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Relativistic Stark energies of hydrogenlike ions
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The relativistic energies and widths of hydrogenlike ions exposed to the uniform electric field are calculated.
The calculations are performed for the ground and lowest excited states using the complex-scaling technique in
combination with a finite-basis method. The obtained results are compared with the nonrelativistic values. The
role of relativistic effects is investigated.
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I. INTRODUCTION

The bound states of an atom placed in a uniform elec-
tric field are shifted and turn into resonances. The resonance
states are embedded into the continuum and have finite en-
ergy width. This means that the atomic electrons can escape
via tunneling through the potential barrier formed by the
Coulomb and uniform electric fields. This phenomenon is
referred to as a Stark effect and for many years has been
studied in atomic systems experimentally [1–6] as well as
theoretically [7–30]. Many theoretical approaches have been
applied for calculation of Stark resonances. However, almost
all of these calculations were nonrelativistic. The relativis-
tic effects can have some impact even in light systems (see
Ref. [22]). The relativistic treatment is required for search-
ing for parity-nonconserving effects and physics beyond the
standard model in molecules, where the Stark shifts play an
important role (see, e.g., Refs. [31,32]). For heavy ions the
relativistic consideration is absolutely necessary. Meanwhile,
experiments with heavy partially stripped ions (PSIs) in very
strong electric fields will soon become feasible.

One of the new projects, proposed currently as a part of
the Physics Beyond Colliders initiative, is the Gamma Factory
[33]. The proposed idea is to combine the relativistic beams of
heavy PSIs at the Large Hadron Collider with the laser facility
and use the Doppler boosting of the laser photons in the
PSI reference frame. The PSI spectroscopy in strong external
fields is one of the promising research topics of the project. If
the PSI beam is placed in the transverse magnetic field, then
in the PSI rest frame there exists an electric field enhanced
by the γ factor. Modern high-field magnets allow genera-
tion of electric fields in the PSI rest frame of strength up to
1012 V/cm or even higher [33]. A field of such strength allows
manipulating the energy levels of heavy PSIs. The theoretical
values of resonance positions seem to be highly required for
such investigations. The values of the Stark widths are also
important for estimation of ion beam stability, since ion losses
due the Stark ionization of PSIs can take place.

For relatively weak fields the positions of the Stark res-
onances can be calculated using the relativistic perturbation
theory [8,28]. In Ref. [28], the relativistic resonance posi-
tions were also obtained via numerically solving the Dirac

equation in a finite basis set, which allows us to take into
account the external field exactly. However, since the reso-
nance wave functions are not square integrable, the standard
Hermite finite-basis-set methods cannot provide accurate val-
ues of the resonance positions [34]. Moreover, they cannot
be directly used for calculation of the resonance widths. The
relativistic values of the resonance widths were obtained in
Refs. [23–25] using the semiclassical approximation. The
semiclassical approach allows us to obtain the corresponding
analytical expressions, but its accuracy is limited.

The precise values of the resonance positions as well as the
resonance widths can be calculated with the complex-scaling
(CS) method. The CS technique is based on dilation of the
Hamiltonian into the complex plane. After the dilation the
resonances appear as square-integrable solutions of the Dirac
equation. The corresponding energies have complex values.
The real part of the complex energy matches the resonance
position and the imaginary part defines the resonance width.
Previously, the CS method was successfully employed for
relativistic calculations of many-electron autoionization states
[34–37] and supercritical resonance in heavy quasimolecules
[38–41]. Recently, the CS method was implemented in the
Q-CHEM quantum chemistry program package, which is also
able to take into account some relativistic effects [42,43]. A
detailed description of the complex-scaling approach and its
applications can be found in reviews in [44–48].

The relativistic CS method was used previously for calcu-
lations of Stark energies and widths of one-electron atomic
systems in Refs. [22,30]. However, the calculations were re-
stricted to only hydrogen and hydrogenlike neon. It should be
noted that the Stark energies and widths for a hydrogenlike ion
with the nuclear charge Z exposed to an electric field F can be
easily obtained from the corresponding hydrogen values cal-
culated for the field strength F/Z3 by multiplying them by Z2.
This scaling law is a direct consequence of the Schrödinger
equation with a pointlike nucleus and there is no such rule
for the relativistic case. Therefore, the relativistic calculations
should be performed for every Z under consideration. Taking
into account the finite nuclear size also breaks the scaling law.

The aim of the present work is to fill the gap in theoretical
data and investigate the influence of the relativistic effects on
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the Stark resonances. In order to achieve this aim we have
performed calculations of the lowest resonance states for sev-
eral hydrogenlike ions between Z = 1 and 82. The resonance
parameters are obtained utilizing the relativistic CS technique.
After the complex scaling, the Dirac equation is solved using
the finite-basis method described in Refs. [49,50]. The ob-
tained results are compared with available nonrelativistic and
relativistic values and the influence of the relativistic effects is
investigated.

Throughout the paper we assume h̄ = 1.

II. THEORY

The relativistic energy spectrum of a hydrogenlike ion is
determined by the Dirac equation

Hψ (r) = Eψ (r), (1)

where, in the presence of an external uniform electric field,
the Hamiltonian has the following form:

H = c(α · p) + Vnucl(r) + eFz + βmec2. (2)

Here e is the electron charge (e = |e|), Vnucl(r) is the nuclear
potential, and F is the strength of the electric field, which
is assumed to be directed along the z axis. For the nuclear
potential, the pointlike nuclear model [Vnucl(r) = −eZ/r] is
generally used. However, in many cases, especially for heavy
ions, the finite-nuclear-size effect is rather significant. There-
fore, in the present work we utilize the model of a uniformly
charged sphere, which takes into account the finite nuclear
size

Vnucl(r) =
⎧⎨
⎩

− eZ
2Rnucl

(
3 − r2

R2
nucl

)
, r < Rnucl

− eZ
r , r > Rnucl,

(3)

where Rnucl = √
5/3Rrms is the nuclear radius and Rrms is the

root-mean-square nuclear radius.
The Dirac equation is considered in the spherical coordi-

nate system (r, θ, ϕ). The Hamiltonian (2) is invariant under
rotation around the z axis. Therefore, it is possible to separate
the azimuthal angle ϕ from other coordinates. The separation
can be done by substitution of the function

ψm(r, θ, ϕ) = 1

r

⎛
⎜⎜⎜⎜⎜⎝

G1(r, θ ) exp
[
i
(
m − 1

2

)
ϕ
]

G2(r, θ ) exp
[
i
(
m + 1

2

)
ϕ
]

iF1(r, θ ) exp
[
i
(
m − 1

2

)
ϕ
]

iF2(r, θ ) exp
[
i
(
m + 1

2

)
ϕ
]

⎞
⎟⎟⎟⎟⎟⎠ (4)

into the Dirac equation (1). Here m is the half-integer z pro-
jection of the total angular momentum. With this substation,
Eq. (1) can be reduced to the following form:

Hm �(r, θ ) = E�(r, θ ). (5)

Here the four-component wave function �(r, θ ) is given by

�(r, θ ) =

⎛
⎜⎜⎜⎜⎝

G1(r, θ )

G2(r, θ )

F1(r, θ )

F2(r, θ )

⎞
⎟⎟⎟⎟⎠ (6)

and the Hamiltonian Hm can be represented as

Hm(t )=
(

mec2 + Vnucl(r) + eFz cDm

−cDm −mec2 + Vnucl(r) + eFz

)
,

(7)

Dm = (σz cos θ + σx sin θ )

(
∂

∂r
− 1

r

)

+ 1

r
(σx cos θ − σz sin θ )

∂

∂θ

+ 1

r sin θ

(
imσy + 1

2
σx

)
, (8)

where σx, σy, and σz are the Pauli matrices.
Due to the presence of the uniform field F , Eqs. (1) and (5)

have no bound states. For nonzero F the original (at F = 0)
bound states of a hydrogenlike ion become embedded in the
positive continuum and can be described as resonances. The
resonances have finite energy widths 
, which correspond
to the probability of the electron being ionized via escaping
through the potential barrier. In order to obtain the resonance
positions and widths, we used the CS method. The simplest
version of the CS technique is the uniform complex rota-
tion, according to which the radial coordinate is transformed
as r → rei�, where � is a constant angle of the complex
rotation. For the potential of a pointlike nucleus this trans-
formation causes no problem and can be easily performed.
However, if the potential is not an analytic function, then the
uniform complex rotation cannot be done. In particular, the
potential of the uniformly charged sphere given by Eq. (3) is
not analytic. In order to overcome this obstacle, one can use
the exterior complex scaling (ECS) proposed in Ref. [51]:

r →
{

r, r � r0

r0 + (r − r0)ei�, r > r0.
(9)

By such a transformation the internal region r � r0 remains
untouched while the complex rotation is performed in the
external region, where the potential is analytic. The drawback,
however, is that after the substitution (9) the derivative of the
Hamiltonian eigenfunction is discontinuous at r = r0. There-
fore, in order to get a correct finite-basis representation of the
Dirac equation, one should use the basis functions which are
also discontinuous at this point. Instead, in the present work
we use a more universal version of the CS technique, namely,
the smooth exterior complex scaling [47,52], which is defined
by the transformation

r →
{

r, r � r0

r + (r − r0)(ei� − 1) f (r), r > r0,
(10)

where the function f (r) is chosen as

f (r) = 1 − e−[(r−r0 )/a]2
. (11)

This transformation defines a smooth transition from r to
rei� for r → ∞. It worth mentioning that there also exists
a complex absorbing potential approach, which is quite close
to the smooth ECS method [53]. A similar complex-scaling
contour f (r) was used in Ref. [54]. The parameters r0 and a
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FIG. 1. Real part of the complex Stark energy E as a function
of the complex-scaling angle � for a hydrogen atom exposed to an
electric field of strength F = 0.05 a.u. Here �E = E − E0, where
Re E0 = −0.506 111 714 4 a.u. The solid line corresponds to the
results obtained using the basis set with Nθ = 21 and the dashed line
corresponds to the values obtained with Nθ = 17.

can be adjusted in order to facilitate the convergence of the
numerical calculation. The smooth ECS is more flexible than
the sharp one defined by Eq. (9). It should be noted, however,
that, at least in some cases, the sharp ECS can provide more
stable results than its smooth counterpart [55].

After the transformation (9) or (10) the Stark resonances
match the square-integrable solutions of Eq. (5) and the cor-
responding energy E has a complex value

E = E0 − i
/2. (12)

The real part E0 is the position of the resonance and the
imaginary part defines the resonance width 
.

FIG. 2. Imaginary part of the complex Stark energy E as a func-
tion of the complex-scaling angle � for a hydrogen atom exposed to
an electric field of strength F = 0.05 a.u. Here �E = E − E0, where
Im E0 = −3.858 129 27 × 10−5 a.u. The solid line corresponds to the
results obtained using the basis set with Nθ = 21 and the dashed line
corresponds to the values obtained with Nθ = 17.
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TABLE II. Stark shifts �E and widths 
 of the ground-state resonance of hydrogenlike ions with the nuclear charge Z as functions of the
field strength F . The relativistic results were obtained in this work. The nonrelativistic results are the hydrogen values from Ref. [9] multiplied
by Z2.

Relativistic Nonrelativistic

F/Z3 (a.u.) �E (a.u.) −
/2 (a.u.) �E (a.u.) −
/2 (a.u.)

Z = 1, Rrms = 0.8775 fm
0.03 −2.0741555(1) × 10−3 −1.11825(2) × 10−8 −2.074273 × 10−3 −1.11880 × 10−8

0.04 −3.7713727(1) × 10−3 −1.945666(6) × 10−6 −3.771591 × 10−3 −1.94635 × 10−6

0.05 −6.1050580(1) × 10−3 −3.858129(5) × 10−5 −6.105425 × 10−3 −3.859208 × 10−5

0.06 −9.2028811(1) × 10−3 −2.574804(1) × 10−4 −9.203451 × 10−3 −2.5753874 × 10−4

0.07 −1.30759641(1) × 10−2 −9.235128(2) × 10−4 −1.307677 × 10−2 −9.2368428 × 10−4

0.08 −1.75595902(1) × 10−2 −2.2694781(2) × 10−3 −1.756062 × 10−2 −2.2698288 × 10−3

0.09 −2.24115841(2) × 10−2 −4.3914109(4) × 10−3 −2.241281 × 10−2 −4.3919872 × 10−3

0.1 −2.74167896(5) × 10−2 −7.2682294(4) × 10−3 −2.741818 × 10−2 −7.2690568 × 10−3

Z = 10, Rrms = 3.0055 fm
0.03 −2.0625762(1) × 10−1 −1.06837(2) × 10−6 −2.074273 × 10−1 −1.11880 × 10−6

0.04 −3.7497908(1) × 10−1 −1.879052(6) × 10−4 −3.771591 × 10−1 −1.94635 × 10−4

0.05 −6.0687382(1) × 10−1 −3.752554(5) × 10−3 −6.105425 × 10−1 −3.859208 × 10−3

0.06 −9.1465468(1) × 10−1 −2.517546(1) × 10−2 −9.203451 × 10−1 −2.5753874 × 10−2

0.07 −1.29966685(1) −9.066438(2) × 10−2 −1.307677 −9.2368428 × 10−2

0.08 −1.74579789(1) −2.2349116(2) × 10−1 −1.756062 −2.2698288 × 10−1

0.09 −2.22904989(2) −4.3345338(3) × 10−1 −2.241281 −4.3919872 × 10−1

0.1 −2.72795663(5) −7.1865027(4) × 10−1 −2.741818 −7.2690568 × 10−1

Z = 18, Rrms = 3.4028 fm
0.03 −6.598073(1) × 10−1 −3.11911(7) × 10−6 −6.720643 × 10−1 −3.62491 × 10−6

0.04 −1.1991590(1) −5.62253(2) × 10−4 −1.221995 −6.30617 × 10−4

0.05 −1.9397447(1) −1.141133(2) × 10−2 −1.978158 −1.250383 × 10−2

0.06 −2.9223297(1) −7.747931(4) × 10−2 −2.981918 −8.3442552 × 10−2

0.07 −4.1529243(1) −2.8161645(6) × 10−1 −4.236872 −2.9927371 × 10−1

0.08 −5.5819469(1) −6.9910647(8) × 10−1 −5.689640 −7.3542452 × 10−1

0.09 −7.1332880(1) −1.3630835(1) −7.261750 −1.4230039
0.1 −8.7377925(2) −2.2689107(1) −8.883489 −2.3551744

Z = 36, Rrms = 4.1835 fm
0.03 −2.4936111(1) −7.8166(3) × 10−6 −2.688257 −1.44996 × 10−5

0.04 −4.5259171(1) −1.572824(6) × 10−3 −4.887982 −2.52247 × 10−3

0.05 −7.3048551(1) −3.430401(5) × 10−2 −7.912631 −5.001534 × 10−2

0.06 −1.09845515(1) × 101 −2.456480(2) × 10−1 −1.192767 × 101 −3.3377021 × 10−1

0.07 −1.56140755(1) × 101 −9.304429(2) × 10−1 −1.694749 × 101 −1.1970948
0.08 −2.10396505(1) × 101 −2.3841355(3) −2.275856 × 101 −2.9416981
0.09 −2.69874032(2) × 101 −4.7610474(4) −2.904700 × 101 −5.6920155
0.1 −3.31897931(5) × 101 −8.0689585(6) −3.553395 × 101 −9.4206976

Z = 54, Rrms = 4.7964 fm
0.03 −5.075628(1) −7.5824(6) × 10−6 −6.048579 −3.26242 × 10−5

0.04 −9.192809(1) −1.856289(8) × 10−3 −1.099796 × 101 −5.67556 × 10−3

0.05 −1.4783894(1) × 101 −4.599133(8) × 10−2 −1.780342 × 101 −1.125345 × 10−1

0.06 −2.2152360(1) × 101 −3.617239(3) × 10−1 −2.683726 × 101 −7.5098297 × 10−1

0.07 −3.1473089(1) × 101 −1.4738926(5) −3.813185 × 101 −2.6934634
0.08 −4.2554122(1) × 101 −3.9978229(6) −5.120676 × 101 −6.6188207
0.09 −5.4907367(1) × 101 −8.3398840(8) −6.535575 × 101 −1.2807035 × 101

0.1 −6.7983841(1) × 101 −1.4612320(1) × 101 −7.995140 × 101 −2.1196570 × 101

Z = 82, Rrms = 5.5012 fm
0.03 −8.935694(1) −1.646(1) × 10−6 −1.394741 × 101 −7.52281 × 10−5

0.04 −1.6112143(1) × 101 −6.92395(5) × 10−4 −2.536018 × 101 −1.30873 × 10−2

0.05 −2.5712020(1) × 101 −2.427590(6) × 10−2 −4.105288 × 101 −2.594931 × 10−1

0.06 −3.8160498(1) × 101 −2.455934(3) × 10−1 −6.188400 × 101 −1.7316905
0.07 −5.3920546(1) × 101 −1.2177878(7) −8.792817 × 101 −6.2108531
0.08 −7.3126730(1) × 101 −3.863345(1) −1.180776 × 102 −1.5262329 × 101

0.09 −9.5381168(1) × 101 −9.125540(1) −1.507037 × 102 −2.9531722 × 101

0.1 −1.19906312(1) × 102 −1.7627242(2) × 101 −1.843598 × 102 −4.8877138 × 101
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The complex-rotated Dirac equation is solved using the
finite-basis method. The wave function �(r, θ ) [see Eq. (4)]
is expanded as

�(r, θ ) =
N∑

n=1

CnWn(r, θ ). (13)

The basis functions Wn(r, θ ) are constructed from Nθ , B
splines dependent on the θ coordinate and Nr , B splines depen-
dent on the r coordinate. The total number of basis functions
is N = 4 × Nr × Nθ . The construction is performed using the
dual-kinetic balance technique for axially symmetric systems.
This technique prevents the appearance of spurious states in
the spectrum. A detailed description of the employed basis set
can be found in Ref. [49]. By the substitution of Eq. (13), the
Dirac equation (5) is reduced to the generalized eigenvalue
problem

N∑
k=1

HjkCk =
N∑

k=1

ESjkCk . (14)

Here Hjk and S jk correspond to the Hamiltonian and overlap
matrices, respectively. The complex eigenvalues E are found
using the numerical diagonalization procedure.

III. RESULTS AND DISCUSSION

In the present work, only states with the projection of total
angular momentum m = 1/2 are considered. The complex
Stark energies are obtained by solving the eigenvalue problem
(14). The resonance positions and widths are related to the
complex eigenvalues via Eq. (12).

For each nuclear charge Z considered the basis set is con-
structed from the B splines defined in a box of size rmax ≈
174/Z a.u. The radial B-spline knots are distributed uniformly
inside the nucleus and exponentially outside. We use the
smooth ECS technique with the contour defined by Eq. (11)
with a = 7.75/Z a.u. The following values of the contour
parameter r0/Z are chosen depending on the electric-field
strength F and the atomic state under consideration: 11, 8,
and 5 for the ground state, with F/Z3 � 0.04, 0.04 < F/Z3 �
0.07, and F/Z3 > 0.07, respectively, and 5 for all excited
states (all quantities are given in atomic units). By adjusting
the values of r0 and a it is possible to improve the stability
and convergence of the energy values. Note, however, that
accurate results can be obtained with a quite broad range of
these parameters.

The exact solutions of the complex-scaled Dirac equa-
tion corresponding to the resonances do not depend on the
angle of complex scaling �. However, the solutions of the
finite-basis representation (14) exhibit such a dependence. In
our case, the rapid change in the real and imaginary parts of
the complex energy E for small values of � is followed by
a long plateau (see Figs. 1 and 2 for the real and imaginary
parts, respectively). Despite the fact that the energy values
are not perfectly stable on the plateau, as can be seen from
Figs. 1 and 2, the dependence on � is much smaller than the
difference between the values obtained with the basis sets of
close sizes. This shows that the � dependence is negligible in
comparison with the uncertainty which comes from the basis
convergence.

FIG. 3. Relativistic Stark width 
 of the ground state of the
hydrogenlike ion with nuclear charge Z in the presence of a uniform
electric field F . In the nonrelativistic limit, the values for all Z should
be the same. The difference is caused by the relativistic effects.

The calculations are performed using the basis sets of dif-
ferent sizes for a wide range of CS angle �. As an example,
in Table I we present the results for a hydrogen atom exposed
to an electric field F = 0.05 a.u., which are obtained utilizing
different numbers of radial and angular B splines (Nr and Nθ ,
respectively). The largest employed basis set has the following
parameters: Nr = 500 and Nθ = 21 with the total number of
the basis functions N = 40 000. The calculational uncertainty
is estimated from the convergence of the results. The estima-
tion is done in such a way that the estimated uncertainty is
well above the difference between the value for the largest
basis set and any reasonable interpolation of the results to the
complete-basis-set limit.

FIG. 4. Relativistic Stark width 
 for the ground state of the
hydrogenlike ion with nuclear charge Z in the presence of a uni-
form electric field F . Solid lines show the results obtained with
the complex-scaling methods and dashed lines the values calculated
using the semiclassical theory. The upper curves correspond to Z = 1
and the lower ones correspond to Z = 82.
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TABLE III. Stark shifts �E and widths 
 of the 2p1/2 resonance of hydrogenlike ions with the nuclear charge Z as functions of the field
strength F . The relativistic results were obtained in this work. The nonrelativistic results are the hydrogen values from Ref. [19] multiplied by
Z2.

Relativistic Nonrelativistic

F/Z3 (a.u.) �E (a.u.) −
/2 (a.u.) �E (a.u.) −
/2 (a.u.)

Z = 1, Rrms = 0.8775 fm
0.005 −1.76176897(8) × 10−2 −5.29586(3) × 10−5 −1.761861 × 10−2 −5.2972236 × 10−5

0.01 −4.10926693(5) × 10−2 −5.442161(2) × 10−3 −4.109400 × 10−2 −5.4425560 × 10−3

0.02 −8.1680516(7) × 10−2 −3.0391832(5) × 10−2 −8.182220 × 10−2 −3.0392847 × 10−2

0.03 −1.1514503(2) × 10−1 −5.981855(6) × 10−2 −1.151471 × 10−1 −5.982000 × 10−2

Z = 10, Rrms = 3.0055 fm
0.005 −1.75268320(8) −5.16194(3) × 10−3 −1.761861 −5.2972236 × 10−3

0.01 −4.09605836(5) −5.403122(2) × 10−1 −4.109400 −5.4425560 × 10−1

0.02 −8.1509830(7) −3.0290352(5) −8.182220 −3.0392847
0.03 −1.1493599(2) × 101 −5.966553(6) −1.151471 × 101 −5.982000

Z = 18, Rrms = 3.4028 fm
0.005 −5.6121159(3) −1.576507(8) × 10−2 −5.708429 −1.7163004 × 10−2

0.01 −1.31737804(2) × 101 −1.7218961(6) −1.331446 × 101 −1.7633881
0.02 −2.6283190(2) × 101 −9.739293(2) −2.651039 × 101 −9.8472823
0.03 −3.7085071(6) × 101 −1.921889(2) × 101 −3.730767 × 101 −1.938168 × 101

Z = 36, Rrms = 4.1835 fm
0.005 −2.1296520(1) × 101 −4.78561(3) × 10−2 −2.283372 × 101 −6.8652017 × 10−2

0.01 −5.09632086(5) × 101 −6.382976(2) −5.325783 × 101 −7.0535526
0.02 −1.02887904(7) × 102 −3.7633130(6) × 101 −1.060416 × 102 −3.9389129 × 101

0.03 −1.4560076(2) × 102 −7.488076(7) × 101 −1.492307 × 102 −7.752672 × 101

Z = 54, Rrms = 4.7964 fm
0.005 −4.3657867(2) × 101 −6.26878(4) × 10−2 −5.137586 × 101 −1.5446704 × 10−1

0.01 −1.078292818(7) × 102 −1.2420509(5) × 101 −1.198301 × 102 −1.5870493 × 101

0.02 −2.2256483(1) × 102 −7.947587(1) × 101 −2.385935 × 102 −8.8625541 × 101

0.03 −3.1676073(3) × 102 −1.606622(1) × 102 −3.357690 × 102 −1.744351 × 102

Z = 82, Rrms = 5.5012 fm
0.005 −7.8941197(3) × 101 −2.35907(2) × 10−2 −1.184675 × 102 −3.5618531 × 10−1

0.01 −2.07353215(1) × 102 −1.773695(1) × 101 −2.763161 × 102 −3.6595747 × 101

0.02 −4.5752851(1) × 102 −1.5173717(2) × 102 −5.501725 × 102 −2.0436150 × 102

0.03 −6.6341661(1) × 102 −3.231929(2) × 102 −7.742493 × 102 −4.022297 × 102

In order to investigate the impact of the relativistic effects
on the Stark resonances, we perform calculations for several
hydrogenlike ions between Z = 1 and 82. The obtained results
are compared with the corresponding nonrelativistic values.
The latter can be trivially obtained (in the pointlike nuclear
model) for every Z from the hydrogen values using the scal-
ing law F → Z3F , E0 → Z2E0, and 
 → Z2
, where F is
the field strength and E0 and 
 are the resonance position
and width, respectively. Here and below relativistic effects
refer to the differences between the solutions of the Dirac
and Schrödinger equations. They naturally include all the
relativistic corrections (such as spin-orbit correction), which
are usually used to improve the accuracy of nonrelativistic
values. It should be noted, however, that in our calculations the
finite nuclear model is utilized, while the scaled nonrelativistic
values imply the pointlike nucleus. However, we found that
the finite-nuclear-size contribution is relatively small and does
not qualitatively affect the results.

The calculations are carried for the ground (1s) and the
lowest excited states (2s, 2p1/2, and 2p3/2). In the present
work we classify the resonance states by the atomic states

with which they are coincident in the zero-field limit (F = 0).
In nonrelativistic studies of the Stark effect, another notation,
which is based on parabolic quantum numbers (n1, n2, mL )
[56], is usually used. For the states considered there is the fol-
lowing correspondence between the notations: 1s, 2s, 2p1/2,
and 2p3/2 match (0, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 0, 0),
respectively. The results obtained for the Stark shift �E and
Stark width 
 of the ground state and their nonrelativistic
counterparts are presented in Table II. The nonrelativistic val-
ues for hydrogen are taken from Ref. [9] and those for Z �= 1
are derived via scaling of the hydrogen ones. As can be seen
from the table, the relative difference between the relativistic
and nonrelativistic Stark shift values is almost the same for
all considered field strengths F and grows with Z . All the
relativistic width values are smaller than the nonrelativistic
ones, and the difference is larger for weaker fields and higher
Z . For the lead ion (Z = 82) for F � 0.04 × Z3 the relativistic
width value is suppressed relative to the nonrelativistic one by
more than one order of magnitude.

In order to better illustrate the dependence of the relativis-
tic effects on Z and F , we present the scaled width 
/Z2
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TABLE IV. Stark shifts �E and widths 
 of the 2s resonance of hydrogenlike ions with the nuclear charge Z as functions of the field
strength F . The relativistic results were obtained in this work. The nonrelativistic results are the hydrogen values from Ref. [19] multiplied
by Z2.

Relativistic Nonrelativistic

F/Z3 (a.u.) �E (a.u.) −
/2 (a.u.) �E (a.u.) −
/2 (a.u.)

Z = 1, Rrms = 0.8775 fm
0.005 −2.145930(1) × 10−3 −1.30722(3) × 10−5 −2.146613 × 10−3 −1.3076437 × 10−5

0.01 −9.5239060(7) × 10−3 −3.138327(6) × 10−3 −9.524887 × 10−3 −3.1386570 × 10−3

0.02 −2.172828(4) × 10−2 −2.185255(6) × 10−2 −2.172946 × 10−2 −2.1853572 × 10−2

0.03 −2.83555(4) × 10−2 −4.44219(2) × 10−2 −2.835714 × 10−2 −4.4424040 × 10−2

Z = 10, Rrms = 3.0055 fm
0.005 −2.078337(1) × 10−1 −1.26770(3) × 10−3 −2.146613 × 10−1 −1.3076437 × 10−3

0.01 −9.4265659(7) × 10−1 −3.106086(6) × 10−1 −9.524887 × 10−1 −3.1386570 × 10−1

0.02 −2.161869(4) −2.174493(6) −2.172946 −2.1853572
0.03 −2.82390(4) −4.42479(2) −2.835714 −4.4424040

Z = 18, Rrms = 3.4028 fm
0.005 −6.236963(4) × 10−1 −3.85273(9) × 10−3 −6.955025 × 10−1 −4.2367655 × 10−3

0.01 −2.9824595(2) −9.82897(2) × 10−1 −3.086063 −1.0169249
0.02 −6.92365(1) −6.96632(2) −7.040345 −7.0805573
0.03 −9.0636(1) −1.420845(7) × 101 −9.187712 −1.4393389 × 101

Z = 36, Rrms = 4.1835 fm
0.005 −1.625689(2) −1.27550(3) × 10−2 −2.782010 −1.6947062 × 10−2

0.01 −1.06592307(2) × 101 −3.534916(7) −1.234425 × 101 −4.0676994
0.02 −2.625980(4) × 101 −2.648461(7) × 101 −2.816138 × 101 −2.8322229 × 101

0.03 −3.47389(4) × 101 −5.45927(2) × 101 −3.675085 × 101 −5.7573556 × 101

Z = 54, Rrms = 4.7964 fm
0.005 −3.94071(3) × 10−1 −2.53892(4) × 10−2 −6.259523 −3.8130889 × 10−2

0.01 −1.9015147(1) × 101 −6.56114(1) −2.777457 × 101 −9.1523237
0.02 −5.341589(5) × 101 −5.43389(1) × 101 −6.336311 × 101 −6.3725015 × 101

0.03 −7.22343(8) × 101 −1.142448(4) × 102 −8.268941 × 101 −1.2954050 × 102

Z = 82, Rrms = 5.5012 fm
0.005 1.4704343(5) × 101 −2.44920(2) × 10−2 −1.443382 × 101 −8.7925960 × 10−2

0.01 −1.5160798(8) × 101 −8.80437(2) −6.404534 × 101 −2.1104329 × 101

0.02 −8.8440982(6) × 101 −9.59044(1) × 101 −1.461089 × 102 −1.4694342 × 102

0.03 −1.30752(1) × 102 −2.144554(3) × 102 −1.906734 × 102 −2.9870724 × 102

as a function of the scaled field strength F/Z3 for several Z
in Fig. 3. In the nonrelativistic limit for the pointlike nuclei,
all the curves should be the same. The difference is caused
by the relativistic effects. As one can see from the figure,
the divergence of the curves is larger for the weaker fields
and this behavior becomes more pronounced for higher Z .
The fact that the relativistic corrections have more impact for
the weaker fields seems paradoxical. This phenomenon was
discovered previously using the semiclassical approximation
[23–25] and found to be a consequence of a relativistic in-
crease of the binding energy. The CS results obtained for
Z = 1 and 82 are compared to the semiclassical ones in
Fig. 4. The semiclassical values were calculated according to
Eq. (36) from Ref. [24]. As one can see, the semiclassical
theory indeed provides the qualitatively correct dependence
of the width on the field strength. However, the semiclassical
values are systematically larger than the CS ones and quanti-
tatively valid only for small F . Such an overestimation of the
width by the semiclassical approximation is already known
in the nonrelativistic case (see, for example, Ref. [26]). The

confirmed relativistic suppression of the Stark width means
that a heavy ion exposed to the electric field can be much
more stable than the result obtained from the nonrelativistic
calculations.

In Tables III–V we present the results for the excited 2p1/2,
2s, and 2p3/2 states, respectively. As one can see from the
tables, for 2p1/2 and 2s resonances the relativistic widths are
also suppressed with respect to the nonrelativistic ones and
the difference is larger for weaker field F and higher Z . The
2p3/2 state, however, is a notable exception. For Z � 18 and
F/Z3 = 0.05 a.u. the relativistic width of 2p3/2 state is larger
than the nonrelativistic value and for Z = 82 the difference is
more than one order of magnitude. A possible explanation for
such a drastic discrepancy is the influence of the spin-orbital
interaction, which can play a significant role for small F .
This suggests that this effect can be found using the two-
component calculation methods. In the case of heavy ions,
however, their accuracy is quite limited.

Almost all the presented relativistic values of the energy
shift are slightly smaller than the nonrelativistic counter-
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TABLE V. Stark shifts �E and widths 
 of the 2p3/2 resonance of hydrogenlike ions with the nuclear charge Z as functions of the field
strength F . The relativistic results were obtained in this work. The nonrelativistic results are the hydrogen values from Ref. [19] multiplied
by Z2.

Relativistic Nonrelativistic

F/Z3 (a.u.) �E (a.u.) −
/2 (a.u.) �E (a.u.) −
/2 (a.u.)

Z = 1, Rrms = 0.8775 fm
0.005 1.2936853(1) × 10−2 −2.8636(2) × 106 1.293808 × 10−2 −2.864697 × 106

0.01 2.1104324(3) × 10−2 −1.639384(7) × 10−3 2.110544 × 10−2 −1.6396395 × 10−3

0.02 3.60149(4) × 10−2 −1.54447(3) × 10−2 3.601573 × 10−2 −1.5446311 × 10−2

0.03 5.4275(3) × 10−2 −3.3259(2) × 10−2 5.428097 × 10−2 −3.326218 × 10−2

Z = 10, Rrms = 3.0055 fm
0.005 1.2815660(1) −2.7991(2) × 10−4 1.293808 −2.864697 × 10−4

0.01 2.0994469(3) −1.615696(7) × 10−1 2.110544 −1.6396395 × 10−1

0.02 3.58815(4) −1.53364(3) 3.601573 −1.5446311
0.03 5.4099(3) −3.3070(2) 5.428097 −3.326218

Z = 18, Rrms = 3.4028 fm
0.005 4.0630599(4) −9.5876(8) × 10−4 4.191937 −9.281618 × 10−4

0.01 6.7209719(7) −5.06648(2) × 10−1 6.838164 −5.3124321 × 10−1

0.02 1.15271(1) × 101 −4.8903(1) 1.166910 × 101 −5.0046046
0.03 1.7398(1) × 101 −1.05775(6) × 101 1.758704 × 101 −1.077695 × 101

Z = 36, Rrms = 4.1835 fm
0.005 1.4683176(1) × 101 −1.09265(4) × 10−2 1.676775 × 101 −3.712647 × 10−3

0.01 2.54275429(5) × 101 −1.769986(7) 2.735265 × 101 −2.1249728
0.02 4.43478(5) × 101 −1.82393(3) × 101 4.667638 × 101 −2.0018418 × 101

0.03 6.7277(3) × 101 −3.9986(2) × 101 7.034814 × 101 −4.310779 × 101

Z = 54, Rrms = 4.7964 fm
0.005 2.7057912(3) × 101 −9.53525(9) × 10−2 3.772743 × 101 −8.353456 × 10−3

0.01 5.1356073(9) × 101 −3.343263(8) 6.154347 × 101 −4.7811889
0.02 9.27424(9) × 101 −3.64837(3) × 101 1.050219 × 102 −4.5041442 × 101

0.03 1.42198(4) × 102 −8.1759(4) × 101 1.582833 × 102 −9.699252 × 101

Z = 82, Rrms = 5.5012 fm
0.005 3.1618260(7) × 101 −7.69521(3) × 10−1 8.699562 × 101 −1.926222 × 10−2

0.01 8.194625(2) × 101 −8.91994(2) 1.419130 × 102 −1.1024936 × 101

0.02 1.69924(1) × 102 −6.55436(4) × 101 2.421697 × 102 −1.0386099 × 102

0.03 2.71469(1) × 102 −1.51054(7) × 102 3.649853 × 102 −2.236549 × 102

FIG. 5. Stark shift �E for the 2s state of the hydrogenlike ion
with the nuclear charge Z in the presence of a uniform electric
field F .

parts. There is a more complicated situation for the 2s state.
As can be seen from Table IV, for Z = 82 the relativistic
and nonrelativistic values have opposite signs. The compar-
ison between results for Z = 82 scaled by 1/Z2 and the
corresponding values for Z = 1 is shown in Fig. 5. The
difference in behavior is explained by the relativistic ef-
fects since for Z = 1 they are almost negligible. It should
be noted that the opposite sign for the relativistic value of
the Stark shift was previously reported in Ref. [28] for an
argon ion.

IV. CONCLUSION

In the present work, we calculated the relativistic posi-
tions and widths of the Stark resonances in hydrogenlike
ions using the complex-scaling method. The calculations were
performed for the 1s, 2s, 2p1/2, and 2p3/2 states of several
ions between Z = 1 and 82. The obtained results show the
importance of relativistic effects. The comparison between the
relativistic and nonrelativistic values leads to the conclusion
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that the nonrelativistic calculations are unreliable for heavy
ions. The difference is especially drastic for the Stark widths
and can be more than one order of magnitude. It is also worth
noting that the influence of the relativistic effects is larger for
smaller values of the external electric field, which are easier
to achieve experimentally.

The performed calculations have confirmed the relativistic
suppression of the ground-state width, which was previously
shown in Refs. [23,24] using the semiclassical method. In the
present work, the existence of the same effect was demon-
strated for 2s and 2p1/2 states. However, the situation may
be the opposite for the 2p3/2 state for sufficiently high Z
and weak external field. This emphasizes the importance of
relativistic consideration of the Stark effect in heavy ions. It
should be noted that despite the fact that the semiclassical
theory can provide a qualitatively correct description of the

relativistic effects on the energy width, its quantitative predic-
tions can be quite far from the exact values.

Our consideration was restricted to hydrogenlike ions in
the inertial reference frame exposed to a uniform constant
electrical field. Real experimental conditions can be much
more complicated and include a magnetic field, ion accelera-
tion, and other factors. In order to estimate the influence of all
these factors, further development is required. Nevertheless,
we expect that the obtained results will be useful for future
experiments with heavy partially stripped ions in strong elec-
tric fields.
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