
PHYSICAL REVIEW A 108, 042812 (2023)

Relativistic treatment of the diamagnetic susceptibility of helium
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We report theoretical calculations of the diamagnetic susceptibility χ0 of helium atom. We determined the
complete relativistic correction to χ0 of the order of α4, where α is the fine-structure constant, by including
all α4 terms originating from the Dirac and Breit equations for a helium atom in a static magnetic field.
Finite-nuclear-mass corrections to χ0 were also evaluated. To obtain very accurate results and reliable uncertainty
estimates we used a sequence of explicitly correlated basis sets of fully optimized Slater geminals. We found that
χ0 = −2.119 070(34) × 10−5 a3

0 and χ0 = −2.119 365(34) × 10−5 a3
0 for 4He and 3He isotopes, respectively,

where a0 is the Bohr radius and the uncertainties shown in the parentheses are due entirely to the very
conservative estimate of the neglected QED corrections of the order of α5. Our results are compared with the
available experimental data and with previous, incomplete theoretical determinations of the α4 contributions to
the diamagnetic susceptibility of helium.

DOI: 10.1103/PhysRevA.108.042812

I. INTRODUCTION

For closed-shell atoms the static diamagnetic susceptibility
χ0 can be defined as the second derivative of the energy E
with respect to the strength B = |B| of the uniform external
magnetic field B, in the limit of B → 0,

χ0 = −∂2E

∂B2

∣∣∣∣
B=0

. (1)

In general, the magnetic susceptibility is dependent on the
frequency of the oscillating magnetic field. However, as
for closed-shall atoms the frequency-dependent terms appear
only in the order of α5 [1,2] or are quadratic in the electron-to-
nucleus mass ratio [3] and, consequently, very small, thus we
consider only static magnetic fields. Our interest in this quan-
tity is motivated primarily by recent advances in metrology
[4–7]. In particular, in the refractive-index gas thermometry
[8–11], measurements of the refractive index n of a gas are
used to determine its density ρ. If the equation of state is
known, for instance, in the form of the virial expansion,
the measurement of n provides a possibility to find the gas
pressure p. Alternatively, the thermodynamic temperature of
a gas can be determined by knowing its refractive index and
pressure. The fundamental relation linking the refractive index
and the gas density is the Lorentz-Lorenz formula [12,13]:

n2 − 1

n2 + 2
= 4π

3
(αd + χ )ρ, (2)

where αd is the electric dipole polarizability of the gas parti-
cles. Formally, this expression is valid only for small densities,
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but generalizations involving higher powers of ρ with an
extended range of applicability are well-known [4].

In most realizations of the refractive-index gas thermom-
etry, helium is used as a medium gas [9]. Currently, the
most reliable sources of fundamental microscopic properties
of helium are ab initio calculations. For example, the electric
dipole polarizability αd is known from theory with relative
accuracy of 10−7 [14–18]. In the foreseeable future, we expect
the present accuracy level for αd to be entirely sufficient from
the experimental point of view. However, the same cannot
be said about the magnetic susceptibility. On one hand, this
quantity is roughly 5 orders of magnitude smaller than αd

and hence does not have to be determined as accurately. On
the other hand, the most recent calculations of χ0 by Bruch
and Weinhold [19,20] for helium differ from the experimental
results of Barter et al. [21] by roughly 7%. While the current
consensus is that such a large discrepancy is most likely due
to errors in the measurements, some problems on the the-
oretical side remain. As pointed out by Pachucki [22], the
relativistic correction to χ0 calculated by Bruch and Weinhold
is incomplete and misses several terms originating from the
magnetic-field dependence of the Dirac equation and the Breit
interaction. As the magnitude of these terms is yet unknown,
it is impossible to rigorously determine the uncertainty of the
calculated χ0.

This situation is not satisfactory from the point of view
of modern metrological applications. Additionally, refractive-
index gas thermometry measurements using neon and argon
as medium gases have been proposed and argued to offer sev-
eral advantages over helium [11]. Unfortunately, the magnetic
susceptibility of neon and, especially, argon is not known with
sufficient accuracy. This prompted us to undertake systematic
theoretical calculations of the static magnetic susceptibility
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of light noble gases: Helium, neon, and argon. Our results
for 4He and 3He are reported in the present paper, while the
magnetic susceptibilities of neon and argon will be considered
in a subsequent publication.

Throughout most this work, we use the standard cgs system
of units employed, for instance, in the book of Bethe and
Salpeter [23]. In these units, employed also in the experi-
mental work, the magnetic susceptibility has the dimension of
the volume and is expressed in cm3/mol. In order to present
the intermediate and final results of our calculations, it is
convenient to use the atomic units (a.u.), where the electron
mass me, the charge e, and the Planck constant h̄ are as-
sumed to be equal to 1. The atomic unit of the magnetic
susceptibility is then a3

0, where a0 is the Bohr radius, a0 =
0.529 177 211 × 10−8 cm. The conversion relation between
the cgs and the atomic units is cm3/mol = 11.205 873 1 a3

0.
For the speed of light in vacuum we adopt the value c =
α−1 = 137.035 999 a.u. The masses of the α particle and the
3He nucleus used by us are 7 294.299 54 and 5 495.885 28
a.u., respectively.

II. THEORY

A. Leading-order contribution

Consider a helium atom in its electronic ground state 1S.
We temporarily neglect the nuclear motion and treat the nu-
cleus as a stationary classical charge with infinite mass. Let
us denote the nonrelativistic electronic Hamiltonian in the
absence of external fields by Ĥ0. The total Hamiltonian Ĥ in
the magnetic field B reads then [23] as

Ĥ = Ĥ0 + e

mc
B · S + e

mc
B · L

+ e2

8mc2
[(B × r1)2 + (B × r2)2], (3)

where S and L are the total spin and angular momentum
operators, respectively. The origin of the coordinate system
is placed at the atomic nucleus, and ri, i = 1 and 2, denotes
coordinates of the ith electron with respect to the origin.
In the nonrelativistic theory the terms linear in B bring no
contribution to the magnetic susceptibility of the 1S state. The
quadratic, diamagnetic term gives [23,24]

χ
(0)
0 = − e2

6mc2
〈ψ0|r2

1 + r2
2 |ψ0〉, (4)

where ψ0 is the ground-state wave function. This is the domi-
nant contribution to the magnetic susceptibility of helium. The
leading corrections to χ

(0)
0 computed in this work are either of

the order of α 4 (referred to as the relativistic corrections) or
are proportional to the electron-to-nucleus mass ratio.

B. Finite-nuclear-mass corrections

Finite-nuclear-mass (FNM) corrections to the magnetic
susceptibility of helium were derived by Bruch and Weinhold
[19]; see also the erratum correcting a small numerical error
[20]. For the helium atom at rest, the complete correction
of the order me/mN, where mN is the mass of the nucleus,
comprises three contributions,

χFNM
0 = δχms

0 + δχPZW
0 + δχ

mp
0 . (5)

The first is the reduced-mass scaling term [19]

δχms
0 = 3

m

mN
χ

(0)
0 , (6)

while the second results from the application of the Power-
Zienau-Wooley (PZW) transformation to eliminate the depen-
dence of the vector potential on the center-of-mass position
[19,25],

δχPZW
0 = − e2

3mN c2
〈ψ0|r1 · r2|ψ0〉. (7)

The third term is the correction due to the conventional
mass-polarization term in the Hamiltonian resulting from the
separation of the center-of-mass motion,

δχ
mp
0 = − e2

3mc2
〈ψ0|

(
r2

1 + r2
2

)
R0 Hmp|ψ0〉, (8)

where R0 = (E0 − QĤ0)
−1

Q, with Q = 1 − |ψ0〉〈ψ0| be-
ing the ground-state reduced resolvent of H0, and Hmp =
p1 · p2/mN is the mass-polarization perturbation. Equa-
tions (6) and (7) are special cases of the equations derived by
Pachucki and Yerokhin [25] for many-electron atoms. Bruch
and Weinhold [19] considered also a small temperature-
dependent correction, denoted as δχBO

0 , resulting from the
center-of-mass motion of the atom and derived an order-of-
magnitude estimation of its value. The significance of this
correction is discussed in Sec. IV.

C. Relativistic corrections

Relativistic corrections to the magnetic susceptibility can
be divided into three groups. The first group originates
from the Foldy-Wouthuysen transformation of the Dirac
Hamiltonian in the presence of a homogeneous external mag-
netic field. The transformed Hamiltonian contains several
magnetic-field-dependent terms, see Eq. (14) in Ref. [26], that
are not included in Eq. (3). There are two terms linear in
the magnetic-field vector B which can give a contribution of
the order of α6 (and also a small frequency dependence of
χ0) and, therefore, are beyond the scope of the present work.
Equation (14) of Ref. [26] contains also four diamagnetic
terms quadratic in B that read as follows:

Â(0) = e2

4m3c4
[{l1 · B, s1 · B} + {l2 · B, s2 · B}], (9)

Â(1) = − e2

8m3c4
[(l1 · B)2 + (l2 · B)2], (10)

Â(2) = − e2

32m3c4

[{
(B × r1)2, p2

1

} + {
(B × r2)2, p2

2

}]
, (11)

Â(3) = − e2h̄2

4m3c4
B2, (12)

where pi and li = ri × pi are the momentum and angular mo-
mentum operators, respectively, of the ith electron. The curly
brackets in the above formulas denote the anticommutators.
Note the additional factor of 2 included in Eq. (12) compared
to the value given in Eq. (14) of Ref. [26]. This change is due
to the fact that Eq. (14) in Ref. [26] applies to one electron
only while we are considering a two-electron system. For
singlet states, Â(0) gives no α4 contribution to χ0, since its
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expectation value vanishes under spin integration. By differ-
entiating the expectation values of the operators Â(1), Â(2), and
Â(3) with respect to B and setting the magnetic-field strength
equal to zero, one obtains consecutively three corrections to
the static magnetic susceptibility:

δχ
(1)
0 = e2

12m3c4
〈ψ0|l2

1 + l2
2 |ψ0〉, (13)

δχ
(2)
0 = e2

12m3c4
〈ψ0|r2

1 p2
1 + r2

2 p2
2|ψ0〉, (14)

δχ
(3)
0 = e2h̄2

2m3c4
. (15)

The second group of relativistic contributions originates
from the Breit correction to the electron-electron interaction.
The explicit form of the Breit-Pauli Hamiltonian in the pres-
ence of homogeneous electric and magnetic fields has been
given in Ref. [26], see Eq. (17) of this reference. Similarly
as for the Dirac Hamiltonian, it contains several linear and
quadratic magnetic-field-dependent terms. However, all terms
linear in B give contributions to χ0 that are of the order of
1/c6 and hence are neglected in the present work. The spin-
dependent quadratic terms vanish for singlet states upon the
spin integration. All spin-independent quadratic terms in the
Breit-Pauli Hamiltonian, which can give an α4 contribution to
χ0, originate from the orbit-orbit interaction

Ĥoo = − e2

2m2c2

[
π1 · π2

r12
+ (π1 · r12)(r12 · π2)

r3
12

]
, (16)

where r12 = r1 − r2 and πi = p1 + e (B × ri )/2c. From
Eq. (16) we obtain two diamagnetic terms quadratic in the
magnetic-field vector, namely,

Â(4) = − e4

8m2c4

(B × r1) · (B × r2)

r12
, (17)

Â(5) = − e4

8m2c4

[(B × r1) · r12][(B × r2) · r12]

r3
12

. (18)

Differentiation with respect to B leads to the following two
corrections:

δχ
(4)
0 = e4

6m2c4
〈ψ0|r1 · r2

r12
|ψ0〉, (19)

δχ
(5)
0 = e4

12m2c4
〈ψ0|r1 · r2

r12
− (r1 · r12)(r2 · r12)

r3
12

|ψ0〉. (20)

Derivations of Eqs. (19) and (20) are given in the Appendix.
Finally, the third group of contributions to the magnetic

susceptibility originates from relativistic corrections to the
electronic wave function. Using the standard perturbation the-
ory one derives the following general formula:

δχBP
0 = − e2

3mc2
〈ψ0|

(
r2

1 + r2
2

)
R0 ĤBP|ψ0〉, (21)

where R0 is the resolvent defined in the same way as in
Eq. (8), and ĤBP is the relativistic part of the Breit-Pauli
Hamiltonian in the absence of the external electric and mag-
netic fields. When acting on singlet states this Hamiltonian
can be assumed to comprise the following four terms [23]:

ĤBP = P̂4 + D̂1 + D̂2 + B̂, (22)

P̂4 = − 1

8m3c2

(
p4

1 + p4
2

)
, (23)

D̂1 = πe2h̄2

m2c2
[δ(r1) + δ(r2)], (24)

D̂2 = πe2h̄2

m2c2
δ(r12), (25)

B̂ = − e2

2m2c2

[
p1 · p2

r12
− (p1 · r12)(p2 · r12)

r3
12

]
, (26)

where δ(r) is the three-dimensional Dirac distribution. The
terms in Eqs. (23)–(26) are usually referred to as, consecu-
tively, the mass-velocity, one-electron Darwin, two-electron
Darwin, and orbit-orbit interaction (or Breit) operators.
For further convenience, we split the δχBP

0 correction
into the components related to the individual operators in
Eqs. (23)–(26),

δχBP
0 = δχ

P4
0 + δχ

D1
0 + δχ

D2
0 + δχB

0 . (27)

In summary, the total relativistic correction to the static
diamagnetic susceptibility, evaluated in the present work,
comprises nine terms:

δχ rel
0 =

5∑
i=1

δχ
(i)
0 + δχ

P4
0 + δχ

D1
0 + δχ

D2
0 + δχB

0 . (28)

In the work of Bruch and Weinhold [19], only the last four
terms in Eq. (28) were considered and all the remaining ones
were neglected.

D. Quantum electrodynamics correction

The leading corrections to χ0 which have not been consid-
ered thus far originate from quantum electrodynamics (QED).
These corrections are of the order of α5 (in fact of the order
of α5 ln α) and take account of two physical phenomena: Vac-
uum polarization and electron self-energy. The QED formulas
for these corrections can be derived along similar lines as for
the nuclear magnetic shielding constants [1,2,27] and imple-
mented numerically for helium in a way largely parallel to
that presented in Ref. [28]. The resulting computations would
inevitably be extremely complicated as they would require
calculations of new forms of the so-called Bethe logarithms,
including their magnetic-field dependence [28]. This would
represent a massive computational task far beyond the scope
of the present work.

However, one can easily perform a crude, order-of-
magnitude assessment of the QED effects and obtain a
conservative estimate of the uncertainty of χ0 computed by
us that can be useful in metrological applications. From the
formal perturbation theory expressions, one can naively ex-
pect that QED corrections should be by a factor of the order
of α ln α smaller than the relativistic corrections determined
in the present work.

However, it would be overly optimistic to scale the to-
tal relativistic correction to χ0 by α ln α. In fact, there is a
considerable cancellation between various relativistic contri-
butions, making the total correction significantly smaller than
the individual contributions. It is impossible to guarantee that
a similar cancellation persists also for the QED corrections.
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In fact, in the case of QED corrections to the energy [29–34]
and other properties [3,17,35], it has been observed that this
is frequently the case. The QED effects are only several times
smaller than the relativistic corrections in such cases, rather
than by a factor close to α ln α ≈ 0.036.

To account for this phenomena, we settle on the worst-
case scenario. Namely, instead of scaling the total relativistic
correction by a factor of α ln α, we chose the relativistic cor-
rection which is the largest in magnitude and perform similar
scaling. Multiplying the relativistic kinetic-energy correction
δχ

P4
0 by α ln α, we find that the leading QED correction to χ0

can be roughly estimated as 0.000 034 × 10−5 a3
0. This value

most likely overestimates the QED effects, and so we view
our estimate of the uncertainty of χ0 as rather conservative.

III. COMPUTATIONAL DETAILS
AND NUMERICAL RESULTS

To evaluate all quantities necessary for the determination
of the magnetic susceptibility of helium, we follow closely
the numerical approach applied in our recent calculations of
electric polarizability [18]. The ground-state wave function
of the helium atom is represented as a linear combination of
Slater geminals, namely,

ψ0(r1, r2) = (1 + P12)
N∑

i=1

ci e−αi r1−βi r2−γi r12 , (29)

where the P12 operator interchanges coordinates of r1 and
r2. The linear coefficients ci and the nonlinear parameters αi,
βi, and γi are fully optimized to minimize the nonrelativistic
energy of helium. For a given set of basis functions, defined
by the nonlinear parameters αi, βi, and γi, the coefficients ci

were obtained using the Rayleigh-Ritz method. The standard
linear algebra and minimization algorithms implemented in
the HSL Mathematical Software Library [36] were applied
and quadruple precision arithmetics was used to enhance the
numerical stability. In particular, matrix factorizations and so-
lutions of corresponding systems of equations were performed
employing the DAG-based parallel Cholesky method with
the OpenMP interface for shared-memory multiprocessing.
Full optimization of the nonlinear parameters was carried
out by applying two subroutines, i.e., VA13, the. Broyden–
Fletcher–Goldfarb–Shanno (BFGS) variable metric method
when values of the derivatives with respect to the variables
were used, and VA24, the conjugate directions method when
these derivatives were not employed. Using two different
optimization procedures allowed us to avoid the situation of
optimization getting stuck in one of the local minima and
also accelerated the convergence of the whole optimization
procedure.

The advantage of the exponential basis set (29) is the cor-
rect functional form near the interparticle coalescence points
(the Kato’s cusp), both the electron-electron and electron-
nucleus types. This enables us to determine highly accurate
wave functions with a relatively compact basis. In order to
estimate the uncertainty of the results, we performed all calcu-
lations with a sequence of basis sets with N = 128, 256, and
512 functions. With the largest basis set, the nonrelativistic
energy is accurate to 17 significant digits as compared to

TABLE I. Expectation values of various operators for the ground
state of the helium atom computed with the largest basis set of
N = 512 functions. The results are given in atomic units. In the
parentheses we show the estimated uncertainty of the last digit.

Operator Expectation value

H0 −2.903 724 377 034 119 59(1)
r2

1 + r2
2 2.386 965 990 037 9(1)

l2
1 + l2

2 0.018 970 526 333(1)
r2

1 p2
1 + r2

2 p2
2 −0.139 689 120 125(1)

r1 · r2 −0.064 736 661 397 785(1)
r1 · r2 r−1

12 0.059 280 414 991 545(2)
r1 · r2 r−1

12 − (r12 · r1) r−3
12 (r12 · r2) 0.212 506 954 000(1)

the benchmark value of Ref. [37]. This accuracy guarantees
that numerical uncertainties of all computed quantities are
negligible in comparison with errors resulting from omission
of higher-order corrections (both in α and m/mN ).

In Table I we present expectation values of all operators
required to calculate the diamagnetic susceptibility of helium,
taking into account the finite-nuclear-mass and relativistic
corrections considered in Secs. II B and II C, respectively. The
error of each quantity is estimated conservatively as half of
the difference between the results obtained with N = 256 and
N = 512 basis sets.

In order to evaluate the mass-polarization correction (8), as
well as the relativistic Breit-Pauli correction (21), one has to
compute the following first-order response function:

ψ1 = −R0
(
r2

1 + r2
2

)
ψ0. (30)

Once the response function ψ1 is known, all these corrections
can be rewritten in a form that permits their stable numerical
evaluation. In order to obtain ψ1 we first note that it obeys the
equation

(QH − E0)ψ1 = Q
(
r2

1 + r2
2

)
ψ0 (31)

and hence can be found by minimization of the following
Hylleraas functional:

F[ψ̃] = 〈ψ̃ |(H0 − E0 − E0P0)|ψ̃〉 + 2 〈ψ̃ |Q(
r2

1 + r2
2

)|ψ0〉,
(32)

where P0 =| ψ0〉〈ψ0|, with respect to all parameters appearing
in the trial wave function ψ̃ . Since the operator r2

1 + r2
2 is

spherically symmetric, the trial function ψ̃ can also be rep-
resented by the expansion of the form of Eq. (29). However,
the size of the basis employed in the calculation of ψ1 had
to be twice as large as that employed for ψ0. This basis was
generated in the following way. The first part of the basis set,
comprising N functions, has the same nonlinear parameters αi,
βi, and γi as found for the ground state. This part of the basis
is not the subject of further optimization; i.e., the nonlinear
parameters αi, βi, and γi for i � N are fixed and only the
expansion coefficients ci are calculated anew. This approach
guarantees accurate fulfillment of the orthogonality condition
〈ψ1|ψ0〉 = 0, resulting from the presence of the Q projection
in the definition of the resolvent. The second part of the basis
for ψ̃ , also comprising N functions, includes functions with
nonlinear parameters optimized by minimizing the functional
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TABLE II. The matrix elements 〈ψ0|(r2
1 + r2

2 )R0X |ψ0〉 for sev-
eral operators X required in this work obtained with the largest basis
set of N = 512 functions. The results are given in atomic units. The
estimated uncertainty of the last digit is shown in parentheses.

X Matrix element

p4
1 + p4

2 −80.298 613(2)
π [δ3(r1) + δ3(r2)] −7.918 414 9(1)
π δ3(r12) −0.547 997 8(1)
p1r−1

12 p2 + (p1 · r12)r−3
12 (r12 · p2) 0.420 214 859 4(2)

p1 · p2 −0.179 805 762 988 59(3)

of Eq. (32). In Table II we show the numerical results of the
second-order matrix elements obtained for the ground state of
the helium atom using the largest basis set N = 512. The error
estimation is performed in the same way as for the data given
in Table I.

IV. DISCUSSION AND CONCLUSIONS

In Table III we present contributions to the diamagnetic
susceptibility of the 3He and 4He atoms based on numerical
values from Tables I and II. Our results for 3He are com-
pared with the previous results of Bruch and Weinhold from
Ref. [19]. We found a good agreement among all individual
contributions computed in Ref. [19], including both the χFNM

0
and the δχBP

0 corrections. However, the remaining relativis-
tic contributions derived in the present work, namely, δχ

(i)
0 ,

i = 1, . . . , 5, were not considered in Ref. [19]. Most of these

corrections turned out to be small, with the exception of δχ
(3)
0 ,

which is of the same order of magnitude as the dominant
δχBP

0 term. Because of that, the total relativistic correction
reported in Ref. [19] is underestimated by a factor of about
one-third in comparison to our data. Note that in Ref. [19], the
mass polarization correction δχ

mp
0 was treated together with

δχBP
0 rather than with χFNM

0 , as in our work, which would be
more appropriate considering the scaling of both terms with
the nuclear mass. Overall, the present numerical results are of
high numerical accuracy. The errors of our calculations, rigor-
ously estimated, are negligible in comparison with neglected
higher-order order terms in α and in me/mN .

In Ref. [19], Bruch and Weinhold considered also the effect
on χ0 due to the the center-of-mass motion, referred to by
them as δχBO

0 . Using two different approximate perturbation
theory procedures they derived two order-of-magnitude esti-
mations of δχBO

0 that can be expressed by the formula

δχBO
0 ≈ f

Ecm

mN c2
a3

0, (33)

where Ecm is the center-of-mass kinetic energy of the atom
and f is a dimensionless parameter close to 1.5. This
temperature-dependent correction is proportional to the ratio
of the translational energy Ecm = 3

2 kT to the rest mass of
the atom and turns out to be several orders of magnitude
smaller than χFNM

0 —4 orders for the liquid helium temper-
ature of T ≈ 20 K and 3 orders for the average temperature
T ≈ 296 K of the gas-phase measurements [21]. Therefore,
even the large relative error in the determination of δχBO

0
would not be relevant for metrology applications.

TABLE III. Contributions to the diamagnetic susceptibility of the 3He and 4He atoms given in the units of 10−5a3
0. The numbers in

parentheses are the uncertainties of the last digit; when no uncertainty estimate is shown, the last digit is accurate. The uncertainties of the data
from Ref. [19] were not estimated by the authors and hence are not shown.

Contribution 4He 3He 3He, Refs. [19,20]

χ
(0)
0 −2.118 486 203 037 9(1)

Finite-nuclear-mass correction, χFNM
0

δχms
0 −0.000 871 291 146 3 −0.001 156 403 069 7 −0.001 16

δχPZW
0 0.000 015 753 465 6 0.000 020 908 459 8 0.000 020 92a

δχ
mp
0 −0.000 043 755 174 2 −0.000 058 073 145 8 −0.000 058 1

Total χFNM
0 −0.000 899 21 −0.001 193 49 −0.001 20b

Relativistic correction, δχ rel
0

δχ
(1)
0 0.000 000 448 290 n/a

δχ
(2)
0 −0.000 003 300 978 n/a

δχ
(3)
0 0.000 141 785 338 n/a

δχ
(4)
0 0.000 002 801 697 n/a

δχ
(5)
0 0.000 005 021 728 n/a∑
i δχ

(i)
0 0.000 146 756 076 n/a

δχ
P4
0 0.000 948 763 83(2) 0.000 95

δχ
D1
0 + δχ

D2
0 −0.000 800 275 46(1) −0.000 802

δχB
0 0.000 019 860 10 0.000 019 8

δχBP
0 0.000 168 348 47(3) 0.000 162 8

Total δχ rel
0 0.000 315 104 55(2) 0.000 162 8

χ0 = χ
(0)
0 + χFNM

0 + δχ rel
0 −2.119 070(34) −2.119 365(34) −2.119 52

aThe original value from Ref. [19] adjusted by a factor 4 as noted in Ref. [20].
bBased on values from Ref. [19].
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A more serious problem is the omission of the QED correc-
tions in the present work. From the discussion in Sec. II D, it
is clear that the final uncertainty of the magnetic susceptibility
comes from the crude estimation of the QED correction, and
our final recommended value of χ0 for 4He, used in the last
row Table III, is 0.000 034 × 10−5 a3

0. Further improvements
in the accuracy of χ0 for helium would require more rigorous
determination of the QED contributions.

Let us also compare our results with the available exper-
imental data. From the gas-phase experiments performed by
Barter et al. [21], we have the value χ0 = −2.26(8) × 10−5 a3

0
for 4He. Therefore, we find a roughly 2σ disagreement with
the theoretical result χ0 = −2.119 106(34) × 10−5 a3

0 deter-
mined by us. The reason for this disagreement is not clear. On
the experimental side, another measurement of the magnetic
susceptibility was performed in the liquid phase for the 3He
isotope [38–40]. To add to the confusion, the experimental
results in the liquid phase and the gas phase also do not agree,
with a deviation of about 6%. Moreover, the liquid-phase–gas-
phase discrepancy is inconsistent with theoretical estimates of
Bruch and Weinhold [41], supported by calculations of Ko-
masa [42], who argued that the interaction-induced increment
to the diamagnetic susceptibility of liquid helium is below 1%.

While the possible sources of error on the experimental
side cannot be elucidated in the present work, it is worth dis-
cussing the possible sources of the discrepancy resulting from
inaccurate calculations or incomplete theory. First, we believe
that such large deviations cannot be explained by numerical
errors or artifacts such as basis-set incompleteness, etc., in
our computations. This is partly due to the mature state of
the technology used for accurate calculations for two-electron
systems. Additionally, there is a very good agreement between
our numerical results and the data of Bruch and Weinhold, in
all cases where the latter are available. Similarly, we find it
extremely unlikely that the QED effects bring such a large
contribution to the magnetic susceptibility. This would imply
a catastrophic failure of the convergence of the QED energy in
powers of α, resulting in the QED effects being about 3 orders
of magnitude larger than the α2 relativistic correction. Such a
phenomenon would be unprecedented and would contradict
the current knowledge about the accuracy of QED for a light
system like the helium atom [34,43].

Several other sources of error in theoretical calculations of
χ0 have been discussed, such as the approximate treatment of
the temperature dependence of χ0 (represented by the δχBO

0
term) or the density dependence of χ0 considered by Bruch
and Weinhold [41]. In all cases, these effects cannot explain
the observed discrepancy. It is worth mentioning that the
magnetic susceptibility exhibits also a frequency dependence,
an effect completely neglected in the present work. However,
the frequency dependence of χ0 originates solely from high-
order contributions of the order of 1/m2

N or 1/c6 and higher,
and hence is entirely negligible within the present accuracy
requirements.

To conclude, we have reported state-of-the-art theoretical
calculations of the static diamagnetic susceptibility of 3He and
4He in the 1S electronic ground state. We have evaluated the
complete relativistic correction to χ0 of the order of α4, in-
cluding terms originating from the magnetic-field-dependent
Dirac equation and the Breit interaction. The correction due

to the finite nuclear mass has also been evaluated. The main
source of error in our calculations is the omission of the QED
effects which were crudely and very conservatively estimated.
Our theoretical results disagree with both the gas-phase and
the liquid-phase measurements of the magnetic susceptibil-
ity. The reason for this disagreement is not known; possible
sources of error on the theoretical side were discussed. A new
independent measurement may shed light on this problem and
help to resolve the discrepancy.
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APPENDIX

Here we give the derivation of Eqs. (19) and (20). Let us
first consider the δχ

(4)
0 correction of Eq. (19). Using the vector

identity

(a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c), (A1)

the operator in the numerator in Eq. (17) can be written as

(B × r1) · (B × r2) = B2 r1 · r2 − (B · r1)(B · r2). (A2)

It is not difficult to see that the expectation value of the second
term on the right-hand side of Eq. (A2), when evaluated with
a spherically symmetric wave function, is the same as the
expectation value of the operator − 1

3 B2 r1 · r2. This allows us
to write

〈ψ0| (B × r1) · (B × r2)

r12
|ψ0〉 = 2

3
B2 〈ψ0|r1 · r2

r12
|ψ0〉. (A3)

Double differentiation with respect to B generates an addi-
tional factor of 2 which finally leads to Eq. (19).

The derivation of Eq. (20) is somewhat more complicated.
First, by expanding the vector and scalar products appearing
in Eq. (18) we obtain

[(B × r1) · r12][(B × r2) · r12]

= [B · (r1 × r12)][B · (r2 × r12)]

= 1
3 B2 (r1 × r12) · (r2 × r12) + · · · , (A4)

where the dots indicate several terms that give zero when
evaluated with a spherically symmetric wave function. Using
Eq. (A1) again, one obtains

1

3
B2〈ψ0| (r1 × r12) · (r2 × r12)

r3
12

|ψ0〉

= 1

3
B2〈ψ0| r2

12(r1 · r2) − (r1 · r12)(r2 · r12)

r3
12

|ψ0〉. (A5)
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Differentiation with respect to the external magnetic field
leads to Eq. (20). Note that the term explicitly written on the
rightmost side in Eq. (A4) can also be expressed as 1

3 B2 (r1 ×
r2) · (r1 × r2). Thus, in view of Eq. (A1), the right-hand side

of Eq. (A5) can be written in a formally somewhat simpler
form:

1

3
B2〈ψ0| r2

1r2
2 − (r1 · r2)2

r3
12

|ψ0〉. (A6)
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