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Hadronic vacuum polarization correction to the bound-electron g factor
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The hadronic vacuum polarization correction to the g factor of a bound electron is investigated theoretically.
An effective hadronic Uehling potential obtained from measured cross sections of e−e+ annihilation into hadrons
is employed to calculate g-factor corrections for low-lying hydrogenic levels. Analytical Dirac-Coulomb wave
functions, as well as bound wave functions accounting for the finite nuclear radius are used. Closed formulas for
the g-factor shift in the case of a point-like nucleus are derived. In heavy ions, such effects are found to be much
larger than for the free-electron g factor.
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I. INTRODUCTION

Precision Penning-trap experiments on the g factor of
hydrogen-like and few-electron highly charged ions allow a
thorough testing of quantum electrodynamics (QED), a cor-
nerstone of the standard model describing electromagnetic
interactions. The g factor of hydrogen-like silicon (Z = 14)
has been measured with a 5 × 10−10 relative uncertainty [1,2],
allowing to scrutinize bound-state QED theory (see, e.g.,
Refs. [3–13]). Two-loop radiative effects and shifts due to
nuclear structure and recoil are observable in such measure-
ments. The high accuracy which can be achieved on the
experimental as well as theoretical side also enables the de-
termination of fundamental physical constants such as the
electron mass me [14–18]. Recently, it was shown that g-factor
studies can also help in the search for new physics, i.e., the
coupling strength of a hypothetical new interaction can be
constrained through the comparison of theoretical and experi-
mental results [12,19,20].

Further improved tests and the possible determinations of
fundamental constants [21–23] call for an increasing accuracy
on the theoretical side. The evaluation of two-loop terms
up to order (Zα)5 (with Z being the atomic number and α

the fine-structure constant) were finalized recently [24,25],
increasing the theoretical accuracy especially in the low-Z
regime. First milestones have been also reached in the cal-
culation of two-loop corrections in stronger Coulomb fields,
i.e., for larger values of Zα [26,27]. As the experiments
are advancing towards heavy ions [28,29], featuring smaller
and smaller characteristic distance scales for the interaction
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between the bound electron and the nucleons, the effects of
other forces may need to be considered as well.

Motivated by these prospects, in this article we investi-
gate vacuum polarization (VP) corrections due to the virtual
creation and annihilation of hadrons. The dominant VP con-
tribution arises from virtual e−e+ pair creation, which has
been widely investigated in the literature [5,6,30,31] and is
well understood. The other leptonic VP effect is due to virtual
muons, the contribution of which is suppressed by the square
of the electron-to-muon mass ratio [32]. The hadronic VP
effect, which arises due to a superposition of different virtual
hadronic states, is comparable in magnitude to muonic VP,
however, it requires a completely different description since
the virtual hadrons interact via the strong force. An effective
approach to take into account such effects for the free-electron
g factor is described in, e.g., Ref. [33], in which hadronic
VP is characterized by the cross section of hadron production
via e−e+ annihilation. Following this treatment, we apply the
known empirical parametric hadronic polarization function
for the photon propagator from Ref. [34] to account for the
complete hadronic contribution in case of the bound-electron
g factor.

While in the case of the free electron, the hadronic cor-
rection only appears on the two-loop level, as a correction to
the electrons electromagnetic self-interaction [see Fig. 1(a)],
in the case of a bound electron it appears already as a one-loop
effect [see Fig. 1(b)]. Furthermore, the hadronic VP is boosted
by approximately ∼Z4, i.e., by the fourth power of the nuclear
charge number, and thus, as we will see later, for heavier ions
above Z = 14 its contribution is larger than in the case of a
free electron [16,35].

An effective potential constructed from the parametrized
VP function, the hadronic Uehling potential, was derived in
Ref. [36]. We calculate the perturbative correction to the g
factor due to this radial potential employing analytical Dirac-
Coulomb wave functions, as well as numerically calculated
wave functions accounting for a finite-size nucleus. Analytical
formulas are presented, and numerical results are given for
hydrogenic systems from H to U91+. We note that such an
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FIG. 1. Feynman diagrams representing the leading hadronic VP
corrections to the (a) free-electron g factor and (b) the bound-electron
g factor. Double lines represent electrons in the electric field of the
nucleus and wavy lines with a triangle depict the interaction with the
external magnetic field. For the free electron, it is a two-loop process
where the self-interaction of the electron is perturbed by the effective
hadronic polarization function (shaded bubble). For the bound elec-
tron, it is a one-loop correction where the Coulomb interaction with
the nucleus (cross) is perturbed by the effective hadronic polarization
function.

approach assumes an infinitely heavy nucleus, i.e., nuclear
recoil effects are excluded in our treatment.

We use natural units with h̄ = c = 1 for the reduced Planck
constant h̄ and the speed of light c, and α = e2, where α is the
fine-structure constant and e is the elementary charge. Three-
vectors are denoted by bold letters.

II. g-FACTOR CORRECTIONS

Generally speaking, the g factor describes the coupling of
the electron’s magnetic moment to its total angular momen-
tum J. The corresponding first-order Zeeman splitting �E
due to the electron’s interaction with an external homoge-
neous magnetic field B is

�E = gμB〈J · B〉, (1)

where μB = e/(2me ) is the Bohr magneton of the electron and
g is its g factor, which depends on the electron configuration.

On the other hand, the relativistic interaction of an electron
with the external magnetic field can be derived from the min-
imal coupling principle in the Dirac equation. In first-order
perturbation theory, this leads to the energy shift

�E = e〈α · A〉, (2)

where α are the usual Dirac matrices given in terms of the
gamma matrices by αi = γ 0γ i [37] and A is the vector poten-
tial for the magnetic field, such that B = ∇ × A. Choosing the
magnetic field to be directed along the z axis, one can see that
a possible choice for the vector potential is A = [B × r]/2,
where r is the position vector. Together with Eqs. (1) and
(2), one can derive the following general expression for the
g factor [31]:

g = 2κme

j( j + 1)

∫ ∞

0
dr rGnκ (r)Fnκ (r), (3)

where n is the principal quantum number of the bound state,
j = |κ| − 1/2 is the total angular momentum quantum num-
ber and κ is the relativistic angular momentum quantum
number. The functions Gnκ (r), Fnκ (r) are the radial compo-

nents in the electronic Dirac wave function

ψnκm(r) = 1

r

(
Gnκ (r) �κm(θ, ϕ)

iFnκ (r) �−κm(θ, ϕ)

)
, (4)

where m is the magnetic quantum number and r = |r|. The
spherical spinors �±κm(θ, ϕ) make up the angular compo-
nents and are the same for any central potential V (r) [38].

A straightforward approach for calculating the g-factor
shift �gVP due to VP is to solve the radial Dirac equa-
tion numerically with the inclusion of the VP effect and
then substituting the perturbed functions GVP

nκ (r), F VP
nκ (r) into

Eq. (3). The difference between the pertubed and the unper-
turbed g factor gives the corresponding shift

�gVP = gVP − g. (5)

However, we will apply a different method to investigate
the hadronic g-factor shift. As shown in Ref. [31], owing to
the properties of Dirac wave functions, the g factor in Eq. (3)
can be expressed through the energy eigenvalues Enκ ,

g = − κ

2 j( j + 1)

(
1 − 2κ

∂Enκ

∂me

)
, (6)

if the potential V (r) does not depend on the electron mass
me. This formula was used successfully, e.g., to investigate the
finite nuclear size effect in Ref. [31]. We apply this new ap-
proach to investigate the vacuum polarization effect, described
by an effective potential. Having a small perturbation δV (r)
to the nucleus potential (like the hadronic Uehling potential
[36]), the g-factor shift can be shown to be [31]

�gVP = − κ2

j( j + 1)me

〈
r
∂δV (r)

∂r

〉
. (7)

For the relativistic ground state (1s) and a point-like nu-
cleus, this expectation value can be evaluated further to obtain
[39]

�gVP
point (1s) = 4(1 + 2γ )

3me
�EVP

point (1s) − 8Zα

3
〈rδV 〉1s, (8)

where γ =
√

1 − (Zα)2 and �EVP
point (1s) = 〈δV 〉1s is the cor-

responding energy shift in first-order perturbation theory.
Since the second term on the right-hand side of Eq. (8) is
Zα times smaller than the first term, the g-factor shift can be
approximated for light ions (Zα � 1) with the formula

�gVP
point (1s) ≈ 4(1 + 2γ )

3me
�EVP

point (1s). (9)

A similar expression also appeared in Refs. [23,31] in a
different context, studying the finite-size effect. However, we
will investigate the applicability of this formula as an approx-
imation for calculating the g-factor shift due to VP effects for
light ions.

A. Leptonic vacuum polarization correction to the g factor

The leptonic VP correction to the bound-electron g fac-
tor is well known. The leading-order diagrams are shown in
Fig. 2 and can be divided into two groups: the electric loop
(EL) and the magnetic loop (ML) contribution. The vacuum
polarization effect in the leading EL contribution [Figs. 2(a)
and 2(b)] is equivalent to a perturbation in the interaction
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FIG. 2. Feynman diagrams representing the leading leptonic VP
corrections to the bound-electron g factor. Double lines represent
electrons in the electric field of the nucleus and wavy lines with a
triangle (cross) depict the interaction with the external magnetic field
(nucleus). Single lines represent free-particle propagators.

between the bound electron and the nucleus, and thus can be
described by an effective perturbing potential δVUe(r), called
the Uehling potential. The corresponding Zeeman splitting
�EEL with respect to a reference state |a〉 can be derived from
second-order perturbation theory [40]

�EEL = 2〈a|δVUe|δa〉, (10)

where |δa〉 is the first-order perturbative correction to the
bound-electron wave function arising from the interaction
with the external magnetic field

|δa〉 =
Ea 	=En∑

n

|n〉〈n|eα · A|a〉
Ea − En

. (11)

The diagrams in Figs. 2(a) and 2(b) contribute equally to
the EL correction. Instead of using the standard formulas
from perturbation theory, we employ the simpler Eq. (7) from
Ref. [31] to compute the VP effects to the bound-electron
g factor.

In the case of leptonic vacuum loops, the well-known lep-
tonic Uehling potential is given by [41]

δVUe(r) = −2α(Zα)

3π

∫
d3x ρ(x)

K1(2ml|r − x|)
|r − x| , (12)

where ρ(x) denotes the nuclear charge distribution normalized
to unity, ml is the mass of the virtual particle in the fermionic
loop, and K1(x) is given by

K1(x) =
∫ ∞

1
dt e−xt

(
1 + 1

2t2

)√
t2 − 1

t2
. (13)

The g-factor shift of a bound electron in the ground state
can be calculated analytically for a point-like nucleus and was
already derived in Ref. [30]. We will show that one arrives
to the same result using the approach in Eq. (7). Using the
leptonic Uehling potential for a point-like nucleus [ρ(x) =
δ(3)(x)] [30],

δV lept.
point (r) = −2α(Zα)

3πr
K1(2mlr), (14)

and the radial components of the electronic wave function in
the ground state [32], one obtains from Eq. (7)

�glept.
point (1s) =−8α(Zα)

3πζ

[
I133 − 1

3
I233 + ζZα

2γ

(
I122 − 1

3
I222

)]
.

(15)

Iabc is a modification of the base integral given in Ref. [30],
see Appendix A, and ζ = me/ml is the ratio of the electron
and the loop particle masses.

The leading-order Zα expansion is given by

�glept.
point (1s)

= α

π

[
−16ζ 2(Zα)4

15
+ 5πζ 3(Zα)5

9

+
(

16ζ 2

15
ln(2ζZα) − 116ζ 2

75
− 16ζ 4

7

)
(Zα)6

+
(

−5πζ 3

9
ln

(
ζZα

2

)
− 8πζ 3

27
+ 7πζ 5

8

)
(Zα)7

+ O((Zα)8)

]
. (16)

For ζ = 1, this is exactly the same result as in Ref. [30],
however, obtained with a different method.

The leading ML contribution [Fig. 2(c)] is equivalent to a
modification of the vector potential of the external magnetic
field and the Zeeman splitting �EML is given by [40]

�EML = e〈a|α · AML|a〉, (17)

where AML is the modified vector potential. For a more de-
tailed discussion and the analytic expressions for AML, not
treated in the present work, see Refs. [6,40].

For completeness, the leading-order ML contribution to the
g factor of a bound electron in the ns state for a point-like
nucleus is called the Delbrück contribution and is given by
[5,6,42]

�gML(ns) = 7α(Zα)5

216 n3
ζ 3. (18)

Therefore, it is suppressed by a factor Zα with respect to
the Uehling contribution and is not the subject of the current
work.

In the next section, we will use Eq. (7) to derive analytic
expressions for the leading hadronic VP correction to the
bound-electron g factor.

B. Hadronic vacuum polarization correction to the g factor

As discussed in Refs. [33,34,36], the hadronic vacuum po-
larization function can be constructed semi-empirically from
the experimental data of e−e+ annihilation cross sections.
The entire hadronic polarization function is parametrized
for seven regions of momentum transfer and is given in
Ref. [34]. In Ref. [36], it was found that only the first region
of parametrization is significant for the hadronic energy shift
calculations. This is also clear from the physical point of view
since atomic physics is dominated by low energies around
eV to keV. Thus, we will use the analytic hadronic Uehling
potential introduced in Ref. [36] for our calculations. For a
point-like nucleus it is given by

δV had.
point (r) = −2Zα

r
B1E1

(
r√
C1

)
, (19)
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with the coefficients B1 = 0.002 3092 and C1 =
3.992 5370 GeV−2 [34,36] and the exponential integral
E1(x) which can be generalized for n = 0, 1, 2, . . . , by [43]

En(x) =
∫ ∞

1
dt

e−xt

t n
. (20)

The values for B1 and C1 are taken from the most recent
parametrization in Ref. [34] and will be used for the cal-
culations. The error of the numerical results is estimated by
comparison with an older parametrization in Ref. [44] as was
done in Ref. [36].

The corresponding hadronic Uehling potential for an ex-
tended nucleus with spherical charge distribution ρ(x) is
obtained by the convolution [36]

δV had.
fns (r) =

∫
d3x ρ(x) δV had.

point (r − x)

= −4πZαB1
√

C1

r

∫ ∞

0
dx xρ(x)D−

2 (r, x), (21)

where x = |x| and

D±
n (r, x) = En

( |r − x|√
C1

)
± En

( |r + x|√
C1

)
. (22)

As in our previous work [36], we will consider the homoge-
neously charged sphere as the model for the extended nucleus
with the root-mean-square (RMS) radii taken from Ref. [45].
The charge distribution ρ(r) is given by

ρ(r) = 3

4πR3
θ (R − r), (23)

where θ (x) is the Heaviside step function and the effective
radius R is related to the RMS nuclear charge radius Rrms via
R = √

5/3 Rrms. The corresponding hadronic Uehling poten-
tial is given analytically in Ref. [36], see Appendix B.

Let us turn to the evaluation of the leading hadronic
VP contribution to the bound-electron g factor, depicted in
Fig. 1(b). In the low-energy limit, the hadronic Uehling po-
tential is given by [46] (see also [47])

δV had.
non−rel.(x) = −4πZαB1C1δ

(3)(x). (24)

Using Eq. (7) and the nonrelativistic expectation value of
the delta function, the leading order in Zα of the hadronic
g-factor shift for general ns states is found to be [39]

�ghad.
non−rel.(ns) = − 4

3me
〈12πZαB1C1δ

(3)(x)〉ns

= −16(Zα)4m2
e

n3
B1C1. (25)

For the 1s state, a fully relativistic expression for the
point-like nucleus can be given. Using the hadronic Uehling
potential in Eq. (19) and the relativistic wave function of the
ground state, one obtains with Eq. (7)

�ghad.
point (1s) = 4

3me
�Ehad.

point (1s) − 8B1(Zα)2(2λ
√

C1)2γ

3γ (1 + 2λ
√

C1)2γ
,

(26)

where λ = Zαme and �Ehad.
point (1s) is the analytical energy shift

for a point-like nucleus given in Ref. [36]

�Ehad.
point (1s) = − Zαλ(2λ

√
C1)2γ B1

γ 2

× 2F1
(
2γ , 2γ ; 1 + 2γ ; −2λ

√
C1

)
, (27)

with 2F1(a, b; c; z) being the hypergeometric function [43].
The expansion of this expression up to sixth order in Zα is
given by

�ghad.
point (1s) = −16B1C1m2

e (Zα)4

+ 512B1C
3/2
1 m3

e (Zα)5

9
− 16B1C1m2

e (Zα)6

3

× [
2 + 30C1m2

e − 3 ln(2meZα
√

C1)
]

+ O((Zα)7), (28)

and it coincides with the nonrelativistic approximation in
Eq. (25) to order (Zα)4.

It is important to note that the coefficients in Eq. (28), as
well as in the remaining article, arise only from the leading
EL contribution depicted in Fig. 1(b), see Sec. II A.

A similar relativistic calculation for the 2s state yields

�ghad.
point (2s) = − 2B1C1m2

e (Zα)4 + 64B1C
3/2
1 m3

e (Zα)5

9

− B1C1m2
e (Zα)6

24

[
41 + 420C1m2

e

− 48 ln(meZα
√

C1)
] + O((Zα)7). (29)

The leading orders of Eqs. (28) and (29) satisfy the nonrel-
ativistic relationship in Eq. (25)

�ghad.
non−rel.(ns) = 1

n3
�ghad.

non−rel.(1s). (30)

C. Hadronic vacuum polarization correction
to the reduced g factor

Additionally, we investigate hadronic effects on the
weighted difference of the g factor and the bound-electron
energy E of H-like ions, called the reduced g factor

g̃ = g − 4(1 + 2γ )

3me
E , (31)

put forward in Ref. [23] for a possible novel determina-
tion of the fine-structure constant and for testing physics
beyond the standard model [20]. It was shown there that
the detrimental nuclear structure contributions featuring large
uncertainties can be effectively suppressed in the above com-
bination of the g factor and level energy of the hydrogenic
ground state. The question arises whether the same can be said
about the hadronic VP corrections investigated in the present
article.

The hadronic VP correction [Fig. 1(b)] to the reduced g
factor for a point-like nucleus can be found analytically us-
ing Eqs. (26) and (27). The leading-order Zα expansion is
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given by

g̃had.
point (1s) = �ghad.

point (1s) − 4(1 + 2γ )

3me
�Ehad.

point (1s)

= 128

9
B1C

3/2
1 m3

e (Zα)5 − 64B1C
2
1 m4

e (Zα)6

+ O((Zα)7). (32)

Thus, the leading term of order (Zα)4 in �ghad.
point (1s) can-

cels such that the hadronic VP contribution to the reduced g
factor is indeed small for practical purposes. This also sup-
ports the approximation in Eq. (9). It is important to note
again that the coefficients in Eq. (32) arise only from the
leading EL contribution and, thus, may be altered when in-
cluding higher-order corrections like the ML contribution, see
Sec. II A. However, the general result that the leading term of
order (Zα)4 cancels is unchanged since these corrections are
subleading. Therefore, we may conclude that hadronic effects
do not hinder the extraction of α or detailed tests of QED and
standard model extensions via the measurement of g̃.

D. Hadronic vacuum polarization correction to the weighted
g-factor difference of H- and Li-like ions

Another quantity of interest is the weighted difference of
the g factors of the Li-like and H-like charge states of the same
element

δ�g = g(2s) − � g(1s), (33)

where g(2s) is the g factor of the Li-like ion and g(1s) is the
g factor of the H-like ion. For light elements, the parameter �

can be calculated to great accuracy by [21,48]

� = 2−2γ−1

[
1 + 3

16
(Zα)2

](
1 − 2851

1000

1

Z
+ 107

100

1

Z2

)
.

(34)

This weighted (or specific) difference was introduced to sup-
press uncertainties arising from the nuclear charge radius and
further nuclear structural effects [49]. Therefore, bound-state
QED theory can be investigated more accurately in g-factor
experiments combining H- and Li-like ions than with the
individual ions alone.

As we have seen, the leading hadronic VP correction to
δ�g for a point-like nucleus can be found analytically. We
approximate �ghad.

point (2s) of the Li-like ion with the expression
in Eq. (29) for the H-like ion. Since there are no electron-
electron interactions in this approximation, we have to neglect
the terms of relative orders 1/Z and 1/Z2 in Eq. (34). We note
that the residual weight

�0 = 2−2γ−1
[
1 + 3

16 (Zα)2
] = 1

8 + O((Zα)2), (35)

exactly cancels the first two leading orders (Zα)4 and (Zα)5

of the EL contribution

δ�0 ghad.
point = �ghad.

point (2s) − �0 �ghad.
point (1s)

= 5
2 B1C

2
1 m4

e (Zα)6 + O((Zα)7). (36)

Note that the leading ML contribution, which is of order
(Zα)5, may not cancel and potentially lead to a coefficient

(Zα)5. However, we anticipate that a similar cancellation ap-
plies as in the leptonic ML case, see Eq. (18). The general
argument still holds and we can conclude that the leading
hadronic VP effects are also cancelled in the above specific
difference. A similar conclusion can be drawn for the case of
the specific difference introduced for a combination of H- and
B-like ions [22]. This result is well understood since nuclear
and hadronic VP contributions are both short-range effects
with a similar behavior.

III. NUMERICAL RESULTS

As mentioned in Ref. [36], the hadronic VP contribution to
the energy shift is about 1/0.665 ≈ 1.5 times smaller than the
muonic VP contribution in the case of the Uehling term. This
can be also confirmed for the g-factor shift. Comparing the
nonrelativistic approximation for the hadronic g-factor shift
�ghad. VP

non−rel.,point in Eq. (24) with the first term of the expression
for the muonic g-factor shift �gmuonic VP

non−rel.,point in Eq. (16), yields
for hydrogen in the ground state

�ghad. VP
non−rel.,point (1s) = −1.092(14) × 10−16

= 0.664(9) �gmuonic VP
non−rel.,point (1s). (37)

The values for the hadronic g-factor shift with an extended
nucleus were calculated numerically using two different
methods, both yielding the same results within the given
uncertainties. The first method consists of calculating the
expectation value in Eq. (7) with the FNS hadronic Uehling
potential and the semi-analytic wave functions of a homo-
geneously charged spherical nucleus given in Ref. [50]. As
a consistency check, these results were reproduced by using
the approach of solving the radial Dirac equation numerically
with the inclusion of the FNS potential, and substituting the
resulting large and small radial wave function components
into Eqs. (3) and (5). The results for the hydrogen-like systems
H, Si, Ca, Xe, Kr, W, Pb, Cm, and U are given in Table I.
A diagrammatic representation is shown in Fig. 3. We note
that for Z = 14 and above, the magnitude of the hadronic
vacuum polarization terms considered in this work exceed
in magnitude the hadronic contribution to the free-electron
g factor [16,35,51]. However, it is important to mention that
the uncertainty of the leading finite nuclear size correction
to the g factor is approximately an order of magnitude larger
than the hadronic VP effect for all elements considered (see,
e.g., Refs. [16,23]), hindering the identification of the effect.
For comparison, the current value of the total bound-electron
g factor for Z = 14 is g(28Si13+) = 1.995 348 958 109(584)
[24].

The errors given in Tables I and II are based on the un-
certainty of the nuclear root-mean-square radii Rrms given in
Ref. [45], the numerical convergence of the results and an
assumed uncertainty for the parameters B1 and C1 as described
in Sec. II B. The latter was determined as the difference with
respect to values obtained by using another set of param-
eters to describe the polarization function, stemming from
Ref. [44]. We anticipate that newer updates of these parame-
ters would not shift our results significantly (for the discussion
of newer e−e+ annihilation data, see, e.g., Refs. [52,53]).
The total error is dominated by the assumed uncertainty of
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TABLE I. Results for the hadronic VP contribution to the g-factor shift of the bound electron in the ground state arising from the Uehling
potential in the EL diagram [Fig. 1(b)] using different approaches: the nonrelativistic approximation �ghad.

non−rel.,point in Eq. (25), the relativistic
formula for a point-like nucleus �ghad.

rel.,point in Eq. (26), the approximate formula �ghad.
approx,fns using the hadronic energy shift with an extended

nucleus from [36] in Eq. (9), and the full relativistic result for an extended nucleus �ghad.
rel.,fns using the analytical finite-size Uehling potential

with numerical finite-size wave functions in Eq. (7). Root-mean-square nuclear charge radii Rrms are taken from Ref. [45].

Z Rrms [fm] �ghad.
non−rel.,point (1s) �ghad.

rel.,point (1s) �ghad.
approx,fns(1s) �ghad.

rel.,fns(1s)

1 0.8783(86) −1.092(14) × 10−16 −1.093(14) × 10−16 −1.093(13) × 10−16 −1.093(13) × 10−16

14 3.1224(24) −4.196(53) × 10−12 −4.616(57) × 10−12 −4.490(56) × 10−12 −4.497(56) × 10−12

20 3.4776(19) −1.748(22) × 10−11 −2.109(25) × 10−11 −1.989(25) × 10−11 −1.996(25) × 10−11

36 4.1884(22) −1.835(23) × 10−10 −3.263(39) × 10−10 −2.664(33) × 10−10 −2.696(34) × 10−10

54 4.7859(48) −9.29(12) × 10−10 −3.291(35) × 10−9 −2.004(25) × 10−9 −2.065(26) × 10−9

74 5.3658(23) −3.275(41) × 10−9 −3.568(32) × 10−8 −1.261(15) × 10−8 −1.344(17) × 10−8

82 5.5012(13) −4.938(62) × 10−9 −9.589(77) × 10−8 −2.508(31) × 10−8 −2.728(34) × 10−8

92 5.8571(33) −7.825(98) × 10−9 −3.572(24) × 10−7 −5.705(71) × 10−8 −6.410(80) × 10−8

B1 and C1. Owing to the closed analytical expression for
the hadronic Uehling potential, numerical uncertainties are
negligible. For the results �ghad.

approx,fns using the approximate
formula in Eq. (9), the hadronic energy shifts �E approx

rel.,fns from
Ref. [36] and their respective uncertainties are utilized. For
Z = 92, the hadronic energy shift, which is not given in
Ref. [36], was calculated using the same method.

One can see that the nonrelativistic approximation in
Eq. (25) represents a lower bound for the hadronic g-factor
shift and is not sufficient for large atomic numbers Z . On the
other hand, the analytic expression for the relativistic g-factor
shift in the case of a point-like nucleus in Eq. (26) represents
an upper bound and differs also significantly from the numer-
ical results for extended nuclei. We conclude that the effects
due to a finite-size nucleus need to be included in a precise
calculation of the hadronic VP effect. At the present time,
the uncertainty stemming from the assumed nuclear charge
distribution model limits the accuracy to about 1% [36]. At

FIG. 3. Comparison of analytical and numerical results for the
hadronic g-factor shift of the bound electron in the ground state
of H-like ions with atomic numbers Z obtained in this work, see
Table I. The green solid line represents the analytical expression for
a point-like nucleus �ghad.

rel.,point in Eq. (25), while the red dashed line
represents the nonrelativistic expression �ghad.

non−rel.,point in Eq. (24).
The full numerical results for extended nuclei �ghad.

rel.,fns (crosses) are
compared to the approximation �ghad.

approx,fns in Eq. (9) (circles) with
hadronic energy shifts for extended nuclei taken from Ref. [36].

the same time, the absence of more precise parametrizations
of the hadronic polarization function in the low-energy regime
limits the accuracy also to about 1%, see Table I. Thus, the
given errors include, to a great part, all possible limitations of
the uncertainty of the hadronic g-factor shift.

The simple approximate formula in Eq. (9) is found to be
a good approximation for atomic numbers below Z = 14. The
error is less than 1% for atomic numbers up to Z = 36.

As shown in Secs. II C and II D, the hadronic VP contribu-
tion [Fig. 1(b)] to the reduced and the weighted g factor in the
case of a point-like nucleus is at least Zα times smaller than
the regular hadronic g-factor shift, see Eq. (28). In fact, nu-
merical results for extended nuclei confirm that the hadronic
contribution to both quantities does not differ significantly
from zero for small atomic numbers below Z = 36 at the
current level of accuracy. To see this, note that the numerical
results for the finite-size reduced and weighted g factor can be
obtained from Tables I and II via

g̃had.
fns (1s) = �ghad.

rel.,fns(1s) − �ghad.
approx,fns(1s), (38)

δ�0 ghad.
fns = �ghad.

rel.,fns(2s) − �0 �ghad.
rel.,fns(1s), (39)

respectively. For Z = 36, one obtains

g̃had.
fns (1s) = −32(47) × 10−13, (40)

δ�0 ghad.
fns = −1(64) × 10−14. (41)

TABLE II. Results for the hadronic VP contribution to the g-
factor shift of the bound electron in the 2s state.

Z �ghad.
rel.,fns(2s)

1 −1.366(17) × 10−17

14 −5.673(71) × 10−13

20 −2.542(32) × 10−12

36 −3.583(45) × 10−11

54 −2.966(37) × 10−10

74 −2.189(27) × 10−9

82 −4.728(59) × 10−9

92 −1.213(15) × 10−8
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Even for larger atomic numbers, hadronic effects do not con-
strain high-precision tests of QED via the measurement of the
reduced and weighted g factor.

Recently, a high-precision measurement of the g-factor dif-
ference of two Ne isotopes was performed [12]. It was shown
that QED effects mostly cancel, whereas nuclear effects like
the nuclear recoil are well observable. In the following, we
investigate hadronic VP contributions to the bound-electron
g factor of the isotopes 20Ne9+ and 22Ne9+ in the ground
state.

First, we calculate the hadronic VP correction to the g
factor difference stemming from the different nuclear size
of the isotopes. Nuclear recoil effects are excluded for now,
and nuclear charge radii are taken from Ref. [45]. Using
Rrms = 3.0055(21) fm for 20Ne9+ and Rrms = 2.9525(40) fm
for 22Ne9+, the fully relativistic result for both isotopes is

�ghad.
rel.,fns

(
1s, 20Ne9+) = −1.133(14) × 10−12, (42)

�ghad.
rel.,fns

(
1s, 22Ne9+) = −1.133(15) × 10−12. (43)

This is approximately a third of the hadronic contribution of
the free electron given in the Extended Table 1 in Ref. [12].
Thus, we conclude that, at the given level of accuracy,
hadronic effects of the bound electron also do not hinder the
precise calculation of the isotopic shift of 20Ne9+ and 22Ne9+.

To estimate also the hadronic VP correction stemming
from the different nuclear mass of the isotopes including
nuclear recoil effects, we use the nonrelativistic formula [35]

�ghad.
recoil(1s) =

(
mr

me

)2

�ghad.
non−rel.(1s), (44)

with mr = mNme/(mN + me ) being the reduced mass for an
isotope with nuclear mass mN. This is a reasonable approxi-
mation since the nonrelativistic result for Ne (Z = 10), using
Eq. (25), is

�ghad.
non−rel.(1s, Z = 10) = −1.092(14) × 10−12. (45)

Using atomic masses from Ref. [54], we obtain mr (20Ne9+) =
0.99997me and mr (22Ne9+) = 0.99998me, such that, to first
order,

�ghad.
recoil

(
1s, 20Ne9+) = −1.092(14) × 10−12, (46)

�ghad.
recoil

(
1s, 22Ne9+) = −1.092(14) × 10−12. (47)

Thus, also the nuclear recoil effect to the hadronic VP contri-
bution cannot be resolved at the given level of accuracy.

IV. SUMMARY

Hadronic vacuum polarization corrections to the bound-
electron g factor were calculated, employing a hadronic polar-
ization function constructed from empirical data on electron-
positron annihilation into hadrons. We found that for a broad
range of H-like ions, this one-loop effect is considerably
larger than hadronic VP for the free electron [see Fig. 1(a)].
Hadronic effects will be observable in future bound-electron
g-factor experiments once nuclear charge radii and charge dis-
tributions are substantially better known. We also found that
the hadronic effect does not pose a limitation on testing QED
or physics beyond the standard model, and determining funda-
mental constants through specific differences of g factors for
different ions, or through the reduced g factor. Finally, the an-
alytic hadronic Uehling potential may prove to be practically
applicable to further atomic observables, e.g., to transition
energies in positronium, or to the hyperfine structure of HCI.
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APPENDIX A: BASE INTEGRAL Iabc

The base integral Iabc used in Eq. (15) is given by [30]

Iabc =
∫ 1

0
dy

(1 − y2)a−1/2

yb−1

(
ζZαy

1 + ζZαy

)c−2ε

= 1

2
(ζZα)c−2εB

(
a + 1

2
, 1 − b − c

2
− ε

)
3F2

(
c

2
− ε,

c + 1

2
− ε, 1 − b − c

2
− ε;

1

2
, a + 3 − b + c

2
− ε; (ζZα)2

)

− c − 2ε

2
(ζZα)c+1−2εB

(
a + 1

2
,

3 − b + c

2
− ε

)
3F2

×
(

c

2
+ 1 − ε,

c + 1

2
− ε,

3 − b + c

2
− ε;

3

2
, a + 2 − b − c

2
− ε; (ζZα)2

)
, (A1)

where ζ = me/ml is the ratio of the electron and the loop particle masses, ε = 1 − γ with γ =
√

1 − (Zα)2, B(x, y) is the beta
function, and 3F2(a1, a2, a3; b1, b2; z) is a generalized hypergeometric function [43].
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APPENDIX B: HADRONIC UEHLING POTENTIAL FOR EXTENDED NUCLEI

The analytic hadronic Uehling potential for an extended nucleus with a spherical homogeneous charge distribution with
effective radius R is given by [36]

r > R:

δV had.
fns,out (r) = −3ZαB1

√
C1

rR3
[
√

C1R D+
3 (r, R) − C1D−

4 (r, R)]. (B1)

r � R:

δV had.
fns,in(r) = −3ZαB1

√
C1

rR3

[√
C1r + √

C1RE3

(
r + R√

C1

)
+ C1E4

(
r + R√

C1

)

− 1

6
e

r−R√
C1 (2C1 + √

C1(r + 2R) + (r − R)(r + 2R)) − (r − R)2(r + 2R)

6
√

C1
E1

(
R − r√

C1

)]
. (B2)

The parameters B1 and C1 characterize the hadronic polarization function and are given in Sec. II B.
The functions D±

n (r, R) and En(x) are defined in Eqs. (22) and (20), respectively.
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