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The linear response approach to the relativistic coupled-cluster (RCC) theory has been extended to estimate
contributions from the parity and time-reversal violating pseudoscalar-scalar (Ps-S) and scalar-pseudoscalar
(S-Ps) electron-nucleus interactions along with electric dipole moments (EDMs) of electrons (de) interacting
with internal electric and magnetic fields. The random phase approximation (RPA) is also employed to produce
results to compare with the earlier reported values and demonstrate the importance of the non-RPA contributions
arising through the RCC method. It shows that contributions from the S-Ps interactions and de arising through the
hyperfine-induced effects are very sensitive to the contributions from the high-lying virtual orbitals. Combining
atomic results with the nuclear shell-model calculations, we impose constraints on the pion-nucleon coupling
coefficients, and the EDMs of a proton and a neutron. These results are further used to constrain EDMs and
chromo-EDMs of the up- and down-quarks by analyzing particle physics models.
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I. INTRODUCTION

The search for permanent electric dipole moments (EDMs)
due to parity and time-reversal symmetry violating (P,T-odd)
interactions is one of the most interesting phenomena to-
day, yet very challenging to observe in either elementary
particles or composite systems [1,2]. One of the biggest
cosmological mysteries in our universe is the riddle of matter-
antimatter asymmetry [3–5]. This can be explained through
enough charge conjugation and parity (CP) symmetry violat-
ing sources in nature that arise especially from the leptonic
and semileptonic sources. Observations of EDMs would lead
to CP violation for a wide range of sources [6]. The Standard
Model (SM) of particle physics describes CP violation via a
complex phase in the Cabibbo-Kobayashi-Maskawa matrix
[7], but it cannot explain the large matter-antimatter asym-
metry observed in the Universe. Direct probes of EDMs on
elementary particles will remain almost impossible in the next
few decades as they demand energies that are beyond the
reach of very large energy facilities, such as the Large Hadron
Collider (LHC) at CERN, owing to Heisenberg’s uncertainty
principle. Since EDMs of composite objects are enhanced due
to electron correlation effects, atoms and molecules are used
as proxies over elementary particles to fathom CP-violating
phenomena associated at the fundamental level. Although the
SM predicts very small values for atomic EDMs [8–11], the
actual sizes could be much larger as predicted by many models
beyond the SM (BSM). One would expect different types
of sources of P,T-odd interactions apart from the hadronic
interactions predicted by the SM within the atomic and
molecular systems [12–16]. They can arise through the inter-
actions among the quarks, electrons, and electrons and quarks.

*bijaya@prl.res.in

Depending on the nature of the interactions, their roles be-
come significant in a particular atomic system. Atomic EDM
due to the electron EDMs or the P,T-odd scalar-pseudoscalar
(S-Ps) electron-nucleon (e-N) interactions in diamagnetic
atoms are quite small and usually neglected in the analysis.
However, they can give dominant contributions to the EDM
of a paramagnetic system. Similarly, nuclear Schiff moment
(NSM) and tensor-pseudotensor (T-Pt) e-N interactions can
give significant contributions to the EDM of a diamagnetic
system. The former arises due to CP-violating quark-gluon
level interactions, such as the EDMs and chromo-EDMs of
quarks. The latter is due to the T-Pt electron-quark (e-q) in-
teraction originating from the T-Pt electron-quark interaction,
which has been predicted by the leptoquark models [17–22].

The analysis of contributions from all possible sources
of P,T-odd interactions to a particular atomic system can be
quite useful. Since these interactions contribute with different
proportion to the EDMs of various atomic systems, it would
be possible to distinguish the source of each type of P,T-odd
interaction unambiguously by combining the calculations and
measurements of the EDMs of a number of atomic systems.
We intend to rigorously estimate the contributions from the
many plausible sources of P,T-odd interactions to the EDM of
the 129Xe atom. As mentioned above, the EDMs and chromo-
EDMs of quarks as well as T-Pt e-q coefficients can be
deduced from the EDM study of the 129Xe atom. Compared to
other diamagnetic systems, the nuclear structure of 129Xe can
be easily analysed theoretically. Moreover, there are three ex-
periments underway on the measurement of the EDM of 129Xe
[23–25]. Apart from the T-Pt e-N interactions and the NSM,
the other possible sources of P,T-odd interactions that can con-
tribute to the EDM of a diamagnetic system including 129Xe
atom at the leading order are the pseudoscalar-scalar (Ps-S)
e-N interactions, the S-Ps e-N interactions, and the electron
EDM (de) interacting with internal electric and magnetic fields
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[26,27]. Contributions from the Ps-S e-N interactions and de

interacting with the internal magnetic field can be realized
at the same level of perturbation as the T-Pt e-N interactions
and the NSM to the EDM of the diamagnetic atoms, but their
magnitudes are quite small compared to the latter two interac-
tions owing to the fact they are inversely proportional to the
mass of a proton. On the other hand, the S-Ps e-N interactions
and de interacting with the internal electric field will not
contribute to the EDM of a diamagnetic system at the second
order of perturbation because their corresponding interaction
Hamiltonians are in the scalar form and the ground state of
diamagnetic atoms has null angular momentum. Thus, the
leading-order contributions from these interactions can arise
through the interactions with the magnetic dipole hyperfine
(M1hf ) structure interactions. As a consequence, contributions
from these interactions are also small to the EDMs of the
diamagnetic atoms.

Earlier, contributions from the T-Pt e-N interactions and
NSM to 129Xe were rigorously estimated by employing the
relativistic coupled-cluster (RCC) theory in both the linear re-
sponse [28] and biorthogonal [29] approaches, which showed
that the results from both of the approaches almost agree
with each other. In this work, we again estimate contributions
from the T-Pt e-N interactions and the NSM, along with con-
tributions from the Ps-S e-N interactions and de interacting
with nuclear magnetic field. We have employed the random
phase approximation (RPA) and linear response RCC theory
to demonstrate the convergence of their values with the basis
size and by comparing results with the previous calculations.
Then, we extend these approaches considering M1hf as an
additional perturbation to account for the contributions from
the S-Ps e-N interactions and de interacting with the internal
electric field. We find that the convergence of the results with
respect to basis functions without and with the presence of
M1hf are very different. As a result, our estimated contribu-
tions from the hyperfine-induced effects differ substantially
from the earlier estimations.

II. PARTICLE PHYSICS

We can write the effective P,T-odd Lagrangian at the e-N
interaction level as [13]

LPT
eff = Le + Lp + Ln + LπNN + LeN , (1)

where Le denotes contributions from electron EDMs, Lp

denotes contributions from proton EDMs, Ln denotes contri-
butions from neutron EDMs, LπNN represents contributions
from the pion-nucleon-nucleon (π -N-N) interactions, and LeN

gives contributions from the e-N interactions. Here we do not
consider the short-range CP-odd nucleon-nucleon interaction
which a priori gives the leading contribution for the chiral
symmetry nonviolating CP-odd quark-gluon level interaction
[30,31]. It is actually known from several nuclear level ab
initio calculations that the short-range CP-odd force yields
much smaller effects than the pion-exchange ones induced
by LπNN [32–35]. This is qualitatively explained by the spin
dependence of the CP-odd nuclear force. Since the ground
states of ordinary odd nuclei have only one unpaired nucleon,
the short-range CP-odd nuclear force only acts in the vicinity
of this single nucleon, whereas the pion-exchange interaction

can interact with more nucleons thanks to its long-range na-
ture.

The relativistic expression for the EDM interaction of a
spin-1/2 fermion f (= e, p, n) is given by

L f = − i

2
d f ψ̄ f Fμνσ

μνγ5ψ f , (2)

where Fμν is the field strength of the applied electromagnetic
field, σμν = i

2 [γμ, γν] with γ ’s as the Dirac matrices, and ψ f

denotes the Dirac wave function of f . The EDM of quarks
mainly generates the nucleon EDM. Recent lattice quantum
chromodynamics (QCD) calculations yield [36–41]

dp ≈ 0.63 du|μ=1 TeV − 0.16 dd |μ=1 TeV

and

dn ≈ 0.63 dd |μ=1 TeV − 0.16 du|μ=1 TeV, (3)

where du and dd are the up- and down-quark EDMs renor-
malized at μ = 1 TeV [15,42]. The extraction from the
experimental data is also consistent with this value [43], so
we assign an uncertainty of 10%. The nucleon EDM receives
a contribution from other interactions, but we neglect them
since these mainly contribute to the atomic EDM via the
P,T-odd π -N-N interactions.

The expression for Le is given by

Le = − i

2
deψ̄eFμνσ

μνγ5ψe. (4)

The Lagrangian for the P,T-odd π -N-N interactions that
significantly contribute to the EDMs of the diamagnetic atoms
is given by [13,44–46]

LπNN = ḡ(0)
πNN ψ̄Nτ iψNπ i + ḡ(1)

πNN ψ̄NψNπ0

+ ḡ(2)
πNN (ψ̄Nτ iψNπ i − 3ψ̄Nτ 3ψNπ0), (5)

where the couplings ḡ(I )
πNN (I = 0, 1, 2) with the superscript

i = 1, 2, 3 represent the isospin components. Up to mass
dimension-6, LπNN is generated by the quark-gluon level CP-
odd Lagrangian

LQCDCPV =
(

Nqθ̄αs

16π
εμνρσ Gμν

a Gρσ
a

)
−

Nq∑
q

igsd̃q

2
ψ̄qσμν

× Gμν
a taγ5ψq + w

6
f abcεαβγ δGa

μαGb
βγ G μ,c

δ , (6)

where the quarks q are summed over the number of active
flavors, Nq, and Ga

μν is the field strength of the gluon with the
QCD coupling gs. Here we do not consider the CP-odd four-
quark interaction, which is effectively a dimension-8 operator,
due to the Higgs field insertion.

The first term of Eq. (6) is the so-called θ term, which we
put in parentheses because it is likely to be unphysical, as
recently shown [47–50]. Here, we write its contribution to the
isoscalar CP-odd pion-nucleon interaction that was derived
using the chiral perturbation theory [13,16,51,52],

ḡ(0)
πNN ≈ (0.015 θ̄ ). (7)

This expression is just to let the readers know that it was
believed that there were unnaturally tight constraints on θ̄ ,
known as the strong CP problem, which can be resolved if it
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is unphysical. We also do not consider the Weinberg operator
w [last term of Eq. (6)] for which the hadron level matrix
elements have large uncertainties [35,53,54].

The contribution of the quark chromo-EDM d̃q also has a
large uncertainty, although much of effort has been expended
in lattice QCD [55,56]. The leading process of d̃q contributing
to the NSM is most probably the so-called vacuum alignment
effect [13,57], which consists of creating a neutral pion from
the vacuum by CP-odd operators. According to chiral pertur-
bation, this generates an isovector CP-odd π -N-N interaction
[54,58–60],

ḡ(1)
πNN (d̃q) ≈ −

[
σπN

f 2
π m2

π

+ 5g2
Amπ

64π f 4
π

]
fπm2

πm2
0

2(mu + md )
(d̃u − d̃d )

≈ (125 ± 75)[d̃d |μ=1 TeV − d̃u|μ=1 TeV] fm−1, (8)

where mπ = 138 MeV, fπ = 93 MeV, and gA = 1.27. The
quark masses are mu = 2.9 MeV and md = 6.0 MeV at
the renormalization point μ = 1 GeV [8]. We also use the
mixed condensate m2

0 ≡ 〈0|ψ̄qgsσμνFμν
a taψq|0〉/〈0|q̄q|0〉 =

(0.8 ± 0.2) GeV2 determined using the QCD sum rules
[61–63]. The chromo-EDM couplings are renormalized at
μ = 1 TeV [15,42]. The uncertainty of the pion-nucleon
sigma term, σπN = (45 ± 15) MeV, is dominated by the sys-
tematics due to the differences between the lattice results
[36,41,64,65] and phenomenological extractions [66,67]. The
quoted error bar of 60% is a conservative one. We note that the
isoscalar CP-odd coupling g(0)

πNN is not enhanced by σπN . The
isotensor coupling g(2)

πNN is also suppressed by the light quark
mass factor. For these reasons, we only consider the isovector
coupling g(1)

πNN as regards the chromo-EDM.
The leading P,T-odd Lagrangian for e-N interaction is

given by [13]

LeN = − GF√
2

∑
N

[
CeN

S ψ̄NψN ψ̄eiγ 5ψe

+CeN
P ψ̄N iγ 5ψN ψ̄eψe

− 1

2
CeN

T εμνρσ ψ̄NσμνψN ψ̄eσρσ ψe

]
, (9)

where GF is the Fermi constant, εμναβ is the Levi-Civita sym-
bol, and ψN (e) denote the Dirac wave function of the nucleon
(electron). Here, CeN

S , CeN
P , and CeN

T denote the S-Ps, Ps-S,
and T-Pt e-N interaction coupling constants, respectively. The
above LeN is generated by the CP-odd e-q interaction,

Leq = − GF√
2

∑
q

[
Ceq

S ψ̄qψq ψ̄eiγ5ψe + Ceq
P ψ̄qiγ5ψq ψ̄eψe

− 1

2
Ceq

T εμνρσ ψ̄qσμνψq ψ̄eσρσ ψe

]
, (10)

at the elementary level. The relations between the CP-odd
couplings are given by [68]

Cep
S ≈ 11Ceu

S + 10Ced
S ,

Cen
S ≈ 10Ceu

S + 11Ced
S ,

Cep
P ≈ 320Ceu

P − 300Ced
P ,

Cen
P ≈ −300Ceu

P + 320Ced
P ,

Cep
T ≈ 0.63Ceu

T − 0.16Ced
T ,

and

Cen
T ≈ −0.16Ceu

T + 0.63Ced
T , (11)

with all e-q couplings renormalized at μ = 1 TeV. The coef-
ficients of Ceq

P and Ceq
T have 20% of uncertainty, while those

of Ceq
S have 40%, due to the systematics of the σ term seen

above. We do not give the contributions from the strange and
heavier quarks, which are affected by large errors.

III. NUCLEAR PHYSICS

The NSM S is related to the P,T-odd π -N-N couplings and
the nucleon EDMs as [69,72]

S = g
(
a0ḡ(0)

πNN + a1ḡ(1)
πNN + a2ḡ(2)

πNN

) + b1dp + b2dn, (12)

where g � 13.5 is known as the strong π -N-N coupling coef-
ficient, and the a’s and b’s are the nuclear structure-dependent
coefficients.

To obtain the constraints on the hadronic P,T-odd cou-
plings, we use the results of nuclear large-scale shell-model
(LSSM) calculations. In this model, the nuclear effective
Hamiltonian is diagonalized in an appropriate model space.
For 129Xe consisting of 54 protons and 75 neutrons, we con-
sider one major shell between the magic numbers 50 and 82,
both for the proton and neutron, as the model space. This
choice is reasonable to describe the low-energy properties
of nuclei. In fact, the LSSM calculations using the effective
Hamiltonians SN100PN [70] and SNV [71] successfully re-
produce the low-energy spectra and electromagnetic moments
in a wide range of nuclei. The NSM coefficients of 129Xe
were reported in Refs. [69,73]. In particular, it was found that
the NSM coefficient of the neutron EDM, b2 in Eq. (12), is
apparently correlated to the nuclear magnetic moment. This
demonstrates the reliability of the LSSM calculations, which
reproduce, with reasonable accuracy, the experimental value
of the magnetic moment.

The NSM was evaluated as [69,73]

S = (0.002dp + 0.47dn) fm2 + (−0.038ḡ(0)
πNN

+ 0.041ḡ(1)
πNN + 0.082ḡ(2)

πNN

)
ge fm3, (13)

where b1 = −0.003 and 0.006 with the effective Hamiltoni-
ans SNV and SN100PN, respectively. A simple regression
analysis with the magnetic moment yields an uncertainty of
30% for b2 [69]. We assume the same level of accuracy for
the a’s in this paper, although the physical origin of their
discrepancy between nuclear models is less clear.

For completeness, we compute the nucleon spin matrix
element (〈σN 〉) related to the T-Pt interaction in the same
framework. We obtain, for the neutron (N = n), 〈σn〉 = 0.666
and 0.658 by using the effective Hamiltonian SN100PN and
SNV, respectively. We adopt the mean value 〈σn〉 = 0.66 in
the following discussion. The proton (N = p) spin matrix
element is computed as 〈σp〉 = 0.002. Although this value
may be model dependent, it is conclusive that the proton
matrix element is orders of magnitude smaller than that of the
neutron. The KSHELL code has been utilized for the nuclear
calculations [74].
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IV. ATOMIC PHYSICS

A. Theory

The EDM (da) of an atomic system is given as the expecta-
tion value of the dipole operator D in its state, i.e., the ground
state |�0〉 in this case,

da = 〈�0|D|�0〉
〈�0|�0〉 . (14)

The single-particle matrix element of D can be found in
Eq. (A2). Assuming that a given P,T-odd interaction in an
atomic system is sufficiently smaller than the contributions
from the electromagnetic interactions, we can consider up to
the first order in the P,T-odd interaction with respect to the
electromagnetic interactions for the determination of atomic
wave functions. This yields

|�0〉 � ∣∣� (0)
0

〉 + λ
∣∣� (1)

0

〉
, (15)

where superscripts 0 and 1 stand for the unperturbed wave
function due to the electromagnetic interactions and its
first-order correction due to a P,T-odd interaction Hamilto-
nian (λHPT), respectively. Here, λ represents the perturbative
parameter of the corresponding P,T-odd interaction under con-
sideration. In principle, all possible P,T-odd interactions need
to be considered simultaneously in the determination of the
atomic wave function. However, it will not make any dif-
ference in the precision of the results even if we consider
one type of P,T-odd interaction at a time and subsequently
study their contributions in an atomic system, owing to the
fact that the correlations among all these P,T-odd interactions
are negligibly small (second-order effects are much smaller
than the intended accuracy of the calculations). With the above
approximation, we can express

da � 2λ

〈
�

(0)
0

∣∣D∣∣� (1)
0

〉〈
�

(0)
0

∣∣� (0)
0

〉 . (16)

Considering all possible Lagrangians described in Sec. II,
the net EDM of an atomic system can be estimated as

da = de
a + d p

a + dn
a + dπNN

a + deN
a

= de
a + dSm

a + deN
a , (17)

where superscripts denote contributions to the EDM from the
respective source. We have also combined contributions from
the proton EDMs, the neutron EDMs, and the π -N-N interac-
tions to the net EDM contribution from the above sources and
denote it as dSm

a , which are encapsulated within the NSM (S).
Considering the nonrelativistic limit, the atomic Hamil-

tonian accounting contributions from the electron EDM
interactions are given by

Hde = 2icde

∑
k

βkγ
5
k p2

k =
∑

k

hde
k , (18)

where c is the speed of light, β and γ 5 are the Dirac matrices,
and p is the magnitude of the momentum of the electron. The
matrix element of the single-particle operator hde of Hde is
given by Eq. (A3), which shows that it is a scalar operator. As
a result, Eq. (16) will be zero for the closed-shell system (with
total angular momentum J = 0) when Hde is considered as a
perturbation. To get a finite value of da due to Hde , it would

be necessary to consider the next leading-order (third-order)
interaction that can arise through the M1hf operator, whose
matrix element is given by Eq. (A4). In the presence of both
P,T-odd and M1hf interactions, we can express an atomic wave
function as

|�0〉 � ∣∣� (0,0)
0

〉 + λ1

∣∣� (1,0)
0

〉 + λ2

∣∣� (0,1)
0

〉 + λ1λ2

∣∣� (1,1)
0

〉
,

(19)

where we use λ1 and λ2 as perturbative parameters for
the M1hf and HPT operators, respectively. Thus, the unper-
turbed and perturbed wave functions are denoted with two
superscripts—the first superscript counts the order of M1hf

and the second superscript counts the order of HPT. In these
notations, we can express

de
a = 2λ1λ2

〈
�

(0,0)
0

∣∣D∣∣� (1,1)
0

〉 + 〈
�

(1,0)
0

∣∣D∣∣� (0,1)
0

〉〈
�

(0,0)
0

∣∣� (0,0)
0

〉 . (20)

Apart from the contribution from de interacting with an
internal electric field of an atomic system, there will also be
another contribution to da because of de interacting with the
magnetic field (B) of the nucleus. Its interacting Hamiltonian
is given by

HB = −de

∑
k

γ 0
k B =

∑
k

hB
k (r). (21)

The single-particle matrix element of this Hamiltonian is
given by Eq. (A5). It can contribute at the second-order per-
turbation to EDM as

dB
a � 2λ2

〈
�

(0,0)
0

∣∣D∣∣� (0,1)
0

〉〈
�

(0,0)
0

∣∣� (0,0)
0

〉 . (22)

Thus, contributions to da from the e-N interactions can be
expressed as

deN
a = dP

a + dSc
a + dT

a , (23)

where dP
a , dSc

a , and dT
a stand for the contributions to EDM

from the Ps-S, S-Ps, and T-Pt interactions, respectively.
The interaction Hamiltonian, together with LπNN , Lp, and

Ln for the atom with nuclear spin I = 1/2 such as 129Xe, can
be approximately given by [75]

HNSM
int =

∑
k

3(S · r)k

B
ρnuc(r)

=
∑

k

hNSM
k (r), (24)

where ρnuc(r) is the nuclear charge density distribution func-
tion, S = S I

I is the NSM, and B = ∫ ∞
0 drr4ρnuc(r). The

matrix element of hNSM
k (r) is given by Eq. (A6). HNSM

int can
contribute at the second-order perturbation to EDM as

dSm
a � 2λ2

〈
�

(0,0)
0

∣∣D∣∣� (0,1)
0

〉〈
�

(0,0)
0

∣∣� (0,0)
0

〉 . (25)

The S-Ps interaction Hamiltonian is given by

HSPs = iGFCS√
2

A
∑

k

βkγ
5
k ρnuc(r) =

∑
k

hSPs
k , (26)
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where A is the atomic mass number of the considered atom.
The matrix elements of its single-particle operator hSPs are
given by Eq. (A7). Here, we defined CS ≡ [ZCep

S + (A −
Z )Cen

S ]/A. Since the above interaction Hamiltonian is scalar
in nature, it will contribute to the EDM of a closed-shell
atom through the hyperfine-induced interaction. Thus, it can
be evaluated using the expression

dSc
a = 2λ1λ2

〈
�

(0,0)
0

∣∣D∣∣� (1,1)
0

〉 + 〈
�

(1,0)
0

∣∣D∣∣� (0,1)
0

〉〈
�

(0,0)
0

∣∣� (0,0)
0

〉 . (27)

The Ps-S interaction Hamiltonian is given by

HPsS = − GFCP

2
√

2mpc

∑
k

γ0σnuc∇kρnuc(r)

=
∑

k

hPsS
k (r), (28)

where mp is the mass of a proton and σnuc = ∑
n〈σn〉 +∑

p〈σp〉 is the Pauli spin operator for the nucleus. The Ps-S
coupling is approximated as CP ≈ Cn

P since the proton matrix
element 〈σp〉 is small. The matrix element for its single-
particle operator hPsS is given by Eq. (A8). The contribution
to da from the above Hamiltonian is evaluated by

dPs
a � 2λ2

〈
�

(0,0)
0

∣∣D∣∣� (0,1)
0

〉〈
�

(0,0)
0

∣∣� (0,0)
0

〉 . (29)

The T-Pt e-N interaction Hamiltonian for an atomic system
is given by [75–77]

HT Pt
int = i

√
2GFCT

∑
k

(
σnuc · γ 0

k

)
ρnuc(r)

=
∑

k

hT Pt
k (r), (30)

and the matrix element of its single-particle operator is given
by Eq. (A9). We can use the approximation CT ≈ Cn

T again
thanks to the small proton matrix element. The contribution to
da from the above Hamiltonian is evaluated by

dT
a � 2λ2

〈
�

(0,0)
0

∣∣D∣∣� (0,1)
0

〉〈
�

(0)
0

∣∣� (0)
0

〉 . (31)

We would like to mention here that the CP coefficient can
be approximately deduced from CT , and vice versa, using the
relation [78]

CP ≈ 3.8 × 103 × A1/3

Z
CT , (32)

where Z is the atomic number of the atom. However, the
reliability of this relation has not yet been verified. Thus, it
would be necessary to infer both of the coefficients separately
to test the above relation.

B. Methodology

The RCC method is a nonperturbative theory to a many-
body problem. Its notable characteristics are many folds
compared to other contemporary many-body methods that
are generally employed to carry out calculations of spectro-
scopic properties. Among them, the main advantages of a

RCC method are its formulation that satisfies size-consistent
and size-extensivity properties, its ability to account for dif-
ferent types of correlation effects on equal footing (also cross
correlations among them), and it captures more physical ef-
fects at the given level of approximation compared to other
popular many-body methods [79–81]. We employ this theory
to estimate the enhancement coefficients due to each of the
P,T-odd interactions. The calculation of wave functions of an
atomic system necessitates to first obtain a suitable mean-field
wave function (reference state), including part of the electron
correlation effects, and treat the residual correlation effects
as an external perturbation. Thus, evaluating the second- and
third-order EDM properties of an atomic system, as discussed
in the previous section, means dealing with another source
of perturbation along with the residual correlation effects.
This makes it challenging to determine the intended properties
using the RCC method.

We consider the Dirac-Coulomb (DC) Hamiltonian to de-
termine the unperturbed wave function |� (0,0)

0 〉 due to the
dominant electromagnetic interactions, given by

H0 =
Ne∑
i

[cα · pi + c2β + Vnucl(ri )] + 1

2

∑
i, j

1

ri j
, (33)

where Ne is the number of electrons, α is the Dirac matrix,
Vnucl(ri ) is the nuclear potential, and ri j is the distance between
the ith and jth electrons. In the above expression, we have
used atomic units (a.u.) in which h̄ = 1 and mass of electron
me = 1.

In the RCC theory framework, we can express |� (0,0)
0 〉 due

to H0 as ∣∣� (0,0)
0

〉 = eT (0,0) |�0〉, (34)

where |�0〉 is the mean-field wave function obtained using the
Dirac-Hartree-Fock (DHF) method and the cluster operator
T (0,0) is defined as

T (0,0) =
Ne∑

I=1

T (0,0)
I =

Ne∑
I=1

t (0,0)
I C+

I , (35)

where I represents the number of particle-hole pairs, t (0,0)
I is

the unperturbed excitation amplitude, and C+
I is the I pair

of creation and annihilation operators denoting the level of
excitations. In our work, we have considered both singles and
doubles approximation in the RCC theory (RCCSD method)
by restricting I up to one-particle–one-hole and two-particle–
two-hole excitations, i.e., T (0,0) = T (0,0)

1 + T (0,0)
2 . The general

T (0) amplitude solving the equations in the RCC theory is
given by

〈�0|C−
I H0|�0〉 = 0, (36)

where C−
I are the adjoint of C+

I (referring to deexcitation) and
H0 = e−T (0,0)

H0eT (0,0) = (H0eT (0,0)
)l , with subscript l denoting

the linked terms [below, we shall follow the notation O =
(OeT (0,0)

)l throughout the paper]. Since H0 has only one-body
and two-body terms, H0 can have a finite number of terms. In
the RCCSD method approximation, we can have two set of
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equations for T (0,0)
1 and T (0,0)

2 as

〈�0|C−
1

(
H0T (0,0)

1

)
l
|�0〉

= −〈�0|C−
1 H0 + (

H0T (0,0)
2

)
l |�0〉

− 〈�0|C−
1

[
H0

∑
n,m

T (0,0)n
1 T (0,0)m

2

n!m!

]
l

|�0〉 (37)

and

〈�0|C−
2

(
H0T (0,0)

2

)
l |�0〉

= −〈�0|C−
2 H0 + (

H0T (0,0)
1

)
l |�0〉

− 〈�0|C−
2

[
H0

∑
n,m

T (0,0)n
1 T (0,0)m

2

n!m!

]
l

|�0〉, (38)

where n, m � 1 denote all possible nonlinear terms. The
above equations are solved using the Jacobi iterative proce-
dure.

Now considering external perturbations due to M1hf and
HPT, we can express the total Hamiltonian as

H = H0 + λ1M1hf + λ2HPT. (39)

In the RCC theory framework, we can express |�0〉 of H in
the form similar to the unperturbed wave function as

|�0〉 = eT |�0〉. (40)

In order to obtain the perturbed wave functions from this
expression, we can express

T � T (0,0) + λ1T (1,0) + λ2T (0,1) + λ1λ2T (1,1), (41)

where superscript notations are as per Eq. (19). This follows∣∣� (1,0)
0

〉 = eT (0,0)
T (1,0)|�0〉,∣∣� (0,1)

0

〉 = eT (0,0)
T (0,1)|�0〉,

and ∣∣� (1,1)
0

〉 = eT (0,0)(
T (1,1) + T (1,0)T (0,1)

)|�0〉. (42)

The amplitudes of the perturbed RCC operators can be
obtained as

〈�0|C−
I [H0T (1,0) + M1h f ]|�0〉 = 0,

〈�0|C−
I [H0T (0,1) + HPT ]|�0〉 = 0,

and

〈�0|C−
I

[
H0T (1,1) + H0T (1,0)T (0,1)

+ M1h f T (0,1) + HPT T (1,0)
]|�0〉 = 0. (43)

It should be noted that the first two equations are independent
from each other and are solved separately after obtaining
T (0,0) amplitudes. These two equations are of similar form
with Eq. (36), so they are also solved using the Jacobi it-
erative procedure. Once the amplitudes of the T (0,0), T (1,0),
and T (0,1) operators are known, the amplitudes of the T (1,1)

operator are obtained by solving the last equation in the same
Jacobi iterative approach. Since O contains many nonlinear
terms, among which H0 also contains two-body terms, we use
intermediate computational schemes to solve the amplitude

determining equation for T (1,1). We divide H0 into effective
one-body and two-body terms like the bare Hamiltonian H0,
and store them to further use to solve all three equations.
This reduces much computational time to obtain the perturbed
RCC operator amplitudes. Due to the limitation in memory
of the available computational facility, it is not possible to
store additional effective two-body terms that could arise
from M1hf and HPT. Since both M1hf and HPT are one-body
operators, fewer two-body terms will arise from M1hf and
HPT compared to H0. Thus, their effective one-body diagrams
are only computed and stored for further use in the above
equations, while their effective two-body terms are computed
directly. In the last equation, we compute effective one-body
terms of H0T (1,0) + M1hf together, then multiply by T (0,1)

to economically compute the H0T (1,0)T (0,1) and M1h f T (0,1)

terms. In the RCCSD method approximation, we write

T (1,0) = T (1,0)
1 + T (1,0)

2 ,

T (0,1) = T (0,1)
1 + T (0,1)

2 ,

and

T (1,1) = T (1,1)
1 + T (1,1)

2 . (44)

With the knowledge of T (1,0), T (0,1), and T (1,1) amplitudes,
we can evaluate the second-order EDM enhancement factors
as

d2nd
a

λ2
� 2

〈�0|eT (0,0) †
DeT (0,0)

T (0,1)|�0〉
〈�0|eT (0,0) †

eT (0,0) |�0〉
� 2〈�0|D̃T (0,1)|�0〉l , (45)

where D̃ = eT (0,0) †
DeT (0,0)

. As can be seen, the normalization
of the wave function has been canceled with the unlinked
terms of D̃ in the above expression, leaving out only the linked
terms for the final evaluation. This argument can be followed
from the discussions given in Refs. [82,83] and this is further
verified using the biorthogonal condition [29,84]. Proceeding
in a similar manner, the third-order EDM enhancement factors
can be evaluated using the expression

d3rd
a

λ1λ2
� 2〈�0|D̃T (1,1) + T (1,0)†

D̃T (0,1)|�0〉l . (46)

We adopt an iterative procedure to evaluate the contributions
from D̃ self-consistently. Once D̃ is computed and stored, each
term is reduced to a terminated expression in both Eqs. (45)
and (46) in the RCCSD method approximation to obtain the
final result.

V. RESULTS AND DISCUSSION

Before presenting the results from various P,T-odd interac-
tion sources to the EDM of 129Xe, it is important to validate
the calculations. There are two aspects to be looked into in
such intent—completeness of basis functions used in the gen-
eration of atomic orbitals and reproducing some known quan-
tities (i.e., comparing between the calculated and experimen-
tal results) using the determined wave functions. It is challeng-
ing to deal with basis functions in the calculations of atomic
properties as it is not possible to obtain a complete set of basis
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functions to estimate a property of our interest. In the consid-
eration of finite-size basis functions, they are chosen keeping
in view the sensitivity of a given property at the shorter or
longer radial distances. The matrix elements of the D oper-
ator are more sensitive to the wave functions at the longer
distances. However, the P,T-odd interactions of our interest
originate from the nucleus. The s and p1/2 orbital wave func-
tions having larger overlap with the nucleus are supposed to
be predominantly contributing to the matrix elements of HPT.

It may not be necessary to use a sufficient number of
orbitals from a higher orbital angular momentum, i.e., l > 1.
Again, the energy denominators can also play crucial roles in
deciding the important contributing high-lying orbitals to the
perturbative quantities. Thus, it is expected that contributions
from the ns and np1/2 orbitals with principal quantum number
n > 20 to the EDM may not be large. This argument may be
valid in the determination of the d2nd

a values, but one has to
be careful with such presumption in the evaluation of the d3rd

a
contributions. This is because the third-order contributions to
the EDM of 129Xe can be enhanced by the 〈ns|M1hf |ms〉 and
〈np1/2|M1hf |mp1/2〉 matrix elements with continuum orbitals
lying beyond n, m > 20 due to the fact that these orbitals have
large overlap within the nuclear region, and energy differences
between the associated ns and np1/2 orbitals do not appear in
the denominator of the terms involving the 〈ns|M1hf |ms〉 and
〈np1/2|M1hf |mp1/2〉 matrix elements.

It is possible to verify enhancement to the EDM contribu-
tions from these high-lying orbitals using the DHF method
or using an all-order method such as random phase ap-
proximation (RPA), as these methods do not require much
computational resources. On the point about determining
some quantities and comparing them with their experimental
values, it would be desirable to search for properties having
similarities with the EDM calculations. However, evaluation
of the EDM involves the matrix elements of D, the matrix
elements of HPT (via |� (0,1)

0 〉 and |� (1,1)
0 〉), and the excitation

energies (appearing in the denominator of the amplitude co-
efficients of the perturbed wave function). There is no such
measurable property of 129Xe known which has a striking
similarity with the calculation of its EDM. In the open-shell
EDM studies, one evaluates hyperfine-structure constants and
electric dipole polarizabilities (αd ) obtained using the calcu-
lated wave functions to compare them with their available
experimental values for testing the accuracy of the atomic
wave functions in the nuclear and asymptotic regions, respec-
tively. Since the ground state of 129Xe does not have hyperfine
splitting, we only determine its αd and compare it with the
experimental value [85]. The same has also been done earlier
while calculating contributions from the P,T-odd interactions
to the atomic EDM of 129Xe [29,82,86,87].

It is well known in the literature that the Gaussian type
of orbitals (GTOs) form a good set of basis functions that
can describe wave functions near the nuclear region very
well [88–90]. We have also used the Fermi nuclear charge
distribution [91] to define ρN (r) and the nuclear potential.
We have used 40 GTOs using an even tempering condition,
as described in [92], for each orbital belonging to l values up
to 4 (i.e., g symmetry) in the present calculation. There are
two reasons for not considering orbitals from the higher mo-
mentum values. First, these omitted orbitals do not contribute

TABLE I. Calculated values of αd (in a.u.), dSm
a

(in × 10−17 S
e fm3 e cm), dT

a (in × 10−20〈σ 〉CT e cm), dPs
a

(in × 10−23〈σ 〉CP e cm), dB
a (in × 10−4 e cm), de

a (in × 10−4 e cm),
and dSc

a [in × 10−23(CS/A) e cm] from our DHF, RPA, and RCCSD
methods. Results from previous studies are also given, including the
measured value of αd [85]. We have used nuclear magnetic moment
μ = −0.777976μN and nuclear spin I = 1/2 in the estimation of
the hyperfine-induced contributions.

This work

Quantity DHF RPA RCCSD Final Others

αd 26.866 26.975 27.515 27.55(30)
27.782(50) [82]
27.51 [29]
25.58 [86]

dSm
a 0.289 0.378 0.345 0.337(10) 0.38 [87]

0.337(4) [82]
0.32 [29]

dT
a 0.447 0.564 0.522 0.510(10) 0.41 [26]

0.519 [27]
0.501(2) [82]
0.49 [29]
0.507(48) [86]
0.57 [87]

dPs
a 1.287 1.631 1.504 1.442(25) 1.6 [87]

dB
a 0.669 0.795 0.745 0.716(15) 1.0 [87]

0.869 [27]
de

a 10.171 12.075 11.205 10.75(25) −8.0 [26]
−9.361a [27]

dSc
a 3.545 4.439 4.032 3.91(10) 0.71(18) [86]

aUnit is changed from the original reported value using μ =
−0.77686μN quoted in Ref. [27].

up to the desired precision to the EDM of 129Xe. Second,
evaluation of d3rd

a demands the inclusion of higher s and p
continuum orbitals to obtain a reliable result for the EDM.
So inclusion of higher angular momentum orbitals to account
for electron correlation effects in the RCCSD method would
be a challenge with the available computational facilities;
especially the orbitals with l > 4, which are not significantly
contributing to the matrix elements of HPT. We also demon-
strate in this work a set of basis functions that would be
sufficient to provide accurate value of αd , but not sufficient
enough to correctly estimate the d3rd

a contributions. In view
of the aforementioned discussions, it would be necessary to
investigate the convergence of the d3rd

a contributions to the
EDM by considering as many ns and np1/2 orbitals as possible
in the calculations.

In Table I, we summarize the calculated αd , d2nd
a , and d3rd

a
values of 129Xe from the DHF, RPA, and RCCSD methods.
The reason for giving results from RPA is that the previous
calculations were mostly reported results using this approach.
Again, differences between the DHF and RPA results will
indicate the roles of core-polarization contributions, while
differences between the RPA and RCCSD results would ex-
hibit the roles of non-core-polarization contributions in the
determination of the investigated quantities. It can be seen
from the table that differences between the DHF, RPA, and
RCCSD values are not so significant though non-negligible
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in all the evaluated properties. It means that the correlation
effects in this atom are not very strong. It can also be noticed
that the αd value increases from the DHF method to RPA, then
from RPA to the RCCSD method. However, the d2nd

a values
show different trends—these values increase from the DHF
method to RPA, then they decrease slightly in the RCCSD
method. Since the RCCSD method implicitly contains all the
RPA effects [82], it implies that the non-RPA effects arising
through the RCCSD method behave differently in the deter-
mination of αd and d2nd

a .
The d3rd

a values also show similar trends, i.e., first they
increase from the DHF method to RPA, then decrease slightly
in the RCCSD method. However, the correlation effects are
relatively smaller in magnitude for the d3rd

a values compared
to the d2nd

a values. Therefore, it is very important that the DHF
values for d3rd

a are reliably determined in order to estimate
their final values more accurately using the RCCSD method.
We also give our final values along with their possible un-
certainties from the neglected contributions. The final results
are estimated by including contributions from the Breit and
lower-order QED interactions to the RCCSD values, which
are then compared with the previous calculations reported in
Refs. [26,27,29,82,86,87]. Uncertainties in all the quantities
are estimated by analyzing the variation in the results due
to use of the finite-size basis functions, approximations in
the many-body methods, nuclear model parameters, and QED
model potential. These sources of errors contribute with a
different amount in each calculated quantity.

The calculated αd values from the same methods, which
are employed to obtain the EDM results, are also compared
with the experimental result [85] in Table I. It shows that our
calculated value αd agrees well with the experimental result.
They also match with our previous calculations [29,82], where
smaller-size basis functions were used and contributions from
the Breit and QED effects were neglected. However, our αd

value differs substantially from the value reported in Ref. [86]
using the configuration interaction (CI) method. In fact, the
CI value is found to be smaller than our DHF and RPA re-
sults. From the comparison of the EDM results, we find our
RPA values for dSm

a , dT
a , and dPs

a match with the RPA values
listed in Ref. [87]. However, we find our RPA value for dB

a
differs from Ref. [87], while it is almost in agreement with
the RPA value given in Ref. [27]. A careful analysis of this
result suggests that the calculation of dB

a is very sensitive to
the choices of root-mean-square radius R and radial integral
limits in the evaluation of the single matrix elements of hB

k ,
as explicitly demonstrated later. Our RCCSD values for all
of these quantities agree with the RCCSD results and cal-
culations using the normal relativistic coupled-cluster theory
reported in Refs. [29,82].

After discussing the second-order perturbative properties,
we now move on to discuss the de

a and dSc
a values. Unlike

the properties discussed earlier, we find that our third-order
properties differ significantly from the previously reported
values. The reported de

a value in Ref. [27] was performed at
the RPA level, while it was obtained analytically in Ref. [26].
The dSc

a value of Ref. [86] was estimated using the CI method.
In the case of de

a , we observe a sign difference between our
result and that reported in Refs. [27,86]. On the other hand,
the signs of our calculated dSc

a value agree with the result of

Ref. [86]. Since there is an analytical relationship between
the S-Ps and electron EDM P,T-odd interaction Hamiltonians,
the signs of both contributions are anticipated to be the same.
From this analysis, we assume that the sign of our estimated
value for de

a is right.
Now looking into large differences in the magnitudes for

these d3rd
a contributions, we find that they are due to the

different basis functions used in the calculations. This can
also be corroborated from the fact that the correlation effects
arising through the RCCSD method to the d3rd

a contributions
are not as large, and thus the main differences in the results
come from the DHF values. The magnitudes of the de

a value
among various calculations almost agree, but there is an order
of magnitude difference for dSc

a . The authors have analyzed
the roles of the basis functions in the determination of αd , dT

a ,
and dSc

a in Ref. [86]. They have noticed large fluctuations in
the results, and their final αd value (i.e., 25.58 a.u.) differs
significantly from the experiment. Also, they have made a
small virtual cutoff to manage the calculations with the limited
computational resources as the CI method can demand for
huge RAM in the computers for direct diagonalization with a
bigger size configuration space. We demonstrate below, using
both the DHF and RPA methods, how such cutoff for the
virtual orbitals does not significantly affect the determination
of the d2nd

a values, but they are very sensitive to the evaluation
of the d3rd

a values.
We present the DHF values for αd , d2nd

a , and d3rd
a of 129Xe

in Table II from a different set of single-particle orbitals. Since
the s, p1/2, and p3/2 orbitals are the dominantly contributing
orbitals, we consider these orbitals first and gradually include
orbitals with higher orbital angular momentum values, until
the g symmetries, to show their roles in the determination
of the above quantities. At this stage, it is important to note
that some of the orbitals from the higher angular momentum
may not contribute through the DHF method, but they can
contribute via the electron correlation effects to the above
quantities. Thus, if the correlation effects are significant in
the determination of the investigated properties only, then one
needs to worry about the contributions from the higher angular
momentum (belonging to l > 4) orbitals to the calculations.
Anyway, later we shall present a variation of correlation ef-
fects through the RPA method considering a few typical sets
of orbitals to show how inclusion of orbitals from the higher
angular momentum can affect the results.

In Table II, we start presenting results considering 20s,
20p1/2, and 20p3/2 orbitals (set I). This is a reasonable size
basis function when only the s and p orbitals make dominant
contributions to a property. The results reported from this set
of basis functions are already close to the DHF values for all
the d2nd

a values, whereas there is a large difference seen for
the αd value from the final value of the DHF method quoted
in Table II. We also see quite significant differences for the
d3rd

a values at the DHF method compared to what are listed in
Table II. This shows that contributions from the other orbitals
are also substantial to the evaluation of the αd and d3rd

a values,
but their contributions are small for d2nd

a . To learn how the
high-lying ns and np continuum orbitals, or orbitals with the
higher orbital angular momentum, can affect the results, we
consider two more sets of basis functions in the next step by
including 35s and 35p orbitals (set II), then increase them up
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TABLE II. Convergence of the DHF values for the estimated αd and EDM enhancement factors from various P,T-odd interactions in 129Xe
with different sizes of basis functions, which are identified as set number (Set no.).

αd dSm
a × 10−17 dT

a × 10−20 dPs
a × 10−23 dB

a × 10−4 de
a × 10−4 dSc

a × 10−23

Set no. Basis size (a.u.) [S/(e fm3) e cm] (〈σ 〉CT e cm) (〈σ 〉CP e cm) e cm e cm [(CS/A) e cm]

I 20s, 20p 4.282 0.289 0.446 1.286 0.676 0.640 0.051
II 30s, 30p 4.282 0.290 0.447 1.287 0.675 8.718 2.017
III 35s, 35p 4.282 0.290 0.447 1.287 0.675 9.917 3.542
IV 40s, 40p 4.282 0.290 0.447 1.287 0.675 9.918 3.547
V 35s, 35p, 35d 25.978 0.289 0.447 1.287 0.669 10.171 3.545
VI 40s, 40p, 40d 25.978 0.289 0.447 1.287 0.669 10.172 3.550
VII 40s, 40p, 40d , 40 f , 40g 26.868 0.289 0.447 1.287 0.669 10.172 3.550
VIII 35s, 35p, 35d , 15 f , 15g 26.866 0.289 0.447 1.287 0.669 10.171 3.545
IX 20s, 20p, 20d , 15 f , 15g 26.866 0.289 0.447 1.287 0.670 0.651 0.051

to 40s and 40p orbitals (set III). It shows that none of the d2nd
a

values as well as αd make much change with the inclusion
of more ns and np orbitals, but the d3rd

a values change by
one order with the inclusion of 35s and 35p orbitals and
get saturated after that. This strongly advocates for the fact
that the roles of the continuum orbitals beyond n > 20 are
very crucial for an accurate estimation of the d3rd

a values. We
proceed further by adding orbitals from the higher angular
momentum. We consider 35d orbitals first, along with 35s
and 35p orbitals (set IV), then 40d orbitals, along with 40s
and 40p orbitals (set V). The DHF values in both cases seem
to be almost the same for all of these quantities. Compared
with the previous set of orbitals, we find that none of the d2nd

a
and d3rd

a values change, except the αd value. This asserts our
earlier statement about how the EDM results are sensitive to
only the higher ns and np orbitals, but contributions from the
other orbitals to the EDM are negligibly small. Nonetheless,
orbitals from the g symmetry do not contribute for the DHF
method, as there are no occupied orbitals present in the f
shell of 129Xe, while virtual f orbitals contribute due to the
presence of the occupied d orbitals. Their contributions to the
EDM are negligible, while a small contribution from these
orbitals is noticed in the determination of αd .

In the present work, we have used the Fermi-type nuclear
charge distribution, given by

ρ(r) = ρ0

1 + e(r−b)/a
, (47)

where ρ0 is a normalization constant, b is the half-charge
radius, and a = 2.3/4ln(3) is related to the skin thickness. The
relation between R, b, and a is given by

R =
√

3

5
b2 + 7

5
a2π2. (48)

In Table III, we show how the DHF value for dB
a changes with

R (by varying the b value) and cutoff in the radial integration
of the wave functions with the basis set VIII. As can be seen
from the table, for a small radial integral cutoff, the results
show opposite signs than with the larger cutoffs. The value
increases until 200 a.u., then slightly decreases at the very
large cutoff values. Beyond 500 a.u., we do not see any further
changes in the results. Again, we see significant variation in
the results with b values. In our calculation, we use b = 5.655

fm, at which it satisfies the empirical relation

R = 0.836A1/3 + 0.570 fm, (49)

where A is the atomic mass of 129Xe. Thus, one of the reasons
for the difference in the dB

a value between the present work
and that reported in [26,27] could be due to the choices of dif-
ferent nuclear charge radii and cutoff in the radial integration
of the matrix elements.

We also verify how the hyperfine-induced results differ
without and with considering the magnetization distribution
[M(r)] within the nucleus. In this case too, we use the Fermi-
type distribution as

M(r) = 1

1 + e(r−b)/a
. (50)

The DHF values for de
a and dSc

a without and after multiplying
the above factor with the M1hf operator are given in Table IV.
As can be seen from the table, there is a significant reduction
in the magnitudes of the above quantities when the magnetiza-
tion distribution is taken into account within the nucleus. Our
final results, reported in Table I, include these effects.

In order to analyze how the high-lying orbitals enhance the
d3rd

a contributions in the DHF method, we take the help of
Goldstone diagrams as have been described in Ref. [27]. In
Fig. 1, we show these Goldstone diagrams representing six
terms of the DHF method that contribute to d3rd

a . We present
contributions from these diagrams in Table V using four rep-
resentative sets of basis functions that are denoted as sets I,
II, III, V, and VIII in Table II. We have also compared our
results diagramwise from the bigger basis (set VIII) with the
results from Ref. [27]. As can be seen from the table, the result

TABLE III. Change in the DHF value for dB
a (in × 10−4) for

different values of b. We have used the basis set VIII and fixed a
as 0.523 387 555 fm to carry out the analysis.

R value b value (fm)

(a.u.) 5.605 5.625 5.655 5.695

30 −2.241 −2.188 −2.108 −2.001
100 0.581 1.429 1.365 1.281
200 1.044 1.006 0.949 0.874
500 0.927 0.721 0.669 0.600
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TABLE IV. The DHF values for de
a and dSc

a from the basis
set VIII without and after considering the nuclear magnetization
distribution.

de
a × 10−4 dSc

a × 10−23

Condition e cm [(CS/A) e cm]

Without 11.007 4.624
With 10.171 3.545

from set I that gives very small DHF values to d3rd
a produces

reasonable contributions via Figs. 1(i), 1(iv), 1(v), and 1(vi).
In all of these cases, the matrix elements of HPT and M1hf are
involved with at least one core orbital. The remaining two di-
agrams involve the matrix elements of HPT and M1hf between
the virtual orbitals whose energy denominators do not appear
in the evaluation of the DHF value. This ascertains our initial
discussion about why the high-lying virtual orbitals enhance
the d3rd

a contributions. Compared to the results from Ref. [27],
we find that our results from Figs. 1(i), 1(v), and 1(vi) match
quite well (only the magnitude, but sign differs as was men-
tioned earlier), while they differ for the other diagrams. We
also find that the result trends from different DHF diagrams
are different for de

a and dSc
a . This is clearly evident from the

contributions of Figs. 1(ii) and 1(iii), where basis sets I and II
give small values for both quantities. With the basis set VIII,
the contribution to the de

a value becomes almost three times
as large, while it only increases marginally for dSc

a . Thus, we
infer from these discussions that a consideration of a very
large set of basis functions in the estimations of the hyperfine-
induced contributions to the atomic EDM is crucial.

As stated earlier, the correlation effects between the d , f ,
and g orbitals through the DHF potential are absent for the cal-
culations of the above quantities. However, their correlation
effects through the residual Coulomb interaction may affect
the results through the RPA and RCCSD methods. To verify
this fact, we make a similar analysis in the trends of the results
from different interactions by performing RPA calculations
with the previously used basis sets. These results are listed in
Table VI, from which it can be seen that the all-order method

FIG. 1. Diagrammatic representation of different DHF contribu-
tions to the d3rd

a values. Lines with upward arrows denote virtual
orbitals and lines with downward arrows denote occupied orbitals.
Operators Hhf , HPT, and D are shown by a singled dotted line with a
rectangular box, a dotted line with a black circle, and a line with a
square, respectively.

TABLE V. Contributions from different DHF diagrams to the
d3rd

a values using four representative basis functions. Values from
de

a and dSc
a are given in ×10−4 e cm and ×10−23(CS/A) e cm,

respectively.

Basis de
a value

Fig. no. set This work Ref. [27] dSc
a value

Fig. 1(i) I −0.878 −0.054
II −0.874 −0.054
III −0.874 −0.054
V −0.872 −0.054

VIII –0.872 0.870 −0.054

Fig. 1(ii) I 1.664 1.021
II 5.675 1.061
III 6.288 1.832
V 6.338 1.833

VIII 6.338 −4.887 1.833

Fig. 1(iii) I 3.109 0.200
II 7.170 1.203
III 7.757 1.957
V 7.948 1.959

VIII 7.948 −6.697 1.959

Fig. 1(iv) I 0.890 0.055
II 0.892 0.055
III 0.892 0.055
V 0.893 0.055

VIII 0.893 −0.963 0.055

Fig. 1(v) I −2.870 −0.172
II −2.870 −0.172
III −2.870 −0.172
V −2.861 −0.171

VIII –2.861 2.859 −0.171

Fig. 1(vi) I −1.275 −0.077
II −1.275 −0.077
III −1.275 −0.077
V −1.274 −0.077

VIII –1.274 1.274 −0.077

also shows similar trends in the results as in the DHF method.
From this exercise, it follows that orbitals with higher angular
momentum do not significantly contribute to the d2nd

a and d3rd
a

contributions and consideration of the high-lying ns and np
orbitals with n > 20 are essential for an accurate estimate of
the d3rd

a contributions.
In Table VII, we present contributions from the individual

terms of the RCCSD method to the estimations of αd and the
d2nd

a values from different HPT. We find that DT (0,1)
1 and its

Hermitian conjugate (H.c.) give almost all the contributions
to the above quantities. The next dominant contributions arise

through T (0,0)
2

†
DT (0,1)

1 and its H.c. Contributions from the
higher-order nonlinear terms (“Others”) are non-negligible.
At the end of the table, we have also listed contributions
arising through the Breit and lower-order QED interactions.
They show that the Breit interaction contributes more to αd

than the QED effects, while it is the reverse for d2nd
a .

We also present contributions from the individual terms
of the RCCSD method to the estimations of the d3rd

a
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TABLE VI. Convergence of the RPA values of the estimated αd and EDM enhancement factors from various P,T-odd interactions in 129Xe
with different size of basis functions.

αd dSm
a × 10−17 dT

a × 10−20 dPs
a × 10−23 dB

a × 10−4 de
a × 10−4 dSc

a × 10−23

Set no. Basis size (a.u.) [S/(e fm3) e cm] (〈σ 〉CT e cm) (〈σ 〉CP e cm) e cm e cm [(CS/A) e cm]

I 20s, 20p 6.753 0.481 0.723 2.088 1.036 0.541 0.052
II 30s, 30p 6.753 0.482 0.723 2.088 1.031 13.582 3.234
III 35s, 35p 6.753 0.482 0.723 2.088 1.031 15.518 5.504
IV 40s, 40p 6.753 0.482 0.723 2.088 1.031 15.519 5.509
V 35s, 35p, 35d 26.923 0.379 0.565 1.634 0.794 12.168 4.463
VI 40s, 40p, 40d 26.923 0.379 0.565 1.634 0.794 12.172 4.466
VII 40s, 40p, 40d , 40 f , 40g 26.975 0.379 0.565 1.634 0.794 12.172 4.466
VIII 35s, 35p, 15d , 15 f , 15g 26.975 0.378 0.564 1.631 0.795 12.168 4.463
IX 20s, 20p, 20d , 15 f , 15g 26.975 0.378 0.564 1.631 0.795 0.441 0.051

values in Table VIII. In this case, the DT (1,1)
1 + H.c. terms

contribute mostly to both de
a and dSc

a , and the next leading-

order contributions arise from T (0,1)
1

†
DT (1,0)

1 + H.c. There

are non-negligible contributions from T (0,1)
2

†
DT (1,0)

1 + H.c.,

T (0,0)
2

†
DT (1,1)

2 + H.c., and T (0,1)
2

†
DT (1,0)

2 + H.c. The rest of
the contributions (“Others”) are also quite significant. At the
bottom of the table, we quote contributions from both the
Breit and QED interactions. In this case, contributions arising
through the QED interactions seem to be relatively large.

The latest reported experimental result for the EDM of
129Xe is [93,94]

|dXe| < 1.4 × 10−27e cm, (51)

where e = |e| is the electric charge. Now, considering our
recommended values as

da = 0.510(10) × 10−20〈σ 〉CT e cm

and

da = 0.337(10) × 10−17 S/(e fm3) e cm, (52)

and combining them with the experimental result for EDM,
we obtain limits as

|CT| < 5.9 × 10−7

and

|S| < 4.2 × 10−10 e fm3. (53)

In deriving the upper limit of |CT|, we took into account
the 30% uncertainty of the spin matrix element 〈σ 〉 ≈ 〈σn〉 ≈
0.66.

Similarly, considering

da = 1.442(25) × 10−23〈σ 〉CP e cm, (54)

we deduce the limit as

|CP| < 2.1 × 10−4. (55)

This follows the ratio of the CP and CT values as 0.3559 × 103

that agrees well with the value 0.3556 × 103 estimated using
the empirical relation given by Eq. (32).

Now, we can express the above parameters at the hadron
level as ∣∣ḡ(0)

πNN

∣∣ < 1.2 × 10−9,∣∣ḡ(1)
πNN

∣∣ < 1.1 × 10−9,∣∣ḡ(2)
πNN

∣∣ < 5.4 × 10−10,

and

|dn| < 1.3 × 10−22 e cm, (56)

where we assumed 30% of nuclear level uncertainty. We do
not set a limit for the proton EDM which is affected by large
error. When the sensitivity of the 129Xe EDM experiment
improves by about three orders of magnitude as expected
[95], the resulting NSM limit together with nuclear structure

TABLE VII. Contributions to αd and d2nd
a enhancement factors from various P,T-odd interactions in 129Xe through individual terms of the

RCCSD method. For the terms that are not explicitly shown, their contributions are given together under “Others.” Estimated contributions
from the Breit and QED interactions are given at the bottom of the table.

αd dSm
a × 10−17 dT

a × 10−20 dPs
a × 10−23 dB

a × 10−4

RCC terms (a.u.) [S/(e fm3) e cm] (〈σ 〉CT e cm) (〈σ 〉CP e cm) e cm

DT (0,1)
1 + H.c. 29.980 0.318 0.510 1.471 0.722

T (0,0)
1

†
DT (0,1)

1 + H.c. −0.345 0.003 0.004 0.017 0.007

T (0,0)
2

†
DT (0,1)

1 + H.c. −3.308 0.011 0.017 0.049 0.034

T (0,0)
1

†
DT (0,1)

2 + H.c. 0.074 ∼0.0 ∼0.0 −0.001 −0.001

T (0,0)
2

†
DT (0,1)

2 + H.c. 1.072 ∼0.0 ∼0.0 −0.001 −0.003
Others 0.042 0.013 −0.009 −0.031 −0.014

Breit 0.051 −0.002 −0.001 −0.003 0.003
QED −0.015 −0.006 −0.011 −0.059 −0.032
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TABLE VIII. Contributions to the d3rd
a enhancement factors from

the electron EDM and S-Ps interactions in 129Xe through individual
terms of the RCCSD method. For the terms that are not explicitly
shown, their contributions are given together as “Others.” The Breit
and QED interaction contributions are given at the end of the table.

de
a × 10−4 dSc

a × 10−23

RCC terms e cm [(CS/A) e cm]

DT (1,1)
1 + H.c. 10.922 3.953

T (0,1)
1

†
DT (1,0)

1 + H.c. −0.076 −0.004

T (0,1)
2

†
DT (1,0)

1 + H.c. −0.045 −0.003

T (0,1)
1

†
DT (1,0)

2 + H.c. 0.0 0.0

T (0,0)
2

†
DT (1,1)

2 + H.c. −0.018 −0.002

T (0,1)
2

†
DT (1,0)

2 + H.c. −0.020 −0.001
Others 0.428 0.088

Breit −0.037 −0.008
QED −0.417 −0.118

calculations will give the improved limits at the quark-gluon
level CP violation.

Using the results from the present study, the final expres-
sion in terms of all possible contributions can be given for
μ = 1 TeV as

dXe = 1.15 × 10−3de − 2.6 × 10−6du + 1.0 × 10−5dd

+ (−2 × 10−20θ̄e cm) + 2.4 × 10−3e(d̃d − d̃u)

+ (
0.040Ceu

S + 0.041Ced
S − 0.29Ceu

P + 0.30Ced
P

− 0.055Ceu
T + 0.22Ced

T

) × 10−20e cm, (57)

and for μ = 1 GeV as

dXe = 1.15 × 10−3de − 3.3 × 10−6du + 1.3 × 10−5dd

+ (−2 × 10−20θ̄e cm) + 2.6 × 10−3e(d̃d − d̃u)

+ (
0.020Ceu

S + 0.020Ced
S − 0.14Ceu

P + 0.15Ced
P

− 0.070Ceu
T + 0.28Ced

T

) × 10−20e cm, (58)

where we displayed the cases for two renormalization scales
μ = 1 TeV and μ = 1 GeV. The experimental upper limit,
given by Eq. (51), is then converted to

|de| < 1.2 × 10−24 e cm,

|du| < 9.0 × 10−22 e cm,

|dd | < 2.2 × 10−22 e cm,

|d̃u|, |d̃d | < 1.5 × 10−24 e cm,∣∣Ceu
S

∣∣ < 5.9 × 10−6,∣∣Ced
S

∣∣ < 5.7 × 10−6,∣∣Ceu
P

∣∣ < 8.2 × 10−7,∣∣Ced
P

∣∣ < 7.7 × 10−7,∣∣Ceu
T

∣∣ < 4.2 × 10−6,

and ∣∣Ced
T

∣∣ < 1.0 × 10−6, (59)

where all elementary level couplings are renormalized at the
scale μ = 1 TeV. This is under the assumption of the domi-
nance of only one P,T-odd interaction. We also assumed that
the quark EDMs, Ceq

S , Ceq
P , and Ceq

T , are affected by 40%
of uncertainty, while the chromo-EDMs by 60%. The above
upper limits are looser than those given by other experiments
that are given as [96,97]

|de| < 4.1 × 10−30 e cm,

|du| < 1.2 × 10−25 e cm,

|dd | < 2.9 × 10−26 e cm,

|d̃u|, |d̃d | < 6.4 × 10−28 e cm,∣∣Ceu
S

∣∣ < 1.9 × 10−11,∣∣Ced
S

∣∣ < 1.8 × 10−11,∣∣Ceu
P

∣∣ < 6.1 × 10−10,∣∣Ced
P

∣∣ < 5.7 × 10−10,∣∣Ceu
T

∣∣ < 4.3 × 10−9,

and ∣∣Ced
T

∣∣ < 9.7 × 10−10. (60)

VI. CONCLUSION

We have employed the relativistic coupled-cluster theory
in the linear response approach to estimate the second- and
third-order perturbative contributions due to the parity and
time-reversal symmetry violating interactions to the electric
dipole moment of 129Xe. We have also compared our results
with the previously reported values at the random phase ap-
proximation, and performed a calculation of the electric dipole
polarizability to verify the reliability of our calculations. We
observed contrasting trends of the correlation contributions
in the determination of all these quantities. In particular, de-
termination of the third-order perturbative contributions are
found to be very sensitive to the contributions from the very
high-lying s and p1/2 orbitals. In addition, we have also per-
formed nuclear calculations using the shell model. Combining
atomic results with the latest experimental value of the elec-
tric dipole moment of 129Xe, we inferred the revised limits
of the nuclear Schiff moment and the tensor-pseudotensor
electron-nucleus coupling coefficient. Using the extracted
nuclear Schiff moment with our nuclear calculations, we
obtained limits on the pion-nucleon coupling coefficients,
and the electric dipole moments of a proton and a neutron.
Further, we used all possible second- and third-order pertur-
bative contributions to express the electric dipole moment
of 129Xe in terms of the electric dipole moments of elec-
trons and quarks, and the parity and time-reversal violating
electron-quark tensor-pseudotensor, pseudoscalar-scalar, and
scalar-pseudoscalar coupling coefficients.
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APPENDIX: MATRIX

In the Dirac theory, the orbital wave function of an electron,
|φa(r)〉, is given by

|φa(r)〉 = 1

r

(
Pa(r)χκa,mja

(θ, ϕ)

iQa(r)χ−κa,mja
(θ, ϕ)

)
, (A1)

where Pa(r) and Qa(r) denote the large and small com-
ponents of the radial part, and the χ ’s denote the spin
angular parts of each component with relativistic quantum
number κa, total angular momentum ja, and its component
mja .

In terms of these wave functions, the single-particle matrix
element of the dipole operator D is given by

〈κa||d||κb〉 = 〈κa||C(1)||κb〉
∫ ∞

0
dr(PaPb + QaQb)r, (A2)

where C1 is the Racah operator of rank 1.
The single-particle matrix element of the electron EDM

interaction Hamiltonian is given by

〈 ja||hde
k || jb〉 = 2c

√
2 ja + 1δκa,−κb

{
l̃a(l̃a + 1)

∫ ∞

0
dr

Pa(r)Qb(r)

r2
+ la(la + 1)

∫ ∞

0
dr

Qa(r)Pb(r)

r2

+ dPa(r)

dr

dQb(r)

dr
+ dQa(r)

dr

dPb(r)

dr

}
, (A3)

where l and l̃ are the orbital quantum number of the large and small component of the Dirac wave function, respectively.
The single-particle matrix elements of the M1hf operator are given by

〈κa||t1
h f ||κb〉 = −(κa + κb)〈−κa||C(1)||κb〉

∫ ∞

0
dr

(PaQb + QaPb)

r2
, (A4)

where μN is the nuclear magneton and gI is the ratio of nuclear magnetic dipole moment μI and I .
The single-particle reduced matrix element of hB(r) is given by

〈 ja||hB
k || jb〉 = deμ

2mpc

{
−3〈−κa||C1|| − κb〉

∫ ∞

R
dr

Qa(r)Pb(r)

r3
− 3〈κa||C1||κb〉

∫ ∞

R
dr

Pa(r)Qb(r)

r3

−〈−κa||σk||κb〉
∫ ∞

R
dr

Qa(r)Pb(r)

r3
− 〈κa||σk|| − κb〉

∫ ∞

R
dr

Pa(r)Qb(r)

r3

+ 2〈−κa||σk||κb〉
∫ R

0
dr

Qa(r)Pb(r)

r3
+2〈κa||σk|| − κb〉

∫ R

0
dr

Pa(r)Qb(r)

r3

}
, (A5)

where R is the radius of the nucleus.
The single-particle matrix element for the NSM operator is given by

〈 ja||hNSM
k || jb〉 = 3S

B
〈κa||C(1)

k ||κb〉
∫ ∞

0
drρN(r)[Pa(r)Pb(r) + Qa(r)Qb(r)]. (A6)

The single-particle matrix element of the S-Ps interaction is given by

〈 ja||hSPs
k || jb〉 = −δκa,−κb

GFCS√
2

A
√

2 ja + 1
∫ ∞

0
dr[Pa(r)Qb(r) + Qa(r)Pb(r)]ρN(r). (A7)

The single-particle reduced matrix element of the Ps-S operator is given by

〈 ja||hPsS
k || jb〉 = − GFCP

2
√

2mpc
〈σN〉〈κa||C(1)||κb〉

∫ ∞

0
dr[Pa(r)Pb(r) − Qa(r)Qb(r)]

dρN(r)

dr
. (A8)

The single-particle reduced matrix element of the T-Pt operator is given by

〈 ja||hT Pt
k || jb〉 = −

√
2GFCT〈σN〉

[
〈κa||σk|| − κb〉

∫ ∞

0
drρN(r)Pa(r)Qb(r) + 〈−κa||σk||κb〉

∫ ∞

0
drρN(r)Qa(r)Pb(r)

]
, (A9)

where σk is the Pauli spinor for the electrons.
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