rayleigh), by the nucleus (nuclear Thomson) or even by the
quantum vacuum via production of virtual electron-positron
pairs (Delbrück). Moreover, during the recent years, particular
attention has been paid to the excitation of the giant dipole
resonance (GDR) of the nucleus via the scattering. While
the Rayleigh and nuclear Thomson channels have been inten-
sively studied in the past [1–4], much less is known about the
Delbrück and GDR contributions. The investigations of these
two channels in the low-energy regime, i.e., when the incident
x-ray energy is below the pair production threshold, is of
particular importance. From one side, very little information
is available for the low-energy tail of the GDR scattering.
From the other side the analysis of Delbrück scattering for the
photon energies below 1 MeV is of great interest for probing
QED in strong electromagnetic fields. In this energy range the
Delbrück amplitude is purely real and thus only the exotic
process of vacuum polarization contributes to the scattering
cross section.

Third generation synchrotron light sources can be used to
probe the elastic photon scattering as they provide intense
x-ray radiation in well-defined polarization states. These fa-
cilities typically provide photon energies up to 500 keV [5],
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which is an additional argument to investigate the low-energy
regime of elastic photon scattering. During the past decades
the strongly linearly polarized synchrotron radiation has been
employed already to study the elastic scattering. In particu-
lar, in experiments performed at PETRA III at DESY, both
the angular distribution and the polarization of the scattered
photons have been measured and have provided important
information about the electronic structure of the target atoms
[6,7]. However, there is still an open question of whether these
measurements can be used to explore the individual channels
of the elastic scattering.

In this article, we discuss how to uncover the Delbrück
contribution to the elastic x-ray scattering in the low-energy
regime. Apart from providing an important benchmark for
testing nonlinear QED in strong fields, the knowledge about
the Delbrück channel is critical for extracting the GDR part
of the elastic photon scattering [8,9]. Therefore, we study
how the Delbrück contribution may affect the angular dis-
tribution and the linear polarization of elastically scattered
photons for a typical setup of a scattering experiment at a
synchrotron facility. As a target we have chosen a helium-
like heavy ion which is the simplest case of a closed-shell
many-electron system possessing spherical symmetry. For the
heliumlike tin ions in particular, we performed calculations
for the scattering of 300- and 889.2-keV photons by taking
into account Rayleigh, nuclear Thomson, and Delbrück chan-
nels. While the Rayleigh calculations have been performed
within the Dirac-Fock screening potential approximation, the
Delbrück amplitudes were obtained in all orders of αZ for a
pure Coulomb potential. Based on these calculations, we have
shown that for the scattering of strongly linearly polarized x
rays the Delbrück channel exhibits itself in the shift of the
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FIG. 1. The geometry of elastic photon scattering by a helium-
like target ion.

minima of the angular distribution and the linear polariza-
tion which can be detected with state-of-the-art solid-state
detectors.

In order to study the effect of the Delbrück channel, we
have to discuss first the geometry of the elastic scattering pro-
cess in Sec. II. The theory of the three major contributions of
this process, nuclear Thomson, Rayleigh, and Delbrück scat-
tering, is then briefly presented in Sec. III. In order to illustrate
the effect of the Delbrück process, we performed calculations
for the angular differential cross section and polarization of
the outgoing photons for the scattering of 300- and 889.2-keV
x rays by heliumlike tin ions. The results are discussed in
Sec. IV and clearly indicate that, for the higher photon energy,
the Delbrück process has a measurable effect on the angular
distribution and polarization pattern of the scattered photons.
Relativistic units (r.u.) h̄ = me = c = 1 are used throughout
this article, if not stated otherwise.

II. GEOMETRY

Before discussing the theory of elastic photon scattering,
let us introduce first the geometry of the process. As seen
from Fig. 1, the wave vector of the incident photon ki defines
the z axis and together with the wave vector of the scattered
photon k f spans the scattering (xz) plane. For this choice of
geometry, the direction of the (outgoing) scattered photons is
characterized by the single scattering angle θ . Moreover, εi

and ε f are the polarization vectors of both photons.

III. THEORY

As mentioned above, in this work we consider the elas-
tic x-ray scattering by heliumlike ions in their ground state.
For such a closed-shell (spherically symmetric) system, the
symmetry considerations suggest that all observables of the
scattering process can be expressed in terms of just two am-
plitudes, A‖ and A⊥ (see Refs. [10,11]). These amplitudes
describe the case when incoming and outgoing photons are
both polarized either within or perpendicular to the scattering
plane. They can be expressed as the coherent sum of the
amplitudes of the contributing scattering channels:

A‖,⊥ = ANT
‖,⊥ + AR

‖,⊥ + AD
‖,⊥. (1)

As seen from this expression, we assume that the elastic scat-
tering proceeds via the nuclear Thomson (NT), Rayleigh (R),
and Delbrück (D) channels. Giant nuclear resonance is ne-
glected throughout this work, as its amplitudes and hence the
contribution to the cross section are expected to be very small
for x-ray energies below the e+e− pair production threshold
considered here [10,12].

To evaluate the amplitude (1), we have to discuss the dif-
ferent channels separately. We start with the simplest case of
nuclear Thomson scattering, whose amplitude can be written
as

ANT
⊥ = −αZ2

M

(
1 − 1

3
ω2R2

)
, (2a)

ANT
‖ = ANT

⊥ cos θ, (2b)

for a rigid spin-zero nucleus [12–14]. Here, ω is the energy
of the incoming and outgoing photon, M is the mass of the
nucleus, and R is the nuclear charge radius.

In contrast to the Thomson scattering (2), the Rayleigh
scattering of light by bound electrons can be understood as
the virtual excitation and decay of the target ion and hence
is described in the framework of second-order perturbation
theory [15] as

AR
‖,⊥(ki, k f ) = α

∫
d3r1

∫
d3r2(ψ†

f (r2)R̂†(r2, k f , ε‖,⊥)G(r2, r1, E + ω)R̂(r1, ki, ε‖,⊥)ψi(r1)

+ ψ
†
f (r2)R̂(r1, ki, ε‖,⊥)G(r2, r1, E − ω)R̂†(r2, k f , ε‖,⊥)ψi(r1)). (3)

Here, the initial and final bound-electron wave functions are
denoted as ψi(r1) and ψ f (r2), describing states with energy E
at position r1,2. Moreover, R̂ is the electron photon interaction
operator:

R̂(r, k, εχ ) = εχ · αeikr

= √
π

∑
PLMλ

e−iλχ iL
√

2L + 1(iλ)PDL
Mλ(k̂)α · a(P)

LM,

(4)

given here in Coulomb gauge, where α is the vector of Dirac
matrices, εχ is the linear polarization vector tilted by an angle
χ with respect to the scattering plane (see Fig. 1), k is the wave
vector of the photon, and a(P)

LM are the electric (P = 1) and
magnetic (P = 0) multipole fields (see Ref. [16]). To calculate
the Rayleigh amplitude (3), we also need to find an expression
for the electron Green’s function G(r2, r1, z). For a spherically
symmetric potential, one can express this function in terms of
angular momentum eigenstates:
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G(r2, r1, z) =
∑
κμ

[
χμ

κ (r̂2)χμ†
κ (r̂1)G11

κ (r2, r1, z) −iχμ
κ (r̂2)χμ†

−κ (r̂1)G12
κ (r2, r1, z)

iχμ
−κ (r̂2)χμ†

κ (r̂1)G21
κ (r2, r1, z) χ

μ
−κ (r̂2)χμ†

−κ (r̂1)G22
κ (r2, r1, z)

]
, (5)

where χμ
κ are the electronic spin-angular wave functions.

Moreover, in Eq. (5), Gi j
κ (r2, r1, z) is the radial Green’s func-

tion:

Gi j
κ (r2, r1, z) = 1

w

[

(r2 − r1)F i

∞(r2)F j
0 (r1)

+ 
(r1 − r2)F i
0 (r2)F j

∞(r1)
]
, (6)

where F0(r) and F∞(r) are solutions of the radial Dirac equa-
tion that are regular at the origin and infinity and w is the
Wronskian (see Ref. [17]).

Equation (3) represents the amplitude for Rayleigh scatter-
ing by a single bound electron. The wave functions in Eqs. (3)
and (6) are obtained by solving the Dirac equation with
a screened potential, taking into account the main part of
the electron-electron interactions. The single-electron ampli-
tude can then be used to construct the scattering amplitudes
for many-electron (ie., heliumlike) systems, shown by us in
Refs. [11,18]. Such a single-active electron approximation is
well justified for high-Z targets and large photon energies
[19,20]. For more details about the evaluation of the Rayleigh
amplitudes, we refer the reader to Refs. [10,15,16,19,21–24].

The most demanding part of our theoretical analysis is the
evaluation of the amplitude for the Delbrück scattering of x
rays by the quantum vacuum. This scattering proceeds via the
creation and annihilation of a virtual electron positron pair.
By taking into account the interaction of the electron (and
positron) with the electromagnetic field of the nucleus to all
orders in αZ , we can write the amplitude for this process as

AD
‖,⊥(ki, k f ) = iα

2π

∫ ∞

−∞
dz

∫ ∞

−∞
dz′

∫
d3r1

×
∫

d3r2 Tr[R̂(r1, ki, ε‖,⊥)G(r1, r2, z)

× R̂†(r2, k f , ε‖,⊥)G(r2, r1, z′)]δ(ω + z − z′),
(7)

where z and z′ are the energies of the electron propagators
(see Ref. [8]). By inserting the multipole expansions (4)–(6)
into Eq. (7), we can evaluate the angular integrals analytically
by using angular momentum algebra. The radial integrals are
calculated analytically in the asymptotic regime, r → ∞, and
numerically close to the coordinate origin. Finally, to evaluate
the remaining integral over the loop momentum in a numer-
ically stable way, we perform a Wick rotation and turn the
integration path to the complex plane. Further details of the
evaluation have been discussed in our recent papers [25,26].

By making use of Eqs. (1)–(6), we can evaluate all physical
observables of the elastic scattering process. For instance, the
angle-differential cross section reads as

dσ

d

= 1

2
(|A‖|2 + |A⊥|2) + 1

2
Pi(|A‖|2 − |A⊥|2), (8)

where we assumed that the incident light can be partially
linearly polarized and the degree of its polarization is given
by Stokes parameter Pi. As usual, this parameter is defined as

P = I‖ − I⊥
I‖ + I⊥

, (9)

where I‖ and I⊥ are the intensities of the light polarized paral-
lel or perpendicular to the scattering plane.

Apart from the angular distribution, the scattered light can
be also characterized by its degree of linear polarization Pf .
As shown in Ref. [11], the latter can be written in terms of its
counterpart of the incident x rays as

Pf = |S|2(Pi + 1) − (1 − Pi )

|S|2(Pi + 1) + (1 − Pi )
, (10)

where we introduced the amplitude ratio S(ω, θ ) ≡ S =
A‖/A⊥.

IV. RESULTS

Having briefly recalled the theory of the elastic photon
scattering, we are ready now to present the results for both the
angle-differential cross section (8) and the linear polarization
(10) of the scattered x rays. In our analysis, special attention
is paid to the question of whether and how the Delbrück
channel affects both observable quantities. For this discussion,
we consider the scattering of 300- and 889.2-keV photons
off a heliumlike tin ion. The angle-differential cross section
dσ/d
 calculated for both energies and for completely lin-
early polarized light, Pi = 1, is shown in Fig. 2. Here, the
green dashed line represents the cross section of Delbrück
scattering only (D), the blue dot-dashed line describes the
elastic scattering which can proceed via Rayleigh and nuclear
Thomson channels (R + NT) while finally the red solid line is
obtained from the full amplitude (1) which takes into account
all three channels (R + NT + D).

As follows from our calculations and Fig. 2(a), the elastic
scattering of 300-keV photons by Sn48+ is clearly dominated
by the Rayleigh contribution. Indeed, dσ D/d
 is more than
6 orders of magnitude smaller than dσ R/d
 for almost the
entire angular range. The theoretical predictions based on the
full amplitude (1), displayed by the red solid line, are almost
indistinguishable from the results for dσ R/d
 and exhibit
the standard behavior of the Rayleigh cross section with the
minimum around θ ≈ 83◦ [20]. This behavior is similar to that
of dσ R/d
 ∼ cos2 θ [27], predicted by nonrelativistic theory,
but is modified by relativistic effects, as discussed in detail in
Ref. [20].

Based on Fig. 2(a) and the discussion above, we con-
clude that the contribution of Delbrück scattering cannot be
“seen” in experiments with few-hundred-keV x rays as can
be performed at synchrotron facilities such as PETRA III.
Since the amplitude (7) is known to scale as AD

‖,⊥ ∼ ω2 [28],
one has to increase the photon energy further to observe the
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FIG. 2. Differential cross section for fully linearly polarized
light within the scattering plane with photon energies of 300 and
889.2 keV, scattered by heliumlike tin atoms. The blue dot-dashed
curve is Rayleigh and nuclear Thomson scattering (R + NT), the
green dashed curve depicts Delbrück scattering (D), and the red solid
curve shows the interference of the three channels (R + NT + D).

Delbrück channel. In the Fig. 2(b) we display, for exam-
ple, the differential cross section for the elastic scattering of
889.2-keV photons. Similarly to before, we present here the
contributions of Delbrück scattering only and of Rayleigh
plus nuclear Thomson channels, as well as the “exact” results
based on Eq. (1). By comparing Figs. 2(a) and 2(b), we can
see that dσ R+NT/d
 ≈ dσ R/d
 is only slightly altered for
higher photon energies. In particular, the relativistic effects
lead to further shift of the minimum to θ ≈ 70◦, while the
absolute values of the cross section for the forward emission
angles remain almost the same. In contrast, the behavior of
the Delbrück cross section changes significantly. Exhibiting
a monotonic descent with the emission angle θ , it increases
by 3 orders of magnitude if the energy changes from 300
to 889.2 keV and exceeds the R + NT cross section in the
angular range of 68◦ � θ � 73◦. One may expect, therefore,
that the measurements of the elastic-scattering cross section
near the minimum of dσ R/d
 helps to isolate the Delbrück
contribution. For the first time, this idea was proposed by
Koga and Hayakawa who investigated the elastic scattering
of 1.1-MeV photons by a tin target [29]. For the analysis of
experimental observations, however, it is not sufficient to con-
sider the differential cross sections dσ D/d
 and dσ R+NT/d


separately as proposed, for example, in the aforementioned
work. Instead, one has to take into account the interference

FIG. 3. Stokes parameters of the scattered light Pf for initial
polarization Pi = 0.98 and photons with an energy of 889.2 keV
scattered by a heliumlike tin target. Curves refer to the different
scattering channels, similar to Fig. 2.

of all three, D, R and NT, channels [see Eqs. (1) and (8)].
As seen from Fig. 2(b), the resulting “exact” cross section
still exhibits the Rayleigh-like behavior, while the position of
the minimum is shifted by about 4◦ towards lower scattering
angles compared to the R + NT case. Exactly this shift is the
observable effect of the Delbrück contribution on the angular
scattering distribution.

Not only the angle-differential cross section but also the
linear polarization Pf of the scattered x rays (10) can be
used to explore the Delbrück process. As it was shown in
recent works, Pf is very sensitive to the degree of linear
polarization of the incident light [11,18]. In particular, if the
incident radiation is slightly depolarized as it usually hap-
pens in nowadays synchrotron experiments [7], Pf exhibits a
narrow dip at the angle of minimum photon emission. Such
a behavior is displayed, for example, in Fig. 3, where we
present the results for the scattering of 889.2-keV photons
with the initial degree of polarization Pi = 0.98. Similar to
before, calculations have been performed for Delbrück only
and R + NT channels, as well as by taking into account all
contributions. As seen from the figure, the Delbrück pro-
cess again leads to the shift in the extremum position of Pf

when compared to the R + NT predictions. For 889.2-keV
photons the shift is again of about 4◦, which can be dis-
tinguished with the help of the new generation of Compton
polarimeters such as the Compton telescope, presented in
Ref. [30].

Based on our calculations, we argue that the effect of
Delbrück scattering will become “visible” in the comparison
of experimental results for the angular distribution and polar-
ization of the scattered photons with theoretical R + NT and
R + NT + D predictions. Such an analysis relies, of course,
on the accuracy of both experimental and theoretical data.
For the theory, the main uncertainty of the results is due
to the use of the single-active-electron (SAE) approximation
for the Rayleigh channel and of the pure Coulomb potential
for the Delbrück one, thus omitting (part of) the electron-
electron interaction effects. For high photon energies and large
scattering angles these effects are known to be negligible for
both the differential cross section and the polarization of the
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scattered light. It was demonstrated by Volotka and coauthors
[20], in particular, that the difference between SAE predic-
tions and rigorous QED calculations does not exceed 1% for
the scattering of 150 keV photons by heliumlike Xe52+ ions
and becomes even smaller as the photon energy increases.
In the present work, moreover, we made additional calcu-
lations to explore the role of interelectronic interactions for
both R + NT and D channels. In order to make this analysis,
the R + NT and D scattering amplitudes were calculated for
different effective charges Zeff of the target to partially account
for the screening effects. These calculations, performed for
Zeff ranging from 48 to 52, have demonstrated that the uncer-
tainty in the position of the minima of the cross section and the
polarization does not exceed 0.4◦ for 889.2-keV photons. We
claim, therefore, that our predictions of the Delbrück-induced
effect are robust with respect to the theoretical model used in
the present work.

Having discussed the theoretical uncertainties of our calcu-
lations, we also need to address some additional assumptions
made in our work. In the calculations above, in particular,
we considered a pointlike detector for the scattered radia-
tion; i.e., we assumed that the photons are detected at one
very particular angle θ . Real detectors have, however, finite
opening angles. This can be taken into account in theoretical
calculations by an integration of the scattering cross section
and the polarization parameter of the outgoing light over a
corresponding solid angle 
. In order to probe the influence
of the finite detector size on our predictions, shown in Figs. 2
and 3, we integrated the cross section over an opening angle
of 1◦. These calculations have shown that the position of the
minima of the differential cross section and polarization of the
scattered radiation are shifted by about 0.5◦, if the detector

size is taken into account, thus making a clear separation of
the R + NT and R + NT + D curves easily feasible.

V. CONCLUSION

A theoretical investigation was performed for the elastic
x-ray scattering off closed-shell atoms and ions. Particular
attention was paid to one of the channels of this elastic
process—the Delbrück scattering by the quantum vacuum.
Of special interest here is the regime in which the photon
energies are below the e+e− production threshold. In order
to study whether the Delbrück contribution can be “seen”
in the low-energy regime, we investigated both the angle-
differential cross section and the linear polarization of the
scattered photons. Detailed calculations have been performed
for the scattering of 300- and 889.2-keV x rays by heliumlike
tin ions. For the higher energy, it was found that, even though
Delbrück scattering exceeds the Rayleigh contribution under
particular angles, its effect on the experimentally observable
angular distribution and the polarization of the outgoing x rays
will be just a shift of their minimum positions by about 4◦.
This shift can be observed with the help of modern detection
techniques and when comparing with theoretical predictions.
This will provide new insights into QED in strong electro-
magnetic fields. Moreover, this study may serve as benchmark
data for studying the giant nuclear resonance channel in the
low-energy regime.
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