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Insight into the prospective evaluation of third-order interelectronic corrections on Li-like ions
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Relying on the redefined vacuum state approach and based on one-particle three-loop Feynman diagrams,
partial third-order interelectronic corrections to the valence electron energy shift are investigated in Li-like ions.
The idea is to begin with simple one-particle gauge-invariant subsets composed of Feynman diagrams and to keep
track of them in the many-electron frame, which is a strong asset of the formalism. An independent derivation is
undertaken with the help of perturbation theory to cross-check the expressions. This two-method scheme helps
to resolve how the different terms are distributed among three- and four-electron contributions. Furthermore, it
provides a tool to overcome the difficulties related to the derivation of reducible terms, which are tricky to deal
with. These two independent derivations and the comparison of the resulting expressions are fully consistent,
except for two expressions. In these cases, the discrepancy can be traced back to a different topology of the
poles.
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I. INTRODUCTION

Quantum electrodynamics (QED) is the prototypal gauge
theory on which the standard model (SM) of particles re-
lies. Quantum electrodynamics has shown to be impressively
reliable in its ability to provide accurate predictions. To il-
lustrate, consider the most precise prediction of the SM, the
free-electron magnetic moment in Bohr magnetons, g/2. A
recent study measured its value to a spectacular precision
of 1.3 parts in 1013 [1]. The SM prediction involves three
sectors in its evaluation; it receives contributions from QED,
as well as from the hadronic and weak interactions. For the
former sector, the asymptotic power series in the fine-structure
constant α is expanded up to the fifth order1 and contains
muon and tauon contributions. The bound-electron magnetic
moment is more subtle to assess: nevertheless, the stunning
accuracy of 5.6 parts in 1013 [2] was reached. To arrive at
this value, a co-trapping of two different isotopes of neon
ions was devised. Moreover, pushing QED, in the presence
of the binding nuclear field, to its limits is a great way to gain
in-depth knowledge about the theory and to probe potentially
new physics [3].

Heavy highly charged ions offer a great natural laboratory
to study QED in strong-field regimes [4]. Unfortunately, such
an experimental high-precision level has not been achieved yet
in the transition energies of heavy highly charged ions. Con-
sider as an example the 1s Lamb shift in H-like ions, whose
experimental value is 460.2 ± 4.6 eV [5]. The comparison
between theory and experiment allows one to probe first-order
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1The authors of Ref. [1] stated that the first four expansion’s coeffi-

cients Ci, i = 2, 4, 6, 8, are known exactly, but the last one, C10, was
required and had to be calculated numerically in order to catch up
with the precision of the measurements.

QED effects on a 1.7% level [4]. In order to test second-order
QED effects, which contribute −1.26(33) eV [6], demanding
experimental updates are required [7]. A part of the problem
lies in the high energy of the transitions involved, where
the sensitivity of the detectors is poor in the KeV regime.
Note that a great deal of energy is required to excite the
tightest bound electron over the ionization threshold. A way
to circumvent this issue is to probe many-electron transition
energies, lying from soft x ray to ultraviolet and accessible by
laser spectroscopy. Already for He-like ions, the uncertainties
drop below the eV level [8,9]. In the case of Li-like ions,
the accuracy reached the meV level in both uranium [10,11]
and xenon [12] ions. A similar accuracy was achieved in
Be-like ions [13]. Also in B-like [14,15], F-like [16,17], and
Na-like [18] ions, precise measurements were conducted. To
date, the most compelling experimental cases are found to be
the 2p3/2-2s transition in Li-like bismuth ions [19] and the
2p1/2-2s transition in Li-like uranium ions [11].

The increasing experimental precision drives theoretical
predictions to their limits and enforces an accurate descrip-
tion of complex electrons dynamics. The evaluation of the
dynamical properties and the structure of highly relativistic,
tightly bound electrons in highly charged ions with utmost
accuracy represents one of the most important and demand-
ing problems in modern theoretical atomic physics. In this
view, the treatment of the interelectronic interaction is a fun-
dament in order to achieve accurate theoretical predictions
of the energy levels in many-electron atoms or ions. As a
consequence, ab initio calculations are the ultimate goal in
the quest for many-electron atoms in the frame of bound-
state QED (BSQED). The derivations performed so far used
a zeroth-order many-electron wave function constructed as
a Slater determinant (or sum of Slater determinants) with
all electrons involved [20–22]. Such a derivation becomes
increasingly difficult to handle for many-electron systems, es-
pecially when facing higher-order corrections. The framework
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of a vacuum state redefinition [23–25] was proposed to tackle
third-order interelectronic interactions. Such a technique is
not yet widely used in the BSQED community but has already
proved helpful in the evaluation of the screened radiative and
two-photon exchange corrections to the g factor and hyperfine
splitting [26–31], the ground-state and ionization energies of
Be-like ions [32,33], respectively, and for the transition ener-
gies between low-lying levels [34]. It has been shown to be of
intrinsic relevance in the evaluation of the Delbrück scattering
above the pair production threshold [35].

This work treats (a partial) third-order interelectronic cor-
rection to a single-valence state over closed shells. The aim is
to demonstrate that it is feasible to assess third-order interelec-
tronic corrections even though such calculations are especially
challenging. To exclude mistakes and as a cross-check of
the derived expressions, two different methods are utilized
to obtain the results. The first one is an effective one-particle
approach, which relies on the redefinition of the vacuum state.
It deals with one-particle three-loop diagrams. Its presentation
is given in Sec. III, after a brief introduction to BSQED
in Sec. II. The idea is to provide a proof of principle that
third-order interelectronic corrections can be tackled in the
redefined vacuum state framework, owing to the transcription
of the one-particle gauge-invariant (GI) subsets to many-
electron diagrams. The second method, introduced in Sec. IV,
considers a perturbation theory approach to a two-photon-
exchange subset. The subset involves a loop contribution,
and a potential-like interaction accounts for the perturbation.
Then the results are mapped to the three-photon-exchange
corrections. This independent derivation of the formulas en-
sures that potential mistakes are identified and ruled out. The
resulting expressions contain infrared (IR) divergences. These
are inspected in Sec. V, regularized by the introduction of a
photon mass term, and it is shown that they are canceled by
terms within the proposed GI subsets. Section VI compares
the outcomes of the two methods. The present work ends with
a concluding discussion in Sec. VII.

Natural units (h̄ = c = me = 1) are used throughout this
paper and the fine-structure constant is defined as α = e2/4π ,
e < 0. Unless explicitly stated otherwise, all integrals are im-
plicitly assumed to be over the full real axis.

II. BOUND-STATE QED

The relativistic quantum description of the electron-
positron field is based on the Dirac equation. The framework
of BSQED is based on the resummation of all Feynman dia-
grams involving the interaction of the (free) electron with the
classical field of the nucleus. Such a procedure, applied by
Weinberg [36], leads to the bound-state electron propagator.
Equivalently, from Furry’s perspective [37], the interaction
of the electron-positron field with the external classical field
of the nucleus can also be taken into account nonperturba-
tively from the beginning by solving the Dirac equation in the
presence of the binding potential,

hDφ j (x) = [−iα · ∇ + β + V (x)]φ j (x) = ε jφ j (x), (1)

leading to the so-called Furry picture of QED. Here the φ j (x)
are the solutions of the stationary Dirac equation in the po-
tential well V (x) occurring due to the nucleus and j stands

for all quantum numbers. In addition, αk and β are Dirac
matrices and V (x) = VC(x) is the external classical Coulomb
field arising from the nucleus. Solving Eq. (1) implies an all-
order treatment in αZ , with Z the nuclear charge, hence going
beyond the perturbative regime. The time-dependent solution
is the stationary solution φk (x) multiplied by the phase fac-
tor exp(−iεkt ). For completeness, the extended Furry picture
accounts for the presence of a screening potential U (x) be-
sides the Coulomb one, V (x) = VC(x) + U (x), which implies
a partial consideration of interelectronic interactions. The re-
definition of the vacuum state is conducted in such a way that
all core orbitals from the closed shells belong to it [38]. The
symbol |α〉 stands for

|α〉 = a†
aa†

ba†
c · · · |0〉 (2)

and is referred to as the redefined vacuum state. The following
notation is applied, according to Lindgren and Morrison [38]
and Johnson [39]: v designates a valence electron, a, b, c, . . .
are core orbitals, and i, j, k, l, p, . . . correspond to arbi-
trary states. Upon second quantization, the (noninteracting)
electron-positron field can be expanded in terms of creation
and annihilation operators. Within the redefined vacuum state
approach, such a decomposition still holds but needs to be
slightly adapted with respect to the Fermi level EF

α ,

ψ (0)
α (t, x) =

∑
ε j>EF

α

a jφ j (x)e−iε j t +
∑

ε j<EF
α

b†
jφ j (x)e−iε j t . (3)

The Fermi level of the redefined vacuum state lies between the
highest core state and the valence state, EF

α ∈ (εa, εv ). Conse-
quently, the electron propagator is affected in the following
manner:

〈α| T
[
ψ (0)

α (t, x)ψ̄ (0)
α (t ′, y)

] |α〉

= i

2π

∫
dω

∑
j

φ j (x)φ̄ j (y)e−i(t−t ′ )ω

ω − ε j + iε
(
ε j − EF

α

) . (4)

Here ε > 0 implies the limit to zero. It is convenient to define
u = 1 − iε for later use. The difference between the electron
propagator in the redefined vacuum and in the standard one
corresponds graphically to a cut of an inner electron line in
the Feynman diagram. Such a difference is mathematically
implemented via the Sokhotski-Plemelj theorem. For p ∈ N∗,

∑
j

φ j (x)φ̄ j (y)[
ω − ε j + iε

(
ε j − EF

α

)]p −
∑

j

φ j (x)φ̄ j (y)

[ω − ε j + iε(ε j − EF )]p

= 2π i(−1)p

(p − 1)!

d (p−1)

dω(p−1)

∑
a

δ(ω − εa)φa(x)φ̄a(y). (5)

This equality is to be understood while integrating in the
complex ω plane. The reader is referred to Refs. [24,25,40]
for more details on the vacuum state redefinition within the
BSQED framework and the corresponding formalism.

The light-unperturbed normal-ordered Hamiltonian can be
expressed as [41]

H0 =
∫

d3x:ψ (0)†(t, x)hDψ (0)(t, x):. (6)
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It is left to introduce the light-related part. The interaction
Hamiltonian is constructed as

Hint =
∫

d3x:ψ (0)†(t, x)hintψ
(0)(t, x):. (7)

It encapsulates the interaction with the quantized electro-
magnetic field Aμ and the counterterm associated with the
screening potential −U (x), when one works within the ex-
tended Furry picture. The explicit expression for hint is hint =
eαμAμ(t, x) − U (x). The effect of the interaction Hamilto-
nian is accounted for within BSQED perturbation theory.
Different approaches are possible for its formulation [23,41–
43]. The calculation presented in what follows relies on the
two-time Green’s function (TTGF) method [23].

The photon propagator is denoted by Dμν (x − y; ω), with
ω the photon’s energy. The interelectronic-interaction oper-
ator I (x − y; ω) is defined as I (x − y; ω) = e2αμανDμν (x −
y; ω), where αμ = (1,α). The interelectronic-interaction ma-
trix element Ii jkl (ω) is shorthand for

Ii jkl (ω) =
∫

d3x d3y ψ
†
i (x)ψ†

j (y)I (x − y; ω)ψk (x)ψl (y)

(8)
and satisfies the transposition symmetry property Ii jkl (ω) =
I jilk (ω). In the Feynman and Coulomb gauges, the
interelectronic-interaction operator I (x − y; ω) is an even
function of ω.

III. REDEFINED VACUUM STATE APPROACH

The idea behind a redefinition of the vacuum state is
to benefit from a hydrogenlike picture of the problem, the
system for which QED is the most developed. This setting
is feasible as long as the system under consideration has a
single valence electron above some closed shells. The es-
sential notion in introducing a redefined vacuum state is to
separate the electron dynamics into the core and valence parts.
The first part is relegated to the reference vacuum energy
and can be neglected when the transition energy (with a
significant many-electron background remaining unchanged)

is considered. The key feature of this approach is that the
core contributions (arising from the interaction between core
electrons, which are canceled in the difference between the
excited- and the ground-state energies) are not considered
from the very beginning.

The effective one-particle approach, based on a redefinition
of the vacuum state, is applied here to more involved Feynman
diagrams, as a proof of principle that advanced calculation
can be undertaken in this way. The three-photon-exchange
corrections investigated, as well as the specific one-particle
three-loop Feynman diagrams serving as a starting point of
the subsequent consideration, were selected with hindsight.
It was necessary to be able to verify, in some manner, the
obtained expressions. The perturbative approach requires al-
ready known diagrams; therefore, some totally new topology
in the considered diagrams was not a realistic choice such
as a one-loop correction shared among three electrons exists.
Hence, after the introduction of the necessary elements of the
TTGF method, a partial recap of the two-photon-exchange
correction is undertaken. It both details how the investigated
diagrams were selected and serves as a staring point for later
developments.

The investigation is carried out for the valence state de-
scribed as |v〉 = a†

v |α〉 in the perspective of a redefined
vacuum state. The cornerstone expression for the energy shift
is

�Ev =
1

2π i

∮
v

dE (E − 〈v| H0 |v〉) 〈v| �gα (E ) |v〉
1 + 1

2π i

∮
v

dE 〈v| �gα (E ) |v〉 , (9)

where the contour v is chosen such that it surrounds counter-
clockwise only the pole E (0) = 〈v| H0 |v〉 ≡ εv . Other singu-
larities are kept outside this contour. The Fourier-transformed
TTGF matrix element is provided by 〈v| �gα (E ) |v〉 =
�gα,vv , where �gα (E ) stands for �gα (E ) = gα (E ) − g(0)

α (E )
and g(0)

α (E ) is the zeroth-order Fourier-transformed TTGF.
The Fourier-transformed TTGF, where the coordinates have
been integrated out, is given by

gα (E )δ(E − E ′) = 1

2π i

∑
i, j

∫
d3x d3y

∫
dt dt ′ei(Et−E ′t ′ )φ

†
i (x) 〈α| T [ψα (t, x)ψ†

α (t ′, y)] |α〉 φ j (y)a†
i a j . (10)

The treatment of the Green’s function within perturbation theory allows one to extend it to the different orders in α: �gα (E ) =
�g(1)

α (E ) + �g(2)
α (E ) + �g(3)

α (E ) + · · · . Isolating the corresponding third order, the resulting expression for the energy shift can
be represented as

�E (3)
v = 1

2π i

∮
v

dE (E − εv )�g(3)
α,vv (E ) − 1

2π i

∮
v

dE (E − εv )�g(2)
α,vv (E )

1

2π i

∮
v

dE ′�g(1)
α,vv (E ′)

− 1

2π i

∮
v

dE (E − εv )�g(1)
α,vv (E )

[
1

2π i

∮
v

dE ′�g(2)
α,vv (E ′) −

(
1

2π i

∮
v

dE ′�g(1)
α,vv (E ′)

)2
]
. (11)

The terms which do not involve �g(3)
α,vv (E ) are referred to

as disconnected elements. Particular attention is required in
the treatment of the contributions where the energy of an
intermediate state equals the energy of the reference state.
These types of contributions are so-called reducible terms.

Three different type of Feynman diagrams are found at this
order and are separated accordingly as follows: The one-
particle loop diagrams are denoted by (L), the interelectronic-
interaction diagrams by (I), and the screened-loop diagrams
by (S). This reports focuses on the third-order interelectronic
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FIG. 1. Second-order one-electron Feynman diagrams labeled as
follows: SESE (top row); SEVP (middle row); and VPVP, V(VP)P,
V(SE)P, and S(VP)E from left to right in the bottom row. Thick black
lines denote the electron propagator in the redefined vacuum state in
an external potential V . Wavy lines represent the photon propagator.

interactions (3I), also referred to as three-photon-exchange
corrections.

A. Partial recap of two-photon-exchange corrections

To showcase that the vacuum state redefinition approach
is working, one resorts to results from Ref. [24]. The
two-photon-exchange corrections were derived within the
framework of a vacuum state redefinition, thus starting from
an effective one-particle picture.

The complete set of second-order one-particle diagrams
consists of ten two-loop diagrams. These are presented in
Fig. 1. The gauge invariance of the one-particle two-loop dia-
grams was shown in Ref. [44]. Eight gauge-invariant subsets
are identified based on the decomposition provided in this
paper. The identified subsets should be gauge invariant in both
the redefined and standard vacuum state frameworks. This
means that the many-electron diagrams obtained as a differ-
ence between redefined and standard vacuum state diagrams
can be also classified according to these subsets. The subsets
are labeled according to their composition in radiative-loop
corrections. In what follows, SE stands for the self-energy
loop and VP for the vacuum-polarization loop. The subsets,
with the labeling presented in Fig. 1, are the SESE one in
the top row, the SEVP one in the middle row, and the VPVP,
V(VP)P, V(SE)P, and S(VP)E ones, from left to right, in the
bottom row. The eight identified GI subsets in the original
Furry picture are, in terms of the one-electron description,
SESE (two- and three-electron subsets), SEVP, S(VP)E (two-
and three-electron subsets), VPVP, V(VP)P, and V(SE)P.

The resulting two-photon-exchange corrections are divided
into three categories, in the many-electron frame: the ladder
diagram (referred to as the ladder loop), the crossed-ladder
diagram (referred to as the crossed loop), and the three-
electron diagram (referred to as the three-electron term in this

FIG. 2. One-particle three-loop Feynman diagrams of the
S[V(VP)P]E subset participating in the third-order contribution to
the energy shift of a single-particle state. They are denoted by H1

(left) and H2 (right). The notation is the same as in Fig. 1.

section). It was shown that that the ladder and crossed loops
arose from the SESE and S(VP)E subsets.2 The SESE sub-
set generates the exchange parts of the two-photon-exchange
corrections, whereas the S(VP)E subset generates the direct
parts of the two-photon-exchange corrections. The decision
was made to pick out the S(VP)E subset as a starting point of
the third-order interelectronic corrections. The reasons are (i)
its simplicity in terms of the number of diagrams to consider
(three vs one) and (ii) that dealing with the exchange part is
more difficult. The one-particle three-loop Feynman diagrams
are given in Fig. 2 (the S[V(VP)P]E subset) and Fig. 3 [the
S(VP)EVP subset]. They correspond to all possible inser-
tions of a VP loop in the S(VP)E graph, being the simplest
extension towards a one-loop three-photon-exchange correc-
tion. Note that the inclusion of an extra energy-independent
interelectronic operator, arising from the cut in the inserted
VP loop, does not spoil gauge invariance. The one-photon-
exchange operator was shown to be gauge invariant [24]. An
important point to highlight is that the ω flow in the VP loop
must be symmetrized in the integrals of the final expressions
in order to achieve gauge invariance. It is a crucial step
when dealing with the S(VP)E subset (as shown below). The
equality (16) and its third-order-pole version were applied to
the derived expressions in order to compare them with those
based on the perturbation theory approach.

The expressions related to the S(VP)E subset are displayed
below, as the initial expressions for later derivations based
on perturbation theory. The proof for the gauge invariance of
the S(VP)E subset is given numerically, for the Feynman and
Coulomb gauges, in Tables I and II at the corresponding lines
and analytically in Eq. (B10) for the three-electron terms in

2See below Eqs. (54) and (63), respectively, in [24].

FIG. 3. One-particle three-loop Feynman diagrams of the
S(VP)EVP subset participating in the third-order contribution to the
energy shift of a single-particle state. They are denoted by F1 (left),
F2 (middle), and F3 (right). The notation is similar to Fig. 1.
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Ref. [24]. The two-electron irreducible part �E (2I)S(VP)E,2e,irr
v

reads

�E (2I)S(VP)E,2e,irr
v

= i

2π

∫
dω

( ′∑
a,i, j

Iv jia(ω)Iiav j (ω)

(εv − ω − εiu)(εa − ω − ε ju)

+
(i, j)�=(a,v)∑

a,i, j

Ivai j (ω)Ii jva(ω)

(εv − ω − εiu)(εa + ω − ε ju)

)
, (12)

where one excludes the contribution with εi = εv and ε j = εa

from the crossed-direct term (first item) by hand and denotes
this by the prime on the sum. The two-electron reducible part
�E (2I)S(VP)E,2e,red

v , coming from the ladder-direct restriction
εi + ε j = εa + εv together with the excluded part from the
irreducible crossed-direct term, yields

�E (2I)S(VP)E,2e,red
v

= − i

4π

∫
dω

(
1

(ω + iε)2
+ 1

(−ω + iε)2

)

×
∑

a,a1,v1

Ivaa1v1 (�va − ω)Ia1v1va(�va − ω). (13)

The three-electron irreducible part �E (2I)S(VP)E,3e,irr
v yields

�E (2I)S(VP)E,3e,irr
v

= −
(i,b)�=(v,a)∑

a,b,i

Ivabi(�vb)Ibiva(�vb) + Ivaib(�ba)Iibva(�ba)

(εv + εa − εb − εi )

−
∑
a,b,i

Iviba(�vb)Ibavi(�vb)

(εa + εb − εv − εi )
, (14)

together with the corresponding reducible part

�E (2I)S(VP)E,3e,red
v = −

∑
a,a1,v1

Ivaa1v1 (�va)I ′
a1v1va(�va). (15)

As a side remark, note that the identity

−1

(x + iε)2
+ 1

(−x + iε)2
= 2π

i
∂xδ(x) (16)

was used to symmetrize the ω flow in the VP loop or, in other
words, to symmetrize the pole structure with respect to the
real-line axis.

B. The S[V(VP)P]E subset

The Green’s function corresponding to each diagram in the subset is given by

�g(3)H1
α,vv (E ) = 1

(E − εv )2

(
i

2π

)3 ∑
i, j,k,l,p

∫
dω dk1dk2

Ivpik (ω)[
E − ω − εi + iε

(
εi − EF

α

)][
k1 − ε j + iε

(
ε j − EF

α

)]
× Ik jl j (0)Ilipv (ω)[

k2 − εk + iε
(
εk − EF

α

)][
k2 − εl + iε

(
εl − EF

α

)][
k2 − ω − εp + iε

(
εp − EF

α

)] (17)

for H1 and by

�g(3)H2
α,vv (E ) = 1

(E − εv )2

(
i

2π

)3 ∑
i, j,k,l,p

∫
dω dk1dk2

Ivki j (ω)[
E − ω − εi + iε

(
εi − EF

α

)][
k1 − ε j + iε

(
ε j − EF

α

)]
× Il pkp(0)I jilv (ω)[

k1 − ω − εk + iε
(
εk − EF

α

)][
k1 − ω − εl + iε

(
εl − EF

α

)][
k2 − εp + iε

(
εp − EF

α

)] (18)

for H2. According to the line of reasoning presented in the
treatment of the SESE subset in Ref. [24], starting from
the previous Green’s functions, the extraction of the differ-
ent three-photon-exchange corrections is carried out with the
subtraction of the corresponding expression in the standard
vacuum state

�E (3)
v − �E (3L)

v = �E (3I)
v + �E (3S)

v . (19)

In other words, within the framework of a redefined vac-
uum state, the interelectronic and the screened corrections are
treated on the same footing. As the diagrams are one-particle
irreducible (1PI), one does not need to worry about the discon-
nected elements in Eq. (11). Note that double cuts are possible
in both diagrams, leading to so-called nondiagrammatic ele-
ments. These are important to consider in order to properly

treat the reducible part. Nondiagrammatic elements are ex-
pressions that cannot be drawn as single Feynman diagrams
since they involve reducible parts. The results are separated in
three- and four-electron contributions.

To illustrate the extraction procedure based on Eq. (19),
the term-by-term three-electron (loop diagram) expressions
obtained afterward are displayed explicitly below for H1.
One distinguishes between three different type of terms: irre-
ducible (irr), reducible 1 (red1), and reducible 2 (red2). The
irreducible terms correspond to a first-order pole (S-matrix
terms) in the first term on the right-hand side, namely the one
with �g(3) of Eq. (11), whereas the reducible 1 and 2 terms
correspond to second- and third-order poles, respectively, in
the first term on the right-hand side, namely the one with
�g(3) of Eq. (11). To keep track of the source of generated
reducible parts, a subscript is used with the previous notation,
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for example, v1, a1, and b2, where εi1 = εi. The different terms corresponding to crossed graphs are found to be

�E (3I)3e,cross,irr
v,H1

= i

2π

∫
dω

k �=b∑
i, j,k

Iv jib(ω)Ibaka(0)Iki jv (ω)

(εv − ω − εiu)(εb − ω − ε ju)(εb − εku)
, (20)

�E (3I)3e,cross,irr
v,H1

= i

2π

∫
dω

k �=b∑
i, j,k

Iv jik (ω)Ikaba(0)Ibi jv (ω)

(εv − ω − εiu)(εb − ω − ε ju)(εb − εku)
. (21)

The terms associated with ladder graphs are given as

�E (3I)3e,lad,irr
v,H1

= i

2π

∫
dω

{i, j}�={v,b},{i,k}�={v,b}∑
i, j,k

Ivbi j (ω)I jaka(0)Ikibv (ω)

(εv − ω − εiu)(εb + ω − ε ju)(εb + ω − εku)
, (22)

�E (3I)3e,lad,red1
v,H1

= − i

2π

∫
dω

{i, j}={v,b},{i,k}�={v,b}∑
i, j,k

Ivbi j (ω)I jaka(0)Ikibv (ω)

(εv − ω − εiu)2(εb + ω − εku)
, (23)

�E (3I)3e,lad,red1
v,H1

= − i

2π

∫
dω

{i, j}�={v,b},{i,k}={v,b}∑
i, j,k

Ivbi j (ω)I jaka(0)Ikibv (ω)

(εv − ω − εiu)2(εb + ω − ε ju)
, (24)

�E (3I)3e,lad,red2
v,H1

= i

2π

∫
dω

{i, j}={v,b},{i,k}={v,b}∑
i, j,k

Ivbi j (ω)I jaka(0)Ikibv (ω)

(εv − ω − εiu)3
. (25)

The nondiagrammatic element for H1 reads

�E (3I)3e,cross,red1
v,H1

= − i

2π

∫
dω

∑
i, j

Iv jib(ω)Ibab1a(0)Ib1i jv (ω)

(εv − ω − εiu)(εb − ω − ε ju)2
. (26)

The expressions presented above are the bare results after
carrying out the difference of the vacuum states to extract the
interelectronic interactions. We emphasize that the reducible
expressions are IR divergent. These IR divergences are ex-
tracted and regularized later on, such as the symmetrization
of the poles with regard to the real axis. The term-by-term
interelectronic expressions related to H2 are given in Ap-
pendix A. They are needed to show the explicit cancellation of
IR divergences at the single Feynman diagram level. The final

interelectronic three-electron expressions are found in Ap-
pendix C, when the comparison with the results obtained from
the perturbation theory approach is made. The four-electron
terms are displayed in Appendix D, again for a comparison
with the outcome of the second method.

C. The S(VP)EVP subset

As a second example, consider the Green’s function asso-
ciated with the F2 diagram

�g(3)F2
α,vv (E ) = 1

(E − εv )2

(
i

2π

)3 ∑
i, j,k,l,p

∫
dωdk1dk2

Ivlil (ω)[
E − ω − εi + iε

(
εp − EF

α

)][
k1 − ε j + iε

(
ε j − EF

α

)]
× Ii jk j (0)Ilkpv (ω)[

E − ω − εk + iε
(
εp − EF

α

)][
k2 − εl + iε

(
εl − EF

α

)][
k2 − ω − εp + iε

(
εp − EF

α

)] . (27)

The identical procedure as stated above is applied to infer the
three-photon-exchange corrections. The diagrams are not 1PI,
with the exception of F2. Therefore, one has to consider the
second-order Green’s function �g(2)S(VP)E

α and the first-order
one �g(1)VP

α to evaluate the disconnected elements in Eq. (11).
It turns out that only the first term in the square bracket
of the second line survives. The disconnected elements are
important to account for as they remove the redundancies in
the reducible parts. To illustrate, F1 and F3 give redundant
reducible terms, but the disconnected elements remove the
extra ones, coming from F1 in this case. A small subtlety is

nevertheless present if an extra pole is explicitly extracted. In
such a case, this reducible term is kept for two reasons: first,
because it cannot be generated in the disconnected ones, and
second, which is more important, to achieve the IR finiteness
of the expressions in the subset. Hence, for the S(VP)EVP
subset, on the top of the peculiar extra pole term arising from
F1, only the F2 and F3 reducible IR divergent expressions
are displayed in Table I. Nondiagrammatic elements are only
present in the F2 diagram and are of four-electron type. The
results are separated in three- and four-electron contributions.
The Feynman diagram F2 leads to the subsequent expressions.
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Only an expression associated with a crossed-loop graph is found,

�E (3I)3e,cross
v,F2

= i

2π

∫
dω

∑
i, j,k

Ivkib(ω)Iia ja(0)Ib jkv (ω)

(εv − ω − εiu)(εv − ω − ε ju)(εb − ω − εku)
, (28)

so it is for the ladder-loop graph, but incorporating the different types of terms (irr, red1, and red2) stated above,

�E (3I)3e,lad,irr
v,F2

= i

2π

∫
dω

{i,k}�={v,b},{ j,k}�={v,b}∑
i, j,k

Ivbik (ω)Iia ja(0)Ik jbv (ω)

(εv − ω − εiu)(εv − ω − ε ju)(εb + ω − εku)
, (29)

�E (3I)3e,lad,red1
v,F2

= − i

2π

∫
dω

{i,k}={v,b},{ j,k}�={v,b}∑
i, j,k

[
Ivbik (ω)Iia ja(0)Ik jbv (ω)

(εv − ω − ε ju)2

(
1

(εv − ω − εiu)
+ 1

(εb + ω − εku)

)

+ Ivbik (ω)Iia ja(0)Ik jbv (ω)

(εv − ω − εiu)2(εv − ω − ε ju)

]
, (30)

�E (3I)3e,lad,red1
v,F2

= − i

2π

∫
dω

{i,k}�={v,b},{ j,k}={v,b}∑
i, j,k

[
Ivbik (ω)Iia ja(0)Ik jbv (ω)

(εv − ω − εiu)2

(
1

(εv − ω − ε ju)
+ 1

(εb + ω − εku)

)

+ Ivbik (ω)Iia ja(0)Ik jbv (ω)

(εv − ω − εiu)(εv − ω − ε ju)2

]
, (31)

�E (3I)3e,lad,red2
v,F2

= i

2π

∫
dω

{i,k}={v,b},{ j,k}={v,b}∑
i, j,k

[
− Ivbik (ω)Iia ja(0)Ik jbv (ω)

(εv − ω − εiu)(εv − ω − ε ju)

(
1

(εv − ω − εiu)
+ 1

(εv − ω − ε ju)

)

+ Ivbik (ω)Iia ja(0)Ik jbv (ω)

(εv − ω − εiu)3

]
. (32)

As in the case of the S[V(VP)P]E subset, the expressions
shown above are those obtained in the extraction procedure of
the interelectronic interaction, as the difference of the vacuum
states. More work is required to extract the IR divergences
of the reducible terms, to regularize them, as well as to sym-
metrize the poles with regard to the real axis. The expressions
associated with F1 and F3 diagrams are found in Appendix B.
The explicit cancellation of IR divergences at the single di-
agram level requires them. The final expressions associated
with the one-loop three-photon-exchange diagrams are found
in Appendix C, when comparing with the results from the
second derivation. The four-electron terms are displayed, for
a comparison with the perturbation theory approach, in Ap-
pendix D.

IV. PERTURBATION THEORY APPROACH

The idea behind this approach is to perturb a two-photon-
exchange correction by the presence of some potential-like
interaction V , to its first order. This method was applied in
Ref. [45] to generate the two-photon-exchange corrections
to the g factor of Li-like ions. Specifically, the one-electron
external wave function is perturbed as

|i〉 → |i〉 + |δi〉 , |δi〉 =
∑
j �=i

| j〉V ji

εi − ε j
, (33)

and the energy accordingly to

εi → εi + δεi, δεi = Vii, (34)

leading to the perturbation in the argument of the interelec-
tronic operator

I (�va) → I (�va + δ�va) ≈ I (�va) + I ′(�va)(δεv − δεa).

(35)

The �va stands for �va = εv − εa. The electron propagator
(4) involved in the loops has to be perturbed as well. In its
energy-position representation, one finds

SδV (εk ± ω; x, y) = δV

(∑
i

|i〉 〈i|
εk ± ω − εiu

)

=
∑
i, j

|i〉Vi j 〈 j|
(εk ± ω − εiu)(εk ± ω − ε ju)

−
∑

i

|i〉Vkk 〈i|
(εk ± ω − εiu)2

. (36)

It is a slight generalization of the propagator found in
Ref. [46]. This expression is also valid when ω = 0, namely,
for the four-electron case. However, one should distinguish
when to use each of the two terms. If both terms in paren-
theses (εk ± ω − εi, ju)|ω=0 are nonzero, then the first piece
of the perturbed propagator is to be used. If one of the terms
in parentheses (εk ± ω − εi, ju)|ω=0 is zero, then the second
piece of the perturbed propagator is to be used, with the
appropriate index. In such a way, the operator � of Eq. (46) in
Ref. [45] is reproduced.
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FIG. 4. One-particle two-loop Feynman diagram corresponding
to the perturbed S(VP)P subset in the redefined vacuum state formal-
ism in an external potential V . The triple line indicates the electron
propagator perturbed by the potential-like interaction V . The notation
is similar to Fig. 2.

In the end, one trades the potential-link interaction matrix
element for a one-photon-exchange one,

Vi j → Iia ja(0), (37)

to match the three-photon-exchange formulas. Let us pause
to comment on the last step presented above. A link between
the potential-like interaction and the one-photon-exchange in-
teraction is drawn. The logic goes as follows. Consider, for
example, the Wichmann-Kroll potential [47]. It accounts for
an all-order treatment, in αZ , of the interaction of the free-
electron vacuum-polarization loop (first order in α) with the
Coulomb potential.3 [As a side comment, the Uehling poten-
tial [53], which takes into account the electric polarization of
the vacuum (state), is the lowest-order approximation (in αZ)
of the vacuum-polarization loop within the Coulomb field of
the nucleus. One usually considers that the Wichmann-Kroll
potential does not take the Uehling potential into account.]
Although the Wichmann-Kroll potential is such a potential-
like interaction, it deals with the full Green’s function. How-
ever, the potential-like interaction considered above incorpo-
rates only the core electrons. Therefore, going half a step back,
one can imagine having an all-order αZ Wichmann-Kroll-like
potential mapped to the vacuum-polarization loop only for the
core electrons. The inner structure of the vacuum-polarization
potential-like interaction is then unraveled by a cut in the
loop. Hence, one can think of the potential-like interaction
as an effective one-electron operator but implicitly account-
ing for a corrected wave function or representing a screened
correction.

Thus, one perturbs the S(VP)E equations (12)–(15) accord-
ing to Eqs. (33)–(36) and finds the desired formulas under the
replacement (37). The Feynman diagram corresponding to the
V-perturbed S(VP)E subset is displayed in Fig. 4. The triple-
line notation represents the electron propagator perturbed by
the potential-like interaction V . It was shown that the two-
electron subset and the three-electron subset are separately
gauge invariant [24]. The perturbation is initially a potential-
like interaction V , turned into a one-photon-exchange operator
in the vanishing energy limit, which is gauge independent
too. Therefore, it should be well founded to expect that the
results derived from this approach also fulfill the requirement
of gauge invariance, namely, on the three- and four-electron

3A potential which accounts for a partial two-loop (second order in
α) VP correction is the Kallen-Sabry potential [48–52].

levels, respectively. The open question is whether the separa-
tion into S(VP)EVP and S[V(VP)P]E subsets holds also at the
three- and four-electron levels, as it is thought to be the case.
Hence, starting from the V-perturbed S(VP)E GI expressions,
one should be able to disentangle the various terms found
via the redefinition of the vacuum state approach and assign
them to either the three- or the four-electron contribution. The
results relying on this method are displayed in Appendix C for
the former case and in Appendix D for the latter.

V. REGULARIZATION OF INFRARED DIVERGENCES

Infrared divergences occur when the energy flowing
through the loop (ω) leads to a vanishing denominator of the
electron propagator at ω → 0. At the level of two-photon-
exchange corrections, this behavior was only met in ladder
reducible expressions, where the removal of some terms in
the summation of the crossed expressions was carried out to
cancel IR divergent parts of the ladder reducible terms [54].
In the case of the three-photon-exchange corrections, it can
also arise from crossed reducible expressions. The analysis
of IR divergences is conducted in the Feynman gauge, but
the resulting pairing of the expressions is valid generally
by virtue of gauge invariance. According to Shabaev [23],
one introduces the following integral representation for the
complex-exponential term of the photon propagator, including
a photon mass term μ:

ei
√

ω2−μ2+iε|x−y| = −2

π

∫ ∞

0
dk

k sin(k|x − y|)
ω2 − k2 − μ2 + iε

. (38)

The photon mass plays the role of an energy cutoff (IR reg-
ulator). Notice that the condition on the branch of the square
root is changed to Im(

√
ω2 − μ2 + iε) > 0. In the rest of the

section, the use of r12 ≡ |x − y| is preferred. Such a type of
integral is met when facing IR divergences

In,m±,p ≡ −i

2π

∫
dω

I (ω)I (ω)I (0)

(−ω + iε)n(� ± ω + iε)m�̃p
, (39)

with n = 1, 2, 3; m = 0, 1; p = 0, 1; and the constraint n +
m + p = 3. The plus sign stands for the IR divergent ladder
reducible terms and the minus sign for the compensating
crossed terms. Calculations are performed by the application
of the integral 3.773(3) [or 3.729(2)] in Ref. [55]. The first
step is to show that for a first-order pole n = 1, the result is
IR finite. There is no necessity to introduce a photon mass or
to use the integral representation of the complex exponential.
It is sufficient to Wick rotate the integration contour with
the substitution ω = iωE . Afterward, the principal value of
the integral, denoted by P , is considered. One starts with the
simplest case

I1,0,2 = I (0)

2π�̃2
P

∫ i∞

0
dωE

I (−iωE )I (−iωE ) − I (iωE )I (iωE )

iωE

− i

2�̃2
I (0)I (0)I (0). (40)

The integral term reads explicitly

α2

r12r34
α1μα

μ
2 α3να

ν
4P

∫ i∞

0
dωE

e−ωE R − eωE R

iωE
, (41)
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giving a finite contribution in the limit ω → 0. Here R stands
for R = r12 + r34. One sees that the real part is IR finite;
the imaginary one is as well in this simple example. The
second case I1,2−,0 requires one more step, a partial frac-

tion decomposition, so that the Cauchy principal value can
be applied (recall that the principal value picks only the
residues, hence no contribution from second- or higher-order
poles):

I1,2−,0 = I (0)

2π�2
P

∫ i∞

0
dωE

(
I (−iωE )I (−iωE ) − I (iωE )I (iωE )

iωE
− I (−iωE )I (−iωE )

� + iωE
− I (iωE )I (iωE )

� − iωE

)

− i

�2
I (0)[I (0)I (0) − I (�)I (�)]. (42)

The first integrand was shown to be IR finite just above. For the remaining two integrands, it is clear that � plays the role of
an IR cutoff, preventing the expression from diverging in the limit ω → 0. The case I1,1−,1 is not met in the diagrams under
consideration and is therefore not assessed. Let us discuss the IR divergences arising from second-order poles. The first case
I2,0,1 considers the insertion of the interelectronic operator on the external leg of a one-loop diagram. One has

I2,0,1 = −α3R

πr12r34r56�̃
α1μα

μ
2 α3να

ν
4α5ρα

ρ
6 K0(μR) ≈ −α3R

πr12r34r56�̃
α1μα

μ
2 α3να

ν
4α5ρα

ρ
6

(
ln

μ

2
+ γ + ln R

)
(43)

in the limit μ → 0. The Kn(x) are imaginary Bessel functions of the second kind. The IR logarithmic divergent behavior identical
to that in the two-photon-exchange ladder reducible case is recovered [23]. The corresponding crossed diagram cancels the IR
divergent term, leaving a well-behaved expression. The second case I2,1+,0 is when the interelectronic operator is inserted within
the electron propagator of the loop in the diagram. One faces

I2,1+,0 = α3

πr12r34r56
α1μα

μ
2 α3να

ν
4α5ρα

ρ
6

∫ ∞

0
dk k sin(kR)

(
1

(k2 + μ2)3/2(� −
√

k2 + μ2)
− 2

(k2 + μ2)�2

)
. (44)

This IR divergence is compensated by a similar crossed graph, represented by the integral I2,1−,0 where the interelectronic
operator is also inserted within the electron propagator of the loop

I2,1−,0 = −α3

πr12r34r56
α1μα

μ
2 α3να

ν
4α5ρα

ρ
6

∫ ∞

0
dk k sin(kR)

×
(

−1

(k2 + μ2)3/2(� +
√

k2 + μ2)
+ 2

(k2 + μ2 − �2)�2
− 2

(k2 + μ2)�2

)
. (45)

However, the cancellation is not straightforward at this step. A partial fraction decomposition allows one to greatly simplify the
previous expressions, when they are added together:

I2,1−,0 + I2,1+,0 = −2α3

πr12r34r56�2
α1μα

μ
2 α3να

ν
4α5ρα

ρ
6

∫ ∞

0
dk

k sin(kR)

k2 + μ2
= −2α3

πr12r34r56�2
α1μα

μ
2 α3να

ν
4α5ρα

ρ
6

√
πμR

2
K1/2(μR)

≈ α3

r12r34r56�2
α1μα

μ
2 α3να

ν
4α5ρα

ρ
6 (μR − 1). (46)

Thus, it turns out to be a spurious divergence; the IR divergence is ruled out and a finite part remains in the limit μ → 0. Finally,
the IR divergence arising from the third-order pole is treated. The corresponding integral to evaluate is

I3,0,0 = −α3

πr12r34r56
α1μα

μ
2 α3να

ν
4α5ρα

ρ
6

√
πR

2μ

R

2
K1/2(μR) ≈ −α3R

4r12r34r56
α1μα

μ
2 α3να

ν
4α5ρα

ρ
6

(
1

μ
− R

)
, (47)

leading to a singular behavior when the limit μ → 0 is taken.
The behavior of the IR divergence arising from the third-order
pole is in agreement with the one presented in Ref. [46], where
a similar analysis was performed for the self-energy screening
effects in g-factor calculations. A different treatment for the
regularization of the IR divergence for the third-order pole
based on a symmetry argument is proposed in Appendix E.
Similarly to the IR divergence arising from the second-order

pole, one looks for the compensating crossed diagram to en-
sure that the total expression is finite.

The explicit cancellation of IR divergences, at the individ-
ual Feynman diagram level by the appropriate crossed term,
is demonstrated in Table I. An exception is met for the ladder
reducible 2 terms, which compensate themselves. A swapping
of the indices in the expressions presented in Sec. III might
be sometimes necessary in order to make the compensation
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TABLE I. IR divergence regularization at the individual Feynman diagram level. IR divergences are found in the reducible expressions,
for both ladder and crossed loops. “Crossed” stands for the crossed compensating term. The In,m±,p describes the type of divergent integral
encountered in the graph. Each term can be found in Sec. III, following the referenced equation. The labels are simplified in comparison to the
ones presented there; only the difference between them is highlighted.

Feynman diagram level Type of IR divergence Crossed IR compensation

�E (3I)3e
v ∈ S[V(VP)P]E

H1: ladder red 1 (23) I2,1+,0 H2: crossed (A1) I2,1−,0

H1: ladder red 1(24) I2,1+,0 H2: crossed (A1) I2,1−,0

H1: ladder red 2 (25) I3,0,0 H2: ladder red 2 (A7) I3,0,0

H1: crossed red (26) I2,1−,0, I3,0,0 H2: crossed (A1) I2,1−,0, I3,0,0

H2: ladder red 1 (A3) I2,0,1 H1: crossed irr (21) I2,0,1

H2: ladder red 1 (A5) I2,0,1 H1: crossed irr (20) I2,0,1

H2: ladder red 2 (A7) I3,0,0 H1: ladder red 2 (25) I3,0,0

�E (3I)3e
v ∈ S(VP)EVP

F1: ladder red 1 (B7) I2,0,1 F1: crossed (B3) I2,0,1

F2: ladder red 1(30) I2,1+,0 F2: crossed (28) I2,1−,0

F2: ladder red 1 (31) I2,1+,0 F2: crossed (28) I2,1−,0

F2: ladder red 2 (32) I3,0,0 F2: crossed (28) I3,0,0

F3: ladder red 1 (B14) I2,0,1 F3: crossed irr (B10) I2,0,1

F3: ladder red 2 (B15) I3,0,0 F3: crossed red (B11) I3,0,0

F3: crossed red (B11) I2,1−,0 F2: crossed (28) I2,1−,0

apparent. Moreover, it was shown that IR divergences are
absorbed by expressions belonging to the same subset.

VI. COMPARISON

Two different approaches were utilized to infer a partial
third-order interelectronic correction to the energy shift. A
comparison between the results of each of these two ap-
proaches is undertaken in this section.

The discussion begins with the four-electron contribu-
tion, which involves three types of terms: the irreducible
[�E (3I)4e,irr

v (D1) and (D2)], the reducible 1 [�E (3I)4e,red1
v (D3)

and (D4)], and the reducible 2 [�E (3I)4e,red2
v (D5) and (D6)].

For every type previously stated, agreement between the per-
turbative treatment of the V-perturbed S(VP)E three-electron
subset and the effective one-particle approach is met.

For the three-electron contribution, an identical separation
to the above is conducted. The irreducible type is composed
of three parts, two of which correspond to crossed diagrams
[�E (3I)3e,cross

v (C4) and (C5) and �E (3I)3e,cross,irr
v (C2) and (C3)]

and one corresponding to ladder diagrams [�E (3I)3e,lad,irr
v (C6)

and (C7)]. The outcomes of the two methods are in full con-
cordance for these terms. Regarding the reducible 1 type, the
cross reducible [�E (3I)3e,cross,red

v (C8) and (C9)] and the ladder
reducible 1 IR free ω [�E (3I)lad,red1

v,IR free ω
(C14) and (C15)] terms

extracted from the two treatments are in good agreement.
However, for the remaining reducible 1 terms

[�E (3I)3e,lad,red1
v,IR div (C10) and (C11) and �E (3I)3e,lad,red1

v,IR free (C12)
and (C13)] a discrepancy is encountered. Yerokhin et al.,
in Ref. [45], already pointed out that the perturbation
theory approach runs into trouble dealing with reducible
terms.4 They invoked gauge invariance to fix the problem.
If proceeding as explained at the beginning of the

4See remarks below Eqs. (32), (35), and (37) in Ref. [45].

section dedicated to perturbation theory approach, a problem
identical to the one highlighted by Yerokhin et al. is met,
namely, that the poles differ by the sign of the iε prescription,

1

(ω + iε)(−ω + iε)
vs

1

(ω + iε)2
or

1

(−ω + iε)2
, (48)

when facing ladder reducible 1 terms �E (3I)3e,lad,red1
v,IR div and

�E (3I)3e,lad,red1
v,IR free . The difference in the topology of the poles

arises from unaccounted restrictions in the summations.
Surprisingly, and possibly related to the topology problem
associated with the poles, the two approaches differ regarding
the extra terms

�E (3I)3e,red1
v,S[V(VP)P]E =

i �=v∑
a,b,b1,v1,i

Ivbb1v1 (�vb)Iv1aia(0)Iib1bv (�vb)

(εv − εi )2

(49)

and

�E (3I)3e,red1
v,S(VP)EVP = −

i �=b∑
a,b,b1,v1,i

Ivbb1v1 (�vb)Ib1aia(0)Iiv1vb(�vb)

(εb − εi )2
.

(50)

These are not found via the perturbative analysis but are
present in the redefined vacuum state approach. They are ob-
tained as the interplay among terms generated from the ladder
reducible 1 terms, upon the symmetrization of the energy
flow in the loop, and four-electron reducible 1 terms. The
former originates from H1 while the latter originate from F2.
They look like the four-electron reducible 1 contribution, due
to the absence of the ω integration. According to the gauge
invariance of the three-electron S(VP)E subset of the two-
photon-exchange corrections, they should be incorporated in
the three-electron contribution of the three-photon-exchange
corrections. The structure of these terms suggests that they
are included in the reducible 1 contribution. The last point to
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be made concerning these two terms is that they are obviously
IR finite.

The reducible 2 type contains only ladder reducible 2
terms: the IR free one [�E (3I)3e,lad,red2

v,IR free (C18) and (C19)]

and the IR divergent one [�E (3I)3e,lad,red2
v,IR div (C16) and (C17)].

The expressions obtained from the two different methods are
identical.

Overall, if errors occurred in the different three-electron
types of interelectronic interactions considered, one would
expect to see repercussions in the four-electron contribu-
tion. In this case, the four-electron contribution would suffer
from discrepancies between the two methods, a behavior
which is not encountered. Therefore, these two independent
derivations and the comparison of the resulting expressions
presented in the present work are fully consistent, except for
two expressions mentioned above. In these cases, the dis-
crepancy can be traced back to unaccounted for restrictions
in the summations, resulting in a different topology of the
poles. Furthermore, the derivation based on this two-method
scheme is a good sanity check of the obtained formulas.
The perturbation theory approach also helps to sort out the
three- and four-electron contributions, especially for the extra
terms given in Eqs. (49) and (50). In summary, the gath-
ered evidence points towards the consistency of the derived
three-electron expressions. Moreover, the excellent agree-
ment met at the four-electron contribution level serves as a
strong indication that the three-electron expressions should be
reliable.

Concerning the separation into the proposed GI subsets
S[V(VP)P]E and S(VP)EVP, the cancellation of IR diver-
gences by elements from the same subset is very assuring.
A numerical evaluation of the derived expressions is the
sole way to either invalidate the conjectured separability into
the GI subsets put forward here, based on analytical con-
siderations, or confirm it and therewith turn it into a solid
claim.

VII. DISCUSSION AND CONCLUSION

The expressions presented in the work can readily be
applied to any Li-like and/or B-like atoms or ions. They
represent an important step towards the evaluation of third-
order interelectronic interactions. The three-photon-exchange
formulas were explicitly derived for two proposed GI subsets
arising from two classes of one-particle three-loop Feynman
diagrams. The derivation relies on an effective one-particle
approach, owing to the redefinition of the vacuum state, in
the framework of the TTGF method. The resulting formulas
contained infrared divergences. They were investigated and
regularized by the introduction of a photon mass term. Two
different types of divergences were encountered when the
photon mass was sent to zero: a logarithmic one (43) and
a first-order singular one (47). The divergent behaviors ob-
served are in full accordance with previous studies [23,46].
In order to allow for a verification of the expressions de-
rived in the framework of the TTGF method, an independent
derivation was conducted with the help of perturbation theory.
However, from the very beginning of the study, the issue of
the topology of the pole was known for the second method

(see the detailed explanation in the work of Yerokhin et al.
[45]). Nevertheless, the idea of the present work was to see
how far one can get with the cross-check, relying on the
possibility of a perturbative treatment. This helped to resolve
the different reducible terms (red1 and red2) and to sort out
the distribution of different (three-electron and four-electron)
contributions in each expression of the subsets (S[V(VP)P]E
and S(VP)EVP). The agreement between the two approaches,
at the four-electron level, is excellent. At the three-electron
level, reasonable agreement is met between the two results.
Here the discrepancy related to the different topology of the
poles encountered in the (three-electron) ladder reducible 1
terms, for both IR divergent and IR finite ones, prevents
complete agreement. The difference in the topology of the
poles could be attributed to unaccounted for restrictions in
summations. In fact, such a discrepancy in the topology of the
poles was already encountered when comparing the results for
the two-photon-exchange contributions between Refs. [21,56]
and Ref. [24].5 The comparison between the results for the
two-photon-exchange two-electron contributions showed that
the difference in the topology of the poles did not affect
significantly the numerical values; the difference amounts
to O(7 × 10−4) atomic unit, or O(1.9 × 10−2) eV. An open
question is whether the extra terms are related to this issue
and if the role they are playing potentially is to ensure gauge
invariance.

Based on the intuition acquired within the perturbative
treatment, we do believe that the strong constraint of gauge
invariance can be tracked to the third order as well. Hence,
it should be expected that the results derived from this ap-
proach also fulfill the requirement of gauge invariance. Thus,
in analogy to the perturbation theory approach, our belief is
that the outcome of the TTGF method is also characterized
by the important paradigm of gauge invariance. Whether a
further separation according to the subsets is possible cannot
be resolved yet. Nevertheless, from the TTGF perspective, the
explicit cancellation of IR divergences, within each subset,
is very engaging. Finally, a successful verification of the de-
rived expressions was also carried out for the three-electron
contribution with the g-factor formulas derived in Ref. [29],
under the replacement (37). Note that the extra terms are also
present in those formulas; they manifest when one proceeds
to numerical evaluations [57].

To conclude, the method based on a vacuum state redefini-
tion in QED has been shown, in this work, to be a well-suited
tool to perform elaborate calculations. In contrast to other
methods, it permits the identification of GI subsets and thus in-
herently validates the consistency of the obtained results. This
asset can be very useful in future derivations of higher-order
contributions since it provides a robust verification. Building
on this intrinsic characteristic and to highlight the possibil-
ity of applying the formalism for advanced calculations, an
investigation of third-order interelectronic corrections was
carried out. Moreover, the identification of GI expressions

5The same problem was met when comparing the two-photon-
exchange expressions with the ones derived by Sapirstein and Cheng
[see below Eq. (79) in [24]].
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within this approach paves the way for calculating higher-
order corrections, which can be split into GI subsets and
tackled one after the other. The presented redefined vacuum
state approach can be further employed for atoms with a
(more) sophisticated electronic structure, as it allows one
to focus only on the particles that differentiate between the
configurations.
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APPENDIX A: THREE-ELECTRON TERMS ARISING FROM THE H2 DIAGRAM

The expressions extracted from the H2 Feynman diagram are found as follows:

�E (3I)3e,cross
v,H2

= i

2π

∫
dω

∑
i, j,k

Iv jib(ω)Ika ja(0)Ibikv (ω)

(εv − ω − εiu)(εb − ω − ε ju)(εb − ω − εku)
, (A1)

�E (3I)3e,lad,irr
v,H2

= i

2π

∫
dω

k �=b,{i, j}�={b,v}∑
i, j,k

Ivbi j (ω)Ikaba(0)I jikv (ω)

(εv − ω − εiu)(εb + ω − ε ju)(εb − εku)
, (A2)

�E (3I)3e,lad,red1
v,H2

= − i

2π

∫
dω

k �=b,{i, j}={b,v}∑
i, j,k

Ivbi j (ω)Ikaba(0)I jikv (ω)

(εv − ω − εiu)2(εb − εku)
, (A3)

�E (3I)3e,lad,irr
v,H2

= i

2π

∫
dω

k �=b,{i, j}�={b,v}∑
i, j,k

Ivki j (ω)Ibaka(0)I jibv (ω)

(εv − ω − εiu)(εb + ω − ε ju)(εb − εku)
, (A4)

�E (3I)lad,red1
v,H2

= − i

2π

∫
dω

k �=b,{i, j}={b,v}∑
i, j,k

Ivki j (ω)Ibaka(0)I jibv (ω)

(εv − ω − εiu)2(εb − εku)
. (A5)

The nondiagrammatic term for H2 are found to be

�E (3I)3e,lad,red1
v,H2

= − i

2π

∫
dω

{i, j}�={b,v}∑
i, j

Ivbi j (ω)Ib1aba(0)I jib1v (ω)

(εv − ω − εiu)(εb + ω − ε ju)2
, (A6)

�E (3I)3e,lad,red2
v,H2

= − i

2π

∫
dω

{i, j}={b,v}∑
i, j

Ivbi j (ω)Ib1aba(0)I jib1v (ω)

(εv − ω − εiu)3
. (A7)

APPENDIX B: THREE-ELECTRON TERMS ARISING FROM THE F1 AND F3 DIAGRAMS

Within this subset, the Green’s function associated with the remaining diagrams reads

�g(3)F1
α,vv (E ) = 1

(E − εv )2

(
i

2π

)3 ∑
i, j,k,l,p

∫
dωdk1dk2

Ivi ji(0)[
k1 − εi + iε

(
εi − EF

α

)][
E − ε j + iε

(
ε j − EF

α

)]
× I j pkl (ω)Iklvp(ω)[

E − ω − εk + iε
(
εk − EF

α

)][
k2 − εl + iε

(
εl − EF

α

)][
k2 − ω − εp + iε

(
εp − EF

α

)] (B1)

for F1 and

�g(3)F3
α,vv (E ) = 1

(E − εv )2

(
i

2π

)3 ∑
i, j,k,l,p

∫
dωdk1dk2

Ivki j (ω)[
E − ω − εi + iε

(
εi − EF

α

)][
k1 − ε j + iε

(
ε j − EF

α

)]
× Ii jlk (ω)Il pvp(0)[

k1 − ω − εk + iε
(
εk − EF

α

)][
E − εl + iε

(
εl − EF

α

)][
k2 − εp + iε

(
εp − EF

α

)] (B2)

for F3. The extraction procedure is carried out for the F1 Feynman diagram, which contributes as follows. The terms associated
with the crossed graphs are

�E (3I)3e,cross,irr
v,F1

= i

2π

∫
dω

i �=v∑
i, j,k

Ivaia(0)Iik jb(ω)Ib jkv (ω)

(εv − εi )(εv − ω − ε ju)(εb − ω − εku)
, (B3)
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�E (3I)3e,cross,red1
v,F1

= − i

2π

∫
dω

∑
i, j

Ivav1a(0)Iv1k jb(ω)Ib jkv (ω)

(εv − ω − ε ju)2(εb − ω − εku)
. (B4)

The expressions corresponding to the ladder-loop graph read

�E (3I)3e,lad,irr
v,F1

= i

2π

∫
dω

i �=v,{ j,k}�={v,b}∑
i, j,k

Ivaia(0)Iib jk (ω)I jkvb(ω)

(εv − εiu)(εv − ω − ε ju)(εb + ω − εku)
, (B5)

�E (3I)3e,lad,red1
v,F1

= − i

2π

∫
dω

{ j,k}�={v,b}∑
i, j,k

Ivav1a(0)Iv1b jk (ω)I jkvb(ω)

(εv − ω − ε ju)2(εb + ω − εku)
, (B6)

�E (3I)3e,lad,red1
v,F1

= − i

2π

∫
dω

i �=v,{ j,k}={v,b}∑
i, j,k

[
Ivaia(0)Iib jk (ω)I jkvb(ω)

(εv − εiu)2

(
1

(εv − ω − ε ju)
+ 1

(εb + ω − εku)

)

+ Ivaia(0)Iib jk (ω)I jkvb(ω)

(εv − εiu)(εv − ω − ε ju)2

]
, (B7)

�E (3I)3e,lad,red2
v,F1

= i

2π

∫
dω

{ j,k}={v,b}∑
j,k

Ivav1a(0)Iv1b jk (ω)I jkvb(ω)

(εv − ω − ε ju)3
. (B8)

For the disconnected parts, the terms presented below cancel the reducible elements found in F1, namely, the term in the first line
cancels (B4), the term in the second line cancels (B6), and the term in the third line cancels (B8). It leaves only the irreducible
expressions and the ladder reducible 1 term (B7):

�E (3I)3e,disc
v,F = i

2π

∫
dω

⎛
⎝∑

i, j

Ivava(0)Iv1 jib(ω)Iibv1 j (ω)

(εv − ω − εiu)2(εb − ω − ε ju)
+

{i, j}�={b,v}∑
i, j

Ivava(0)Iv1bi j (ω)Ii jv1b j (ω)

(εv − ω − εiu)2(εb + ω − ε ju)

−
{i, j}={b,v}∑

i, j

Ivava(0)Iv1bi j (ω)Ii jv1b j (ω)

(εv − ω − εiu)3

⎞
⎠. (B9)

From the F3 Feynman diagram, the following terms arise. Similarly to the F1 graph, the terms corresponding to the crossed graph
are

�E (3I)3e,cross,irr
v,F3

= i

2π

∫
dω

k �=v∑
i, j,k

Iv jib(ω)Iibk j (ω)Ikava(0)

(εv − ω − εiu)(εb − ω − ε ju)(εv − εku)
, (B10)

�E (3I)3e,cross,red
v,F3

= −i

2π

∫
dω

∑
i, j

Iv jib(ω)Iibv1 j (ω)Iv1ava(0)

(εv − ω − εiu)2(εb − ω − ε ju)
. (B11)

The ones associated with the ladder graph read

�E (3I)3e,lad,irr
v,F3

= i

2π

∫
dω

{i, j}�={b,v},k �=v∑
i, j,k

Ivbi j (ω)Ii jkb(ω)Ikava(0)

(εv − ω − εiu)(εb + ω − ε ju)(εv − εku)
, (B12)

�E (3I)lad,red1
v,F3

= −i

2π

∫
dω

{i, j}�={b,v}∑
i, j

Ivbi j (ω)Ii jv1b(ω)Iv1ava(0)

(εv − ω − εiu)2(εb + ω − ε ju)
, (B13)

�E (3I)3e,lad,red1
v,F3

= −i

2π

∫
dω

{i, j}={b,v},k �=v∑
i, j,k

[
Ivbi j (ω)Ii jkb(ω)Ikava(0)

(εv − εku)2

(
1

(εv − ω − εiu)
+ 1

(εb + ω − ε ju)

)

+ Ivbi j (ω)Ii jkb(ω)Ikava(0)

(εv − ω − εiu)2(εv − εku)

]
, (B14)

�E (3I)3e,lad,red2
v,F3

= i

2π

∫
dω

{i, j}={b,v}∑
i, j

Ivbi j (ω)Ii jv1b(ω)Iv1ava(0)

(εv − ω − εiu)3
. (B15)
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APPENDIX C: THIRD-ORDER INTERELECTRONIC CORRECTIONS DERIVED
BY A PERTURBATIVE TREATMENT: THE THREE-ELECTRON SUBSET

The idea is to proceed as follows: One perturbs the S(VP)E two-electron expressions (12) and (13) according to Eqs. (33)–(36)
and finds the desired formulas under the replacement (37). However, the issue is, as already pointed out by Yerokhin et al. in
Ref. [45], that this approach suffers from troubles dealing with reducible terms (see footnote 4). They invoked gauge invariance
to fix the problem. If proceeding as explained just above, a problem identical to the one highlighted by Yerokhin et al. is met,
namely, that the poles differ by the sign of the iε prescription (see footnote 5),

1

(ω + iε)(−ω + iε)
vs

1

(ω + iε)2
or

1

(−ω + iε)2
, (C1)

when facing ladder reducible 1 contributions �E (3I)3e,lad,red1
v,IR div and �E (3I)3e,lad,red1

v,IR free . The difference in the topology of the poles
arises from unaccounted restrictions in the summations. Nevertheless, for the sake of the verification, it is worth tackling this
perturbative analysis to see how far one can get. However, due to this previous discrepancy, the different three-electron terms
presented below are those derived within the redefinition of the vacuum state formalism. They are separated into irreducible
(irr), reducible 1 (red1), and reducible 2 (red2) types and moreover into S[V(VP)P]E and S(VP)EVP according to their origin
diagrams.

1. Irreducible terms

The crossed irreducible expression, a new feature showing up at this order, is presented first. A separation related to each
subset is conducted,

�E (3I)3e,cross,irr
v,S[V(VP)P]E = i

2π

∫
dω

k �=b∑
a,b,i, j,k

Iv jib(ω)Ibaka(0)Iikv j (ω) + Iv jik (ω)Ikaba(0)Iibv j (ω)

(εv − ω − εiu)(εb − ω − ε ju)�bk
, (C2)

�E (3I)3e,cross,irr
v,S(VP)EVP = i

2π

∫
dω

i �=v∑
a,b,i, j,k

Ivaia(0)Iik jb(ω)Ib jkv (ω) + Ivk jb(ω)I jbik (ω)Iaiav (0)

�vi(εv − ω − ε ju)(εb − ω − εku)
. (C3)

Then the crossed expression, also separated according to its origin diagram, is displayed,

�E (3I)3e,cross
v,S[V(VP)P]E = i

2π

∫
dω

∑
a,b,i, j,k

Iv jib(ω)Iaka j (0)Iibvk (ω)

(εv − ω − εiu)(εb − ω − ε ju)(εb − ω − εku)
, (C4)

�E (3I)3e,cross
v,S(VP)EVP = i

2π

∫
dω

∑
a,b,i, j,k

Ivkib(ω)Iia ja(0)Ib jkv (ω)

(εv − ω − εiu)(εv − ω − ε ju)(εb − ω − εku)
. (C5)

Finally, the ladder irreducible expression is found as

�E (3I)3e,lad,irr
v,S[V(VP)P]E = i

2π

∫
dω

⎛
⎝k �=b,{i, j}�={v,b}∑

a,b,i, j,k

Ivbi j (ω)Iakab(0)Ii jvk (ω) + Ivki j (ω)Iabak (0)Ii jvb(ω)

(εv − ω − εiu)(εb + ω − ε ju)�bk

+
{i, j}�={v,b},{i,k}�={v,b}∑

a,b,i, j,k

Ivbi j (ω)I jaka(0)Iikvb(ω)

(εv − ω − εiu)(εb + ω − ε ju)(εb + ω − εku)

⎞
⎠, (C6)

�E (3I)3e,lad,irr
v,S(VP)EVP = i

2π

∫
dω

⎛
⎝i �=v,{ j,k}�={v,b}∑

a,b,i, j,k

Ivaia(0)Iib jk (ω)Ik jbv (ω) + Ivb jk (ω)I jkib(ω)Iaiav (0)

�vi(εv − ω − ε ju)(εb + ω − εku)

+
{i,k}�={v,b},{ j,k}�={v,b}∑

a,b,i, j,k

Ivbik (ω)Iia ja(0)Ik jbv (ω)

(εv − ω − εiu)(εv − ω − ε ju)(εb + ω − εku)

⎞
⎠. (C7)
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2. Reducible 1 terms

Since a crossed irreducible expression exists, the associated crossed reducible terms are found and worked out. The result is
separated as well according to the originating subset and reads

�E (3I)3e,cross,red
v,S[V(VP)P]E = − i

2π

∫
dω

∑
a,b,b1,i, j

Iv jib(ω)Ibab1a(0)Iib1v j (ω)

(εv − ω − εiu)(εb − ω − ε ju)2
, (C8)

�E (3I)3e,cross,red
v,S(VP)EVP = − i

2π

∫
dω

∑
a,b,v1,i, j

Iv jib(ω)Ibi jv1 (ω)Iav1av (0)

(εv − ω − εiu)2(εb − ω − ε ju)
. (C9)

Each ladder reducible 1 term is separated into an IR free and an IR divergent part and displayed according to its provenance.
Beginning with the latter, one has

�E (3I)3e,lad,red1
v,S[V(VP)P]E,IR div = − i

2π

∫
dω

(−ω + iε)2

i �=b∑
a,b,b1,v1,i

(
Ivbv1b1 (ω)Iaiab(0)Iv1b1vi(ω) + Iviv1b1 (ω)Iabai(0)Iv1b1vb(ω)

�bi

+ Ivbv1b1 (ω)Ib1aia(0)Iv1ivb(ω) + Ivbv1i(ω)Iiab1a(0)Iv1b1vb(ω)

(�bi + ω + iε)

)
, (C10)

�E (3I)3e,lad,red1
v,S(VP)EVP,IR div = − i

2π

∫
dω

(−ω + iε)2

i �=v∑
a,b,b1,v1,i

(
Ivaia(0)Iibv1b1 (ω)Ib1v1bv (ω) + Ivbv1b1 (ω)Iv1b1ib(ω)Iaiav (0)

�vi

+ Ivbib1 (ω)Iiav1a(0)Ib1v1bv (ω) + Ivbv1b1 (ω)Iv1aia(0)Ib1ibv (ω)

(�vi − ω + iε)

)
(C11)

for the IR divergent part. The IR finite part is further separated, because its first part is the counterpart of the previously introduced
IR divergent terms,

�E (3I)3e,lad,red1
v,S[V(VP)P]E,IR free = − i

4π

∫
dω

(
1

(�vb − ω + iε)2
+ 1

(�vb − ω − iε)2

)

×
⎛
⎝ i �=v∑

a,b,b1,v1,i

Ivbb1v1 (ω)Iv1aia(0)Ib1ivb(ω) + Ivbb1i(ω)Iiav1a(0)Ib1v1vb(ω)

(�bi + ω + iε)

+
i �=b∑

a,b,b1,v1,i

Ivbb1v1 (ω)Iaiab(0)Ib1v1vi(ω) + Ivib1v1 (ω)Iabai(0)Ib1v1vb(ω)

�bi

⎞
⎠, (C12)

�E (3I)3e,lad,red1
v,S(VP)EVP,IR free = − i

4π

∫
dω

(
1

(�vb − ω + iε)2
+ 1

(�vb − ω − iε)2

)

×
⎛
⎝ i �=v∑

a,b,b1,v1,i

Ivaia(0)Iibb1v1 (ω)Iv1b1bv (ω) + Ivbb1v1 (ω)Ib1v1ib(ω)Iaiav (0)

�vi

+
i �=b∑

a,b,b1,v1,i

Ivbb1v (ω)Ib1aia(0)Iv1ibv (ω) + Ivbiv1 (ω)Iiab1a(0)Iv1b1bv (ω)

(�vi − ω + iε)

⎞
⎠, (C13)

while its second part is simply the terms excluded in sums of certain diagrams,

�E (3I)3e,lad,red1
v,S[V(VP)P]E,IR free ω

= − i

2π

∫
dω

{i, j}�={v,b}∑
a,b,b1,i, j

Ivbi j (ω)Iab1ab(0)Ii jvb1 (ω)

(εv − ω − εiu)(εb + ω − ε ju)2
, (C14)

�E (3I)3e,lad,red1
v,S(VP)EVP,IR free ω

= − i

2π

∫
dω

{i, j}�={v,b}∑
a,b,v1,i, j

Ivbi j (ω)Ii jv1b(ω)Iav1av (0)

(εv − ω − εiu)2(εb + ω − ε ju)
. (C15)
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3. Reducible 2 terms

Facing now the reducible 2 contribution, the identical separation into IR divergent and IR free terms is conducted, in addition
to the distinction between the two different subsets. The IR divergent terms are

�E (3I)3e,lad,red2
v,S[V(VP)P]E,IR div = i

2π

∫
dω

(−ω + iε)3

∑
a,b,b1,b2,v1

[
Ivbv1b1 (ω)Ib1ab2a(0)Iv1b2vb(ω) − Ivbv1b2 (ω)Iab1ab(0)Iv1b2vb1 (ω)

]
, (C16)

�E (3I)3e,lad,red2
v,S(VP)EVP,IR div = i

2π

∫
dω

(−ω + iε)3

∑
a,b,b1,v1,v2

[
Ivbv1b1 (ω)Iv1b1v2b(ω)Iav2av (0) − Ivbv1b1 (ω)Iv1av2a(0)Ib1v2bv (ω)

]
(C17)

and the IR free ones are

�E (3I)3e,lad,red2
v,S[V(VP)P]E,IR free = i

4π

∫
dω

(
1

(�vb − ω + iε)3
+ 1

(�vb − ω − iε)3

)

×
⎛
⎝ ∑

a,b,b1,v1,v2

Ivbb1v1 (ω)Iv1av2a(0)Ib1v2vb(ω) −
∑

a,b,b1,,b2,v1

Ivbb2v1 (ω)Iab1ab(0)Ib2v1vb1 (ω)

⎞
⎠, (C18)

�E (3I)3e,lad,red2
v,S(VP)EVP,IR free = i

4π

∫
dω

(
1

(�vb − ω + iε)3
+ 1

(�vb − ω − iε)3

)⎛
⎝ ∑

a,b,b1,v1,v2

Ivbb1v1 (ω)Ib1v1v2b(ω)Iav2av (0)

−
∑

a,b,b1,b2,v1

Ivbb1v1 (ω)Ib2v1vb(ω)Ib1ab2a(0)

⎞
⎠. (C19)

4. Extra terms

The remaining terms

�E (3I)3e,red1
v,S[V(VP)P]E =

i �=v∑
a,b,b1,v1,i

Ivbb1v1 (�vb)Iv1aia(0)Iib1bv (�vb)

(εv − εi )2
(C20)

and

�E (3I)3e,red1
v,S(VP)EVP = −

i �=b∑
a,b,b1,v1,i

Ivbb1v1 (�vb)Ib1aia(0)Iiv1vb(�vb)

(εb − εi )2
(C21)

are not found via the perturbative analysis but are present in the redefined vacuum state approach. They are obtained as the
interplay among terms generated from the ladder reducible 1 terms, upon the symmetrization of the energy flow in the loop,
and four-electron reducible 1 terms. The former originates from H1 while the latter originates from F2. They look like the four-
electron reducible 1 contribution, due to the absence of the ω integration. According to the gauge invariance of the three-electron
S(VP)E subset of the two-photon-exchange corrections, they should be incorporated in the three-electron contribution of the
three-photon-exchange corrections. The structure of these terms suggests that they be included in the reducible 1 contribution.

APPENDIX D: THIRD-ORDER INTERELECTRONIC CORRECTIONS DERIVED BY A PERTURBATIVE TREATMENT:
THE FOUR-ELECTRON SUBSET

One perturbs the S(VP)E three-electron expressions (14) and (15) according to Eqs. (33)–(36) and finds, under the replace-
ment (37), three different types of four-electron contributions: irreducible (irr), reducible 1 (red1), and reducible 2 (red2). They
are displayed below and are further separated into S[V(VP)P]E and S(VP)VP subsets. This separation relies on the redefined
vacuum state analysis and its comparison with the perturbative one.

1. Irreducible terms

The four-electron irreducible contribution is found to be

�E (3I)4e,irr
v,S(VP)EVP = −

j �=v,(i,c)�=(v,b)∑
a,b,c,i, j

(
Iava j (0)[I jbci(�vc)Icivb(�vc) + I jbic(�cb)Iicvb(�cb)]

(εv + εb − εc − εi )(εv − ε j )

+ [Ici jb(�vc)Ivbci(�vc) + Ivbic(�cb)Iic jb(�cb)]I java(0)

(εv + εb − εc − εi )(εv − ε j )

)
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−
j �=v∑

a,b,c,i, j

Iava j (0)I jicb(�vc)Icbvi(�vc) + Ivicb(�vc)Icb ji(�vc)I java(0)

(εb + εc − εv − εi )(εv − ε j )

−
j �=c∑

a,b,c,i, j

Ivi jb(�vc)I jaca(0)Icbvi(�vc) + Ivicb(�vc)Iaca j (0)I jbvi(�vc)

(εb + εc − εv − εi )(εc − ε j )

−
j �=c,(i,c)�=(v,b)∑

a,b,c,i, j

Iaca j (0)Ivbci(�vc)I jivb(�vc) + Ivb ji(�vc)Icivb(�vc)I jaca(0)

(εv + εb − εc − εi )(εc − ε j )

−
∑
i, j

Ivicb(�vc)Iia ja(0)Icbv j (�vc)

(εb + εc − εv − εi )(εb + εc − εv − ε j )
(D1)

for the S(VP)EVP subset and

�E (3I)4e,irr
v,S[V(VP)P]E = −

j �=b,(i,c)�=(v,b)∑
a,b,c,i, j

(
Iaba j (0)[Iv jci(�vc)Icivb(�vc) + Iv jic(�cb)Iicvb(�cb)]

(εv + εb − εc − εi )(εb − ε j )

+ [Iciv j (�vc)Ivbci(�vc) + Ivbic(�cb)Iicv j (�cb)]I jaba(0)

(εv + εb − εc − εi )(εb − ε j )

)

−
j �=b∑

a,b,c,i, j

Ivic j (�vc)I jaba(0)Icbvi(�vc) + Ivicb(�vc)Iaba j (0)Ic jvi(�vc)

(εb + εc − εv − εi )(εb − ε j )

−
(i,c)�=(v,b),( j,c)�=(v,b)∑

a,b,c,i, j

Ivbci(�vc)Iia ja(0)Ic jvb(�vc) + Ivbic(�cb)Iia ja(0)I jcvb(�cb)

(εv + εb − εc − εi )(εv + εb − εc − ε j )

−
j �=c,(i,c)�=(v,b)∑

a,b,c,i, j

Ivbi j (�cb)Iicvb(�cb)I jaca(0) + +Iaca j (0)Ivbic(�cb)Ii jvb(�cb)

(εv + εb − εc − εi )(εc − ε j )
(D2)

for the S[V(VP)P]E one.

2. Reducible 1 terms

The reducible 1 contribution is also split into S(VP)EVP and S[V(VP)P]E subsets, respectively, and can be cast in the form

�E (3I)4e,red1
v,S(VP)EVP = −

i �=b∑
a,b,b1,v1,i

Ivbb1v1 (�vb)Iab1ai(0)I ′
iv1vb(�vb) + Iabai(0)Ivib1v1 (�vb)I ′

b1v1vb(�vb)

(εb − εi )

−
i �=v∑

a,b,b1,v1,i

Ivbb1i(�vb)Iiav1a(0)I ′
b1v1vb(�vb) + Ivbb1v1 (�vb)I ′

b1v1ib(�vb)Iiava(0)

(εv − εi )

−
(i,c)�=(v,b)∑
a,b,c,v1,i

[Ivbci(�vc)I ′
civb(�vc) + I ′

vbci(�vc)Icivb(�vc)]Iv1av1a(0)

(εv + εb − εc − εi )

+
(i,c)�=(v,b)∑
a,b,c,c1,i

[Ivbci(�vc)I ′
civb(�vc) + I ′

vbci(�vc)Icivb(�vc)]Ic1ac1a(0)

(εv + εb − εc − εi )

−
∑

a,b,c,v1,i

[Ivicb(�vc)I ′
cbvi(�vc) + I ′

vicb(�vc)Icbvi(�vc)]Iv1av1a(0)

(εb + εc − εv − εi )

+
∑

a,b,c,c1,i

[Ivicb(�vc)I ′
cbvi(�vc) + I ′

vicb(�vc)Icbvi(�vc)]Ic1ac1a(0)

(εb + εc − εv − εi )
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+
(i,c)�=(v,b)∑
a,b,c,v1,i

Iv1av1a(0)[Ivbci(�vc)Icivb(�vc) + Ivbic(�cb)Iicvb(�cb)]

(εv + εb − εc − εi )2
−

∑
a,b,c,v1,i

Iv1av1a(0)Ivicb(�vc)Icbvi(�vc)

(εb + εc − εv − εi )2

+
∑

a,b,c,c1,i

Ic1ac1a(0)Ivicb(�vc)Icbvi(�vc)

(εb + εc − εv − εi )2
−

(i,c)�=(v,b)∑
a,b,c,c1,i

Ic1ac1a(0)Ivbci(�vc)Icivb(�vc)

(εv + εb − εc − εi )2
(D3)

and

�E (3I)4e,red1
v,S[V(VP)P]E = −

i �=v∑
a,b,b1,v1,i

Iavai(0)Iibb1v1 (�vb)I ′
b1v1vb(�vb) + Ivbb1v1 (�vb)Iav1ai(0)I ′

b1ivb(�vb)

(εv − εi )

−
i �=b∑

a,b,b1,v1,i

Ivbb1v1 (�vb)I ′
b1v1vi(�vb)Iiaba(0) + Ivbiv1 (�vb)Iiab1a(0)I ′

b1v1vb(�vb)

(εb − εi )

−
(i,c)�=(v,b)∑
a,b,c,c1,i

[Ivbic(�cb)I ′
icvb(�cb) + I ′

vbic(�cb)Iicvb(�cb)]Ic1ac1 (0)

(εv + εb − εc − εi )

+
(i,c)�=(v,b)∑
a,b,c,b1,i

[Ivbic(�cb)I ′
icvb(�cb) + I ′

vbic(�cb)Iicvb(�cb)]Ib1ab1a(0)

(εv + εb − εc − εi )

+
(i,c)�=(v,b)∑
a,b,c,b1,i

Ib1ab1a(0)[Ivbci(�vc)Icivb(�vc) + Ivbic(�cb)Iicvb(�cb)]

(εv + εb − εc − εi )2

+
∑

a,b,c,b1,i

Ib1ab1a(0)Ivicb(�vc)Icbvi(�vc)

(εb + εc − εv − εi )2
−

(i,c)�=(v,b)∑
a,b,c,c1,i

Ic1ac1a(0)Ivbic(�cb)Iicvb(�cb)

(εv + εb − εc − εi )2
. (D4)

3. Reducible 2 terms

Each of the inspected subsets participates equally in the reducible 2 contribution. One finds

�E (3I)4e,red2
v,S(VP)EVP = −1

2

∑
a,b,b1,v1,v2

[
Ivbb1v1 (�vb)I ′′

b1v1vb(�vb) + I ′
vbb1v1

(�vb)I ′
b1v1vb

]
Iv2av2a(0)

+ 1

2

∑
a,b,b1,b2,v1

[
Ivbb1v1 (�vb)I ′′

b1v1vb(�vb) + I ′
vbb1v1

(�vb)I ′
b1v1vb

]
Ib2ab2a(0), (D5)

originating from the H diagrams, and

�E (3I)4e,red2
v,S[V(VP)P]E =−1

2

∑
a,b,b1,v1,v2

[
Ivbb1v1 (�vb)I ′′

b1v1vb(�vb) + I ′
vbb1v1

(�vb)I ′
b1v1vb

]
Iv2av2a(0)

+ 1

2

∑
a,b,b1,b2,v1

[
Ivbb1v1 (�vb)I ′′

b1v1vb(�vb) + I ′
vbb1v1

(�vb)I ′
b1v1vb

]
Ib2ab2a(0) (D6)

for the F diagrams.

APPENDIX E: SYMMETRY ARGUMENT FOR VANISHING LADDER REDUCIBLE 2 TERMS

The cancellation of the 1/μ IR divergence in ladder reducible 2 terms was shown in Table I. This was achieved by searching
for a compensating term within the subset of the investigated term. A symmetry argument might also rule out this issue at
the individual Feynman diagram level, without the need of a term to absorb its divergence. The naive way to argue would be
as follows. Recall that in the Feynman gauge, I (ω) is a symmetric operator. Therefore, when the IR divergence is met in the
ladder reducible 2 term, one faces a symmetric numerator divided by an antisymmetric denominator integrated over a symmetric
interval. It vanishes due to parity consideration. However, the problem is that the iε prescription spoils the antisymmetric behavior

042807-18



INSIGHT INTO THE PROSPECTIVE EVALUATION OF … PHYSICAL REVIEW A 108, 042807 (2023)

of the denominator. Hence, a Wick rotation is applied and the expression is

i

2π

∫ ∞

−∞
dω

I (ω)I (ω)I (0)

(−ω + iε)3
= −I (0)

2π
P

∫ i∞

0
dωE

I (−iωE )I (−iωE ) − I (iωE )I (iωE )

(iωE )3

∝ −i

2π
I (0)P

∫ i∞

0
dωE

2 sinh ωE R

ω3
E

Bl’H= −iR

3π
I (0)P

∫ i∞

0
dωE

cosh ωE R

ω2
E

Taylor≈ −iR

3π
I (0)P

∫ i∞

0
dωE

(
1

ω2
E

+ 1

2!
R2

)
. (E1)

Only the principal value is considered since the third-order pole does not contribution to the pole term. One can take the
exponential terms of the interelectronic operators out and rephrase them as a hyperbolic sine. Then the Bernoulli-l’Hôpital
rule is applied once and the hyperbolic cosine is Taylor expanded, as the interest lies in the low-energy limit. Here R stands
for R = r12 + r34. An interesting feature is seen at this point; it leads to a pure imaginary end result. Furthermore, one retrieves
the 1/μ divergent behavior encountered previously. The imaginary contribution to the energy, the decay rate, accounts for the
possible instability of the excited states. Since the interest lies in the energy level and not its lifetime, one can neglect it. For
completeness, if the ground state is under consideration, it obviously features no instabilities.
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