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High-precision electric dipole polarizabilities of the clock states in 133Cs
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We have calculated static and dynamic electric dipole (E1) polarizabilities (αF ) of the hyperfine levels of the
clock transition precisely in 133Cs. The scalar, vector, and tensor components of αF are estimated by expressing
as sum of valence, core, core-core, core-valence, and valence-core contributions that are arising from the virtual
and core intermediate states. The dominant valence contributions are estimated by combining a large number
of matrix elements of the E1 and magnetic dipole hyperfine interaction operators from the relativistic coupled-
cluster method and measurements. For an insightful understanding of their accurate determination, we explicitly
give intermediate contributions in different forms to the above quantities. Very good agreement of the static
values for the scalar and tensor components with their experimental results suggest that our estimated dynamic
αF values can be used reliably to estimate the Stark shifts while conducting high-precision measurements at the
respective laser frequency using the clock states of 133Cs.
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I. INTRODUCTION

Precise estimations of electric dipole polarizabilities (αd )
are useful for various high-precision experiments including
atom trapping, atomic clocks, and quantum computers [1–5].
Among all atoms in the periodic table, alkali atoms are treated
to be very special as they are being considered in many labo-
ratories to carry out high-precision experiments [6,7]. Atomic
clocks based on the Rb and Cs atoms are frequently used
for both laboratory and space applications [8]. It is also a
well-known fact that 137Cs atomic clock is being used as the
primary time and frequency standards [9,10]. In this clock,
microwave transition frequency between the hyperfine lev-
els F = 3 and F = 4 of the ground state of 133Cs is used.
Since accuracy of a 133Cs microwave clock is limited by large
systematic effects [11,12], precise determination of electric
dipole (E1) polarizabilities for estimating the Stark effects of
the clock states are quite useful.

The other promising application of the transition between
the F = 3 and F = 4 ground-state hyperfine levels (|FMF 〉)
of 137Cs is to make them as qubits for quantum computers.
To realize reliable quantum control and ensure high fidelity
for these applications in quantum science and technology, it
is imperative to minimize decoherence in the single trapped
atoms [13]. When an atomic qubit is encoded as a super-
position of two hyperfine levels within the ground states of
an alkali-metal atom, it encounters imbalanced light shifts
induced by the trapping laser field [14–17]. Consequently, a
thorough analysis of systematic effects is required to under-
stand the influence of the trapping laser beam’s wavelength,
polarization, and intensity on the energy levels.
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From the point of view of studying parity violation (PV)
effects in atomic systems, 133Cs is also very unique as it is
the only atom in which electric dipole amplitude between
the |FMF 〉 levels of the ground and 7S states due to PV has
been measured to sub-one-percent accuracy [18]. This has
implications for inferring effects beyond the standard model
of particle physics. In fact, measuring PV amplitude of the
transition between the F = 3 and F = 4 hyperfine levels of
the ground state in 133Cs would be of particular interest for
probing spin-dependent PV effect. Such an experiment would
also require precise values of the E1 polarizabilities of the
involved hyperfine levels to estimate the systematic effects.

In this paper, we focus on the accurate determination of
E1 polarizabilities (αF,MF ) of the |FMF 〉 levels of the ground
state in 133Cs. The differential shift in the clock transition
between these hyperfine levels due to background blackbody
radiation (BBR) has recently sparked interest to estimate the
αF,MF values accurately [12]. Several research groups have
extensively investigated the impact of a static electric field
on the hyperfine levels of the ground state in the 133Cs atom
[19–25]. However, there are discrepancies about 10% among
the calculated results on the differential scalar E1 polarizabil-
ity values from various methods. This discrepancy is further
compounded by variations observed in different experimental
results [26–30]. Subsequently, it was claimed that these incon-
sistencies could be attributed to the neglected contributions
of intermediate continuum states in certain calculations [24].
Similar discrepancy was also seen between the theoretical and
experimental findings for the tensor component of αF,MF [16].
However, it was later discovered that there was a sign mis-
take in the theoretical formulation [31,32]. Later Dzuba et al.
utilized the time-dependent Hartree-Fock (TDHF) method
[equivalent to random phase approximation (RPA)] in con-
junction with Brueckner orbitals (BO) to estimate the tensor
polarizability, incorporating the corrected formula for the
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hyperfine levels [33]. Even then, the obtained TDHF result for
the F = 4 level deviated from the experimental value by ap-
proximately 30% [34]. Such substantial discrepancies in both
the scalar and tensor components of the static αF,MF values in
the ground state of 133Cs demands for further investigations
on these quantities.

We carry out analyses of both the static and dynamic αF,MF

values of the hyperfine levels of the ground state in the 133Cs
atom. In particular, we have determined the dynamic αF,MF

values at two wavelengths (λ = 2πc/ω with the speed of light
c and angular frequency ω), namely 936 nm and 1064 nm,
for two specific reasons. The λ = 936 nm value aligns closely
with the magic wavelength for the 6S1/2 − 6P3/2 transition,
which is widely employed for effective laser cooling of the
133Cs atoms [35,36]. However, the available powers of lasers
around 936 nm are limited to a few watts (W). Conversely, the
ytterbium-doped fiber laser at λ = 1064 nm offers more than
50 W of power and is frequently used in laboratories. First, we
verify the accuracy of the static αF,MF values compared with
the available experimental and other theoretical results. Based
on these analyses, accuracy of the dynamic αF,MF values are
gauged.

II. THEORY

A uniform oscillating electric field with angular frequency
ω at a given time t is given by

�EL(ω, t ) = 1
2 |E0|�εe−iωt + c.c., (1)

where |E0| is the strength of the field, �ε is the degree of po-
larization and c.c. means complex conjugate term. Interaction
of �EL(ω, t ) with an atom can be described by the interaction
Hamiltonian

Hint = − �EL(ω, t ) · �D = −|E0|
2

[�ε · �De−iωt + �ε∗ · �Deiωt ], (2)

where �D is the E1 operator. Since Hint is an odd-parity oper-
ator, the first-order shift to the energy levels of atomic states
diminishes and the leading second-order energy shift in power
of |E0| in a hyperfine level |FMF 〉 can be given by

�Elight = − 1
2αF,MF (ω)E2

L (ω), (3)

where αF,MF (ω) is known as the dynamic E1 polarizability
and it corresponds to the static E1 polarizability when ω =
0. It would be imperative to have knowledge of αF,MF (ω) to
estimate �Elight at arbitrary values of |E0| and ω. αF,MF (ω)
can be evaluated as expectation value of an effective operator

D(2)
eff = [�ε∗ · �DR+

F �ε · �D + �ε · �DR−
F �ε∗ · �D], (4)

where R±
F are the resolvent operators, given by

R±
F =

∑
F ′,MF ′

|F ′MF ′ 〉〈F ′MF ′ |
EF − EF ′ ± ω

. (5)

It is possible to separate polarization vectors from the elec-
tronic operators from Eq. (4) by expressing

�ε∗ · �DR±
F �ε · �D =

∑
L=0,1,2

(−1)L(�ε∗ ⊗ �ε)L · ( �D ⊗ R±
F

�D)L. (6)

Thus, the effective operator is given by

D(2)
eff =

∑
L=0,1,2

(−1)L(�ε∗ ⊗ �ε)L

· [( �D ⊗ R+
F

�D)L + (−1)L( �D ⊗ R−
F

�D)L]. (7)

using which, we get

αF,MF = −〈
FMF |D(2)

eff |FMF
〉

= −
∑

L=0,1,2

L∑
Q=−L

(−1)L−Q(�ε∗ ⊗ �ε)L
Q

×〈FMF |( �D ⊗ R+
F

�D)L
Q

+ (−1)L〈FMF |( �D ⊗ R−
F

�D)L
Q|FMF 〉. (8)

Using the polarization-dependent factors, we can rewrite
the aforementioned expression as

αF,MF = αS
F + AMF

2F
cos θkα

A
F

+3M2
F − F (F + 1)

F (2F − 1)

3 cos2 θp − 1

2
αT

F , (9)

where θk is the angle between the wave vector and quantiza-
tion axis, θp is the polarization angle and A denotes degree of
polarization. Again, αS

F , αA
F , and αT

F are known as the scalar,
axial-vector, and tensor components of αF,MF , which are MF

independent and are given by

αS
F (ω) = − 1

3(2F + 1)

∑
F ′

|〈F ||D||F ′〉|2

×
[

1

EF − EF ′ + ω
+ 1

EF − EF ′ − ω

]
, (10)

αA
F (ω) = −

√
6F

(F + 1)(2F + 1)

∑
F ′

(−1)F+F ′+1

×
{

F 1 F
1 F ′ 1

}
|〈F ||D||F ′〉|2

×
[

1

EF − EF ′ + ω
− 1

EF − EF ′ − ω

]
, (11)

and

αT
F (ω) = 2

√
5F (2F − 1)

6(F + 1)(2F + 3)(2F + 1)

×(−1)F+F ′+1

{
F 2 F
1 F ′ 1

}
|〈F ||D||F ′〉|2

×
[

1

EF − EF ′ + ω
+ 1

EF − EF ′ − ω

]
. (12)

It is strenuous to deal with the wave functions in the hyper-
fine coordinate system to evaluate the above quantities. To
address this, we can express the |FMF 〉 levels with a good
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approximation considering up to the first-order perturbation
as

|FMF 〉 = |IMI ; JMJ〉 +
∑

J ′,MJ′

|IMI ; J ′MJ ′ 〉

×〈IMI ; J ′MJ ′ |Hh f |IMI ; JMJ〉
EJ − EJ ′

, (13)

where I is the nuclear spin with azimuthal component MI

and J is the total angular momentum of the atomic state
with azimuthal component MJ . In the above expression, Hh f

denotes the scalar hyperfine interaction Hamiltonian, which
can be defined as

Hh f =
∑

k

T (k)
J · T (k)

I , (14)

where T (k)
J and T (k)

I are defined as the electronic and nuclear
components, respectively, of Hh f with rank k of the multipole
expansion with k = 1, 3, 5 · · · denoting contributions from
the magnetic multipoles while k = 2, 4, 6 · · · give contribu-
tions from the electric multipoles. For the present interest,
we consider only the dominant k = 1 term in the calculation
corresponding to magnetic dipole (M1) hyperfine interaction
as contributions from the other multipoles to these quantities
are negligibly small [32,33]. The 〈IMI ; J ′MJ ′ |Hh f |IMI ; JMJ〉
matrix element can, then, be evaluated using the
relation

〈IMI ; J ′MJ ′ |T (1)
J · T (1)

I |IMI ; JMJ〉

= (−1)I+J+F

{
J ′ J 1
I I F

}
〈J ′||T(1)

J ||J〉〈I||T(1)
I ||I〉,

(15)

in which the nuclear coordinate part is converted to a factor as

〈I||T(1)
I ||I〉 =

√
I (I + 1)(2I + 1)gIμN , (16)

with gI = μI/I for the M1 moment μI and nuclear Bohr
magnetron μN .

After substituting all the relations, we can express αS
F , αA

F ,
and αT

F components as

αS
F = α

S(2,0)
F + α

S(2,1)
F , (17)

αA
F = α

A(2,0)
F + α

A(2,1)
F , (18)

and

αT
F = α

T (2,0)
F + α

T (2,1)
F , (19)

where α
S/A/T (m,n)
F means the components are including m

orders of E1 interactions and n-orders of M1 interactions,
respectively. The hyperfine interaction-independent compo-
nents can be evaluated conveniently now by using the relations

α
S(2,0)
F (ω) = − 1

3(2J + 1)

∑
J ′

|〈J||D||J ′〉|2

×
[

1

EJ − EJ ′ + ω
+ 1

EJ − EJ ′ − ω

]

≡ αS
J (ω), (20)

α
A(2,0)
F (ω) = −

√
6F (2F + 1)

(F + 1)

{
J F I
F J 1

}

×
∑

J ′
(−1)F+J ′+I+2J

{
1 1 1
J J J ′

}

×
[ |〈J||D||J ′〉|2

EJ − EJ ′ + ω
− |〈J||D||J ′〉|2

EJ − EJ ′ − ω

]

=
√

F (2F + 1)(J + 1)(2J + 1)

J (F + 1)

×(−1)I+J+F+1

{
J F I
F J 1

}
αA

J (ω), (21)

and

α
T (2,0)
F (ω) = −

√
20F (2F − 1)(2F + 1)

6(F + 1)(2F + 3)

{
J F I
F J 2

}

×
∑

J ′
(−1)I+F+J ′+2J

{
1 1 2
J J J ′

}

×
[ |〈J||D||J ′〉|2

EJ − EJ ′ + ω
+ |〈J||D||J ′〉|2

EJ − EJ ′ − ω

]

= −
√

(J + 1)(2J + 3)(2J + 1)F (2F − 1)

J (2J − 1)(F + 1)(2F + 3)(2F + 1)

×(2F + 1)(−1)I+J+F+1

{
J F I
F J 2

}

× αT
J (ω), (22)

where αS
J , αA

J , and αT
J are nothing but the components of

atomic state E1 polarizabilities whose evaluations depend on
the electronic wave functions and energies only. It can be
followed from the selection rules that αT

J will not contribute
to the states with J < 3/2.

Proceeding in the similar manner, we can express
[24,37,38]

α
K(2,1)
F (ω) = W K

F

[
2T K

F (ω) + CK
F (ω) + RK

F (ω)
]
, (23)

where the symbol K denotes scalar, axial-vector, and tensor
components for the integer values K = 0, 1, and 2, respec-
tively, as used below. Here, each component is divided into
contributions from three different terms defined as top (T K

F ),
center (CK

F ), and residual (or normalization) (RK
F ) that are
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given by

T K
F (ω) =

√
(2K + 1)I (I + 1)(2I + 1)gIμN

×
∑
J ′,J ′′

{
I I 1
J J ′′ F

}{
K J ′′ J
I F F

}

×
{

K J ′′ J
J ′ 1 1

}

×(−1)J+J ′′ 〈J||T(1)
J ||J ′′〉〈J ′′||D||J ′〉〈J ′||D||J〉

(EJ − EJ ′′ )

×
[

1

(EJ − EJ ′ + ω)
+ (−1)K

(EJ − EJ ′ − ω)

]
, (24)

CK
F (ω) =

√
(2K + 1)I (I + 1)(2I + 1)gIμN

×
∑
J ′,J ′′

∑
L

{ F K F
J 1 J ′′
I 1 L

}{I J F
1 J ′ J ′′
I 1 L

}

×(−1)I+K−F+J

×〈J||D||J ′′〉〈J ′′||T(1)
J ||J ′〉〈J ′||D||J〉

×
[

1

(EJ − EJ ′ + ω)(EJ − EJ ′′ + ω)

+ (−1)K

(EJ − EJ ′ − ω)(EJ − EJ ′′ − ω)

]
, (25)

and

RK
F (ω) =

√
(2K + 1)I (I + 1)(2I + 1)gIμN

×
∑

J ′

{
I I 1
J J F

}{
K J J
I F F

}

×
{

K J J
J ′ 1 1

}

×(−1)(J+J ′+1)〈J||T(1)
J ||J〉|〈J||D||J ′〉|2

×
[

1

(EJ − EJ ′ + ω)2
+ (−1)K

(EJ − EJ ′ − ω)2

]
. (26)

Also, the preangular factors are given by

W S
F =

√
(2F + 1)

3
, (27)

W A
F = −

√
2F (2F + 1)

(F + 1)
, (28)

and

W T
F = −

√
2F (2F − 1)(2F + 1)

3(F + 1)(2F + 3)
. (29)

III. APPROACHES FOR EVALUATION

As can be inferred from the above discussion, we need a
large set of matrix elements of the D and T (1)

J operators for

(a) (b) (c)

FIG. 1. Goldstone diagrams representing the DHF contributions
to the second-order E1 polarizability of the ground state of 133Cs.
Here, double arrows represent valence orbital (v), single arrows
going down mean occupied orbitals (a), and single arrows going up
mean virtual orbitals (p). The E1 operator D is represented by the
horizontal line.

precise estimate of the αF values in 133Cs. Since wave func-
tions of the atomic states of 133Cs cannot be solved exactly, we
can determine these matrix elements using a mean-field ap-
proximation. We use the Dirac-Hartree-Fock (DHF) approach
to obtain mean-field wave functions of the Dirac-Coulomb
(DC) Hamiltonian, which in atomic unit (a.u.) is given by

HDC =
Ne∑

i=1

[c�αD · �pi + (β − 1)c2 + Vn(ri )] +
∑
i> j

1

ri j
,

where Ne is the number of electrons in the atom, �αD and β are
the Dirac matrices, Vn(r) is the nuclear potential, and ri j is the
interelectronic distances between electrons located at ri and
r j . We have also included corrections due to Breit and lower-
order quantum electrodynamics (QED) to improve accuracy
in the calculations. Within the QED contribution, we have
accounted for corrections stemming from the lowest-order
vacuum polarization effect, described through the Uehling po-
tential and Wichmann-Kroll potential, and self-energy effect
described by the magnetic and electric form factors [39–41].

To produce as many bound states having a common core
[5p6] but differing by a valence orbital v in 133Cs as possible,
we consider the V N−1 potential in the DHF method. In this
approach, the DHF wave functions of the interested states are
denoted by

|
v〉 = a†
v|
0〉, (30)

where |
0〉 is the DHF wave function of the closed-core [5p6].
Using these wave functions, we can determine the dominant
part of the αS

J (ω) and αA
J (ω) values of the ground state of

133Cs. In Fig. 1, we show Goldstone diagram representations
of the DHF contributions for αS

J (ω) and αA
J (ω). Since D is

a one-body operator, the DHF diagrams include contribu-
tions only from the intermediate states that are represented
by single orbital excitations. Thus, we can classify these dia-
grams as core, core-valence, and valence orbital contributions
corresponding to Figs. 1(a), 1(b) and 1(c), respectively. In
order to improve these calculations for precise estimations
of the E1 polarizabilities, it is imperative to include electron
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correlation effects arising through other configurations ne-
glected in the DHF method. It is possible to adopt a linear
response approach [42,43] to include the electron correlation
effects for carrying out ab initio calculations of the above
quantities. However, accuracy of the first-principles results
will be restricted by the uncertainties associated with both
the calculated energies and E1 matrix elements. To minimize
uncertainties in the calculations, we intend to use the exper-
imental energies from the National Institute of Science and
Technology (NIST) database [44], which are known with very
high accuracy. Similarly, we want to use very precise values of
the E1 matrix elements either from the theory or experiments
wherever available. First, we attempt to evaluate these E1
matrix elements using the relativistic coupled-cluster (RCC)
method. Wherever we find the experimental E1 values are
available with higher accuracy than our RCC results, we use
the experimental results. However, it should be noted that the
extracted experimental E1 values do not possess information
about their signs, which is essential in the determination of the
hyperfine interaction-induced E1 polarizabilities. So, we use
our calculated E1 matrix elements for assigning signs to the
precisely known experimental E1 values. Again, contributions
from the high-lying continuum orbitals to the valence contri-
butions are estimated using lower-order methods and quoted
as tail contributions while we list the valence contributions
from low-lying bound states as main contributions to distin-
guish them in the analyses.

In the RCC theory ansatz, wave function of an atomic
state with a closed-shell electronic configuration and a valence
orbital can be expressed by [45]

|�v〉 = eT {1 + Sv}|
v〉, (31)

where T is the RCC operator that accounts for the excitations
of core electrons to virtual orbitals, and Sv is the RCC operator
that excites the valence and core orbitals together to virtual
orbitals due to the correlation effects. Amplitudes of the T
and Sv excitation operators are obtained by

〈
∗
0|(HeT )c|
0〉 = 0 (32)

and

〈
∗
v|[(HeT )c − Ev]Sv|
v〉 = −〈
∗

v|(HeT )c|
v〉, (33)

where subscript c denotes the connected terms and projected
states with superscript ∗ stand for the excited-state Slater
determinants with respect to the respective DHF states. The
exact energy of the state is given by

Ev = 〈
v|Heff |
v〉 = 〈
v|(HeT )c{1 + Sv}|
v〉. (34)

We have considered single, double, and triple excitations
in the RCC method (RCCSDT method) by defining

T = T1 + T2 + T3 (35)

and

Sv = S1v + S2v + S3v, (36)

where subscripts 1, 2, and 3 denote the single, double, and
triple excitations, respectively. Since it is challenging to in-
clude triple excitations from a large set of basis functions, we
first considered only the single and double excitations in the

RCC method (RCCSD method) for a sufficiently large basis
functions. From the analysis of the results from the RCCSD
method, we find out the most active orbitals that contribute
predominantly in 133Cs. Then, we allow triple excitations only
from those selected orbitals in the RCCSDT method.

After obtaining amplitudes of the RCC operators, matrix
element of a physical operator O between the |� f 〉 and |�i〉
states is evaluated by

〈O〉 f i = 〈� f |O|�i〉√〈� f |� f 〉〈�i|�i〉
= 〈
 f |{S†

f + 1}O{1 + Si}|
i〉
〈
 f |{S†

f + 1}N{1 + Si}|
i〉
,

(37)

where O = eT †
OeT and N = eT †

eT . Both O and N are the
nonterminating series, which are evaluated by adopting iter-
ative procedures [41,46,47]. It is possible to improve only the
valence contributions to αS

J (ω) and αA
J (ω) in the aforemen-

tioned approach as only the E1 matrix elements involving
the bound excited states can be evaluated using the RCC
method. However, correlation contributions involving core
excitations to the core and core-valence Goldstone diagrams
shown as Figs. 1(a) and 1(b) have to be obtained from the first-
principles calculations. We have employed RPA to evaluate
the core and core-valence contributions to αS

J (ω) and αA
J (ω).

In both cases, we rewrite the expressions for both αS
J (ω) and

αA
J (ω) in a general form as

αK
J = 〈
0|D|
(∞,1)+

0 〉 + 〈
0|D|
(∞,1)−
0 〉, (38)

where K stands either for S (scalar) or for A (axial-vector)
and |
(∞,1)±

0 〉 are the perturbation wave functions with respect
to the DHF wave function |φ0〉 for ±ω values at the energy
denominator. These perturbative wave functions contain core-
polarization effects to all orders and one order of external
dipole interaction. It should be noted that for the scalar and
axial-vector components the corresponding angular factors
are included but not shown explicitly in the above expression.

Since experimental value for αS
J (0) of the ground state of

133Cs is known very precisely, comparison between our cal-
culation with the experimental result will help to validate our
calculations for the dynamic values of αS

J (ω) and αA
J (ω). Also,

this test would be useful for determining hyperfine-induced
third-order polarizabilities. In Figs. 2–4, we show the Gold-
stone diagram representations of all possible contributions to
the DHF values of α

S/A/T (2,1)
F for the top, center, and nor-

malization contributions, respectively. These contributions are
much smaller than the second-order contributions to αF,MF ,
but their accurate evaluations are more challenging than the
second-order contributions. For easy understanding of various
contributions to these quantities, we denote contributions from
Figs. 2(a) and 2(b) together as core, 2(c) as core-core, 2(d) as
core-valence, 2(e) as valence-core, and 2(f) as valence contri-
butions. Analogous division has been followed for diagrams
shown in Fig. 3 as both Figs. 2 and 3 have striking similarities.
Figure 4(a) is denoted as core, 4(b) as valence-core, and 4(c)
as valence contributions as in the case of the second-order E1
polarizabilities.

We adopt similar procedures of evaluating the second-
order E1 polarizabilities to estimate the valence contributions
to T K, CK, and RK. As can be seen in Fig. 2, estimation of the

042818-5



A. CHAKRABORTY AND B. K. SAHOO PHYSICAL REVIEW A 108, 042818 (2023)

(a) (b) (c)

(d) (e) (f)

FIG. 2. Goldstone diagrams representing the top contribution to
the third-order hyperfine interaction induced E1 polarizability. Each
diagram contains a hyperfine interaction T(1)

J (shown by curly line)
in addition to two interactions by the E1 operator D (shown by
horizontal line).

valence contribution to T K requires a large number of matrix
elements involving the S1/2, P1/2,3/2, and D3/2 states. Unlike
the second-order polarizabilities, knowing correct signs for
the E1 and T (1)

J matrix elements are essential for the evalu-
ation of T K. Evaluation of the valence contribution to CK,
requires E1 matrix elements for transitions from the ground
state to the P1/2,3/2 states and T (1)

J matrix elements for transi-
tions between the P1/2,3/2 states as per the parity and angular
momentum selection rules. Since the expressions for RK and
second-order polarizability have similar forms, its valence
contribution evaluation requires the same E1 matrix elements
as the case of the second-order E1 polarizabilities along with
the expectation value of T (1)

J in the ground state.
It is important to consider the core, core-core, core-

valence, and valence-core contributions to T K and CK

judiciously in order to claim accuracy of the third-order
E1 polarizability calculations. The core and valence-core
contributions to RK are determined by adopting the same
approaches as mentioned earlier in the case of the second-
order E1 polarizabilities. Unlike for RK, the core, core-core,
core-valence, and valence-core contributions to T K and CK

have to be estimated very carefully. As can be seen from
Figs. 2 and 3, the core contributions to these quantities re-
quire matrix elements involving the core-core, core-virtual,
and virtual-virtual orbitals. It is evident that evaluations of the
core-valence and valence-core contributions require similar
sets of matrix elements. However, different sets of core and
virtual orbitals are involved in the determination of the core
and valence contributions to T K and CK owing to different
angular momentum selection rules in both the expressions.

(a) (b) (c)

(d) (e) (f)

FIG. 3. Goldstone diagrams representing the center part of the
third-order hyperfine interaction-induced E1 polarizability. All nota-
tions are same with the previous two figures.

Matrix elements between the bound states are taken from
the RCC theory or experiments as appropriate depending on
their accuracy. We also use here the experimental energies in
the denominator wherever possible, otherwise, the calculated
energies are being used. The E1 matrix elements between the
core orbitals are taken from the DHF method, while between
the core and virtual orbitals are taken from RPA as required.

IV. RESULTS AND DISCUSSION

In Tables I and II, we present the αS
J , αA

J , α
S(2,1)
F , α

A(2,1)
F ,

and α
T (2,1)
F values of the 6S state of 133Cs at different wave-

lengths. We have used gI = 0.737885714 with I = 7/2 from
Ref. [48] for carrying out these evaluations. To understand
the importance of the correlation effects and sensitivity of the
results due to use of the calculated and experimental energies,
we have given ab initio results from the DHF, RCCSD, and

(a) (b) (c)

FIG. 4. Goldstone diagrams representing the normalization part
of the third-order hyperfine interaction-induced E1 polarizability.
This has similarity with the diagrams representing the second-order
E1 polarizability.
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TABLE I. Calculated values of the second-order static and dynamic E1 polarizabilities (in a.u.) of the ground state of the Cs atom.

αS
6S values αA

6S values

Method λ = ∞ λ = 936 nm λ = 1064 nm λ = 936 nm λ = 1064 nm

This work
DHF 662.6 −2303.2 7945.1 −459.7 20772.2
RCCSD 404.8 2684.0 1138.7 −1300.8 −196.8
RCCSDT 400.0 3094.3 1164.4 −1819.3 −206.3
Final 401.0(6) 3022.1(40) 1170.8(16) −1599.5(59) −201.8(18)

Others
Theory [25] 400.80(97)
Theory [49] 399.8
Theory [50] 403.9
Theory [51] 399.9(1.9)
Experiment [52] 401.00(6)

RCCSDT methods in the tables. However, we give our final
recommended values from the semiempirical approach after
utilizing experimental energies and E1 matrix elements as
discussed in the previous section. These recommended results,
shown in bold font in the above tables, are compared with
the available experimental results and some of the previous
calculations from the literature. As can be seen from these ta-
bles, there are significant differences between the DHF values
and the RCCSD results. This suggests that the electron cor-
relations play significant roles in the accurate determination
of both the second-order and third-order E1 polarizabilities.
These differences are more prominent in the dynamic E1
polarizabilities. In fact, there are sign differences between
the DHF and RCCSD values from the atomic polarizabilities
indicating that correlation contributions are unusually large in

these quantities. By analyzing the DHF and RCCSD results
carefully, we observe that large differences in these results
are mostly due to the energy denominators. This justifies
the reason why the results are improved significantly when
experimental energies are used. Though differences among
the ab initio results and the semiempirical values reduce when
correlation effects through triple excitations are included in
the calculations, there are still significant differences between
the RCCSDT and semiempirical values for the dynamic po-
larizabilities. Since our objective is to offer precise values of
the E1 polarizabilities of the hyperfine levels of the ground
state in 133Cs, the semiempirical results are recommended for
their future applications. At this stage, we would like to clar-
ify that only the valence contributions are improved through
the semiempirical approach but the core, core-valence, and

TABLE II. Magnetic dipole hyperfine interaction-induced E1 polarizabilities [in 10−10 Hz/(V/m)2] of the hyperfine levels of the ground
state of 133Cs at various wavelengths (λ). The unit Hz/(V/m)2 can be converted into a.u. by multiplying 0.401878046 × 108.

F = 3 F = 4

Quantity Method λ = ∞ λ = 936 nm λ = 1064 nm λ = ∞ λ = 936 nm λ = 1064 nm

α
S(2,1)
F DHF −3.1420 −49.5027 −2381.2965 2.4423 38.5007 1852.1969

RCCSD −2.5706 −153.5968 −26.5174 1.9993 119.4880 8.3956
RCCSDT −2.5586 −225.2741 −25.3313 1.9898 175.2118 19.6881

Final −2.559(11) −201.1(17) −25.3(13) 1.990(10) 156.4(14) 19.7(10)
TDHF + BO [33] −2.5419 1.9770

RCICP [25] −34.248(7) −29.598(7)

α
A(2,1)
F DHF 0.0 8.6958 561.5658 0.0 9.0179 582.5113

RCCSD 0.0 −132.2379 −9.0495 0.0 −137.1366 −9.2136
RCCSDT 0.0 −238.6758 −11.0932 0.0 −247.5169 −11.5043

Final 0.0 −185.59(51) −9.70(7) 0.0 −192.47(53) −10.06(7)

α
T (2,1)
F DHF 0.0344 0.4310 25.8040 −0.0639 −0.8044 −48.1693

RCCSD 0.0183 6.0153 0.4561 −0.0339 −11.2287 −0.8888
RCCSDT 0.0188 10.4966 0.5508 −0.0350 −19.5937 −1.0279

Final 0.0185(8) 8.482(16) 0.5084(21) −0.0342(15) −15.834(30) −0.9487(39)

TDHF + BO [33] 0.0141 −0.0262
RCICP [25] 0.03051(6) −0.05703(11)

Semiempirical [31] −0.0372(25)
Experiment [34] −0.0334(2)stat (25)syst
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TABLE III. The presently calculated the second-order static and dynamic atomic E1 polarizabilities (in a.u.) of the ground state of Cs atom.
E1 matrix elements used in the estimation of main contributions are given explicitly, where values shown with superscript a are calculated
using the RCCSDT method.

αS
6S values αA

6S values

Transition E1 matrix element λ = ∞ λ = 936 nm λ = 1064 nm λ = 936 nm λ = 1064 nm

Main
6S1/2 − 6P1/2 4.5067(40)a 132.93 1536.35 453.54 −2936.77 −762.65
6S1/2 − 6P3/2 6.3403(64) [53] 250.67 1467.97 699.66 1336.78 560.48
6S1/2 − 7P1/2 0.27810(45) [54] 0.26 0.34 0.32 −0.34 −0.28
6S1/2 − 7P3/2 0.57417(57) [54] 1.10 1.44 1.35 0.70 0.58
6S1/2 − 8P1/2 0.0824(10)a 0.02 0.02 0.02 −0.02 −0.02
6S1/2 − 8P3/2 0.2294(15)a 0.15 0.18 0.17 0.08 0.06
6S1/2 − 9P1/2 0.0424(15)a 0.01 0.01 0.01 −0.01 ∼ 0.0
6S1/2 − 9P3/2 0.1268(11)a 0.04 0.05 0.05 0.02 0.02

Total 385.2(6) 3006.4(40) 1155.1(16) −1599.5(59) −201.8(18)
Tail 0.20 0.14 0.14 0.005 0.004
Core-valence −0.35(5) −0.35(5) −0.35(5) −0.01(1) −0.01(1)
Core 15.99(10) 15.9(1) 15.9(1) 0.0 0.0

valence-core contributions are taken from our calculations.
Thus, there is still scope to improve accuracy of the calculated
results by including higher-order correlation effects in the de-
termination of the core, core-core, core-valence, and valence-
core contributions. Nonetheless, uncertainties of our semiem-
pirical values quoted in both Tables I and II include typical
orders of magnitudes from these neglected contributions.

Comparison of the static αS
J and α

T (2,1)
F values with their

experimental results shows that our recommended values
agree perfectly with the measurements [34,52]. Compared to
the previous calculations of the static αS

J values reported in
Refs. [25,49–51], our value is very close to the experimental
result. This is owing to the fact that we have used many
precisely estimated E1 matrix elements from the latest mea-
surements [53,54] as discussed later. From this, we expect
that our other calculated values including the dynamic po-
larizabilities at wavelengths 936 nm and 1064 nm are also
equally accurate. We could not find experimental results for
α

S(2,1)
F and α

A(2,1)
F for either the F = 3 level or the F = 4

level to make direct comparison with our estimated values.
However, comparison with another calculation reported in
Ref. [33] show that the results for α

S(2,1)
F agree reasonably but

they differ significantly for α
T (2,1)
F . In Ref. [33], the authors

have employed the combined TDHF and BO (TDHF + BO)
method that accounts for core-polarization effects to all or-
ders while pair-correlation contributions have been estimated
using the Brückner orbitals. The RCC method includes all the
RPA effects and pair correlations to all orders implicitly. We
have come across another semiempirical calculation wherein
the authors employed the relativistic configuration interaction
plus core polarization (RCICP) method to compute the values
of α

S(2,1)
F and α

T (2,1)
F [25]. Notably, there exist significant

disparities between our calculated results and theirs. We also
found another semiempirical result for α

T (2,1)
F for the F = 4

level [31], in which the calculation was performed by us-
ing the statistical Thomas-Fermi potential approach and by
scaling some of the matrix elements with the experimental

data. It has overestimated the α
T (2,1)
F value compared to the

experimental result and also differs from our calculation.
After discussing the final results, we intend now to analyze

individual contributions to the final results to understand their

TABLE IV. Some of the important matrix elements (in a.u.) of
the T(1)

J operator of 133Cs. Numbers appearing as a[b] mean a × 10b.
See the text for details explaining how the experimental values for
the off-diagonal matrix elements are inferred.

Transition RCCSDT method Experiment

6S1/2 − 6S1/2 5.817[−7] 5.797[−7] [55]
6S1/2 − 7S1/2 2.859[−7] 2.825[−7][55,56]
6S1/2 − 8S1/2 1.795[−7] 1.790[−7] [55,57]
6S1/2 − 5D3/2 −1.674[−8]
6S1/2 − 6D3/2 8.770[−9]
6P1/2 − 6P1/2 7.341[−8] 7.364[−8] [58]
6P1/2 − 7P1/2 4.143[−8] 4.187[−8] [58,59]
6P1/2 − 8P1/2 2.759[−8] 2.821[−8] [58,60]
6P1/2 − 7P1/2 4.143[−8]
6P1/2 − 9P1/2 −1.968[−8]
6P1/2 − 6P3/2 −4.394[−9]
6P1/2 − 7P3/2 −2.572[−9]
7P1/2 − 7P1/2 2.371[−8] 2.381[−8] [59]
7P1/2 − 8P1/2 1.567[−8] 1.606[−8] [59,60]
7P1/2 − 9P1/2 −11.177[−9]
7P1/2 − 6P3/2 −2.402[−9]
7P1/2 − 7P3/2 −1.417[−9]
8P1/2 − 8P1/2 10.595[−9] 10.840[−9] [60]
8P1/2 − 9P1/2 −7.446[−9]
8P1/2 − 6P3/2 −1.610[−9]
8P1/2 − 7P3/2 −9.460[−10]
9P1/2 − 9P1/2 5.313[−9]
6P3/2 − 6P3/2 3.874[−8]
6P3/2 − 7P3/2 2.214[−8]
6P3/2 − 8P3/2 1.500[−8]
7P3/2 − 7P3/2 12.648[−9]
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TABLE V. Breakdown of our calculated α
S(2,1)
F , α

A(2,1)
F , and α

T (2,1)
F values for the F = 3 and F = 4 levels of 133Cs in terms of the valence,

valence-core, core-valence, core-core, and core contributions. Results are given for both the static and dynamic E1 polarizabilities [in 10−10

Hz/(V/m)2].

F = 3 F = 4

Polarizability Contribution λ = ∞ λ = 936 nm λ = 1064 nm λ = ∞ λ = 936 nm λ = 1064 nm

α
S(2,1)
F Valence −2.5584 −201.0945 −25.3858 1.9904 156.4064 19.7445

Valence-Core −0.0016 −0.0032 0.0601 0.0013 0.0025 −0.0467
Core-Valence 0.0010 −0.0040 0.0402 −0.0008 0.0031 −0.0313

Core-Core −0.0009 −0.0009 −0.0009 0.0007 ∼0.0 0.0007
Core 0.0010 0.0010 0.0010 −0.0015 −0.0015 −0.0015

α
A(2,1)
F Valence 0.0 −185.6502 −9.6217 0.0 −192.5270 −9.9781

Valence-Core 0.0 0.0317 −0.0258 0.0 0.0329 −0.0268
Core-Valence 0.0 0.0265 −0.0548 0.0 0.0275 −0.0569

Core-Core 0.0 ∼0.0 ∼0.0 0.0 ∼0.0 ∼0.0
Core 0.0 ∼0.0 ∼0.0 0.0 ∼0.0 ∼0.0

α
T (2,1)
F Valence 0.0165 8.4872 0.5794 −0.0308 −15.8428 −1.0815

Valence-Core 0.0010 −0.0024 −0.0355 −0.0017 0.0045 0.0664
Core-Valence 0.0010 −0.0024 −0.0355 −0.0017 0.0045 0.0664

Core-Core ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0
Core ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0

roles for accurate determination of both the second-order and
third-order E1 polarizabilities. Intermediate contributions to
αS

J (ω) and αA
J (ω) at different ω (rather λ) values are given in

Table III. It lists the E1 matrix elements of many important
transitions that give dominant contributions to the valence
part and are referred as main. As mentioned before, many
of these E1 matrix elements are borrowed from the precise
measurements of lifetime or E1 polarizability in different
atomic states that are reported in Refs. [53,54]; others are
taken from the present RCCSDT method. The tail contribu-
tions to the valence part from the high-lying virtual states
are estimated by using the E1 matrix elements from the DHF
method and energies from the NIST database. The core and
core-valence contributions are estimated using RPA. It shows
that precise estimate of the second-order E1 polarizabili-
ties depends mainly on the accurate E1 matrix elements of
the 6s 2S1/2 → 6p 2P1/2,3/2 transitions and core contribution.
However, contributions from the E1 matrix elements of the
6s 2S1/2 → 7p 2P1/2,3/2 transitions are also important to con-
sider for improving the precision of the results.

We discuss then the α
S(2,1)
F , α

A(2,1)
F , and α

T (2,1)
F contribu-

tions to both the F = 3 and F = 4 hyperfine levels at different
wavelengths. As mentioned in the previous section, these cal-
culations require a large set of E1 and T (1)

J matrix elements.
Some of the dominantly contributing E1 matrix elements used
in these calculations are already given in Table III. In Ta-
ble IV, we list many T (1)

J matrix elements that are important
for the evaluation of α

S(2,1)
F , α

A(2,1)
F , and α

T (2,1)
F . Most of these

results are obtained using the RCCSDT method, except in a
few cases for which we use the precise values from the ex-
periments [55–60]. Some of the off-diagonal matrix elements
from this list are inferred from the experimental M1 hyperfine
structure constants by using the relation

〈Jf ||T (1)
J ||Ji〉 �

√
〈Jf ||T (1)

J ||Jf 〉〈Ji||T (1)
J ||Ji〉. (39)

We have also used the experimental energies [44] wherever
possible in order to reduce uncertainties in the calculations.

Following the previous section discussion, these quantities
are estimated by dividing their contributions into T K, CK,
and RK. Further, each of these has core, core-core, core-
valence, valence-core, and valence contributions. Table V
gives the individual contributions from the core, core-core,
core-valence, valence-core, and valence parts to the α

S(2,1)
F ,

α
A(2,1)
F , and α

T (2,1)
F values obtained by adding them from

T K, CK, and RK separately. It is evident from Table V that
the valence contributions are the dominant ones in the final
values, whereas in α

S(2,1)
F and α

A(2,1)
F , contributions from the

core, core-core, core-valence and valence-core parts are neg-
ligibly small. One should also note that contributions from
the valence-core or core-valence correlations to the tensor
polarizabilities are non-negligible. Since an experimental re-
sult for the static α

T (2,1)
F value of the F = 4 level in 133Cs

is available, we intend to analyze it in terms of different
correlation contributions. It is evident from Table V that the
valence contribution to this quantity from our calculation is
−3.08 × 10−12 Hz/(V/m)2, whereas the central value of the
experimental result is −3.34 × 10−12 Hz/(V/m)2 [34]. Thus,
there is about 8% difference between the two values after
neglecting their uncertainties. Reducing uncertainty due to
systematic effects in the measurement of α

T (2,1)
F would be

extremely difficult, so it is important to figure out roles of
other physical contributions to the theoretical result in or-
der to help future experiments to carry out the measurement
more precisely. Our analysis shows that the core and core-
core contributions to the static α

T (2,1)
F value of the F = 4

level are negligibly small, while the valence-core and core-
valence contributions are quite significant. As can be seen
from the table, the difference between the theoretical and
experimental value reduces drastically to 2% after taking into
account these contributions. Interestingly, these valence-core
and core-valence contributions to the dynamic α

T (2,1)
F values
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FIG. 5. Demonstration of contributions from two different combinations of intermediate states (J ′ and J ′′) to the (a) top, (b) center, and
(c) normalization parts of the static α

S(2,1)
F value of the F = 3 level of 133Cs. States with subscript − symbol in the figure represent the lower

angular momentum state of a fine-structure partner; i.e., P_ means P1/2 and D_ denotes D3/2, while P and D stand for the P3/2 and D5/2 states,
respectively.

at λ = 936 nm and λ = 1064 nm are found to be extremely
small compared to their valence contributions.

Unlike the second-order E1 polarizabilities, it is not pos-
sible to demonstrate contributions from the intermediate
states easily as their formulas possess two summations [see
Eqs. (24) and (25)]. However, we adopted a different approach
to show importance of contributions from various interme-
diate states. Figures 5 and 6 present three-dimensional plots
depicting contributions from two different sets of interme-
diate states to the valence parts of T K, CK, and RK to the
static α

S(2,1)
F and α

T (2,1)
F values, respectively. They are shown

only for the F = 3 level as a representative case. As can be
seen from these figures, matrix elements of a few selective
transitions involving combinations of a few selective interme-
diate states are contributing predominantly to the third-order
E1 polarizabilities. Gaining this knowledge is quite impor-
tant in order to improve precision of these quantities further.
It is evident from Fig. 5 that the 6P1/2,3/2 and 7S1/2 in-
termediate states make the largest contributions to the top,
center and normalization parts of α

S(2,1)
F . However, significant

contributions to the top and center parts of α
T (2,1)
F come from

6P1/2,3/2 and 5D3/2 states, as seen in Fig. 6. Having clarified
the roles of different intermediate states in the determination
of the third-order E1 polarizabilities, we present the main
contributions to both the static and dynamic T K, CK, and
RK values of α

S(2,1)
F , α

A(2,1)
F , and α

T (2,1)
F by taking sums of

total contributions from all possible intermediate states in
Table VI. As can be seen from the table, the RK component
exhibits the dominant contribution to α

S(2,1)
F followed by T K

and then the CK component. For α
A(2,1)
F also RK contribution

dominates, followed by the CK part. In the case of α
T (2,1)
F , the

leading contribution comes from the CK part, while the RK

component is zero.
In Table VII, we present a comparison between our cal-

culated Stark-shift coefficient, ks = − 1
2 (αS(2,1)

F=4 − α
S(2,1)
F=3 ), and

the previously reported values. As can be seen from the ta-
ble, our value −2.274(10) × 10−10 Hz/(V/m)2 closely aligns
with the most precise measurement to date, which is re-
ported as −2.271(4) × 10−10 Hz/(V/m)2 in Ref. [26]. It also

FIG. 6. Contributions from different combinations of intermediate states (J ′ and J ′′) to the (a) top and (b) center parts of the static α
T (2,1)
F

value of the F = 3 level of 133Cs. The notation is same as in the previous figure.
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TABLE VI. The main contributions of T (ω), C(ω), and R(ω) to the α
S(2,1)
F , α

A(2,1)
F , α

T (2,1)
F values of the F = 3 and F = 4 hyperfine levels

of the ground state of 133Cs at different wavelengths. All values are in a.u..

λ = ∞ λ = 936 nm λ = 1064 nm

Contribution α
S(2,1)
F α

A(2,1)
F α

T (2,1)
F α

S(2,1)
F α

A(2,1)
F α

T (2,1)
F α

S(2,1)
F α

A(2,1)
F α

T (2,1)
F

For F = 3 level
T (ω) −0.00121 0.0 0.00002 −0.00976 0.00145 0.00020 −0.00376 0.00012 0.00006
C(ω) 0.00001 0.0 −0.00009 −0.01137 0.03754 −0.02486 −0.00031 0.00367 −0.00180
R(ω) −0.00376 0.0 0.0 −0.49459 0.18917 0.0 −0.05755 0.00794 0.0

For F = 4 level
T (ω) 0.00083 0.0 −0.00003 0.00670 0.00127 −0.00029 0.00258 0.00010 −0.00009
C(ω) −0.00001 0.0 0.00013 0.00780 0.03325 0.03703 0.00021 0.00325 0.00268
R(ω) 0.00258 0.0 0.0 0.33926 0.16752 0.0 0.03948 0.00703 0.0

aligns with other experimental values in Refs. [27] and [28].
In contrast, it differs substantially from other measurements
reported later in Refs. [29,30]. We are unable to provide
insights regarding the discrepancies among experimental
results. Nevertheless, we have thoroughly examined and dis-
cussed the differences observed among the theoretical results.
We find that our result as precise as the calculated value
reported in Ref. [24]; their and our results agree better with
the experiment [26] compared to other theoretical works
[19–23,25,33]. This may be due to our semiempirical treat-
ment of various contributions to the estimations of the α

S(2,1)
F=3

and α
S(2,1)
F=4 values. Also, our DHF value −2.792 × 10−10

Hz/(V/m)2 of ks agrees with the DHF value −2.799 × 10−10

Hz/(V/m)2 of Ref. [24]. Again, authors of Ref. [24] have
found the contributions to ks arising from the continuum (tail)
to be significant. In this work, we also independently verify
this finding and affirm that without the tail contribution the
ks value comes out to be −2.085 × 10−10 Hz/(V/m)2. One
can infer these tail contributions from our calculations to the
hyperfine interaction-induced E1 polarizabilities explicitly by

TABLE VII. Summary of the ks value from different theoretical
and experimental works in units of 10−10 Hz/(V/m)2.

Reference ks value

This work −2.274(10)
Theory [19] −1.97(9)
Theory [20] −2.06(1)
Theory [21] −2.281(4)
Theory [22] −2.28
Theory [23] −2.26(2)
Theory [24] −2.271(8)
Theory [25] −2.324(5)
Theory [33] −2.26(2)
Experiment [26] −2.271(4)
Experiment [27] −2.25(5)
Experiment [28] −2.20(26)a

Experiment [29] −1.89(12)a

Experiment [30] −2.05(4)

aks calculated from BBR shift measurement.

analyzing various contributions listed in Tables V and VI. It
can be seen from these tables that the tail contribution to ks

comes out to be 8% to the total contribution and the largest
uncertainty in our final ks value arises mainly from this part.

V. SUMMARY

We have conducted comprehensive analyses of the second-
order and magnetic dipole hyperfine interaction-induced
third-order electric dipole polarizabilities of the hyperfine
levels of the ground state of the 133Cs isotope. Results are
presented for the dc electric field and for the ac electric field
with two different wavelengths. One of them corresponds to
the magic wavelength of the cooling line of the 133Cs atom,
but power of laser available at this wavelength is usually very
low. There exist high-power lasers for the other chosen wave-
length; such lasers are often used in high-precision laboratory
measurements. First, we present the second-order electric
dipole polarizabilities and compare them with the precisely
reported experimental value and other theoretical results. Af-
ter validating calculations through these results, we proceeded
with the determination of the magnetic dipole hyperfine in-
teraction induced third-order electric dipole polarizabilities.
In order to understand these results thoroughly, we gave a
breakdown of the results in terms of contributions from in-
termediate states involving both the core and valence orbitals.
Our static values for both the second-order and third-order
electric dipole polarizability values match with the available
experimental results quite nicely and explain the roles of var-
ious contributions to accurate evaluation of these quantities.
The reported static and dynamic electric dipole polarizability
results for both hyperfine levels of the ground state in 133Cs
can be immensely useful to the experimentalists for estimating
the Stark effects precisely to carry out high-precision labora-
tory measurements.
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