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Isotope effect for the mutual neutralization reaction at low collision energies: He+ + H−
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We measured the branching ratios of the He+ + H− and He+ + D− mutual neutralization at a collision energy
below 25 meV. Those are correctly reproduced using the Landau-Zener model applied to potential energy curves
computed by an anion-centered asymptotic model. The analyticity of both models allows getting a deeper insight
into the reaction. It allows defining a low collision energy regime for the mutual neutralization at which the
collision energy no longer affects the branching ratios. Using those models, we explain how heavier isotopes
favor the production of higher excited states.
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I. INTRODUCTION

Mutual neutralization (MN) recently gained an increased
focus, following the discovery of its effect on the late-type
stars’ apparent metallicity (see [1,2] and references therein).
This led to a large number of theoretical studies dealing with
X + + H− mutual neutralization [1,3–33], focusing on colli-
sion energies below 10 000 K, i.e., 1 eV.

In order to confirm those calculations, recent measure-
ments were also performed [6,34–38], but due to technical
limitations of the merged beam setups both at UCLouvain
[39] and at DESIREE [40], the mass ratio between the anion
and the cation was limited. Therefore X + + D− MN reactions
were used as a proxy for X + + H−, leading to difficulties in
the comparison between theoretical and experimental results,
as the isotope effect might have to be taken into account [41].

This paper describes this isotope effect on MN at low colli-
sion energies using the analytical two-channel Landau-Zener
(SLZ) model with the He+ + H−/D− MN reaction taken as an
example. Merged beam experiments are reported that validate
this approach.

II. EXPERIMENTAL SETUP

In order to measure the isotope-dependent branching
fractions, we used our single-pass merged beam setup as de-
scribed by Launoy et al. [6] and shown in Fig. 1. The He+

beam is generated by an electron cyclotron resonance ion
source and the H−(D−) beam is generated by a duoplasmatron
source fed with H2(D2) gas. The anion and cation beams are
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merged in an observation cell. A biasing voltage applied to
the cell defines the collision energy Er,i. The neutralized ions
are collected by a pair of time and position sensitive detectors
(microchannel plates in a Z-stack configuration, and equipped
with a resistive anode). The simultaneous measurement of the
positions and times of arrival of the He and H(D) products
allows us to reconstruct the momentum vector of the He-H
pseudoparticle, leading to the determination of the center-of-
mass frame kinetic energy Er, f . The kinetic-energy release
(KER) EKER = Er, f − Er,i allows us to identify the products
of the reaction using

EKER = [I (He) − eA(H)] − [Elev(He) + Elev(H)]

where I (He) = 24.5874 eV is the helium ionization potential,
eA(H ) = 0.754 eV is the hydrogen electron affinity, and Elev

is the energy level of the produced atomic state. Those energy
levels are retrieved from the NIST-ASD database [42] and
the associated EKER is displayed in Table I. The experimental
spectra are displayed in Fig. 2 and the fitted branching ratios
are listed in Table I.

III. THEORY

In order to describe the results, we computed the interac-
tion terms between the diabatic potential energy curves using
an anion-centered asymptotic model (ACAM) similar to the
one described by Janev [44] but with an accurate description
of the asymptotic form of the H− wave function [45] and
a slightly different description of angular momentum (see
Appendix A).

The dynamics of the collision was computed using the
two-channel [46] and multichannel [47] Landau-Zener (MLZ)
models (ACAMSLZ and ACAMMLZ). While the latter gives
a better quantitative description of the reaction (details are
given in Appendix B) and gives results similar to the one ob-
tained by Larson et al. [4], the two-channel version ACAMSLZ

remains purely analytical, which allows for a qualitative de-
scription of the isotope effect.
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FIG. 1. Schematics of the single-pass merged beam setup.

Using this model, and averaging over the Stueckelberg
oscillations, the partial cross section is given by [46,48,49]:

σSLZ = 4πR2
x

(
1 − V (Rx )

Er,i

)
G(ζ ) (1)

where

G(ζ ) =
∫ ∞

1
e−ζx(1 − e−ζx )

dx

x3
(2)

TABLE I. Branching ratios for He++H− (top) and He++D−

(bottom) reactions and associated EKER. Only the neutralized cation
state is given as no excited hydrogen states were observed. The 1-σ
error is indicated in parentheses. The theories are given at a colli-
sion energy of 10 meV; the experimental average collision energy
for the He++H− (D−) is 13 meV (23 meV). Comparison between
ACAMSLZ and ACAMMLZ is given in Table II of Appendix A. The
partial cross sections and the reaction rates of ACAMMLZ are given
in the Supplemental Material [43].

He state EKER Experiment ACAMMLZ Larson et al. [4]
(eV) (H−)

2s 3S 4.0138 0.00 0.00
2s 1S 3.2175 0.00 0.03
2p 3Po 2.8693 0.01(0.01) 0.00 0.05
2p 1Po 2.6154 0.00(0.01) 3.54 0.58
3s 3S 1.1149 49.93(2.54) 48.55 48.58
3s 1S 0.9131 10.08(1.96) 12.17 10.37
3p 3Po 0.8263 21.89(1.25) 24.66 28.84
3d 3D 0.7597 5.01 3.65

⎫⎬
⎭14.48(1.00)3d 1D 0.7593 1.70 2.88

3p 1Po 0.7464 4.37 4.93
4s 3S 0.2394 0.00(0.00) 0.00

He state EKER Experiment ACAMMLZ Larson et al. [4]
(eV) (D−)

2s 3S 4.0138 0.00 0.00
2s 1S 3.2175 0.00 0.01
2p 3Po 2.8693 0.85(0.29) 0.00 0.05
2p 1Po 2.6154 1.58(0.29) 1.08 0.34
3s 3S 1.1149 42.80(0.76) 43.00 43.88
3s 1S 0.9131 11.35(0.35) 14.11 10.89
3p 3Po 0.8263 27.05(0.53) 28.27 31.31
3d 3D 0.7597 6.09 4.13

⎫⎬
⎭13.28(3.66)3d 1D 0.7593 2.09 3.68

3p 1Po 0.7464 5.35 5.86
4s 3S 0.2394 0.43(0.40) 0.00 0.00

FIG. 2. Experimental kinetic-energy release spectra: He+(12.5
keV)+H−(2.5 keV) in black and He+(11.5 keV)+D−(6.5 keV) in
blue. The collision energies are 13 and 23 meV respectively.

is a highly nonlinear function of the collision energy (see
Fig. 4);

ζ = 2πE2
ic

h̄�Fvr,i

√
1 − V (Rx )/Er,i

(3)

where Eic is the interaction potential between the ionic (i) and
covalent state (c) whose diabatic potential energy curves are
Vi and Vc, respectively; R is the internuclear distance; Rx is
the internuclear distance at which Vc(Rx ) = Vi(Rx ) = V (Rx );
�F = |d/dR(Vc − Vi )|; and vr,i is the initial collision
velocity.

IV. LOW COLLISION ENERGY REGIME

As theory and experiment are in a satisfactory agreement,
it is possible to explain the difference between He+ + H− and
He+ + D− MN branching fractions. This would require us to
define the low collision energy regime and its approximation,
then deriving Eqs. (1) and (3) at low collision energy. It allows
explaining why the difference in the collision energy (ex-
perimental) does not really matter for the branching fraction
measurement. And finally, as all those aspects of the exper-
iment can be put aside, it is possible to isolate this isotope
effect on the atom-atom mutual neutralization at low collision
energies.

But, before discussing the low collision energy approxi-
mation for the MN, it is useful to deduce the MN partial cross
section in the high collision energy regime, defined as

Er,i >> EKER = −V (Rx ). (4)

In this case, the cross section is approximately

σSLZ � 4πR2
xG

(
2πE2

ic

h̄�Fvr,i

)
, (5)

which means that the collision is described by the collision
velocity instead of the collision energy.

Let us now define what the “low collision energy” regime
is for the MN; in this paper we define it as

Er,i � EKER = −V (Rx ). (6)
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In the He+ + H−/D− MN case, this corresponds to collision
energies below 50 meV.

In such case, Eqs. (1) and (3) become

σSLZ � 4πR2
x

EKER

Er,i
G(ζ ) (7)

and

ζ � 2πE2
ic

h̄�Fvr,i

√
2EKER/μv2

r,i

= 2πE2
ic

h̄�F

√
μ

2EKER
(8)

where μ is the reduced mass of the atoms.
As shown in Eq. (8), there is no collision energy de-

pendence of ζ , which means—as stated in Eq. (7)—that
the partial cross section is inversely proportional to the col-
lision energy, i.e., the predicted cross section follows the
well-known 1/Er,i dependence—instead of the velocity de-
pendence mentioned above.

These equations also show that the branching ratio remains
constant at low collision energies. In order to show that, let us
estimate the branching ratio for a system—where two output
channels 1 and 2 are accessible—at two collision energies
E ′

r,i and E ′′
r,i. Using the fact that ζ1(E ′

r,i ) = ζ1(E ′′
r,i ) = ζ1 and

ζ2(E ′
r,i ) = ζ2(E ′′

r,i ) = ζ2, the branching ratio for the state k =
1, 2 is

σk

σ1 + σ2
= R2

x,kEKER,kG(ζk )

R2
x,1EKER,1G(ζ1) + R2

x,2EKER,2G(ζ2)
(9)

where all the collision energy factors simplify. This also
means that the actual collision energy at which the branching
ratios are measured does not matter, as long as this collision
energy satisfies Eq. (6). This also validates the experiment, as
the merged beam experiments performed at low collision en-
ergies always have some collision energy spread. This spread
is often non-negligible, but as the branching ratios are not sen-
sitive to the collision energy in this collision energy regime,
the spread does not affect the branching ratios measured ex-
perimentally.

Another equivalent description is that the MN reaction is
mainly driven by the Coulomb potential, meaning that the
“trajectories” (or wave propagation) follow the electrostatic
approximation. It means that for a given collision energy,
the trajectories do not depend on the mass of the ions. Fur-
thermore, the Landau-Zener model states that the transition
probability at the crossing depends on the velocity at the
crossing but, as the collision energy is much smaller than
the kinetic energy gained at the crossing, the velocity at the
crossing does not depend on the collision energy, meaning that
this component of the cross section remains constant.

V. ISOTOPE EFFECT

It remains to describe the isotope effect on the reaction,
which is given by a

√
μ factor in Eq. (8). The identification

of the reduced mass as a driving parameter of the isotope
effect has already been highlighted by Belyaev and Voronov
[50]. They identified two concurring isotope effects, one of
them being the increase of the maximum angular momentum
for heavier systems, and the other a reduction of the Landau-

FIG. 3. The internuclear crossing distance dependence of the
interaction term.

Zener transition probability e−ζ for the same systems due to
reduced radial velocities at the crossing point.

In this section, we describe the isotope effect as a single
nonlinear dependence on ζ instead of two opposing effects
which should be balanced to maximize the (total or partial)
cross section. But before discussing the effects of the reduced
mass on the total cross section, one should remember that this
discussion is about all possible output channels of any low
collision energy MN reaction. One cannot make the analysis
for a given value of {Eic,�F } but must take into account all
the possible values of {Eic,�F }. Therefore, it is useful to
use the ACAM model to estimate the interaction term whose
tendency is shown in Fig. 3.

In that figure, one can see that, for the crossing radius range
where the ACAM is valid (Rx > 10 a.u.), E2

ic/�F decreases
monotonically. It also shows that there is a strong dependence
of this term on the value of ml which suggests that it might not
be possible, a priori, to determine the isotope effect if ml �= 0
are allowed by the reaction. But in the case of He+ + H−, it is
a 1s electron that is transferred from H−, meaning the ml = 0
condition is satisfied.

One should also note that, if several molecular symmetries
are involved, the following analysis might also be more com-
plicated as there is a Landau-Zener window for each of them.
In the He+ + H− case, only the 2�+ symmetry is involved,
which further simplifies the treatment of the isotope effect.

Hence, for a given MN reaction between two ions whose
reduced mass is μ and with N output channels k, there are N
values of ζk . By evaluating G(ζk ) as a function of the inter-
nuclear distance (see Appendix A), one can see that E2

ic/�F
monotonically decreases with the internuclear distance, mean-
ing that for small internuclear distance ζk > 0.424 while for
greater internuclear distance ζk < 0.424, i.e., there are states
situated above and below the maximum of G(ζ ).

Another consequence of this G(ζ ) maximum, combined
with the monotonic decrease of E2

ic/�F , is the presence of an
optimum energy in the KER spectra. This optimum is called
the Landau-Zener window. Previous experiments [35] have
shown that this window ranges from 0.5 to 3 eV, but it varies
as a function of the electron affinity of the anion, i.e., higher
KER is favored when the electron affinity increases.
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Unfortunately, another effect might counterbalance this
general tendency: one can see in Fig. 3 that—at a given
internuclear distance—the interaction potential also depends
on the orbital momentum. Therefore, it is not possible to
estimate, using only the KER and the electron affinity, the
value of E2

ic/�F for a given state. This dependency is strong
enough to invalidate any prediction made using Olson’s [51]
fit over those values.

If one studies the same MN reaction with other isotopes
whose reduced mass is μ′, then for each channel

ζ ′
k =

√
μ′/μζk . (10)

This means that all channels are shifted by the same factor.
Heavier isotopes have higher ζk values than lighter ones.

Some channels are above and others are below the maxi-
mum of G(ζ ). Therefore, for heavier isotopes, the partial cross
section of the channels above the maximum (lower excited
states) decreases, while the partial cross section of the chan-
nels below the maximum (higher excited states) increases. As
a result, there is no trivial dependency on μ for the total cross
section. Nevertheless, this global increase of the ζk values
for heavier isotopes systematically favors the higher excited
states, i.e., heavier isotopes tend to favor lower kinetic-energy
release products.

This effect is equivalently explained as follows: When
two ions collide, they reach the crossing distance twice (ap-
proach and departure). In order to neutralize, they should cross
(∝ e−ζ ) and avoid the crossing (∝1 − e−ζ ). The product of
those two, integrated over all the impact parameters, leads to
Eqs. (1) and (3). One can identify two extreme cases: for the
first one, the interaction term is small (higher excited states),
i.e., the system passes through the crossing most of the time;
for the other one, the interaction term is large (lower excited
states), i.e., the crossing is mostly avoided. As a consequence,
as the kinetic energy at each crossing is fixed (=EKER), the
heavier isotopes reach those crossings at a slower radial veloc-
ity, meaning that they spend more time through the crossing
and increase the probability to avoid it. Therefore, the prod-
ucts with a low avoided crossing probability are favored by
those heavier isotopes, i.e., the higher excited states are fa-
vored by heavier isotopes.

This argument applies directly to the He+ + H−/D− case
(Fig. 4): The increase of μ leads to an increase of ζ for
He+ + D− (1.33 a.m.u.) compared to the one for He+ + H−
(0.8 a.m.u.), which favors the higher excited states of he-
lium (1s3s 1S, 1s3p 3Po) compared to the lesser excited state
(1s3s 3S) situated above the G(ζ ) maximum.

One should note that the branching ratios for the 3d 1,3D
states remain rather constant between the two reactions. This
is explained by the nonlinearity of the G(ζ ) function. The
partial cross section increases less for those states that for the
3p 3Po one.

VI. CONCLUSION

By establishing that the two-channel Landau-Zener model
applied to the anion-centered asymptotic model interaction
terms is sufficient to reproduce the He+ + H−/D− mutual
neutralization isotope effect, we were able to define a low
collision energy regime for the MN reaction.

FIG. 4. Isotope effect on the branching ratios of the He+ + H−

MN reaction illustrated by the G(ζ ) function. The values for Eic are
given by the anion-centered asymptotic model.

Within that regime, we have shown that the collision en-
ergy does not affect the branching ratios of the reaction. As
most of the published experimental branching ratios were
measured at a collision energy below 50 meV, the low col-
lision energy condition is satisfied, which means that the
branching ratio remains constant (and remains valid for reac-
tion rates below 1000 K). The partial cross section is inversely
proportional to the collision energy with a nonlinear effect of
the isotope on its magnitude. Hence, the best way to show the
cross sections for small collision energy is to show them as
a function of the collision energy (without a factor μ which
would complexify the analysis).

We have also used the Landau-Zener window scheme,
which defines a KER range where the partial cross section for
the neutral products is maximum, and deduced that heavier
isotopes tend to favor higher excited states, i.e., lower kinetic-
energy release states.

ACKNOWLEDGMENTS

This work was supported by Fonds De La Recherche Sci-
entifique – FNRS Grant No. 4.4504.10. The authors thank
the Belgian State for the grant allocated by Royal De-
cree for research in the domain of controlled thermonuclear
fusion. A.D. is supported by the Swedish National Infras-
tructure, DESIREE (Swedish Research Council Contracts No.
2017-00621 and No. 2021-00155). X.U. is a Senior Re-
search Associate of the Fonds de la Recherche Scientifique
– FNRS. This paper is based upon work from COST Action
CA18212—Molecular Dynamics in the GAS phase (MD-
GAS), supported by COST (European Cooperation in Science
and Technology). V.M.A. is supported by NSF Grant No.
PHY-1530944.

APPENDIX A: ANION-CENTERED ASYMPTOTIC MODEL

The ACAM is a linear combination of atomic orbitals
which considers only one active electron shell for the neu-
tralized atom and one active shell for the anion (the wave
functions are antisymmetrized). This model is asymptotic;
it considers only the exponential part of the radial wave
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function evaluated on a spherical surface around the anion
core [44], meaning that it is valid only when the internu-
clear distance is larger than 10 Bohr radii. In such case the
mean position of the atoms corresponds to the position of the
nuclei.

The interaction term is evaluated at the crossing between
flat covalent (He0H0) potential energy curves and the ionic
(He+H−) curve given by Eq. (B4). Such approximations are
valid for large internuclear distances.

The interaction potential predicted by this model is

Eic(�, S) = (−1)NA+ + NB0 + Smo + SA+ + SB−
√

NA0NB−GSA0,LA0
SA+,LA+ GSB−,LB−

SB0,LB0 [(2SA0 + 1)(2SB− + 1)]1/2

{
SA+ 1/2 SA0

SB0 Smo SB−

}

×
∑
�̃

∑
mLA+,mLB0
mLA0,mLB−

ml

[
LA+ lA0 LA0

mLA+ ml mLA0

][
LB0 lB− LB−

mLB0 ml mLB−

]⎛
⎝ 1√

no. Lion

∑
Lion

[
LA+ LB− Lion

mLA+ mLB− �̃

]⎞
⎠

×
⎛
⎝ 1√

no. Lcov

∑
Lcov

[
LA0 LB0 Lcov

mLA0 mLB0 �̃

]⎞
⎠ γA(2γA)1/γA R−1+1/γA

x e−γARx√
	

(
γ −1

A + lA + 1
)
	

(
γ −1

A − lA
)

× AB−
(ml + 1)

(2γBRx )|ml | |ml |!

√
(2lA + 1)

2

(lA + |ml |)!
(lA − |ml |)!

√
(2lB + 1)

2

(lB + |ml |)!
(lB − |ml |)! . (A1)

Here, N is the number of valence electrons, L is the
atomic orbital momentum and “no. L” is the number of
values it may take, S is the atomic spin, l is the angular
momentum of the valence electron, Smo is the spin of the
quasimolecule, � = |�̃| is the projection of its orbital mo-
mentum, all m’s correspond to the projection of their quantum
numbers along the internuclear axis, and ml = mlA0 = mlB−.
The A+, A0, B0, and B− indices indicate the atom which the
quantum number refers to (A = He, B = H/D). GS′,L′

S,L are the

coefficients of fractional parentage, [ j1
m1

j2
m2

j3
m3 ] are the Clebsh-

Gordan coefficients, { j1
j4

j2
j5

j3
j6
} are the Wigner 6 − j symbols,

γ 2/2 is the binding energy of the valence electron (when
attached to the atom A or B), 	(z) is the gamma function,
and AB− = 0.791 is the asymptotic normalization factor of the
anion wave function for hydrogen (as suggested by Barklem
[45]). The interaction potentials are given in Table II.

TABLE II. He+ + H− branching ratios at 10-meV collision
energy. The columns are named by the dynamics-solving method
indicated and the anion isotope as an index. The interaction potential
is given for the 2�+ symmetry.

He Eic ACAM branching ratios (%)

state (a.u.) SLZH MLZH SLZD MLZD

2s 3S 1.449 × 10−2 0.14 0.00 0.02 0.00
2s 1S 6.586 × 10−3 5.25 0.00 2.25 0.00
2p 3Po 1.145 × 10−2 0.02 0.00 0.00 0.00
2p 1Po 5.859 × 10−3 3.48 3.54 1.15 1.08
3s 3S 8.231 × 10−4 43.70 48.55 38.84 43.00
3s 1S 1.881 × 10−4 12.59 12.17 14.80 14.11
3p 3Po 2.291 × 10−4 23.58 24.66 26.83 28.27
3d 3D 8.001 × 10−5 4.87 5.01 5.92 6.09
3d 1D 4.605 × 10−5 1.68 1.70 2.07 2.09
3p 1Po 7.160 × 10−5 4.19 4.37 5.10 5.35
4s 3S 2.728 × 10−11 0.00 0.00 0.00 0.00

The details of the modification applied to this formula with
respect to the formulation of Janev [44] are the subject of a
forthcoming paper. But the modifications applied here do not
change the value of the interaction term in the � symmetries
with ml = 0. Hence both formulas are interchangeable in the
He+ + H− case.

While it is difficult to give a general description of the
interaction term as a function of the internuclear distance, it
is possible to describe its tendency as a function Rx. Consid-
ering that the binding energy of the anion remains constant,
recalling that

EKER = γ 2
A

2
− γ 2

B

2
= 1

Rx
, (A2)

looking only at the component of Eq. (A1) which depends on
Rx and γA, and finally applying the �F � 1/R2

x factor to it,
one can obtain the tendency shown in Fig. 3.

This model is not suited to describe other processes hap-
pening at shorter internuclear distance (<10 Bohr radii),
such as associative ionization (AI) and transfer ionization.
But for He+ + H− MN, the low impact parameters, which
allow reaching short internuclear distances, have negligible
contributions. Autoionization widths have been computed by
Larson et al. [4] and found to be negligible beyond 4 Bohr
radii. This is to be compared with the location of the important
avoided crossings leading to He(n = 3) + H, i.e., 25 Bohr
radii. Another way to gauge the importance of autoionization
is to compare AI (corresponding to HeH+ + e− products) and
MN cross sections. AI was found [52] to be three orders of
magnitude less efficient than MN at similar collision energies.

The main limitation of the present model is the absence of
treatment of the configuration mixing for the active electron,
which might play a major role in MN reactions where transi-
tions are configuration forbidden, such as N+ + O− [39,53].
Such configuration mixing is not critical for He+ + H− MN.
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APPENDIX B: MULTICHANNEL LANDAU-ZENER FORMULA

In the multichannel Landau-Zener model for N covalent states, Pk (b), the transition probability—as a function of the
impact parameter b—between the ionic curve and the kth covalent state (counting from the most distant crossing), is given
by [47]:

Pk = p1 p2 · · · pk−1 × pk (1 − pk ) × [
1 + (1 − pk+1)2 + p2

k+1(1 − pk+2)2 + p2
k+1(pk+2)2(1 − pk+3)2

+ p2
k+1 · · · p2

N−1(1 − pN )2 + p2
k+1 · · · − p2

N

]
if k < N − 1

= p1 p2 · · · pk−1 × pk (1 − pk ) × [
1 + p2

N + (1 − pN )2] if k = N − 1

= p1 p2 · · · pk−1 × pk (1 − pk ) × [1 + 1] if k = N (B1)

where

pk = exp

(
− −2πE2

ic,k

h̄vR,k (b)�Fk

)
, (B2)

and vR,k is the radial velocity.
Therefore, the partial cross section σMLZ,k for the kth state

is given by

σMLZ,k = 2π

∫ bmax,k

0
Pk (b) bdb (B3)

where bmax,k = Rc,k

√
1 − Vk (Rc,k )/E0 is the maximum impact

parameter.
The potential for the ionic curve in the multichannel

Landau-Zener model incorporates the polarizability of the
ions:

Vi,MLZ(R) = − 1

R
− αH− + αHe+

4R4
(B4)

where αH− = 216 and αHe+ = 0.294 are the static polarizabil-
ities of H−(D−) and He+, respectively [54].

In order to keep the two-channel Landau-Zener model an-
alytical, the ionic potential is kept purely Coulombic:

Vi,SLZ(R) = − 1

R
. (B5)

While those two models give slightly different branching
ratios (Table II), the main difference concerns the He(2s)
states. This difference comes from a combination of the flux
redistribution effect of the MLZ combined – to a smaller
extent – with the 1/R4 component of the ionic potential. At
any rate, as the overall tendency remains the same, we can
describe the collision using the two-channel Landau-Zener
model.

The impact parameter b approximation of the MLZ model
was chosen—instead of the total angular momentum J general

case—to be as close as possible to Eq. (1), incorporating all
output channels at the same time instead of separately.

This approximation is valid when the amount of J involved
in the collision is sufficiently high. One could argue that it is
not the case at low collision energies, but the MN reaction is
a special collision: It is exothermic and, before the collision,
the two ions are attracted by the Coulomb 1/R potential. This
potential dominates the centrifugal term J (J + 1)/2μR2 at
large internuclear distance up to a value Jmax such that

Jmax(Jmax + 1)

2μR2
c

=
(

Er,i + 1

Rc

)
. (B6)

It means that when the collision energy decreases the amount
of available J remains identical instead of decreasing. For
He+ + H− with an avoided crossing situated at 25 Bohr
radii, i.e., He(n = 3) + H(1s), one finds Jmax � √

2μRc =
271, which justifies the approximation J = √

2μEr,ib and the
replacement of the sum over J by an integral.

While the value of Jmax scales with the square root of the
reduced mass, this scaling has no influence on the cross sec-
tion. Indeed, assuming the S-matrix elements slowly depend
on J , the quantum expression of the cross section reads

σ = π

2μEr,i

Jmax∑
J=0

(2J + 1)|Sic|2 � π

2μEr,i

∣∣S̄∣∣2
(Jmax + 1)2.

(B7)

Combining Eqs. (B6) and (B7), we may rewrite the cross
section as

σ � π
∣∣S̄∣∣2

R2
c

(
1 + 1

Er,iRc

)

which does not depend on the reduced mass except through
the reaction probability (squared matrix S element).
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