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Atomic Bethe logarithm in the mean-field approximation
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In this work we develop and implement a method for calculation of the Bethe logarithm for many-electron
atoms. This quantity is required to evaluate the leading-order quantum electrodynamics correction to the energy
and properties of atomic and molecular systems beyond the Dirac theory (the Lamb shift). The proposed formal-
ism is based on the mean-field representation of the ground-state electronic wave function and of the response
functions required in the Schwartz method [C. Schwartz, Phys. Rev. 123, 1700 (1961)]. We discuss difficulties
encountered in the calculations with emphasis on the specific basis set requirements in the vicinity of the atomic
nucleus. This problem is circumvented by introducing a modified basis set of exponential functions which are
able to accurately represent the gradient of hydrogenlike orbitals. The Bethe logarithm is computed for ground
electronic states of atoms from hydrogen to magnesium as well as for argon. Whenever possible, the results
are compared with the available reference data from the literature. In general, the mean-field approximation
introduces a surprisingly small error in the calculated values, suggesting that the electron correlation effects are
of minor importance in the determination of the Bethe logarithm. Finally, we propose a robust scheme to evaluate
the Lamb shift for arbitrary light molecular systems at little computational cost. As an illustration, the method is
used to calculate Lamb shifts of the vibrational levels of the nitrogen molecule.
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I. INTRODUCTION

In recent years, there has been growing interest in the de-
termination of the effects of quantum electrodynamics (QED)
on the structure and properties of many-electron atoms and
molecules. While the theory of bound-state QED was formu-
lated decades ago and has been successfully used since then,
it was believed that the QED corrections are negligible for
such systems. However, as the accuracy of theoretical calcu-
lations improves, the necessity to account for the QED effects
becomes apparent in at least two situations. First, in systems
involving heavy atoms the QED effects become large enough
to constitute the major source of the overall error. This is best
illustrated by recent calculations of the ionization energy and
electron affinity of the gold atom by Pašteka et al. [1]. Only
after the QED effects were taken into consideration was it
possible to bring the theory and experiment into agreement of
around 1 meV. The second reason for the growing interest in
the QED effects is the demand for highly accurate calculations
for many-electron atoms and small molecules. For example,
recent calculations for the hydrogen molecule [2], helium
dimer [3,4], neon [5,6] and argon [7] atoms, beryllium dimer
[8,9], NaLi molecule [10], lithium dimer [11], and He2

+
molecular ion [12] had to include the QED corrections to
reach the required accuracy, despite the fact that these systems
do not involve heavy atoms and hence these corrections are
small by the usual standards.

In this work we focus on the leading-order QED correc-
tions (the Lamb shift) which take into account the effects
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of vacuum polarization and electron self-energy. Determina-
tion of these corrections for arbitrary atomic and molecular
systems is a nontrivial task and several approaches are avail-
able in the literature for this purpose. This includes Uehling
[13] and Wichmann-Kroll potentials for vacuum polarization
[14,15], local effective potentials inspired by the hydrogen
Lamb shift proposed by Pyykkö and co-workers [16–20], the
model operator approach of Shabaev and co-workers [21,22],
the multiple-commutator approach proposed by Labzowsky
et al. [23,24], and effective Hamiltonians of Flambaum and
Ginges [25]. However, this list is not exhaustive. Some of
these methods are already available in mainstream atomic
electronic structure programs [26–28]. For molecules, the
studies including the QED effects are less numerous. They
are based primarily on effective local potentials fitted by a
linear combination of Gaussian functions (see the papers of
Pyykkö and Zhao [20] and Peterson and co-workers [29–31],
as well as references cited therein). The QED effects were
also included in several core pseudopotentials for heavy el-
ements designed by the Hangele et al. [32–35]. Finally, in
the recent work by Sunaga et al. [36], the Flambaum-Ginges
effective potential was adopted for molecular calculations and
implemented in Dirac code [37]. This paper includes also
an excellent introduction to the bound-state QED formalism
accessible to nonexperts.

Our interest in the QED effects is driven primarily by
the applications in metrology [38–41], where theoretical pre-
dictions for systems such as light noble gases or major
constituents of earth’s atmosphere are important ingredients.
In particular, to calculate the quantities such as polarizabil-
ity, magnetic susceptibility, and dielectric and pressure virial
coefficients of atomic and molecular gases with accuracy of
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one part per thousand (or better), the QED effects have to be
routinely taken into account. As the systems relevant in the
aforementioned applications are composed of light atoms (the
first and second rows of the Periodic Table), both the rela-
tivistic and QED corrections can be calculated perturbatively.
This greatly simplifies the formalism as the nonrelativistic
two-component wave function, which is the basis of the per-
turbative approach, can be calculated using well-developed
tools.

For light atoms, probably the most consistent way to
account for the QED effects is offered by the nonrelativis-
tic QED theory introduced by Caswell and Lepage [42]
and further developed and extended by Pachucki [43–46].
This formalism is based on expansion of the energy (and
other properties) in the powers of the fine-structure constant
(α ≈ 137.036)

E = E0 + α2Erel + α3EQED + · · · . (1)

If the Born-Oppenheimer approximation is assumed, the first
term (E0) is the nonrelativistic energy corresponding to the
clamped-nuclei Schrödinger-Coulomb Hamiltonian. The rel-
ativistic correction of the order α2, denoted by Erel, is defined
as the expectation value of the Breit-Pauli Hamiltonian [47].
Nowadays it can be routinely evaluated, at least for closed-
shell systems [48]. The leading-order pure QED correction
(not included in the Dirac-Coulomb equation) reads [49,50]

EQED = 8α

3π

(
19

30
− 2 ln α − ln k0

)
〈D1〉

+ α

π

(
164

15
+ 14

3
ln α

)
〈D2〉 + 〈HAS〉, (2)

where ln k0 is the Bethe logarithm [47] defined precisely
further in the text and 〈D1〉 and 〈D2〉 are the one- and two-
electron Darwin terms

〈D1〉 = π

2
α2

∑
A

ZA

〈∑
n

δ(rnA)

〉
, (3)

〈D2〉 = πα2

〈∑
n>n′

δ(rnn′ )

〉
, (4)

where ZA is the nuclear charge and δ(r) is the three-
dimensional Dirac delta distribution. Throughout the paper,
we use the indices n, n′, . . . and A, B, . . . to denote electrons
and nuclei, respectively. The shorthand 〈X 〉 is employed for
the expectation value of an operator X on the ground-state
wave function �0, i.e., 〈X 〉 = 〈�0|X�0〉. The last term in
Eq. (2) is the Araki-Sucher correction 〈HAS〉 [see Eqs. (4)–(6)
in Ref. [51] for a precise definition in a notation consistent
with the present work].

In this work we consider evaluation of the leading-order
QED correction (EQED) for light many-electron systems, both
atomic and molecular, in the ground electronic state. In this
context, two quantities appearing in Eq. (2) are nontrivial to
evaluate, namely, 〈HAS〉 and ln k0. Concerning the former, the
results given in Ref. [51] suggest that large Gaussian basis sets
combined with a theoretically motivated extrapolation for-
mula offer a sufficient level of accuracy for most applications
to many-electron systems. Therefore, the major difficulty now
lies in computation of the Bethe logarithm ln k0. It is formally

defined by the expression

ln k0 = N
D = 〈�0|∇(H − E0) ln 2|H − E0|∇|�0〉

〈�0|∇(H − E0)∇|�0〉 , (5)

where Ĥ is the nonrelativistic Hamiltonian of the system, �0

is the corresponding wave function, and ∇ = ∑
n ∇n is the

(total) electronic momentum operator.
There are two main approaches available in the literature

for calculation of the Bethe logarithm. The first one, due to
Drake and Goldman [52], uses the closure relation to rewrite
Eq. (5) as an infinite summation over excited states of the
system (or a set of pseudostates formed in a given basis). As
this sum is slowly convergent, a large number of excited-state
energies and wave functions need to be found. This limits the
applicability of the Drake-Goldman method to mostly one-
and two-electron atoms and molecules (see Refs. [53–58] and
references therein), and computations for larger systems that
employ this formalism are scarce [59,60].

The second method was put forward by Schwartz in his
seminal work concerning the helium atom [61]. The Schwartz
method involves a representation of the Bethe logarithm as an
integral over virtual photon momenta. This leads to a formula
which is much more manageable in terms of applications to
many-electron systems. Thus far, this technique (with sub-
sequent modifications) has been applied to helium [61–65],
lithium [59,66–68], and beryllium atoms [69,70], as well as
some of the corresponding ions [71,72], and to a handful of
molecular systems, namely, H2

+[64,73–76], H2 [2,77,78], the
He2

+ cation, and H3 [79].
The aforementioned computations of the Bethe logarithm

for few-electron systems were based on Hylleraas-like [80]
or explicitly correlated Gaussian basis sets [81] for expansion
of the electronic wave function and other necessary quan-
tities. Clearly, neither approach can easily be extended to
systems with more than several electrons. In this work we
make progress towards introduction of general techniques to
calculate ln k0 from wave functions expanded in a set of one-
electron orbitals. The main advantage of this approach is that
it can be applied, in principle, to any atomic and molecular
system for which the perturbative QED expansion of the en-
ergy makes sense.

In this work we adopt the Hartree-Fock method to model
the electronic wave function �0. While this approach is
not accurate enough for some applications, it is a necessary
stepping stone for more rigorous treatments involving, e.g.,
coupled-cluster wave functions [82,83]. We show that this ap-
proximation leads to surprisingly accurate results, suggesting
that the electron correlation effects are of secondary impor-
tance in calculation of ln k0. Importantly, we present a method
to avoid basis set incompleteness problems in the Schwartz
method, which is the most serious obstacle in calculation of
the Bethe logarithm with one-electron basis sets. It is shown
that the basis set of Slater-type orbitals [84,85] with inclusion
of nonstandard 1p, 2d , etc., functions provides a suitable
representation of all auxiliary quantities appearing in the com-
putations. In this paper we focus on the Bethe logarithm for
one-center systems (neutral atoms and their cations or anions),
but discuss approximations suitable for arbitrary molecular
systems.
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Atomic units are used throughout the present work unless
explicitly stated otherwise. The Einstein convention (summa-
tion over repeating indices) is assumed in all expressions. We
assume that all orbitals and wave functions are purely real.

II. MOLECULAR BETHE LOGARITHM

As mentioned in the Introduction, in this work we focus on
calculations of the Bethe logarithm for one-center systems.
On the surface, this appears to have a limited usefulness in
the applications discussed above. However, knowing the value
of the Bethe logarithm for isolated atoms, one can easily
generate a reasonable approximation to EQED for arbitrary
molecules composed of these atoms. This follows from the
weak dependence of the Bethe logarithm on the molecular ge-
ometry. While this fact has been noted in the literature and has
been used in practice [8–12], we believe that a comprehensive
discussion of this phenomenon is in order. Therefore, in this
section we provide general expressions for the approximate
molecular EQED and gather the evidence available in the liter-
ature that supports it.

Let us consider a diatomic molecule AB composed of the
atoms A and B. Generalization of this formalism to polyatomic
molecules is straightforward. The Bethe logarithm for AB is
denoted by ln k0(AB) and similarly ln k0(X ), X = A, B, stands
for the Bethe logarithm of the isolated subsystems. Analo-
gous denotations 〈D1〉AB, 〈D1〉A, and 〈D1〉B are preserved for
the one-electron Darwin corrections of all species involved.
Assuming that ln k0(AB) is weakly dependent on the molec-
ular geometry, we can replace it by a value obtained for an
arbitrary chosen interatomic distance R. It is convenient to
select as the reference geometry the asymptotic value of R,
corresponding to the noninteracting limit R → ∞. Therefore,
it remains to derive the proper formula for ln k0(AB) valid for
R → ∞. To this end, we take advantage of the fact that the
total QED energy correction (2) must be extensive. In other
words, the value of EQED for AB is equal to the sum of correc-
tions for the isolated subsystems as R → ∞. By equating the
expressions for EQED for the diatom and the sum of EQED for
both atoms and eliminating all quantities that are manifestly
extensive, we arrive at the relation valid in the noninteracting
limit,

ln k0(AB)〈D1〉AB = ln k0(A)〈D1〉A + ln k0(B)〈D1〉B, (6)

and since the Darwin correction is extensive, i.e., 〈D1〉AB =
〈D1〉A + 〈D1〉B as R → ∞, we finally have

ln k0(AB) = ln k0(A)〈D1〉A + ln k0(B)〈D1〉B

〈D1〉A + 〈D1〉B
, (7)

where the right-hand side depends only on the properties
of the isolated atoms. This is the approximate formula for
the molecular Bethe logarithm we recommend for arbitrary
geometries.

To study the accuracy of this approximation, we analyze
the data available in the literature and compare with the
molecular ln k0 calculated explicitly for a set of internuclear
distances with a controlled precision. We consider the H2

+
molecular ion and H2 molecule within the Born-Oppenheimer
approximation. The Bethe logarithms for these systems were
calculated by Bukowski et al. [73] and Piszczatowski et al. [2],

FIG. 1. Relative errors (red circles) and absolute errors (blue
circles) in the QED correction for the H2

+ molecular ion as a function
of the internuclear distance R. Data were taken from Ref. [73].

respectively. In Figs. 1 and 2 we provide a comparison of the
reference values of the Bethe logarithm for this systems with
the approximation advocated in this work, Eq. (7). For both
molecules, the absolute errors in the QED correction deter-
mined according to Eq. (7) are, on average, below 0.01 cm−1.
In the plot of relative errors, we see a sharp spike at R ≈ 3
a.u. for H2

+ and R ≈ 2 a.u., where they reach around 20%.
However, this feature is due to the fact that the QED correc-
tion crosses zero and changes sign. Therefore, even a large
relative error in this regime does not translate into a significant
absolute error. On average, the relative errors are of the order
of 2–3% for both molecules.

III. THEORY

A. Wave-function model

Consider the calculation of the Bethe logarithm for first-
and second-row atoms. The ground-state electronic states of
these systems are characterized by nonrelativistic terms 1S,

FIG. 2. Relative errors (red circles) and absolute errors (blue
circles) in the QED correction for the H2 molecule as a function of
the internuclear distance R. Data were taken from Ref. [2].
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2S, 2P, 3P, and 4S. In general, the electronic wave function
of these atoms cannot be represented as a single Slater de-
terminant without violating the spin and spatial symmetry of
the system. While this deficiency of the single-determinantal
approach is often neglected in favor of simplicity, we adopt a
more general open-shell Hartree-Fock method which avoids
this problem. Following Roothaan [86], the wave function
is represented as a sum of several Slater determinants, each
containing the common set of doubly occupied closed-shell
orbitals and a fixed number of partially occupied open orbitals
chosen from a predefined set. In the following, closed-shell
orbitals are denoted by the indices i, j, . . ., open orbitals by
x, y, . . ., and virtual (empty) orbitals by a, b, . . .. The indices
p, q, . . . are used for the whole orbital space, i.e., {p} = {i} ∪
{x} ∪ {a}. Each determinant entering the wave function has an
equal weight, fixed by the normalization condition of the state.
The total energy of the atom is given by

E = 2
∑

i

(i|h|i) +
∑

i j

[2(ii| j j) − (i j| ji)]

+ 2 f

[ ∑
x

(x|h|x) +
∑

ix

[2(xx|ii) − (xi|ix)]

]

+ f 2
∑

xy

[2a(xx|yy) − b(xy|yx)], (8)

where h is the one-electron Hamiltonian, and (pq|rs) are the
two-electron integrals in the Coulomb notation. The parame-
ters f , a, and b are dependent on the electronic configuration;
for all states considered in this work their values are given in
Ref. [86].

The orbitals from which the determinants are constructed
are found by employing the variational principle. Minimizing
the expression (8) with respect to the orbitals (with necessary
orthonormality constraints) leads to a set of single-particle
equations that can be solved self-consistently. The orbitals
are found as eigenfunctions of an effective Fock operator R.
This operator is not defined uniquely (see the discussion in
Refs. [87,88]) and in this work we follow the parametrization
of Hirao and Nakatsuji [89],

R =
⎡
⎣ FC FO − FC FC

FO − FC FO FO

FC FO FC + FO

⎤
⎦, (9)

where the three rows and columns of this matrix correspond to
the closed, open, and virtual (unoccupied) orbital manifolds.
The Fock operators of closed and open manifolds FC and FO,
respectively, are defined as

FC = h + [2JC − KC] + f [2JO − KO], (10)

FO = f [h + [2JC − KC] + f [2aJO − bKO], (11)

where the Coulomb and exchange operators acting on an
arbitrary one-electron function φ(r) give

JCφ(r) = φ(r)
∑

i

∫
dr′ ϕ

∗
i (r′) ϕi(r′)
|r − r′| , (12)

KCφ(r) =
∑

i

ϕi(r)
∫

dr′ ϕ
∗
i (r′) φ(r′)
|r − r′| , (13)

and analogously for the open manifold. At convergence of the
self-consistent-field procedure, the operator R is diagonal in
the whole orbital basis. The eigenvalues (the orbital energies)
are denoted by the symbols εi, εx, and εa for the closed, open,
and virtual orbital manifolds, respectively.

B. Schwartz method with approximate wave functions

The Schwartz method relies on the operator relation valid
in the K → ∞ limit,

ln 2|H − E0| ≈ ln 2K −
∫ K

0

dk

H − E0 + k
, (14)

which is inserted into the numerator of Eq. (5). Note that both
terms on the right-hand side of Eq. (5) diverge for large K
and this divergence must be canceled out numerically. Equa-
tion (14) provides the basis for various integral representations
of the Bethe logarithm. A particularly convenient and compact
formula was given by Pachucki and Komasa [69],

ln k0 = − 1

D

∫ 1

0
dt F (t ),

F (t ) = f (t ) + 〈�0|∇2|�0〉 + 2Dt2

t3
, (15)

where

f (t ) =
〈
�0

∣∣∣∣∇ k

H − E0 + k
∇

∣∣∣∣�0

〉
, (16)

with the variables k and t being related through the relation
t = (1 + 2k)−1/2. Note that a different sign convention is used
in Eqs. (15) and (16) compared with Ref. [69].

Provided the electronic wave function used in Eq. (5) is
exact, we have the following expression for the denominator:

D = −2π
∑

A

ZA

〈∑
n

δ(rnA)

〉
. (17)

Unfortunately, this expression is not valid for approximate
wave-function models which do not satisfy the electronic
Schrödinger equation (H − E0)�0 = 0. In particular, this is
true for the Hartree-Fock wave function employed in this
work to approximate �0. Following the usual practice, one
could evaluate D by simply inserting an approximate wave
function into Eq. (17). Unfortunately, this choice would make
the integrand in Eq. (15) singular for small t because the
terms proportional to t2 in f (t ) would no longer be canceled
out by the 2Dt2 counterterm. This may lead to instabilities
or even divergence of the numerical integration in Eq. (15).
To eliminate this problem, we propose a different method of
evaluating the denominator, described in detail in Sec. III D.

The small-t expansion of the function f (t ) reads [61,73].

f (t ) = −〈∇2〉 − 2Dt2 + f3t3 + f4t4 ln t + O(t4), (18)

which is valid (in the complete basis set limit) for both exact
and approximate wave functions provided the denominator is
calculated according to the procedure described in Sec. III D.
This expansion is used to avoid direct computation of f (t )
for very small t , which may be unstable. In the case of the
exact wave function, explicit expressions are known also for
the higher-order coefficients in this expansion ( f3 and f4)
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[90]. We attempted to derive the corresponding expressions
for approximate wave functions along the lines of Ref. [90].
Unfortunately, the final formulas were not tractable for sys-
tems larger than two electrons, so the higher-order coefficients
must be obtained by fitting. Details of this procedure are given
further in the text.

C. Responselike equations

Provided the value of t is not too small, the quantity f (t ) is
accurately calculated from the responselike equation

(H − E0 + k)�(k) = ∇�0 (19)

so that f (t ) = k〈∇�0|�(k)〉 [cf. Eq. (16)]. Note that as the
values of k required in Eq. (15) are real and non-negative,
the calculations are always performed away from the poles of
the resolvent, (H − E0 + k)−1, and the operator H − E0 + k
is Hermitian.

For the sake of convenience, we expand the wave function
�(k) into a linear combination of excited-state determinants.
By employing Slater-Condon rules it is straightforward to
show that only singly excited determinants result in a nonzero
contribution to Eq. (19). Therefore, we first generate a com-
plete set of singly excited determinants, i.e., obtained from
the reference determinants present in �0 by replacement of
one orbital. In general, there are three classes of such deter-
minants, obtained by replacing an open orbital x by a virtual
orbital a, replacing a closed orbital i by an open orbital x (the
latter must not already be present in the determinant), and
replacing a closed orbital i by a virtual orbital a. We denote the
expansion coefficients corresponding to these classes by Uax,
Uxi, and Uai, respectively. By inserting this expansion in place
of �(k) in Eq. (19) and projecting the resulting equation onto
all singly excited determinants, we obtain three sets of linear
equations

(x|GO − GC |i) +
∑

j

Ux j ( j|FO|i) +
∑

a

Uax(a|FO|i) −
∑

a

Uai(x|FC |a)

−
∑

y

Uyi(x|FC |y) − Uxi[εx + εi − k( f − 1)] = (1 − f )(x|∇|i),

(a|GC |i) −
∑

b

Ubi(a|FO|b) −
∑

x

Uax(x|FC |i) −
∑

x

Uxi(a|FC |x) + Uai(εa − εi + k) = −(a|∇|i),

(a|GO|x) −
∑

i

Uai(i|FO|x) +
∑

i

Uxi(a|FO|i) + Uax(εa − εx + k f ) = − f (a|∇|x), (20)

where GO and GC are the perturbed Fock operators in the open
and closed orbital manifolds, respectively, given by

GC = [2J ′
C − K ′

C] + f [2J ′
O − K ′

O],

GO = [2J ′
C − K ′

C] + f [2aJ ′
O − bK ′

O], (21)

and the perturbed Coulomb and exchange operators are de-
fined through their action on an arbitrary orbital φ(r) as

J ′
Cφ(r) = 2φ(r)

∑
b j

Ub j

∫
dr′ ϕ

∗
b (r′)ϕ j (r′)
|r − r′|

− 2φ(r)
∑

y j

Uy j

∫
dr′ ϕ

∗
y (r′)ϕ j (r′)

|r − r′| , (22)

K ′
Cφ(r) =

∑
b j

Ub j

[
ϕ j (r)

∫
dr′ ϕ

∗
b (r′)φ(r′)
|r − r′|

+ ϕb(r)
∫

dr′ ϕ∗
j (r′)φ(r′)

|r − r′|
]

−
∑

y j

Uy j

[
ϕ j (r)

∫
dr′ ϕ

∗
y (r′)φ(r′)

|r − r′|

+ ϕy(r)
∫

dr′ ϕ
∗
j (r′)φ(r′)

|r − r′|
]
, (23)

and analogously for the open manifold. Due to large size, the
above equations are solved iteratively. In our implementation
we use the preconditioned conjugate gradient method. Once

the response equations are solved, the main quantity of in-
terest, namely, f (t ) defined by Eq. (16), is straightforward to
calculate:

f (t ) = 4k( f − 1)
∑

xi

Uxi(x|∇|i)

+ 4k
∑

ai

Uai(a|∇|i) + 4 f k
∑

xa

Uax(a|∇|x). (24)

D. Treatment of the denominator

In this section we propose an alternative method to evaluate
the denominator in Eq. (5). In this approach, the requirement
that the Schrödinger equation is solved exactly is replaced by
a much weaker condition that the one-electron basis used for
expansion of the Hartree-Fock orbitals is complete. Under this
assumption, the gradient of the closed and open orbitals can
be expanded in the orbital basis as

∇|i) =
∑

p

|p)(p|∇|i), ∇|x) =
∑

p

|p)(p|∇|x). (25)

The gradient of the Hartree-Fock wave function �0 becomes
a linear combination of singly excited determinants. Deriva-
tion of the explicit expression for the denominator is hence
accomplished using the standard Slater-Condon rules, giving

D=−6
∑

ix

Rix(i|∇|x) − 6
∑

ai

Rai(a|∇|i)−6
∑

ax

Rax(a|∇|x),

(26)
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where

Rix = (x|GO − GC |i) +
∑

j

( j|∇|x)( j|FO|i) +
∑

a

(a|∇|x)(a|FO|i) −
∑

a

(a|∇|i)(x|FC |a)

+
∑

y

(i|∇|y)(x|FC |y) − (i|∇|x)(εx + εi ),

Rai = (a|GC |i) −
∑

b

(b|∇|i)(a|FO|b) −
∑

x

(a|∇|x)(x|FC |i) −
∑

x

(i|∇|x)(a|FC |x) + (a|∇|i)(εa − εi ),

Rax = (a|GO|x) −
∑

i

(a|∇|i)(i|FO|x) +
∑

i

(i|∇|x)(a|FO|i) + (a|∇|x)(εa − εx ). (27)

In the above formulas, the operators GC and GO are defined
in exactly the same way as in Eqs. (21)–(23) with the excep-
tion that Uax, Uai, and Uxi are replaced by (a|∇|x), (a|∇|i),
and (x|∇|i), respectively.

E. Basis set considerations

As noted in the Introduction, one of the major challenges
in the calculation of the Bethe logarithm is the choice of the
basis set functions for the expansion of �(k). In this work we
employ the Slater-type orbital (STO) basis set defined as

χnlm(r; ζ ) = rn−1e−ζ r Ylm(r̂), (28)

where ζ > 0 and Ylm are the real spherical harmonics. The
normalization constant is not included in the above definition,
but normalized orbitals are used in all calculations reported
in this paper. For the expansion of the Hartree-Fock orbitals,
we use the canonical STOs (1s, 2p, 3d , etc.) with the principal
and angular quantum numbers related by l = n − 1. However,
for the expansion of the response function �(k), we addition-
ally employ STOs with l = n, i.e., 1p, 2d , and so on. The
reasons behind this choice will be explained shortly, but first
we discuss some of their relevant properties. For brevity, we
refer to the STOs with l = n as atypical STOs.

Let us consider the simplest member of the atypical STOs,
namely, the 1p functions. While 0s functions (with n = l = 0)
appear to be the first atypical STO, they do not have a finite
kinetic energy and hence cannot be used as a basis set for
quantum chemical calculations. An alternative definition of
0s functions was given by Szalewicz and Monkhorst [91],
but it deviates from the standard formula in Eq. (28). Written
explicitly in Cartesian coordinates, the 1p function takes the
form (up to a trivial multiplicative constant)

χ1pμ
(r; ζ ) = μ

r
e−ζ r, (29)

where μ = x, y, z. An interesting property of 1p functions
is that they are not everywhere continuous. For example,
for x = y = 0 the 1pz function reads e−ζ rsgn(z), where sgn
stands for the sign function. However, this causes no major
problems in the computation of the necessary matrix elements
since discontinuities appear only on subsets of R3 that are of
measure zero. Similar analysis can be performed for atypical
STOs with higher principal quantum numbers, i.e., 2d , 3 f ,
etc. While they are continuous everywhere, unlike 1p, the
discontinuities appear in their derivatives.

To show how the atypical STOs naturally arise in the
present context, we return to the response equation (19). Dif-
ficulties in the calculation of �(k) in a finite basis set are
encountered only when k is large. Therefore, let us consider
the analytic behavior of the function �(k) as k → ∞. As
shown in Refs. [61,73], it can be represented in the form

�(k) → 1

k
∇�0 + 1

k2
U (k), (30)

where U (k) is the so-called Schwartz function. This func-
tion is defined as a solution of a complicated differential
equation [61,73] and has no closed-form analytic solution.
However, as argued in Ref. [73], it can be accurately approxi-
mated by

US (k) = �0

∑
i

ri

r3
i

[
1 − e−ξri (1 + ξri)

]
, (31)

with ξ = √
2k. This function captures the essential analytic

features of the exact U (k). Therefore, the basis set used for
the expansion of �(k) in Eq. (19) must be able to model both
∇�0 and US (k) effectively.

Let us consider the first term on the right-hand side of
Eq. (30). In the simplest approximation, the Hartree-Fock
orbitals of many-electron atoms can be approximated by lin-
ear combinations of hydrogenlike orbitals with some effective
nuclear charge Zeff (Slater screening constants [84]). For the
first- and second-row atoms it is sufficient to consider the 1s,
2s, 3s, 2p, and 3p hydrogenlike states. The gradients of the ns
orbitals (in the Cartesian representation) read

∇φ1s(r) ∝ r
r

e−Zr, (32)

∇φ2s(r) ∝ r
r

e−Zr/2(Zr − 4), (33)

∇φ3s(r) ∝ r
r

e−Zr/3(2Z2r2 − 30Zr + 81). (34)

Clearly, differentiation of ns orbitals generates a 1p orbital
plus a sum of nonsingular terms which can be described using
the ordinary basis. Of course, one can adopt a brute-force
approach and attempt to approximate ∇φns(r) by using the
standard 2pm functions only. However, our numerical experi-
ments show that this is inefficient due to the aforementioned
lack of continuity.

The gradients of the np wave functions are found simi-
larly. Differentiation leads to 2d orbitals plus a regular part
which can be accurately represented in a canonical STO basis
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(provided the nonlinear parameters are optimized properly).
To sum up, in order to represent the quantity ∇�0 efficiently
within the STO basis, both canonical and atypical STOs are
required. Of course, if one goes beyond the model of atomic
orbitals represented by hydrogenlike wave functions, there is
no guarantee that just a single 1p orbital per occupied ns state
will be sufficient to represent the gradient accurately. The
number of additional atypical STOs and their exponents must
be found by trial and error and by numerical optimization.

The second part of the analysis concerns the Schwartz
function (31). When the electron is far from the nuclei this
function can be represented in the canonical basis set without
major difficulties. Therefore, we need to consider its behav-
ior when the electron-nucleus distance is small. Expanding
Eq. (31) in a series around ri = 0 and neglecting the multi-
plicative constants, we obtain

US (k) ≈ �0

∑
i

ri

ri
e−ξri + O(ri ). (35)

This leads to the conclusion that in the vicinity of the nuclei,
the Schwartz function can be approximated by the ground-
state wave function multiplied by a sum of 1p orbitals. This
means that the one-electron basis used in the calculations
must be able to model products of each occupied Hartree-
Fock orbital and a 1p function. Taking into account that we
consider atoms with occupied orbitals of 1s, 2s, 3s, 2p, and
3p symmetry, this leads to the conclusion that 1p and 2d
orbitals must be included in the basis set for the expansion
of the response function. An estimate of the exponents of the
1p and 2d functions is ξ = √

2k.

IV. NUMERICAL CALCULATIONS

A. Computational details

Calculation of one and two integrals with Slater-type or-
bitals has been considered in Refs. [92–95] and this formalism
is adopted in the present work. The inclusion of the atypical
STOs does not lead to fundamentally new types of matrix
elements in the case of atomic systems. The necessary in-
tegrals are either evaluated directly in the same way as in
Refs. [92–95] or obtained by analytic continuation of the
formulas derived for the conventional STOs.

The basis sets used for the expansion of the Hartree-Fock
orbitals are constructed out of the canonical STOs. The com-
position of the basis sets is twelve 1s orbitals for helium,
fourteen 1s orbitals for lithium and beryllium, sixteen 1s and
2p orbitals for B and Ne, and eighteen 1s and 2p orbitals for
Na, Mg, and Ar. The number of basis set functions was chosen
after extensive numerical trials, aiming at the accuracy of the
total energy of around 12 significant digits. The exponents ζkl

of the STOs with the angular momentum l were restricted to
form a geometric sequence, i.e., ζkl = αlβ

k
l . The parameters

αl and βl were fully optimized by employing the variational
principle. The total Hartree-Fock energies obtained by us are
given in Table I and are compared with the best literature
references. In some cases, the energies reported here appear
to be the most accurate to date. The computer code used for
all calculations reported in this work is available from [98].

TABLE I. Comparison of the optimized Hartree-Fock energies
with the best literature estimates. All values are given in atomic units.

Hartree-Fock energy

Atom This work Refs. [96,97]

He −2.861 679 995 612 232 −2.861 679 995 612 238 9
Li −7.432 726 930 729 724 −7.432 726 930 73
Be −14.573 023 168 311 −14.573 023 168 316 400
B −24.529 060 728 530 −24.529 060 728 5
C −37.688 618 962 972 −37.688 618 963 0
N −54.400 934 208 516 −54.400 934 208 5
O −74.809 398 470 020 −74.809 398 470 0
F −99.409 349 386 718 −99.409 349 386 7
Ne −128.547 098 109 381 9 −128.547 098 109 382 042
Na −161.858 911 616 526 −161.858 911 617
Mg −199.614 636 423 742 −199.614 636 424 506 710
Ar −526.817 512 801 437 −526.817 512 802 723 355

By solving the Hartree-Fock equations, one obtains a set
of virtual orbitals as a by-product. As explained in Sec. III C,
they are used to form excited-state determinants into which
the response function is expanded. However, at this stage,
the virtual basis has to be augmented with additional STOs
necessary for accurate representation of the response func-
tion. Unfortunately, as the functions added to the basis are,
in general, neither orthogonal to the occupied orbitals nor
orthonormal, the response equations derived in Sec. III C
would no longer valid in the extended basis. To eliminate
this problem, an intermediate preparatory stage, comprising
three steps, is introduced before the response calculations
are initiated. First, the occupied orbital space is projected
out from each additional function by applying the operator
Ô = 1 − ∑

i |i〉〈i| − ∑
x |x〉〈x|. Next, the projected functions

are added to the virtual space, which is then orthonormalized
using the Löwdin algorithm [99]. Finally, the virtual-virtual
block of the Fock matrix is evaluated [see Eq. (9)] and diago-
nalized to form the final virtual basis.

There is a slight disadvantage of the proposed proce-
dure which must be mentioned. While in the new basis
the occupied-occupied and virtual-virtual blocks of the ef-
fective Fock operator are diagonal, the closed-virtual and
open-virtual blocks are no longer strictly zero. However, the
magnitude of the off-diagonal terms decreases rapidly as the
quality of the basis used for the expansion of the occupied
orbitals is improved and vanishes in the complete basis set
limit. For the basis sets used in this work, the absolute magni-
tude of the off-diagonal terms in relation to the corresponding
diagonal elements never exceeded 10−6. Therefore, the spu-
rious off-diagonal elements were neglected in all subsequent
calculations.

The basis set used for the expansion of the response func-
tions is created by adding two groups of functions. First, the
expansion of the response functions requires a basis with
angular momentum higher by one unit than the occupied
orbitals. To account for that, we take all functions with the
highest angular momentum present in the Hartree-Fock basis
and replicate them increasing their l by one. Second, the
atypical STOs must be added to the basis. We find that to

042817-7



MICHAŁ LESIUK AND JAKUB LANG PHYSICAL REVIEW A 108, 042817 (2023)

obtain accurate results, it is sufficient to add two 1p func-
tions per each occupied ns shell in the atom, and two 2d per
each occupied np shell. For example, for lithium or beryl-
lium atoms four 1p functions are added, while for sodium or
magnesium six 1p functions and two 2d functions are added.
The exponents of the atypical STOs are fully optimized for
each k separately. The remaining functions in the basis are
independent of k and are not affected by the optimization. This
approach is a middle ground between the full optimization of
the basis for each k, which is prohibitively computationally
costly, and using a fixed basis for each k, which does not offer
sufficient flexibility.

The working formula for calculating the Bethe logarithm
(15) involves integration over the variable t , which must be
carried out numerically. Our preliminary tests showed that the
standard Gauss-Legendre quadrature (with a linear transfor-
mation of the integration interval) with 50 nodes is capable of
providing relative accuracy of at least six significant figures.
This setup is used in all calculations presented in this work.

B. Benchmark calculations

1. Hydrogen atom

Before considering many-electron atoms, the performance
of the proposed formalism is tested in calculations for systems
where reliable reference values are known. In this and the next
section we provide results for the hydrogen and helium atoms
and compare them with the data available in the literature.

The hydrogen atom is an ideal example for testing the
adequacy of the basis set used for the expansion of the re-
sponse function. Indeed, the exact ground-state wave function
is known in this case and can be used in the calculations
without any difficulties. This makes the accuracy of the results
dependent solely on the quality of the basis used for the ex-
pansion of the response function, eliminating other sources of
error. The basis set used for this expansion comprises twenty
2p STOs with exponents being a geometric progression opti-
mized to fit the first 30 excited states of the hydrogen atom
of the p symmetry. Additionally, the basis includes two 1p
functions with exponents optimized for each k.

The numerical integration of Eq. (15) requires one to cal-
culate the integrand F (t ) at grid points where the value of t
is close to zero. For small t , it is impractical to evaluate F (t )
directly from Eqs. (15) and (16), because the former formula
involves a substantial cancellation between the terms in the
numerator. To circumvent this problem we construct a fit of
the function F (t ) in a region where t is moderately small
and calculate F (t ) for smaller t by extrapolation of the fitting
function instead of the direct evaluation.

To this end, in the first stage of the calculations we com-
pute values of F (t ) in a region where t is small, so that the
series expansion (18) is valid, but large enough to avoid the
aforementioned cancellation problem. For the hydrogen atom
we use 26 equidistant points spaced between t = 0.005 and
0.030. The distance between points is constant and equal to
t = 0.001. These data points are then fitted with the formula

F (t ) = f3 + f4t ln t + f5t + f6t2 ln t + · · · , (36)

which follows from Eqs. (15) and (18) by canceling the
counterterms. The fitting is performed using the least-

FIG. 3. Values of the integrand F (t ) in Eq. (15) obtained with a
basis set including one 1p function (blue circles) and two 1p func-
tions (red circles) as a function of the parameter t . The inset graph
presents a magnification of the plot within range of approximately
t ∈ (0.0075, 0.0150). For larger t , the two data sets are indistinguish-
able on the scale of the plot.

squares procedure with equal weights for every point. With
seven terms in the expansion in Eq. (36), i.e., up to and
including t3, the largest absolute deviation of the fit
from the raw data points is roughly 6 × 10−10, with the
mean absolute deviation of only about 2 × 10−10. The fi-
nal results were virtually unaffected when five or nine
terms were used in Eq. (36). It is also worth point-
ing out that for the hydrogen atom the exact values of
the first two coefficients in Eq. (36) are known, namely,
f3 = 16 and f4 = 32. From the fitting function, we ob-
tained f3 = 16.000 002 5 and f4 = 32.0024, in remarkably
good agreement with the exact results. This confirms the
accuracy of Eq. (36) and proves that the problem of small t
can be avoided by fitting.

In the second stage of the calculations, the remaining
f (t ) and F (t ) required by the quadrature are computed. For
t > 0.030, i.e., outside the region covered by the fit, the con-
ventional expressions (15) and (16) are used as they stand.
In this way, we obtain the final value of ln k0 = 2.984 127 94
for the hydrogen atom in the ground state. This is compared
with the reference value obtained by Drake and Goldman [52],
ln k0 = 2.984 128 56 (all digits shown are accurate), revealing
that our result is accurate to six significant digits (the relative
error is about 0.2 ppm). This accuracy level is more than
sufficient in terms of calculations for many-electron systems.

It is interesting to study the influence of the atypical STOs
on the quality of the results obtained for the hydrogen atom.
To this end, we perform calculations of the integrand F (t )
using a basis set without any 1p functions and separately with
only one 1p function. When no 1p functions are included in
the basis, the results are clearly nonsensical and diverge to
a large negative value for small t . Therefore, they are not
considered here. When only one 1p function is used, the
results for t ≈ 0.020 are almost identical to the data discussed
previously, as shown in Fig. 3. For example, around t = 0.020
they differ by only about several parts in 10 000. However,
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TABLE II. Results of the calculations for the helium atom with
the electronic wave function approximated by the Hartree-Fock de-
terminant (see Sec. IV B 2 for details of the procedure). All values
are given in atomic units.

Quantity Value

−E0 2.861 679 995 61
−〈�0|∇2|�0〉 5.723 359 991 22
D [formula (17)] 45.187 644 014 03
D [formula (26)] 45.187 635 516 04
ln k0 4.391 24

as the value of t gets closer to zero, the results obtained
with only one 1p function in the basis deteriorate. This is
a typical symptom of a basis set incompleteness problem in
the computation of F (t ). Instead of converging to the correct
limit F (0) = 16, a rapid divergence towards a large negative
value is observed. No such artifacts are present in calculations
employing the basis set with two 1p functions. One may also
ask to what degree adding further 1p functions improves the
accuracy in comparison with the data shown in Fig. 3. We
found that the addition of the third 1p function is not worth
the effort related to the optimization of the exponents. The
differences are too small to be visible on the scale of the plot
in Fig. 3, but the accuracy of the ln k0 is improved by one
significant digit.

2. Helium atom

The next important test case is the helium atom. The overall
procedure for calculation of ln k0 is analogous to that for the
hydrogen atom. The major differences stem from the fact
that for helium the Hartree-Fock wave function, i.e., a single
Slater determinant, is not the exact solution of the electronic
Schrödinger equation. Because of that, the denominator in
Eq. (5) cannot be calculated using the exact formula (17).
Instead, the approach based on the resolution of identity de-
scribed in Sec. III B is employed. In Table II we report values
of the denominator calculated using both approaches, as well
as several other key quantities required in the computation of
the Bethe logarithm. Remarkable agreement is obtained be-
tween values of D obtained according to both formulas. This
suggests that for helium, Eq. (17) is sufficiently accurate even
if an approximate electronic wave function is used. However,
we found that this conclusion is no longer true in calculations
for many-electron atoms reported later. As the evaluation of
the denominator according to Eq. (26) is not computationally
demanding, we continue to use it in the remainder of this
work.

Our final result for the Bethe logarithm of the helium atom
is ln k0(He) = 4.391 24. It agrees to about 0.5% with the ref-
erence value of Korobov [65], namely, ln k0(He) = 4.370 160
(all digits shown are exact). The main source of error is the
accuracy of the ground-state electronic wave function rep-
resented by the Hartree-Fock determinant. Nonetheless, this
level of accuracy is sufficient in many calculations for larger
systems.

The fact that the Bethe logarithm can be calculated with
accuracy better than 1% using the Hartree-Fock method may

TABLE III. Results of the calculations for many-electron atoms.
All values are given in atomic units.

Quantity

Atom −〈�0|∇2|�0〉 D ln k0

Li 14.865 454 260.403 5.194
Be 29.146 046 889.390 5.763
B 48.248 405 2257.521 6.339
C 72.588 886 4805.053 6.706
N 102.443 892 9056.788 6.973
O 137.919 402 15 665.784 7.220
F 179.393 816 25 352.026 7.415
Ne 227.138 262 38 994.224 7.581
Na 282.111 532 57 691.053 7.770
Mg 344.007 915 82 558.373 7.943
Ar 861.417 446 4 34 267.898 8.761

be surprising at first. For example, when the Hartree-Fock
method is used for calculation of similar quantities involv-
ing a response theory, such as static or frequency-dependent
polarizabilities, errors are typically larger by at least an order
of magnitude [5,7]. The fact that the electron correlation ef-
fects, not accounted for in the Hartree-Fock method, are of
minor importance in calculation of the Bethe logarithm can
be understood by noting that the response function �(k) is
concentrated primarily around the atomic nucleus, especially
for large k. This regime is dominated by the electron-
nuclear cusp resulting from the Coulomb singularity of the
electron-nucleus interaction potential, not by the electronic
cusp that requires a correlated treatment beyond the mean-
field approximation.

C. Many-electron atoms

Now we proceed to the calculation of the Bethe logarithm
for many-electron atoms. In these calculations we closely
follow the protocol established and verified in the previous
sections for hydrogen and helium. In Table III we report the
obtained values of ln k0 and of several key quantities encoun-
tered in the formalism.

In the case of lithium and beryllium atoms, accurate
values of the Bethe logarithm were obtained by Pachucki
and Komasa [45,67], namely, ln k0(Li) = 5.178 17(3) and
ln k0(Li) = 5.750 34(3), using explicitly correlated wave-
function models. It is worth pointing out that our results
deviate by only 0.3% and 0.2%, respectively, from those
work. These relative errors are noticeably smaller than in
the case of helium discussed in the previous section (ap-
proximately 0.5%). This suggests that the accuracy of the
mean-field approach improves with an increasing number of
electrons in the atom. This is not entirely unexpected, as
in the Z → ∞ limit, the atomic Bethe logarithm tends to a
weighted mean of the hydrogenic values for the corresponding
occupied states. The latter are represented very accurately in
our formalism (see Sec. IV B 1). Unfortunately, as sufficiently
reliable reference data are not available for atoms beyond
beryllium, it is impossible to confirm this trend beyond a
reasonable doubt.
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No significant problems are encountered in the calculations
for the remaining atoms. It is difficult to rigorously estimate
the error of the calculated values, but the experience gained
from benchmark calculations suggests that the accuracy of the
data given in Table III is better than 0.5%. It is also interesting
to compare our results with a frequently used approximation
which assumes that the dominant contribution to the Bethe
logarithm comes from the 1s2 shell, which is doubly occupied
in all atoms. It is hence reasonable to approximate ln k0 for a
many-electron atom by the corresponding value for the heli-
umlike ion with the same nuclear charge. The latter quantity
is known to very high accuracy [56,100–102]. A comparison
reveals that the agreement for lithium and beryllium is re-
markably good, with the difference between the heliumlike
estimate and the data given in Table III being a fraction
of a percent. However, as the nuclear charge increases, the
deviation becomes larger, reaching about 2–3 % for carbon,
nitrogen, and oxygen and slowly decreasing beyond this point.
This error is clearly much larger than that of the mean-field
approach.

D. Lamb shift in the nitrogen molecule

As an illustrative application of the theory reported in
this work, we consider the Lamb shift contribution to the
vibrational energy levels of the nitrogen molecule N2. The
knowledge of accurate properties of the nitrogen molecule, the
major component of air, is important in various research fields.
For example, the development of accurate pressure standards
based on refractivity or capacitance measurements is an on-
going effort with applications in science and industry alike
[38–41]. The nitrogen molecule is an ideal candidate for the
working gas in such measurements as it is safe, inexpensive,
and broadly available.

In contrast to atoms, the fundamental properties of
molecules, such as polarizability or magnetic susceptibility,
are temperature dependent. This dependence is non-negligible
and has to be taken into account in order to be useful from an
experimental point of view. In order to model this effect, the
properties calculated as a function of the molecular geometry
have to be averaged over the accessible vibrational levels. The
weight of each level is equal to the Boltzmann factor evaluated
at a temperature of interest. From the point of view of the
aforementioned applications, it is sufficient to consider tem-
peratures of up to 3000 K. Based on the data available in the
literature [103], one can estimate that the first ten vibrational
levels must be taken into account in order to compute the
temperature dependence of an arbitrary quantity with relative
accuracy of one part per 10 000.

In order to evaluate the Lamb shifts of these vibra-
tional levels, we developed a potential energy curve for
the nitrogen molecule within the Born-Oppenheimer (BO)
approximation. The calculations were performed at the in-
ternally contracted multireference configuration-interaction
level of theory [104–106] using the doubly augmented d-
aug-cc-pVXZ, X = 2, . . . , 6, family of Gaussian basis sets
[107–110]. For improved accuracy, the basis sets were fully
uncontracted and the multireference configuration-interaction
including Davidson cluster correction with relaxed reference
was applied [111–113]. The leading-order relativistic cor-

TABLE IV. Vibrational energies (measured with respect to the
bottom of the potential well) and the corresponding Lamb shifts of
the first ten vibrational levels of the nitrogen molecule. All values are
given in cm−1.

ν Eν δQED
ν

0 1173.3 3.3
1 3507.8 3.2
2 5813.2 3.2
3 8080.7 3.1
4 10 327.5 3.0
5 12 549.3 3.0
6 14 757.1 2.8
7 16 930.1 2.8
8 19 061.2 2.7
9 21 168.1 2.6

rections were taken into account perturbatively using the
Cowan-Griffin Hamiltonian [114]. All calculations were per-
formed using the MOLPRO program package [115,116]. The
results were extrapolated to the complete basis set limit using
the Riemann extrapolation formula [117].

The leading-order QED correction to the interaction poten-
tial was evaluated using the formula

EQED = 8α

3π

(
19

30
− 2 ln α − ln k0

)
〈D1〉, (37)

which is obtained from Eq. (2) by dropping all two-electron
terms. The molecular Bethe logarithm was approximated by
the atomic value reported in Sec. IV C according to the dis-
cussion given in Sec. II. To illustrate the accuracy of the
complete ab initio potential, we note the obtained well depth
De = 79 898.6 cm−1 and the equilibrium internuclear dis-
tance Re = 2.073 a.u., which are in good agreement with
the experimental results, De = 79 845(9) cm−1 and Re =
2.074 312(2) a.u., taken from Refs. [103,118]. The vibrational
levels were obtained by solving the one-dimensional radial
Schrödinger equation for the nuclear motion. The standard
Numerov method [119] was applied for this purpose using
the cubic spline interpolation of the interaction potential as
programed in LEVEL code [120]. We considered only the
most abundant isotope of nitrogen 14N, with the atomic mass
m(14N) = 14.003 074, according to Ref. [121].

In order to find the Lamb shifts of the vibrational levels,
denoted by δQED

ν further in the text, the nuclear Schrödinger
equation was solved with and without the QED correction
to the potential (37). The difference between the correspond-
ing vibrational energies in the two calculations was taken as
δQED
ν . In Table IV we report energies of the vibrational levels

(J = 0) obtained with the complete interaction potential, i.e.,
including the BO, relativistic, and QED components, and the
corresponding δQED

ν shifts for ν = 0, 1, . . . , 9. Overall, the
Lamb shift in nitrogen is of the order of a few cm−1 for
these states, showing that it is spectroscopically significant
and at least an order of magnitude larger than the experimental
uncertainties involved in measuring the vibrational transition
energies in N2 (see Refs. [103,122] for a discussion of the
available experimental data). Of course, at present the uncer-
tainty of theoretical predictions for N2 is limited by errors in
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the BO component of the potential, not by the lack of the
EQED component. Nonetheless, the work on improving the BO
potential in ongoing.

V. CONCLUSION

In this work we have developed and implemented a method
for calculation of the Bethe logarithm for many-electron
atoms. The proposed formalism is based on the mean-field
representation of the ground-state electronic wave function
and of the response functions required in the Schwartz
method. We discussed difficulties encountered in the calcu-
lations of the Bethe logarithm, in particular those related
to the specific basis set requirements in the vicinity of the
atomic nucleus. This problem was ameliorated by introduc-
ing a modified basis set of exponential functions which are
able to accurately represent the gradient of hydrogenlike
orbitals.

We computed the Bethe logarithm for ground electronic
states of atoms from hydrogen to magnesium as well as for
argon. The results were compared with the available refer-
ence data from the literature, whenever possible. In general,
the mean-field approximation introduced a surprisingly small
error in the calculated values, suggesting that the electron
correlation effects are of minor importance in determination
of the Bethe logarithm. Therefore, one may expect that even a
low-level correlated many-body theory may be entirely suffi-

cient to calculate ln k0 with high accuracy. We believe this is
a promising direction for further study.

Finally, we studied a robust and computationally inexpen-
sive scheme to evaluate the Lamb shift for arbitrary light
molecular systems at little computational cost. In this method,
a weak dependence of the Bethe logarithm on the molecu-
lar geometry was exploited. As an illustration, we calculated
Lamb shifts of the vibrational levels of the nitrogen molecule.
The results prove that the QED effects in the spectrum of N2

molecule are spectroscopically significant within the current
experimental uncertainties.
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