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Signatures for strong-field QED in the quantum limit of beamstrahlung
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Signatures for strong-field quantum electrodynamics are determined for collisions between round ultrarel-
ativistic leptonic beams in the quantum limit of beamstrahlung. In the low-disruption regime, we derive the
integrated beamstrahlung photon spectrum that features a characteristic peak close to the beam energy. The
conditions to precisely observe this peak experimentally are given regarding the beam parameters. Moreover,
the effects of electron-positron pair creation and beam disruption on the photon spectrum are discussed and
explored with three-dimensional particle-in-cell QED simulations. The photon spectrum is associated with
the emission of ultrashort and highly collimated γ -ray beams with a peak spectral brightness exceeding
1030 photons/(s mm2 mrad2 0.1% BW) at the 100-GeV level of photon energy (close to the beam energy).
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I. INTRODUCTION

The next-generation high-luminosity linear lepton (elec-
tron or positron) colliders [1–6] can be impacted by beam-
beam effects, such as beamstrahlung (synchrotron radiation)
and disruption (beam pinch or repulsion) under fields of the
oncoming beam [7–9]. Beamstrahlung is particularly impor-
tant for the performance of lepton colliders, as it causes
energy loss and degrades the luminosity [9,10]. For TeV-level
colliders [4], beamstrahlung becomes significant [4,9], even
with flat beams (specifically designed for minimizing beam-
strahlung). The corresponding radiation enters the quantum
regime [9], where the particle dynamics is described by the
strong-field QED (SF-QED) theory [11–16], which predicts
nonlinear Compton scattering (responsible for beamstrahlung
explored here) and nonlinear (multiphoton) Breit-Wheeler
electron-positron pair creation. The quantum regime is
characterized by χe > 1, where χe is the quantum parame-
ter defined as χe =

√
(γ E + p/mc × B)2 − (p/mc · E)2/Es.

Here, Es = m2c3/eh̄ is the Sauter-Schwinger field, h̄ is the
reduced Planck constant, c is the speed of light in vacuum,
e and m are the charge and mass of an electron, p and γ are
the momentum and the Lorentz factor of the particle, and E
and B are the electric and magnetic fields.

High-gradient advanced accelerator concepts (AACs)
[6,17–22] aim to deliver compact (micron- or submicron-
scale) and high-energy (tens of GeV to a few TeV) leptonic
beams with a high particle number (N0 > 109 per bunch).
With these beams, the colliders will place beamstrahlung in
the quantum or even deep-quantum (χe � 1) regimes [7,8,23–
28]. This beam-beam scenario presents a controlled and clean
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platform for probing the SF-QED signatures, as an alterna-
tive to the laser-based configurations [29–46], beam-crystal
interaction [47], and beam-plasma interaction [48]. AAC-
based colliders may intrinsically deliver round or nearly round
beams [10,25,26]. Beamstrahlung and disruption are aug-
mented with round beams, further motivating the study of
quantum-dominated beam-beam effects to prepare for future
lepton colliders [10].

Previously, Del Gaudio et al. [25] studied beamstrahlung
and pair creation with round colliding beams in the weak
quantum regime (χe � 1). The commonly used mean-field
model [7,23], with the realistic field profiles discarded, was
shown to deviate from the theoretical beamstrahlung spectrum
[25]. Recently, Tamburini and Meuren [27] proposed a spe-
cially designed, asymmetric collision configuration where the
single-particle radiation dynamics can be investigated. How-
ever, in realistic (either laser- or beam-driven) experiments
using leptonic beams with round or nearly round shape, the
observed SF-QED signatures, e.g., photons collected by the
diagnostics, will include the integrated contribution from all
particles with different χe in the beam(s). This integrated pho-
ton emission and its dependence on the associated beam-beam
effects remain to be explored.

In this article, we study beamstrahlung in the quantum
regime (χe � 1), and we identify a clear signature for SF-
QED as a sharp peak close to the beam energy in the photon
spectrum. This distinctive signature is found to appear at high
χe (above a threshold value) and be susceptible to the im-
pact of beam-beam effects and energy spread of the colliding
beams. Yakimenko et al. [26] have shown that the collision
of tightly compressed beams can enable a significant fraction
of the beam particles to enter the fully nonperturbative QED
regime [49–54], i.e., αχ2/3

e � 1 (χe � 1600), with α � 1/137
being the fine-structure constant. The exact theory for this
nonperturbative regime has not been established. Here, our
work focuses on the quantum regime, but with αχ2/3

e � 1,

2469-9926/2023/108(4)/042816(11) 042816-1 ©2023 American Physical Society

https://orcid.org/0000-0003-4205-9732
https://orcid.org/0000-0002-0045-389X
https://orcid.org/0000-0003-2906-924X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.042816&domain=pdf&date_stamp=2023-10-20
https://doi.org/10.1103/PhysRevA.108.042816


W. L. ZHANG, T. GRISMAYER, AND L. O. SILVA PHYSICAL REVIEW A 108, 042816 (2023)

allowing us to explore the signatures of SF-QED in the per-
turbative regime.

This paper is organized as follows. An analytical solu-
tion to the integrated beamstrahlung spectrum in the χe � 1
regime is given in Sec. II. Section III describes the particle-in-
cell simulations that support our study. Section IV is devoted
to the beamstrahlung properties and their dependence on the
beam parameters, the impact of beam-beam effects (pair cre-
ation and beam disruption), and misalignment (beam offset).
The validity of the locally constant field approximation in lep-
tonic collisions is thoroughly examined in Sec. V. Section VI
characterizes the quality of the emitted γ -ray photon beams
in leptonic collisions. Especially, the brightness of the γ -ray
beam is analyzed and theoretically estimated. The conclusions
of this paper are summarized in Sec. VII. Appendixes A and
B provide the derivation details of this paper.

II. INTEGRATED BEAMSTRAHLUNG SPECTRUM
IN THE QUANTUM REGIME

An analytical expression for the integrated beamstrahlung
spectrum can be derived when pair creation and the disruption
effects are negligible, i.e., D � 1, where D = reN0σz/γ σ 2

0
is the disruption parameter [55]. Here, re = e2/mc2 is the
classical electron radius, and σz and σ0 are the longitudinal
length and transverse size of the beam, respectively. After the
integrated beamstrahlung spectrum is derived, the impact of
these beam-beam effects (pair creation and beam disruption)
is discussed and demonstrated by particle-in-cell simulations
in Sec. IV C.

A. Beam parameters and setup

We consider collisions between two beams with Gaus-
sian density profiles characterized by n = n0 f (r)g(z). Here,
n0 is the peak density, f (r) = exp(−r2/2σ 2

0 ), where r is
the radial position, assuming round (cylindrical) symme-
try in the transverse direction. g(z) = exp[−(z − zc)2/2σ 2

z ],
where z is the longitudinal coordinate comoving with the
beam and zc depicts the beam center. The radial electric
and azimuthal magnetic fields of an ultrarelativistic beam are
given by Er = 4πen0F (r)g(z) and Bθ � Er [25], with F (r) =∫ r

0 f (r′)r′dr′/r. The local, instantaneous χe for a particle in
one beam is then given by

χe(r, t ) � 2γ Er

Es
= 8π |e|n0γ

Es
F (r) exp(−u2), (1)

where u = √
2ct/σz is the normalized time, and we have

assumed that the particle under study crosses the center of
the oncoming beam at t = 0. For a Gaussian beam, F (r) =
σ 2

0 [1 − exp(−r2/2σ 2
0 )]/r, and the fields peak at r = rpeak =

1.6 σ0, leading to the maximum χe given by

χe max = χe(rpeak, 0) = 15.3
E0[10 GeV] N0[1010]

σ0[0.1 µm] σz[0.1 µm]
, (2)

where E0 = γ mc2 is the beam energy. Equation (2) shows that
the χe > 1 regime can be reached by delivering high-energy
(E0 > 10 GeV) and submicron (σ0 � µm and σz � µm) beams
with ∼ nC charge.

B. Integrated photon spectrum

The main steps of the derivation of the integrated photon
spectrum are given below but additional technical details can
be found in Appendix A. The differential probability rate for
single-photon emission in the quantum regime is given by [11]

d2W

dtdξ
= α√

3πτcγ

[
IntK5/3(b) + ξ 2

1 − ξ
K2/3(b)

]
, (3)

where τc = h̄/mc2 is the Compton time; ξ = Eγ /E0, with
Eγ being the photon energy; b = 2/[3χe(r, t )]ξ/(1 − ξ );
and IntK5/3(b) = ∫ ∞

b K5/3(q)dq, with Kν being the modified
Bessel function of the second kind. Equation (3) is estab-
lished with the locally constant field approximation (LCFA)
[11,15,16,56–60]. The dependence of the validity of the LCFA
on collision parameters and photon energies is analyzed in
Sec. V. We have verified that the LCFA can be readily
employed for the collisions considered in our study. The time-
integrated photon spectrum emitted from a single particle in a
beam is given by [25]

sω(ξ, r) =
∫ ∞

−∞

d2W

dtdξ
dt . (4)

The integrated radiation spectrum from the beam, normalized
by the particle number N0, is then given by

Sω(ξ ) =
∫ ∞

0
sω(ξ, r) f (r)rdr

(∫ ∞

0
f (r)rdr

)−1

. (5)

In order to derive Sω(ξ ), we first approximate the
special functions in d2W/dtdξ [Eq. (3)], such that
K2/3(b) � k2/3b−2/3 exp(−b) and IntK5/3 � 2K2/3(b) �
2k2/3b−2/3 exp(−b), where k2/3 = 1.23 is a fitting coefficient.
With these expressions, d2W/dtdξ can be well approximated.
The details of this approximation and the corresponding
numerical verification are given in Appendix A.

In addition, we approximate the density profile of the
beams as a uniform profile. Since the radiation probability
[Eq. (3)] is solely determined by χe(r, t ) of the emitting par-
ticle, it is crucial to preserve the χe distribution of particles
in the collision (dN/dχe) with the approximated profiles.
For this purpose, we approximate the Gaussian profiles by a
cylinder of radius σ0A and length σzA = 2

√
2σz, with a con-

stant density n0A. We also require this approximated profile
to match χe max of the original Gaussian profiles, leading to
n0Aσ0A = 0.9n0σ0. The detail for characterizing the approxi-
mated profile is given in Appendix A.

Here, we justify that a collision with the approximated
uniform profile introduced above can preserve the dN/dχe

distribution of particles in the collision between the original
Gaussian beams. Figure 1 depicts the dN/dχe distribution
at the peak interaction moment (when the centers of the
two beams cross) in a collision with χe max = 200. We have
developed a Monte Carlo code to simulate beam-beam col-
lisions where the dN/dχe distribution can be conveniently
calculated, as explained in the figure caption of Fig. 1. The
theoretical dN/dχe of the approximated uniform profile can
be analytically given, i.e., dN/dχe = 2χe/χ

2
e max (green line),

and the Monte Carlo result (orange line) perfectly agrees with
the analytical result. In addition, the approximated uniform
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FIG. 1. The dN/dχe distribution of particles in leptonic beam-
beam collisions. A Monte Carlo code is developed, where the
colliding beams are represented by pseudoparticles created using
random number generation. Each pseudoparticle is assigned with a
weight given by the corresponding initial local density within the
beam. The beams are set to cross each other at the speed of light.
The χe(r, t ) of each particle is calculated based on the local fields
from the oncoming beam. The dN/dχe distribution shown here is
taken at the peak interaction moment (when the centers of colliding
beams cross) in a collision with χe max = 200. The distribution is nor-
malized by the particle number of the beam (N0). For each colliding
beam, 106 pseudoparticles are initialized. Different beam profiles are
compared here. The blue line is for Gaussian colliding beams with
energy E0 = 90 GeV, longitudinal length σz = 30.7 nm, transverse
size σ0 = 30.7 nm, and particle number N0 = 1.37 × 109. The or-
ange line is for the approximated uniform profile as specified in the
text. The green dashed line represents the theoretical distribution for
the approximated uniform profile, i.e., dN/dχe = 2χe/χ

2
e max.

profile is shown to largely preserve the shape and amplitude
of the dN/dχe distribution, compared with those of the orig-
inal Gaussian profiles (blue line). This preservation assures
that the quantum radiation calculated with the approximated
uniform profile can well reflect the radiation from collisions
between Gaussian beams.

With the above approximations, Sω(ξ ) is given by

Sω(ξ ) = 2
√

2ασz√
3πτcγ c

k2/3

(
2 + ξ 2

1 − ξ

)
b2

0 �

[
−8

3
, b0

]
, (6)

where b0 = 2/(3χe max)ξ/(1 − ξ ), and � is the incomplete
Gamma function [61,62]. The detailed derivation is provided
in Appendix A. The analytical spectrum equation (6) is veri-
fied to give the accurate photon emission in both the χe max ∼
1 and the χe max > 1 regimes. We found that the mean-field
model [7] severely underestimates the photon emission in the
χe max > 1 regime, because this model assumes a low mean
χe, i.e., χe mean � 0.6χe max, for all the particles. This average
treatment will suppress the critical contribution from particles
with high-χe (∼χe max).

III. THREE-DIMENSIONAL PARTICLE-IN-CELL
SIMULATIONS

Three-dimensional QED-PIC simulations with OSIRIS
[63], where SF-QED effects are self-consistently included

3D PIC simulation

Analytical spectrum Eq. (6)

Numerical calculation of 
the spectrum

FIG. 2. The normalized energy spectrum ξSω(ξ ) of photon radi-
ation from a head-on collision between two identical, cold, round,
and Gaussian electron beams with χe max = 200. The beam parame-
ters are the same as those used in Fig. 1, i.e., E0 = 90 GeV, σ0 = 30.7
nm, σz = 30.7 nm, and N0 = 1.37 × 109. The blue line is for a
3D PIC simulation. The orange dashed line is for the analytical
spectrum, Eq. (6). The green dashed line is for the direct numerical
calculation of Sω(ξ ) using the original Gaussian beam profile.

[32,64–66], have been performed to study the leptonic beam-
beam collisions. A typical energy spectrum ξSω(ξ ) from
a head-on collision is shown in Fig. 2 for an electron-
electron collision with χe max = 200. In the simulation,
the colliding beams counterpropagate along the z direc-
tion, with their densities initialized as n1 = n0 exp[−(x2 +
y2)/2σ 2

0 ] exp[−(z + 3σz )2/2σ 2
z ] for −6σz � z � 0 and n2 =

n0 exp[−(x2 + y2)/2σ 2
0 ] exp[−(z − 3σz )2/2σ 2

z ] for 0 � z �
6σz, respectively, where n0 = 3 × 1024 cm−3. The beams are
transversely truncated at 3σ0, i.e.,

√
x2 + y2 � 3σ0. The com-

putation cells are given by dz = 0.6 nm = 0.02σz and dx =
dy = 0.46 nm = 0.015σ0. The time step is dt = 0.009σz/c.
The number of macroparticles of each beam is 7.7 × 107. The
simulation lasts until t = 6σz/c when the beams completely
cross each other.

For these conditions, the disruption effects are negligible,
as D = 7 × 10−4 � 1. The analytical spectrum equation (6)
(orange dashed line in Fig. 2) is in excellent agreement with
the direct numerical calculation of Sω(ξ ) without approxi-
mations, i.e., using the exact d2W/dtdξ [given by Eq. (3)]
and the Gaussian profiles. The PIC simulation also confirms
our analytical results. For this particular scenario, only 3% of
the photon energy is transferred to pairs, indicating that pair
creation is negligible, as required by our model. The beam
loss (beam-to-photon conversion efficiency) is shown to be
ηγ = 4.8%, in excellent agreement with the theoretical value
ηγ = ∫ 1

0 ξSω(ξ )dξ using Eq. (6). The theoretical ηγ is given
explicitly later [using Eq. (9)].

IV. BEAMSTRAHLUNG PROPERTIES

A. Spectral peak

Using Eq. (6), we can identify the transition of the beam-
strahlung dynamics from the mild quantum regime (χe ∼ 1)
to the deep SF-QED regime (χe � 1); this transition is found
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to be characterized by a threshold quantum parameter χthr =
40. When 1 � χe max < χthr, the yield of high-energy (ξ ∼ 1)
photons grows with χe max, forming a plateaulike high-energy
tail in the photon spectrum. The energy spectrum [ξSω(ξ )] is
also broadband. When χe max > χthr, a distinctive, sharp peak
close to the beam energy appears in the Sω(ξ ) spectrum, as
well as in the ξSω(ξ ) spectrum as shown in Fig. 2, where the
peak is at ξpeak = 0.985. This peak shows that the integrated
beamstrahlung spectrum from a collision preserves the char-
acteristic peak of the single-particle spectrum, resulting from
d2W/dtdξ [Eq. (3)] for particles with χe > 16 and first iden-
tified in Refs. [14,27,67]. The increased threshold χthr is due
to the realistic temporal and spatial beam profiles. Physically,
a fraction of the beam particles samples a χe(r, t ) [Eq. (1)]
below the threshold χe(= 16) predicted for observing the peak
in the single-particle spectrum, leading to the higher threshold
χthr = 40.

The characteristic spectral peak can be determined from
Eq. (6) by solving ∂b0 [ξSω(ξ )] = 0. The peak position
b0, peak = 2/(3χe max)ξpeak/(1 − ξpeak ) converges to an asymp-
totic value, i.e., b0, peak → 0.229, when χe max increases.
Assuming b0, peak � 0.229, Eq. (6) determines the amplitude
of the spectral peak, PξSω

, which scales as

PξSω
= 0.155

ασz

τcγ c
χe max = 0.15

σz[0.1 µm]

E0[GeV]
χe max. (7)

Since ξpeak � 1, PξSω
[Eq. (7)] can also be used to evaluate the

amplitude of the Sω spectral peak, PSω
, i.e., PSω

� PξSω
.

B. Average photon number and photon energy

The theoretical results [Eqs. (6) and (7)] can accurately
characterize beamstrahlung when beam particles emit less
than one photon on average. This requirement can be for-
mulated as Nγ < 1, where Nγ = Nγ /N0 = ∫ 1

0 Sω(ξ )dξ is the
average number of photon emission from a beam particle,
with Nγ being the number of photons. If strong beamstrahlung
occurs (Nγ � 1), multiphoton emission becomes significant,
and the reported characteristic spectral peak will be smeared
(this is demonstrated in Fig. 3). Using Eq. (6), in the limit
of χe max � 1, Nγ is given by Nγ � 1.88ασzχ

2/3
e max/τcγ c. The

condition Nγ < 1 then determines the required collision pa-
rameters as

Nγ � 1.82
σz[0.1 µm]

E0[GeV]
χ2/3

e max < 1. (8)

The average rate of photon emission from a beam par-
ticle in the collision process is dNγ /dt � Nγ /(

√
2σz/c) =

1.33α/(τcγ )χ2/3
e max. The scaling of dNγ /dt here is identical

to the instantaneous rate of photon emission from a parti-
cle in the χe � 1 limit [15]. This shows that the integrated
beamstrahlung dynamics of a collision is characterized by
the corresponding χe max and shares the same scaling as
with the single-particle dynamics. Similarly, using Eq. (6),
the average energy Eγ radiated from a beam particle, Eγ =∫ 1

0 E0ξSω(ξ )dξ , can be obtained as

Eγ � 0.47
αmc2σz

τcc
χ2/3

e max � Nγ

4
E0. (9)

3D PIC simulation
Analytical spectrum Eq. (6)

(b) Photon(a) Positron

FIG. 3. The energy spectrum of photons from the same electron-
electron collision in Fig. 2, but with stronger beamstrahlung by
employing longer beams. Here, σz = 230 nm, leading to Nγ = 1.5
according to our theory [using Eq. (8)]. The initial disruption is
weak with D0 = 0.04. The other parameters, including E0, σ0, n0,
and χe max, remain unchanged. Insets: Density maps at the y-z slice
across the beam axis, at the end of the collision. (a) Positrons from
the created pairs in one colliding beam; (b) corresponding photons
radiated from the same beam.

Using Eq. (9), the beam loss is given by ηγ = Eγ /E0 �
Nγ /4, indicating a low beam loss when Nγ < 1. The av-
erage radiation power from a beam particle is then Prad �
Eγ /(

√
2σz/c) = 0.33(αmc2/τc)χ2/3

e max. We note that the total
radiated energy is E tot

γ = N0Eγ ∝ (E0
√

σz/σ0)2/3N5/3
0 , show-

ing a strong dependence with the particle number as ∝N5/3
0 .

We have also examined the effects of finite beam emit-
tance and energy spread on beamstrahlung. The transverse
emittance has a negligible impact on the particle trajectory
and photon emission for collisions with short beams. PIC
simulations show that the photon spectrum in Fig. 2 remains
unchanged when the beams are set to have a significant nor-
malized emittance up to εN ∼ 27 000 µm (with the divergence
angle ∼5 mrad). This emittance is comparable to εN for the
self-injected beams from laser wakefield acceleration at the
10-GeV or higher-energy scales (see Ref. [68]). The energy
spread �E0 of the colliding beams is found to mainly affect
(broaden) the characteristic spectral peak, because �E0 results
in a spread in χe max according to Eq. (2). We have verified
by PIC simulations that the well-defined spectral peak can be
observed for relatively large energy spreads �E0/E0 < 5%,
which is also achievable according to Refs. [68].

Our study indicates that the expected signature for SF-QED
as the spectral peak can be observed with collision parameters
satisfying

σz[0.1 µm]

E0[GeV]
< 0.038

N0[1010]

σ0[0.1 µm]
(for χe max > χthr ),

(10a)

σz[0.1 µm]

E0[GeV]
< 0.07

(
σ0[0.1 µm]

N0[1010]

)2

, �E0/E0 < 5%,

(10b)

042816-4



SIGNATURES FOR STRONG-FIELD QED IN THE … PHYSICAL REVIEW A 108, 042816 (2023)

where χthr = 40 (analyzed before), and Eq. (10b) comes
from the condition Nγ < 1 [Eq. (8)] and the requirement of
energy spread, respectively. For example, for beams with E0 =
30 GeV and ∼ nC charge, Eq. (10) indicates that submicron
beams are preferred. For σ0 = 0.05 µm, this condition yields
σz < 0.13 µm.

C. The interplay between beamstrahlung and disruption

The spectral peak is less prominent as pair creation
becomes more important. The average number of gener-
ated pairs in a collision, given by Np = Np/N0, where
Np is the number of pairs, can be estimated as follows.
The rate of pair creation is approximated by dNp/dt �
0.38αχ

2/3
e max/τcγ in the χe � 1 regime [15,69]. Np is then

Np ∼ Nγ (dNp/dt )(
√

2σz/c) � 0.28Nγ
2
N0. Since Np ∝ Nγ

2
,

pair creation is negligible when Nγ < 1. If Nγ � 1, pair
creation will become significant and needs to be taken
into account, e.g., for designing the collider diagnostics.
It is important to stress that the configuration proposed
here, with dense, short beams, provides strong and local-
ized fields, ensuring access to the SF-QED regime, and
considerable beamstrahlung, but with a negligible pair pro-
duction that would be deleterious to observing the SF-QED
signatures.

Another important effect to discuss is beam disrup-
tion. This effect can be related to beamstrahlung via Nγ �
1.51α4/3N1/3

0 D1/3. For conventional ∼ nC beams (N0 ∼ 6 ×
109), Nγ ∼ 3.9D1/3. If Nγ < 1 is satisfied, D � 1, indicating
that for our conditions disruption can be safely neglected.

We have studied the mild-disruption (D ∼ 1), weak-
beamstrahlung (Nγ < 1) regime, in order to clearly show the
impact of disruption on beamstrahlung in a decoupled way.
This regime can be accessed using transversely compressed
(σ0 � nm), ∼ pC (N0 ∼ 107) beams. A 3D PIC simulation for
an electron-electron collision, where Nγ � 0.5, D = 1, and
χe max = 100, was performed using beams with E0 = 90 GeV,
N0 = 1.28 × 107, σ0 = 0.15 nm, and σz = 115 nm. Due to
the disruption effect, the beams expel each other, leading to
the drop in beam densities and fields. This mild disruption
does not fundamentally change our predictions. The simula-
tion suggests that the emitted photon spectrum approximately
agrees with our model [Eq. (6)], with a reduced characteristic
spectral peak. The photon energy (or beam loss) is reduced by
�20% compared to our theory [Eq. (9)].

The coupled regime between beam disruption and in-
dividual stochastic SF-QED events occurs with strong
beamstrahlung (Nγ � 1) and finite disruption effects. We in-
vestigated this regime with 3D PIC simulations, as shown in
Fig. 3 for the same electron-electron collision as in Fig. 2,
but using longer beams to access the stronger beamstrahlung
regime; this resulted in Nγ = 1.5 with initial disruption D0 =
0.04. The beam energy loss is ηγ � 32%, which is still in
good agreement with Eq. (9). Pair production becomes sig-
nificant enough Np � 0.23, taking away ∼20% of the photon
energy, and leading to the reduced emission spectrum (blue
line in Fig. 3) as compared to our theory (orange line). The
multiphoton emission from beam particles and the radiation
from the created pairs result in a considerable number of low-
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FIG. 4. The dN/dχe distribution of particles in the same leptonic
collision but with different misalignment �0 (offset between the
colliding beams). The beam parameters are the same as those used in
Figs. 1 and 2, and the distribution is obtained using the same Monte
Carlo method as in Fig. 1.

energy photons, forming the lifted low-ξ tail in the spectrum
(blue line in Fig. 3). Whereas disruption is initially small, it
will dynamically increase due to the beamstrahlung-induced
beam loss [28]. The secondary pairs, created at lower energies,
are particularly susceptible to disruption effects (as D ∝ γ −1).
This is shown in Fig. 3(a), where the created positrons are
attracted towards the axis by fields of the oncoming beam,
forming a bright density filament on axis. There is also a dense
photon filament close to the axis, as shown in Fig. 3(b)—these
photons are radiated from the pairs accumulated there. These
exotic phenomena present a probe for disruption-affected
SF-QED regimes in beam-beam collisions and future lepton
colliders. The regime, where Nγ > 1 and D0 � 1, features
strong coupling between disruption and SF-QED effects [28],
and it will be explored in future works.

D. Impact of misalignment on beamstrahlung

The radial misalignment between the two beams is gen-
erally a problem for the particle colliders [70]. Here, we
show that collisions with round beams have a high toler-
ance of offset (set to be �0). Figure 4 demonstrates that the
dN/dχe distribution of particles vary slowly with �0, up to
�0 � rpeak(= 1.6σ0). With this robust dN/dχe distribution,
the beamstrahlung spectrum will be insensitive to �0 for a
wide range of �0.

V. VALIDITY OF THE LOCALLY CONSTANT
FIELD APPROXIMATION

The LCFA mainly relies on the condition that the relevant
formation length is much shorter than the scale length at
which the background fields vary [26]. In the quantum regime,
the formation length l f for photon emission in a collision is
l f ∼ λ̄cγχ

−2/3
e max, where λ̄c = h̄/mc = 3.86 × 10−11 cm is the

reduced Compton length. For a beam-beam collision, the scale
length of background fields is the beam length σz. Therefore,
the LCFA is valid when l f � σz. For the collision parameters
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studied in this paper (see Fig. 2 in Sec. III), l f ∼ 2 nm �
σz = 30.7 nm. Therefore, the LCFA is valid for the collisions
considered in our study.

After some algebra, the general condition l f � σz for the
LCFA to be valid in a collision can be expressed as

(
σ0

de

)2/3
σz

de
�

(
γ

λ̄c

de

)1/3

, (11)

where de = c/ωp is the electron skin depth, with ωp =√
4πn0e2/m being the plasma frequency at the peak density

n0. For dense beams employed in our study, the beam dimen-
sions (σ0 and σz) are much larger than de, and the Eq. (11) can
thus be well satisfied.

LCFA dependence on the photon energies. The LCFA also
depends on the energy of emitted photons, as studied by
Refs. [25,56]. The LCFA can be violated for the photon emis-

sion at low energies, i.e., ξ � χe/a3
0. Here a0 =

√
2
π3

re
σ0

N0 is
the normalized (dimensionless) amplitude of the beam field
[25]. This consideration indicates that the LCFA is valid for
photon emission at higher energies, i.e.,

ξ valid LCFA � χe max

a3
0

= 61

(
σ0

re

)3
χe max

N3
0

. (12)

For example, in the collision shown by Fig. 2, the above
equation determines ξ valid LCFA � 0.006. We note that this
restriction of photon energies does not have any noticeable
impacts on the results presented in our work because our
work is focused on the quantum regime which features a high
probability of radiating high-energy photons (ξ ∼ 1) as shown
by the emitted photon spectrum (Fig. 2). Therefore, the pho-
ton emission will be fully dominated by high-energy photons
where the LCFA well holds. For the collision in Fig. 2, the PIC
simulation shows that the energy of photons with ξ � 0.006
composes only 0.1% of all the recorded photons.

These estimates, along with results presented in other pa-
pers [25,26], provide the basis to determine the range of
physical parameters to explore within this approximation—
this will be further explored in a future publication.

VI. SPECTRAL BRIGHTNESS

Ultrashort (� fs) and interpenetrating γ -ray beams are pro-
duced in the collision. Each γ -ray beam is highly collimated
along the beam propagation direction, with a divergence angle
of θ0 ∼ Dσ0/σz � 1 [55]. For the beam parameters in Fig. 2,
θ0 � 1 mrad.

Another important parameter that characterizes the prop-
erties of a light source is the brightness. We show that
the spectral brightness B(ξ ) is ∝ ξSω(ξ ) (see Appendix B).
Therefore, B(ξ ) also features a sharp peak (Bpeak) at
ξ = ξpeak. The collision in Fig. 2 shows Bpeak � 6.16 ×
1030 photons/(s mm2 mrad2 0.1% BW). Given their unique
features, these ultrabright γ -ray beams, at 100-GeV-level
photon energies (Eγ � E0), can lead to multiple applications
[71–75].

The peak spectral brightness reported above, Bpeak, of the
emitted γ -ray beams in leptonic collisions can be theoretically

estimated as

B(ξ = ξpeak )

photons/(s mm2 mrad2 0.1% BW)

� 3.87 × 1032 γ

N0
χe max

= 1.16 × 1026 (E0[GeV])2

σ0[0.1 µm] σz[0.1 µm]
. (13)

Equation (13) provides a good estimate for collisions in both
χe max ∼ 1 [25] and χe max > 1 regimes, as discussed in the
detailed derivation given in Appendix B.

Here, we compare the γ -ray beams shown in our study
with other existing or proposed light sources. One of the most
well-established methods of producing x rays and γ rays is
the laser-Compton scattering light source [72,74,76–78]. For
this method, the brightness of the resultant light beams can be
estimated as

B ∼ 1

4π2

N0αω0γ
2

σ 2
0 a0

. (14)

The detailed derivation of the estimate equation (14) is
given in Appendix B. For an optical laser with λ0 ∼
800 nm (ω0 ∼ 1015 rad/s), colliding with a tightly fo-
cused electron beam of σ0 ∼ 0.1 µm, we have B ∼
1013N0γ

2/a0 photons/(s mm2 mrad2 0.1% BW). For 100-
pC (N0 ∼ 109), 10-GeV electron beams and lasers with
intensity a0 ∼ 1, the quantum parameter χe ∼ 0.01 � 1,
and the corresponding maximum brightness could reach
1030 photons/(s mm2 mrad2 0.1% BW), which can be on the
same order as the brightness in our study but is radiated at a
much lower photon frequency (around 100 MeV).

We also note that the ultrahigh brightness Bpeak observed
here is comparable to the state-of-the-art x-ray sources based
on free-electron lasers [79–81]. For the configuration of laser-
electron collision in the SF-QED regime where χe � 1 (which
is planned to be demonstrated in the near future) [45], the
brightness of the resultant γ -ray beams is estimated to be
∼1024 photons/(s mm2 mrad2 0.1% BW), much lower than
that of the γ -ray beams observed in our study.

VII. CONCLUSIONS

In conclusion, we first derived the analytical spectrum of
the integrated beamstrahlung from collisions between round
leptonic beams for the quantum regime where χe � 1. A
clear signature for SF-QED as a sharp peak in the spec-
trum close to the beam energy is identified. We demonstrate
that these collisions, with appropriately chosen parameters,
preserve the characteristic spectral peak predicted for single-
particle radiation dynamics, at a higher χthr, thus providing
an excellent platform for precisely probing SF-QED. We
then studied the impact of beam-beam effects, misalign-
ment, emittance, and energy spread of the colliding beams
on beamstrahlung and the characteristic SF-QED signatures.
Disruption can significantly affect (or couple with) the beam-
strahlung and pair creation, depending on the relation between
Nγ and D. Ultrashort (�fs), ultrabright, highly collimated,
and interpenetrating γ -ray beams, at 100-GeV-level photon
energies, are shown to be produced. The theoretical analysis
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and predictions in this paper have been confirmed by 3D PIC
simulations.
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APPENDIX A: DERIVATION OF THE INTEGRATED
BEAMSTRAHLUNG SPECTRUM Sω(ξ) IN

THE QUANTUM REGIME

Our analytical model and the setup of collisions under
study are introduced in the main text (see Sec. II A). The
relevant notations are also defined in the main text. In the
theoretical analysis, z is the longitudinal coordinate comoving
with the beam (see Ref. [55] for details of the associated
coordinate system used for collision study). However, in the
PIC simulations, shown in Sec. III, z represents the fixed
longitudinal coordinates.

The differential probability rate of photon emission in the
quantum regime is given by [11]

d2W

dtdξ
= α√

3πτcγ

[
IntK5/3 + ξ 2

1 − ξ
K2/3(b)

]
. (A1)

Here, ξ = Eγ /E0, where Eγ is the energy of the ra-
diated photon; τc = h̄/mc2 is the Compton time; α is
the fine-structure constant; b = 2/(3χe(r, t ))ξ/(1 − ξ ); and
IntK5/3(b) = ∫ ∞

b K5/3(q)dq, with Kν being the modified
Bessel function of the second kind.

Equation (A1) shows that the probability of photon emis-
sion is solely determined by the local χe(r, t ) of the emitting
particle. It was known that the spectrum of d2W/dtdξ

[Eq. (A1)], as a function of ξ , presents a peak at ξ � 1 for
χe > 16 [14,27,67]. We further investigated the corresponding
power spectrum given by E0ξd2W/dtdξ . The power spectrum
is also found to feature a peak at ξ = ξpeak � 1. We define
bpeak = 2/(3χe)ξpeak/(1 − ξpeak ) to characterize the position
of this spectral peak. bpeak converges fast to an asymptotic
value, i.e., bpeak → 0.417, when χe increases. This asymptotic
value can be obtained by solving ∂b(ξd2W/dtdξ ) = 0 in the
limit of χe � 1. If one assumes bpeak � 0.417, the amplitude
of this characteristic peak in the power spectrum is given by(

E0ξ
d2W

dtdξ

)
peak

� 0.17
αmc2

τc
χe. (A2)

This scaling is in excellent agreement with the numerical
cross-check. Equation (A2) shows an interesting property of
this characteristic peak whose amplitude is solely determined
by χe.

The time-integrated photon spectrum emitted from a
single particle in a collision is given by sω(ξ, r) =∫ ∞
−∞(d2W/dtdξ )dt [25]. The integrated spectrum from the

whole beam, normalized by the particle number, is given by

Sω(ξ ) =
∫ ∞

0 sω(ξ, r) f (r)rdr∫ ∞
0 f (r)rdr

. (A3)

In order to obtain analytical results for Sω(ξ ), we consider
two approximations. The first approximation is to approxi-
mate the special functions in d2W/dtdξ [Eq. (A1)], including
IntK5/3(b) and K2/3(b). The second approximation is to ap-
proximate the Gaussian beam profile by a uniform profile,
which allows one to perform the double integral for Sω(ξ ).

The first approximation. Both IntK5/3(b) and K2/3(b) can
be well approximated in the χe � 1 regime. In this regime,
b � 1 for most photon emission. We first approximate the
K2/3(b) term, since it is dominant in determining high-ξ (ξ �
1) photon emission which is of our interest in the quantum
regime. The asymptotic analysis of K2/3(b) gives K2/3(b) ∝
b−2/3 for b � 1 and ∝ exp(−b) for b � 1. One can therefore
approximate K2/3(b) as

K2/3(b) � k2/3b−2/3 exp(−b), (A4)

where k2/3 ∼ O(1) is the fitting coefficient. Because the
K2/3(b) term is critical for high-ξ photon emission, we seek a
good approximation of K2/3(b) which matches the character-
istic peak of the power spectrum E0ξd2W/dtdξ as analyzed
in Eq. (A2). Because the position of this peak obeys bpeak →
0.417 in the χe � 1 regime, we can set the approximation
equation (A4) to match the spectral peak, i.e., K2/3(0.417) =
k2/3(0.417)−2/3 exp(−0.417), resulting in k2/3 = 1.23.

The approximation of IntK5/3 can be obtained as follows.
For b � 1, IntK5/3 also scales as ∝ exp(−b) [25]. In addition,
one has the following identity for IntK5/3(b), i.e.,∫ ∞

b
K5/3(q)dq ≡ 2K2/3(b) −

∫ ∞

b
K1/3(q)dq. (A5)

Because K2/3(b) � ∫ ∞
b K1/3(q)dq for b � 1, one can have

IntK5/3 = ∫ ∞
b K5/3(q)dq � 2K2/3(b) for b � 1.

The above analysis indicates that IntK5/3 can be approxi-
mated as

IntK5/3 � 2K2/3(b) � 2k2/3b−2/3 exp(−b). (A6)

Using Eq. (A6), one can have an excellent approximation of
d2W/dtdξ [Eq. (A1)]. This has been verified as shown in
Fig. 5. Our approximation (orange dashed line) agrees well
with the direct numerical evaluation of Eq. (A1) (blue solid
line), for the full range of ξ ∈ (0, 1). Particularly, the ap-
proximation accurately characterizes the high-energy photon
emission (with ξ ∼ 1). This is due to the fact that we had
sought a good approximation of d2W/dtdξ which can match
the characteristic peak of the power spectrum ξd2W/dtdξ . In
addition, our approximation works well for a broad quantum
regime where χe � 1. This lays the foundation that our ana-
lytical beamstrahlung spectrum (to be derived later based on
this approximation) can give the accurate photon emission in
both the χe max ∼ 1 and the χe max � 1 regimes.

The second approximation. The Gaussian profile of the
colliding beams can be approximated by a uniform cylinder
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Direct numerical 
evaluation of Eq. (A1)

Approximation
 using Eq. (A6)

 (a)  (b)  (c)

 (d)  (e)  (f)

FIG. 5. Comparison between the differential probability rate of the nonlinear Compton process [d2W/dtdξ , given by Eq. (A1) and shown
by the blue solid line] and its approximation proposed by this work [using Eq. (A6), shown by the orange dashed line]. The comparison is
examined for different electron energy E0 and field strength (electric field Er of the beams). The corresponding χe of the electron under study
is given by χe = 2(E0/mc2)Er/Es. Upper panels: An electron with E0 = 10 GeV under fields of 1 × 1014 V/m in panel (a), 4 × 1014 V/m in
panel (b), and 8 × 1014 V/m in panel (c). Lower panels: an electron with E0 = 100 GeV under the same fields as the upper panels.

of radius σ0A and length σzA = 2
√

2σz, with a constant den-
sity n0A. The profile of the approximated cylinder is given
by fA(r) ≡ 1 for r � σ0A and gA(z) ≡ 1 for zc − σzA/2 �
z � zc + σzA/2. We further impose the requirement that the
approximated uniform profile should match χe max of the orig-
inal Gaussian profile. The electric field of the approximated
uniform beam is given by ErA = 2πen0Ar. The maximum ErA,
given by ErA, max = 2πen0Aσ0A, should match the peak field of
the original Gaussian beam, leading to n0Aσ0A = 0.9n0σ0. We
have justified that a collision with the approximated uniform
profile can preserve the dN/dχe distribution of particles in the
collision between the original Gaussian beams, as shown by
Fig. 1 in Sec. II.

The integrated radiation spectrum Sω(ξ ). As analyzed in
the second approximation, the radiation from a collision be-
tween round Gaussian beams can be approximated by that
from a collision between the approximated uniform cylinder
beams. With the approximated uniform profile, the corre-
sponding χe is given by χeA = 2γ ErA/Es, and the b parameter
in d2W/dtdξ [Eq. (A1)] is given by

b = 2

3χeA(r, t )

ξ

1 − ξ
= 2

3χe max

ξ

1 − ξ

σ0A

r
= b0

σ0A

r
, (A7)

where b0 = 2/(3χe max)ξ/(1 − ξ ).
The normalized integrated spectrum Sω(ξ ) is therefore cal-

culated as

SGaussian
ω (ξ ) =

∫ ∞

0
sω(ξ, r) f (r)rdr

/∫ ∞

0
f (r)rdr

� SApproximated
ω (ξ )

=
∫ σ0A

0
sωA(ξ, r) fA(r)rdr

/∫ σ0A

0
fA(r)rdr

=
∫ σ0A

0

(∫ σzA/2c

0

d2W

dtdξ
dt

)
fA(r)rdr

/
∫ σ0A

0
fA(r)rdr

= 2
√

2ασz√
3πτcγ c

k2/3

(
2 + ξ 2

1 − ξ

)
b2

0 �

[
−8

3
, b0

]
,

(A8)

where � is the incomplete Gamma function [61,62]. Equa-
tion (A8) is shown to give the accurate photon emission
in both the χe max ∼ 1 and the χe max > 1 regimes. This is
confirmed by the numerical calculation of Sω(ξ ) without em-
ploying approximations, i.e., using the exact d2W/dtdξ in
Eq. (A1) and original Gaussian beam profiles. In addition,
Eq. (A8) is also verified by three-dimensional (3D) QED
particle-in-cell (PIC) simulations as shown in the main text.

APPENDIX B: ESTIMATE OF THE SPECTRAL
BRIGHTNESS B(ξ) OF THE EMITTED γ RAYS

The spectral brightness of a photon beam is defined as [82]

B(ξ ) =
dNγ

dt

4π2σxσyσx′σy′ �ω
ω

, (B1)

where dNγ /dt is the photon flux (per second) at a spe-
cific photon frequency ω with a bandwidth of �ω/ω. Here,
�ω/ω = �ξ/ξ , as ξ = Eγ /E0 = h̄ω/E0. In the community of
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the synchrotron light source, the bandwidth is usually chosen
to be �ξ/ξ = 0.1%. σx and σy are root mean square (rms)
values of transverse sizes of the photon beam in the x and y
directions, respectively. σx′ and σy′ are the corresponding rms
values of solid angles (momentum divergence of the photon
beam).

The number of photons at energy ξ with a specific band-
width of �ξ/ξ is given by

Nγ (ξ ) = N0Sω(ξ )�ξ = N0ξSω(ξ )
�ξ

ξ
. (B2)

This relation shows that Nγ (ξ ) ∝ ξSω(ξ ) when �ξ/ξ is fixed.
Therefore, one has B(ξ ) ∝ ξSω(ξ ), assuming that photons
at different energy ξ have the same pulse duration. Since
B(ξ ) ∝ ξSω(ξ ), the spectral brightness will also feature a
sharp peak (Bpeak) at ξ = ξpeak � 1, same as with the ξSω

spectrum. Using Eq. (B2), the number of photons at energies
[ξpeak, ξpeak + �ξ ] is simply given by

Nγ (ξpeak ) = N0PξSω

�ξpeak

ξpeak
, (B3)

where PξSω
is the amplitude of the peak in the ξSω spectrum,

given by Eq. (7) in the main text.
The emitted photon beam has the same emittance, includ-

ing the spatial size and divergence angles, as the emitting
beam in a collision. This allows us to conveniently set σx =
σy � σ0 and τγ � 2

√
2σz/c, where τγ is the pulse duration of

the photon beam. The divergence angle of the photon beam
can be approximated as the deflection angle of the beam
particles, due to the disruption effect caused by the fields from
the oncoming beam [55]. The deflection angle of a particle
initially at r = r0 is calculated as θ0(r0) = reN0r0/(γ σ 2

0 ) [55].
For the particles at r0 � rpeak, where rpeak depicts the position
of the peak fields of the oncoming beam, they will undergo the
fastest and strongest radiation and deflection. For a Gaussian
beam, rpeak = 1.6σ0. We therefore specifically employ the de-
flection angle of particles at r0 � rpeak to estimate the average
divergence angle of the whole radiated photon beam, i.e.,

σx′ = σy′ � θ0(r � rpeak ) � reN0rpeak

γ σ 2
0

. (B4)

This divergence estimation, Eq. (B4), agrees well with the 3D
PIC simulations.

With the above analysis, the peak spectral brightness at ξ =
ξpeak is estimated as

Bpeak (ξpeak )

photons/(s mm2 mrad2 0.1% BW)

= Nγ (ξpeak )/τγ

4π2σxσyσx′σy′�ξ/ξpeak

� 3.87 × 1032 γ

N0
χe max

= 1.16 × 1026 (E0[GeV])2

σ0[0.1 µm] σz[0.1 µm]
. (B5)

Equation (B5) provides a good estimation for the peak
brightness of beamstrahlung photon beams in both the
χe max ∼ 1 and the χe max > 1 regimes. This is confirmed by
3D PIC simulations.

Estimate of the brightness in laser-Compton scattering and
synchrotron light sources. The brightness for the Compton and
synchrotron light sources in the classical regime can be esti-
mated as follows. The photon flux dNγ /dt around the critical
frequency ωc can be estimated using the classical Compton
and synchrotron radiated power P:

dNγ

dt
∼ N0

P

h̄ωc
∼ N0

α(χemc2)2/h̄

χeγ mc2
∼ N0αω0a0, (B6)

with h̄ωc ∼ χeγ mc2 and χe � 1. On the other hand, the di-
vergence angle is approximated by [32]

θ0 ∼ a0

γ
, (B7)

which is, surprisingly, the same as the result obtained in
Eq. (B4) if one substitutes a0 here [in Eq. (B7)] by the nor-
malized beam field a0 � reN0/σ0 (defined in Sec. V).

With the above analysis, we can estimate the corresponding
brightness

B ∼ 1

4π2

N0αω0γ
2

σ 2
0 a0

. (B8)

For an optical laser with λ0 ∼ 800 nm (ω0 ∼ 1015 rad/s), col-
liding with a tightly focused electron beam σ0 ∼ 0.1 µm, we
have B ∼ 1013N0γ

2/a0 photons/(s mm2 mrad2 0.1% BW).
For 100-pC (N0 ∼ 109), 10-GeV electron beams and lasers
with intensity a0 ∼ 1, the quantum parameter χe ∼ 0.01 �
1, and the corresponding maximum brightness could reach
1030 photons/(s mm2 mrad2 0.1% BW), which can be on the
same order as the brightness in our study but is radiated at a
much lower photon frequency (around 100 MeV).
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