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Simplified partial wave expansion of the Lamb shift
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A method for calculating the self-energy part of the Lamb shift is revisited. When the electron propagator in
an external field is represented as an expansion in partial waves, the original method converges relatively slowly,
requiring the calculation of dozens of partial waves. Here we show an improved method in which accurate results
can be obtained using a much smaller number of partial waves. The method is illustrated for the ground states
of hydrogenlike and lithiumlike boron and the possibility of high accuracy calculations on lower Z hydrogenic
ions is discussed.
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I. INTRODUCTION

The small 2s − 2p1/2 splitting in the spectrum of hydrogen
measured by Lamb and Retherford [1] played a seminal role in
the development of quantum electrodynamics (QED) [2]. The
effect is generally referred to as the Lamb shift and requires
the evaluation of two types of radiative corrections—vacuum
polarization (VP) and the electron self-energy (SE). The first
calculations exact to all orders in Zα, where Z is the nuclear
charge and α the fine-structure constant,

α ≡ e2

4πε0 h̄c
= 1/137.035 999 084(21), (1)

were carried out for VP by Wichmann and Kroll [3]. Mean-
while, evaluations of SE assumed Zα was a small quantity
and could not be applied to cases when Z was large. However,
the possibility of extending the work of Wichmann and Kroll
to SE was realized, and not long after their work the first
all-order SE calculations were presented by Desiderio and
Johnson [4] and by Mohr [5]. While both use partial wave
expansions to represent the photon and electron propagators,
they differ in an important way in how the sum over all partial
waves is carried out.

As will be seen in this paper, evaluation of the self-energy
term always involves multiple integrals over position r, a
single integral over an energy ω, and an infinite sum over the
partial wave �. Mohr used a point-Coulomb potential, and the
fact that the electron propagator in this case can be expressed
in terms of Whittaker functions allowed him to sum the partial
waves to convergence for any value of coordinate and energy,
even though, for some values of the integrand, large sums
were required. This is the most accurate approach and we will
refer to it as the Mohr method in the following.

The work of Desiderio and Johnson (DJ), based on the
method of Brown et al. [6], was able to represent the electron
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propagator in a general spherically symmetric potential, but
because it used numerically generated Green’s functions it
was limited by how high a partial wave the numerical method
could handle. In this case the coordinate and energy integral
was carried out for as many partial waves as this limitation
made possible, after which an extrapolation to higher values
was made for better convergence.

The work to be described here is a modification of a
method we developed in collaboration with Johnson [7]. It
is based on Ref. [4], using a modification suggested by
Snyderman [8] and implemented by Blundell and Snyderman
[9]. Because, as will be described below, an expansion of
the propagator in terms of an external potential is used,
we call it the potential-expansion method as suggested by
Yerokhin, Pachucki, and Shabaev [10]. In that paper, refer-
ences to a number of different approaches can be found, but
the potential-expansion method closest to ours is given in [11].
As mentioned above, potential-expansion methods differ from
the Mohr method in that they carry out coordinate and energy
integrations partial wave by partial wave, afterward carrying
out the final partial wave summation. As in practice only a fi-
nite number of partial waves can be included, an extrapolation
of the partial wave expansion to infinity must be made and
there is a significant numerical uncertainty associated with
this procedure. In the following we will refer to our origi-
nal potential-expansion calculation as the DJA method. The
purpose of the present paper is to describe the DJB method,
a modification that improves the behavior of the partial wave
series.

The most accurate calculations of the self-energy have
been obtained for point-Coulomb cases using the Mohr
method [12]. We illustrate the strikingly high accuracy the
method can attain with the self-energy of the ground state
of hydrogenlike boron which is given by the dimensionless
function Fa(Zα) for a bound state a as

ESE (a, Z ) = α

π

(Zα)4

n3
a

Fa(Zα) mc2, (2)
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with

F1s(5α) = 6.251 627 078 (1). (3)

We will use this particular self-energy in the following to
illustrate details of the DJA and DJB methods and refer to it
as the test case. All self-energy results shown in this work will
also be given in terms of the dimensionless function Fa(Zα).

In Ref. [10], it was pointed out that the potential-expansion
method described in Ref. [11] could be improved by using
generalizations of identities used in the Mohr method. These
identities involve commuting (C) the potential (P) and the
free-electron propagator (P) and we will refer to them as
CPP identities. They can be used to create approximations
to terms of arbitrary order in the potential expansion. These
terms can be numerically evaluated very precisely, but can
also be expressed as partial wave expansions. In the latter
form, it is shown in Ref. [10] that, when combined with the
partial waves computed in Ref. [11], a much more tractable
expansion results. It is the purpose of this paper to describe
how using a CPP identity allows us to create a similarly
improved partial wave expansion. Even with these improve-
ments, the potential-expansion method cannot reach the very
high accuracy of Ref. [12], though in the treatment of the
hydrogen isoelectronic sequence given in Ref. [13], we note
that the self-energy results presented are quite precise.

The plan of this paper is as follows. After the potential-
expansion method is described in Sec. II, Sec. III describes
the DJA method and the behavior of the first 30 partial waves
for the test case is shown. In Sec. IV, the DJB method is set
up and the improvement of the partial wave expansion shown
for the test case. In Sec. V, the DJB method is applied to
the 2s state of lithiumlike boron with a finite-nucleus model
potential. Finally, a discussion of how higher accuracy might
be reached is given in the Conclusion.

II. FORMALISM AND SUBTRACTION SCHEMES

A central object in the self-energy calculation is the elec-
tron propagator, which satisfies the equation

(z − Hx )G(z, x, y) = δ3(x − y), (4)

with

Hx = −ih̄c α ·∇x + mc2β + V (x) (5)

and with the understanding that m2 → m2 − iε′. We adopt the
convention for any three-vector that r ≡ |r|, so we are assum-
ing our potential to be spherically symmetric. In that case one
can work with angular momentum eigenstates characterized
by the quantum numbers κ and μ, where κ = −l − 1 for
j = l + 1/2 and κ = l for j = l − 1/2, and μ is the magnetic
quantum number ranging from −|κ| to +|κ|. In the following,

for simplicity we will assume the potential to be that of a point
nucleus of charge Z ,

V (r) = −Zαh̄c

r
. (6)

Generalization to other potentials is straightforward. The
Dirac equation

Hxψaκμ(x) = Eaψaκμ(x) (7)
with energy Ea ≡ mc2εa has the solution

ψaκμ(x) =
(

ga(x)χκμ(x̂)

i fa(x)χ−κμ(x̂)

)
, (8)

where the spherical spinor χκμ is given by

χκμ(x̂) =
∑

m

C(l, 1/2, j; μ − m, m, μ)Yl μ−m(x̂)ξm, (9)

with C(l, 1/2, j; μ − m, m, μ) being the Clebsch-Gordan
coefficient, Yl μ−m(x̂) the spherical harmonics, and ξm the two-
component spinor:

ξ1/2 =
(

1
0

)
, ξ−1/2 =

(
0
1

)
. (10)

A formally exact solution of Eq. (4) is obtained from a sum-
mation over all possible κ and μ values,

G(z, x, y) =
∑
κμ

[θ (x − y)Wκμ(z, x)U †
κμ(z, y)

+ θ (y − x)Uκμ(z, x)W †
κμ(z, y)]. (11)

Here Uκμ(z, x) and Wκμ(z, x) are bispinors of the form of
ψzκμ(x) in Eq. (8), with the radial functions being solutions
to the Dirac equation regular at the origin and infinity, respec-
tively. Also, θ (t ) = 0 or 1 for t < or >0 is the step function.

The one-loop self-energy of an electron state a before
regularization and renormalization is

E (2)
SE = −4π iαc2

∫
d4k

(2π )4

∫∫
d3x d3y

eik·(x−y)

k2
0 − k2 + iδ

× ψ̄a(x)γνG(Ea − ck0, x, y)γ0γ
νψa(y). (12)

After renormalization, the finite remainder is the self-energy
part of the one-loop Lamb shift given by ESE (a, Z ) in Eq. (2).
It has scaling factors Z4 and 1/n3

a and is of order mc2α5.
To evaluate E (2)

SE without expanding in Zα requires a treat-
ment of the propagator that allows regularization and removal
of ultraviolet infinities, at the same time including the finite
parts of the calculation. To do this we expand the propagator
around the free propagator F (z, x, y), which satisfies Eq. (4)
when V (x) vanishes. The expansion is

G(z, x, y) = F (z, x, y) +
∫

dr1F (z, x, r1)V (r1)F (z, r1, y) +
∫∫

dr1dr2F (z, x, r1)V (r1)F (z, r1, r2)V (r2)F (z, r2, y)

+
∫∫∫

dr1dr2dr3F (z, x, r1)V (r1)F (z, r1, r2)V (r2)F (z, r2, r3)V (r3)F (z, r3, y) + . . . . (13)
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If we use the labeling scheme

G(z, x, y) ≡
∞∑

i=0

Gi(z, x, y), (14)

where i refers to the number of potentials V (r) in the expan-
sion terms on the right-hand side of Eq. (13), the self-energy
can be similarly expanded,

E (2)
SE =

∞∑
i=0

EiP, (15)

which defines the potential-expansion method. All ultravio-
let infinities are associated with the first two terms in the
expansion, E0P, referred to as the zero-potential term, and
E1P, referred to as the one-potential term. When these are
separated from the complete sum, we define the result as the
many-potential term,

EMP =
∞∑

i=2

EiP. (16)

In the DJA method, EMP is evaluated in coordinate space and
E0P and E1P in momentum space. We now give a brief descrip-
tion of the calculation, with emphasis on E0P, modifications of
which are used in the DJB method.

III. DJA METHOD

To evaluate the zero- and one-potential terms we first de-
fine the momentum space wave function,

ψa(p) ≡
∫

d3x e−ix·p/h̄ ψa(x). (17)

The Dirac equation in momentum space is

( � p − mc) ψa(p) = −4πZα

∫
dp1

(2π )3

γ0 ψa(p1)

|p − p1|2 , (18)

where we have introduced the four-vector p = (mcε, p). For
the Dirac equation ε = εa, but when p is present in an electron
propagator we leave ε as a variable that can be differentiated
for later use when we describe the DJB method.

We regulate the ultraviolet infinities in E0P and E1P by
changing d4k → dnk, with n = 4 − δ. In dimensional regular-
ization we note that the self-mass of a free electron at one-loop
order is

δm(2) = m
α

π

(
3C

δ
+ 2

)
, (19)

with

C = (4π )δ/2 �(1 + δ/2). (20)

Using the representation of the free-electron propagator

F (z, x, y) = 1

h̄3

∫
d3 p

(2π )3

eip·(x−y)/h̄

zγ0 − c γ ·p − mc2
γ0, (21)

the zero-potential term can be shown to be

E0P(ε) = −4π iαc

h̄3

∫
dp

(2π )3
ψ̄a(p)X (p, ε)ψa(p), (22)

with

X (p, ε) ≡
∫

dnk

(2π )n

1

k2

× γν

1

(mcε − k0)γ0 − γ ·(p − k) − mc
γ ν. (23)

Standard manipulations give

X (p, ε) = 1

c

∫
dnk

(2π )n

γν ( � p− � k + mc)γ ν

k2[(p − k)2 − m2c2]

= 1

c

∫ 1

0
dx

∫
dnk

(2π )n

(2 − n)( � p− � k) + n · mc

[(k − xp)2 + x(1 − x)p2 − xm2c2]2

= iC(mc)−δ

8π2cδ

∫ 1

0
dx [ � p(1 − x)(2 − n) + n · mc]�−δ/2, (24)

with

� = x − x(1 − x)[ε2 − p2/(mc)2]. (25)

Expanding in δ and discarding terms of order δ and higher leads to

X (p, ε) = i

8π2
m

(
3C

δ
+ 2

)
− i

8π2c
( � p − mc)

(
C

δ
+ 1

)
+ i

8π2c

∫ 1

0
dx

[ � p(1 − x) − 2mc
]

ln
�

x2
. (26)

The zero-potential term is then

E0P(ε) = α

2π
mc2

(
3C

δ
+ 2

)
1

h̄3

∫
dp

(2π )3
ψ̄a(p)ψa(p) − α

2π

(
C

δ
+ 1

)
c

h̄3

∫
dp

(2π )3
ψ̄a(p)( � p − mc)ψa(p)

+ α

2π

c

h̄3

∫
dp

(2π )3

∫ 1

0
dx ψ̄a(p)[ � p(1 − x) − 2mc]ψa(p) ln

�

x2
. (27)

The first term in the right-hand side is removed by mass renormalization.
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Turning to E1P, it is given by

E1P = 16π2icZα2

h̄3

∫
dp2

(2π )3

∫
dp1

(2π )3

1

|p2 − p1|2 ψ̄a(p2)Y (p2, p1)ψa(p1), (28)

with

Y (p2, p1) ≡
∫

dnk

(2π )n

γν ( � p2− � k + mc)γ0( � p1− � k + mc)γ ν

k2[(k − p2)2 − (mc)2][(k − p1)2 − (mc)2]
. (29)

In the above, p1 = (mcεa, p1) and p2 = (mcεa, p2): there is no need in this case to introduce ε and εa can be used directly. A
standard set of manipulations then leads to

E1P = α

2π

(
C

δ
− 1

2

)
c

h̄3

∫
dp

(2π )3
ψ̄ (p)( � p − mc)ψ (p) + 2

Zα2c

h̄3

∫
dp2

(2π )3

∫
dp1

(2π )3

ψ̄ (p2)γ0ψ (p1)

|p2 − p1|2
∫ 1

0
ρ dρ

∫ 1

0
dx ln

�1

ρ

+ Zα2c

h̄3

∫
dp2

(2π )3

∫
dp1

(2π )3

∫ 1

0
dρ

∫ 1

0
dx

1

�1

ψ̄ (p2)Nψ (p1)

|p2 − p1|2 , (30)

where the Dirac equation has been used in the first line and
the explicit form of N can be found in Ref. [7]. If we define

E01P ≡ E0P + E1P, (31)

after mass renormalization, we see it is ultraviolet finite. The
counterterms present in the renormalization procedure that
would make the individual terms ultraviolet finite cancel be-
cause of the Ward identity.

It is difficult to evaluate the finite part of E1P with high
precision as it stands. The solution used to improve the nu-
merics is to employ the CPP identity introduced by Mohr [5].
The source of the numerical difficulties is the region where
|p1 − p2| is small. If we replace p2 with p1 everywhere in
the finite terms in E1P except the denominator and the wave
function, the Dirac equation, Eq. (18), can be used to carry
out the dp2 integration, resulting in a much simpler integral.
By subtracting this term before using the Dirac equation, the
extra cancellation that results when |p2 − p1|2 is small allows

the integral to be evaluated with the accuracy needed. (This
procedure is carried out symmetrically, with p1 being replaced
with p2 in a second subtraction term.) What we have just
described is essentially the procedure introduced by Mohr [5],
where the replacement of p2 with p1 in the propagator is the
result of commuting the propagator through the potential.

The momentum space result for the test case from 0P and
1P is

E01P = −767.728 102. (32)

The accuracy of the numerical integrations, which are done
using the program CUHRE from the Cuba package [14], is such
that all digits shown are significant. While the accuracy could
be improved, there would be no point in doing so because the
partial wave expansion involved in EMP leads to much larger
numerical uncertainty.

We begin the coordinate space evaluation of EMP by carry-
ing out the d3k integration in Eq. (12),

E (2)
SE = iαh̄c2

∫
dk0

2π

∫∫
d3x d3y

eik0|x−y|

|x − y| ψ̄a(x)γνG(Ea − ck0, x, y)γ0γ
νψa(y). (33)

We define the order of the partial wave expansion � by introducing the standard expansion of the photon propagator,

eik0|x−y|

|x − y| =
∞∑

�=0

�∑
m=−�

4π ik0 j�(k0r)h�(k0r′)Y�m(x̂)Y ∗
�m(ŷ), (34)

with r = min(x, y) and r′ = max(x, y). We now again use ε, understood to be taken to εa for the DJA method, and find

E (2)
SE (ε) = iαh̄c2

∫
dk0

2π

∞∑
�=0

�∑
m=−�

4π ik0

∫∫
d3x d3y j�(k0r)h�(k0r′)Y�m(x̂)Y ∗

�m(ŷ)

×
[ ∑

κμ

θ (x − y)ψ̄a(x)γνUκμ(εa − k0, x)W †
κμ(εa − k0, y)γ0γ

νψa(y)

+ θ (y − x)ψ̄a(x)γνWκμ(εa − k0, x)U †
κμ(εa − k0, y)γ0γ

νψa(y)

]
. (35)

In this form one can analytically carry out the angle inte-
grations along with the sum over m and μ. The resulting

Clebsch-Gordon coefficients then limit the sum over κ for a
given value of �, and they are understood to be all included for
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TABLE I. DJA partial wave contributions to the self-energy of the Z = 5 point-Coulomb 1s state. EMP = Main − E0P − E1P. Sum_A is the
cumulative partial-wave sum of EMP.

� Main E0P Main − E0P E1P EMP Sum_A

0 32953.2587a 30259.7520 2693.5067 1937.5587 755.9480 −11.7801b

1 34284.1223 33832.2160 451.9063 440.3507 11.5556 −0.2245
2 34159.6544 33932.9018 226.7526 223.8197 2.9329 2.7084
3 33733.5632 33592.7097 140.8535 139.5826 1.2709 3.9792
4 33160.4627 33064.4550 96.0077 95.3232 0.6845 4.6637
5 32510.9396 32442.0604 68.8793 68.4636 0.4157 5.0794
6 31823.0807 31772.0957 50.9849 50.7121 0.2728 5.3522
7 31119.2099 31080.7241 38.4859 38.2968 0.1890 5.5412
8 30413.0504 30383.6582 29.3922 29.2557 0.1365 5.6777
9 29713.2633 29690.6918 22.5715 22.4698 0.1017 5.7794
10 29025.3708 29008.0375 17.3334 17.2556 0.0777 5.8571
11 28352.8744 28339.6399 13.2345 13.1738 0.0607 5.9178
12 27697.9380 27687.9599 9.9781 9.9298 0.0482 5.9661
13 27061.8230 27054.4646 7.3584 7.3194 0.0389 6.0050
14 26445.1730 26439.9441 5.2289 5.1971 0.0318 6.0368
15 25848.2057 25844.7229 3.4828 3.4565 0.0263 6.0631
16 25270.8445 25268.8038 2.0407 2.0187 0.0220 6.0851
17 24712.8100 24711.9676 0.8424 0.8238 0.0185 6.1037
18 24173.6846 24173.8431 −0.1585 −0.1743 0.0158 6.1194
19 23652.9589 23653.9569 −0.9980 −1.0114 0.0135 6.1329
20 23150.0646 23151.7690 −1.7043 −1.7160 0.0116 6.1446
21 22664.3984 22666.6988 −2.3003 −2.3104 0.0101 6.1547
22 22195.3394 22198.1435 −2.8041 −2.8129 0.0088 6.1635
23 21742.2613 21745.4918 −3.2305 −3.2382 0.0077 6.1712
24 21304.5417 21308.1331 −3.5914 −3.5982 0.0068 6.1780
25 20881.5681 20885.4650 −3.8969 −3.9029 0.0060 6.1840
26 20472.7424 20476.8976 −4.1552 −4.1606 0.0053 6.1893
27 20077.4842 20081.8573 −4.3732 −4.3779 0.0048 6.1941
28 19695.2324 19699.7889 −4.5565 −4.5607 0.0043 6.1983
29 19325.4469 19330.1569 −4.7100 −4.7138 0.0038 6.2022
30 18967.6086 18972.4465 −4.8379 −4.8413 0.0034 6.2056
High-� correction from 1/�3 fit 0.0500 6.2557
High-� correction ��−3

2,5 from Eq. (38) 0.0465 6.2521
Ref. [12] 6.2516

aInclude contribution from the pole term in Eq. (36).
bInclude momentum-space contribution from E01P in Eq. (32).

any given partial wave. Evaluation of the integrals over k0, x,
and y can now be carried out if one has the radial functions for
the electron Green’s function, which are available analytically
in terms of Whittaker functions for the point-Coulomb case or
numerically for the general case as in the present calculations.

In the DJA method, integrations over ω = ck0 are carried
out for each partial wave � and the resulting partial wave series
is summed to give the final results. E (2)

SE thus calculated will be
referred to as the Main term. To form the ultraviolet conver-
gent many-potential term EMP = E (2)

SE − E0P − E1P, we begin
by subtracting the zero-potential term E0P from the Main term.
Computationally, E0P in coordinate space is the same as E (2)

SE
with the bound-electron Green’s function G(z, x, y) replaced
by the free-electron Green’s function F (z, x, y), which can
be generated analytically or numerically. Partial waves of the
Main and E0P terms up to � = 30 are shown in the second and
third columns of Table I for the test case and their difference is

shown in the fourth column. It is clear that there are substantial
cancellations between Main and E0P, but Main − E0P is a
partial wave expansion that does not converge and the gradual
falloff with � eventually goes as 1/�, which corresponds to a
logarithmic divergence.

We note that, in evaluating E (2)
SE , a Wick rotation, ω → iω,

is carried out and a deformation of the contour to avoid bound-
state poles gives rise to the “Pole terms.” Details can be found
in Ref. [7]. Pole terms do not involve electron Green’s func-
tions and can be calculated very accurately. For the E1s(5α)
test case considered here, there is only one 1s pole term
given by

E1s(pole) = 20 210.432 546. (36)

This term is combined with the � = 0 partial wave of the Main
term in Table I, as this is the only partial wave affected by the
1s pole from symmetry and energy considerations.
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To finally form the ultraviolet finite many potential term, we need to compute

E1P = iαh̄c2
∫

dk0

2π

∫∫
d3x d3y

eik0|x−y|

|x − y| ψ̄a(x)γνG2(Ea − ck0, x, y)γ0γ
νψa(y)

= iαh̄c2
∫

dk0

2π

∫∫∫
d3x d3w d3y

eik0|x−y|

|x − y| ψ̄a(x)γνF (Ea − ck0, x, w)γ0
h̄cZα

w
F (Ea − ck0, w, y)γ0γ

νψa(y). (37)

The ordering of the magnitudes x, w, and y determines which
spherical Bessel functions must be used and requires the eval-
uation of three different integrals. However, only one more
integration variable is present compared to the zero-potential
term and no numerical difficulties arise. The result is pre-
sented in the fifth column of Table I. Subtractions of E1P

from Main − E0P give the EMP term listed in the sixth col-
umn. Once again, there are substantial cancellations, but the
resulting partial wave series of EMP now converges as 1/�3.

In the seventh column of Table I, the cumulative partial-
wave sums of EMP are shown as Sum_A. By adding E01P in
Eq. (32) to the � = 0 term, Sum_A should converge to the final
self-energy result. Indeed, Sum_A(�) can be seen to approach
the high-precision results of 6.2516 . . . from Ref. [12], with
Sum_A(30) = 6.2056 converged to the first decimal point for
an accuracy of 0.74%. By extrapolating the partial wave series
with an 1/�3 fit, the high-� contribution from � = 31 − ∞ of
0.0500 can be added to Sum_A(30) for a result of 6.2557
shown in the third row from the bottom in Table I. This
improves the convergence by one more decimal point and
the accuracy to 0.06%. High-� corrections have also been
calculated with an accelerated-convergence method based on
a k-point least-square, rational polynomial fit of the form

f −n
m,k (�) ≈ 1/[�n(a0 + a1/� + · · · + am/�m)], (38)

where the number of least-square points k must be greater than
the order of the rational polynomial m. In fact, the 1/�3 fit is
a special case with n = 3, m = 0, and k = 1. As shown in the
second row from the bottom of Table I, the high-� correction
��−3

2,5 of 0.0465 does accelerate the convergence and further
improves the self-energy result by another decimal point to
6.2521 for an accuracy of 0.01%.

While the difference between the two high-� extrapolation
results reflects the intrinsic uncertainty of these corrections,
their contributions can be greatly reduced by extending the
calculation to include more partial waves. For higher-Z ions
than the Z = 5 test case, that is usually not necessary as
partial wave series tend to converge much faster. For lower-
Z ions, however, partial wave series converge much slower
and, unlike the Mohr method that utilizes analytic functions
extensively, the numerical approach of the DJA method limits
the number of partial waves that can be accurately calculated.
A different approach with faster partial wave convergence is
needed. For that, we turn to the new DJB method which is
based on a variation of the method in Ref. [10].

IV. DJB METHOD

The next logical step in the potential-expansion method
would appear to be the evaluation of the two-potential term

E2P given by

E2P = −4π iαc2
∫

d4k

(2π )4

∫∫
d3x d3y

eik·(x−y)

k2
0 − k2 + iδ

ψ̄a(x)γν

×
∫∫

dr1dr2 F (Ea − ck0, x, r1)V (r1)

× F (Ea − ck0, r1, r2)V (r2)F (Ea − ck0, r2, y)γ νψa(y).

(39)

However, after transforming to momentum space and evalu-
ating the d4k integral with Feynman parameters, one has a
multidimensional integral of nominal dimension 9. Evaluating
such an integral to high precision would be an extremely
challenging proposition even with the subtractions described
for E1P. We consider instead an approximation in the modified
two-potential term Ẽ2P given by

Ẽ2P ≡ −4π iαc2
∫

d4k

(2π )4

∫∫
d3x d3y

eik·(x−y)

k2
0 − k2 + iδ

ψ̄a(x)γν

×
∫∫

dr1dr2 F (Ea − ck0, x, r1)V (x)

× F (Ea − ck0, r1, r2)V (y)F (Ea − ck0, r2, y)γ νψa(y).

(40)

Because the free-electron propagator F (z, x, y) emphasizes
the region x = y, the replacement of V (r1) with V (x) and
V (r2) with V (y) in Ẽ2P can be expected to capture a dominant
part of the integral. The replacement corresponds to a CPP
method, with V (r1) commuted to the left and V (r2) commuted
to the right.

The DJB method involves replacing the MP term in the
DJA method with

EMP = (EMP − Ẽ2P ) + Ẽ2P ≡ ẼMP + Ẽ2P. (41)

The relative simplicity of Ẽ2P comes from the identity∫∫
d3u d3w F (z, x, u)F (z, u, w)F (z, w, y)

= 1

2

d2

dz2
F (z, x, y). (42)

This allows the r1 and r2 integrations in Ē2P to be carried out
and we have

Ẽ2P = −2π iαc2 d2

dE2
a

∫
d4k

(2π )4

∫∫
d3x d3y V (x)V (y)

× eik·(x−y)

k2
0 − k2 + iδ

ψ̄a(x)γνF (Ea − ck0, x, y)γ0γ
νψa(y).

(43)
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In coordinate space form, this is to be subtracted from EMP

and to compensate we need to add it back in momentum space
form.

To do this, we work with Eq. (27), which we treated as
a function of ε. Ẽ2P involves differentiating with respect to
ε twice, after which case one can take ε → εa. We start by
noting

d2X (p)

dε2
a

= i

4π2m2c5

∫ 1

0
dx x(1 − x)

×
[
εaN0 − N1

�
+ 2DB(εaN0 + N1)

�2

]
, (44)

where N0 = −γ0(1 − x)/c and N1 = 2mc + γ · p (1 − x). If
we define the momentum space function

ψa1 (p) ≡
∫

d3x e−ix·p/h̄ Z (x)

x
ψa(x), (45)

one has

Ẽ2P = α

3πm2c3h̄3

∫
dp

(2π )3

∫ 1

0
dx x(1 − x)ψ̄a1 (p)

×
[
εaN0 − N1

�
+ 2DB(εaN0 + N1)

�2

]
ψa1 (p), (46)

which can be easily evaluated with high accuracy. Its value in
momentum space for the test case is given by

Ẽ2P = 365.613 427. (47)

Turning to the coordinate space part of the calculation, we
note that the double derivative with respect to Ea can be
carried out using the recursion relations for spherical Bessel
functions. While this results in a somewhat complicated in-
tegrand, the numerical integral is of the same form as used
for the other parts of the coordinate space calculation and the
results are of the same accuracy. We list the partial waves for
the test case up to � = 30 in the third column of Table II.

A check on the calculation can now be made by compar-
ing the partial wave expansion of Ẽ2P with the momentum
space form, which can be evaluated with high precision. From
Table II, the partial wave sum of Ẽ2P up to � = 30 is 365.5675,
which agrees with the momentum space result in Eq. (47)
to 0.01%. While this check reflects the accuracy possible for
the partial wave expansion, that accuracy is still limited for the
same reason DJA is limited—the relatively slow convergence
of the partial wave expansion. However, the partial wave
expansion of DJB has two features that make the method
much more accurate. The first is that the cancellation with
EMP, shown in the sixth column of Table I and re-shown
in the second column of Table II, makes the higher partial
waves smaller by over two orders of magnitude as shown in
the fourth column of Table II. Indeed, the cumulative sum
of ẼMP = EMP − Ẽ2P, shown as Sum_B in the fifth column,
can be seen to converge readily to 6.2515 at � = 30 instead
of Sum_A′s 6.0256 in Table I. The second feature is that the
convergence of ẼMP is more rapid at 1/�4. Using a range of
extrapolation methods as done with the DJA method, we find
that, at � = 30, they all give consistent high-� corrections at
∼0.0001, improving the present self-energy result to 6.2516,
same as the high-precision results of Ref. [12] down to the

TABLE II. DJB partial wave contributions to the self-energy of
the Z = 5 point-Coulomb 1s state. ẼMP = EMP − Ẽ2P. Sum_B is the
cumulative partial-wave sum of ẼMP.

� EMP Ẽ2P ẼMP Sum_B

0 755.9480 349.1413 406.8067 4.6921a

1 11.5556 10.1811 1.3744 6.0665
2 2.9329 2.8131 0.1198 6.1863
3 1.2709 1.2374 0.0335 6.2198
4 0.6845 0.6708 0.0136 6.2334
5 0.4157 0.4090 0.0067 6.2401
6 0.2728 0.2690 0.0038 6.2439
7 0.1890 0.1868 0.0023 6.2462
8 0.1365 0.1350 0.0015 6.2476
9 0.1017 0.1007 0.0010 6.2486
10 0.0777 0.0771 0.0007 6.2493
11 0.0607 0.0602 0.0005 6.2498
12 0.0482 0.0479 0.0004 6.2502
13 0.0389 0.0387 0.0003 6.2505
14 0.0318 0.0316 0.0002 6.2507
15 0.0263 0.0262 0.0002 6.2508
16 0.0220 0.0219 0.0001 6.2510
17 0.0185 0.0184 0.0001 6.2511
18 0.0158 0.0157 0.0001 6.2512
19 0.0135 0.0134 0.0001 6.2512
20 0.0116 0.0116 0.0001 6.2513
21 0.0101 0.0100 0.00005 6.2513
22 0.0088 0.0088 0.00004 6.2514
23 0.0077 0.0077 0.00003 6.2514
24 0.0068 0.0068 0.00003 6.2514
25 0.0060 0.0060 0.00002 6.2515
26 0.0053 0.0053 0.00002 6.2515
27 0.0048 0.0047 0.00002 6.2515
28 0.0043 0.0042 0.00002 6.2515
29 0.0038 0.0038 0.00001 6.2515
30 0.0034 0.0034 0.00001 6.2515
High-� correction ��−4

2,5 0.00010 6.2516
Ref. [12] 6.2516

aInclude momentum-space contributions from E01P in Eq. (32) and
Ẽ2P in Eq. (47).

fourth decimal point as seen in the last two rows in Table II.
For higher-Z ions than the present test case of Z = 5, 10–20
partial waves would likely be sufficient for the DJB method
and high-� extrapolations may not even be necessary except
for accuracy checks. DJB is a marked improvement over DJA.

V. APPLICATIONS

Now that we have shown the details of the DJB method
for the test case, it is clear that the present DJB result of
E1s(5α) = 6.2516(1), with an uncertainty of 1 in the last
digit, cannot match the accuracy of 6.251 627 078(1) in
Ref. [12]. Nevertheless, the present result is still accurate to
five significant figures, which is more than enough for most
applications. More importantly, the present approach is not
limited to point-Coulomb cases, as bound-state wave func-
tions and electron Green’s functions are solved numerically
instead of derived analytically. Thus the DJB method has a
wide range of applications and can be used to calculate, for
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TABLE III. DJA and DJB partial wave contributions to the self-
energy of the 2s state of Li-like boron (Z = 5) in a finite-nucleus,
Kohn-Sham potential. ẼMP = EMP − Ẽ2P. Sum_A and Sum_B are
cumulative partial-wave sums of EMP and ẼMP, respectively. ��−4

2,5

are high-� corrections of Sum_B by fitting ẼMP with Eq. (38).
Total_B = Sum_B + ��−4

2,5.

� EMP Sum_A Ẽ2P ẼMP Sum_B ��−4
2,5 Total_B

0 577.4753a −8.2795b 298.9027 278.5726 2.2123c

1 6.9704 −1.3091 6.3045 0.6659 2.8782
2 1.7532 0.4441 1.7022 0.0509 2.9291
3 0.7848 1.2289 0.7707 0.0141 2.9432
4 0.4390 1.6679 0.4333 0.0058 2.9490
5 0.2773 1.9452 0.2744 0.0029 2.9518 0.0052 2.9570
6 0.1893 2.1345 0.1877 0.0016 2.9535 0.0035 2.9570
7 0.1365 2.2710 0.1355 0.0010 2.9544 0.0025 2.9569
8 0.1024 2.3734 0.1018 0.0006 2.9551 0.0018 2.9569
9 0.0793 2.4527 0.0789 0.0004 2.9555 0.0014 2.9569
10 0.0630 2.5157 0.0627 0.0003 2.9558 0.0011 2.9569
11 0.0511 2.5668 0.0508 0.0002 2.9560 0.0009 2.9569
12 0.0421 2.6089 0.0419 0.0002 2.9562 0.0007 2.9569
13 0.0352 2.6441 0.0351 0.0001 2.9563 0.0006 2.9569
14 0.0298 2.6739 0.0297 0.0001 2.9564 0.0005 2.9569
15 0.0255 2.6994 0.0254 0.0001 2.9565 0.0004 2.9569
16 0.0220 2.7214 0.0220 0.0001 2.9565 0.0003 2.9569
17 0.0192 2.7406 0.0191 0.00005 2.9566 0.0003 2.9569
18 0.0168 2.7575 0.0168 0.00004 2.9566 0.0003 2.9569
19 0.0149 2.7723 0.0148 0.00003 2.9567 0.0002 2.9569
20 0.0132 2.7855 0.0132 0.00003 2.9567 0.0002 2.9569

aInclude the pole contribution of 34 654.400 87.
bInclude the E01P contribution of −585.754 79.
cInclude the E01P + Ẽ2P contribution of −276.360 31.

example, electron screening and finite-nuclear size corrections
to electron self-energies.

Choosing the 2s state of Li-like boron as an example, we
start by using a Kohn-Sham potential for the 1s22s ground
state to account for the screening effect. Finite-nuclear size
potential is modeled by a Fermi charge distribution with pa-
rameters c = 1.8104 fm and t = 2.3 fm. Partial wave results
up to � = 20 are shown in Table III. Specifically, EMP in col-
umn 2 and Sum_A in column 3 correspond to DJA results with
one-potential expansions, while Ẽ2P in column 4, EMP − Ẽ2P
in column 5, and Sum_B in column 6 are DJB results with
the additional two-potential expansions. High-� corrections
��−4

2,5 to Sum_B from least-square rational polynomial fits of
the form given in Eq. (38) are shown for � � 5 in column 7
and Total_B = Sum_B + ��−4

2,5 are shown in column 8. As in
Tables I and II, the EMP, Sum_A, and Sum_B terms have the
pole and momentum-space terms included in the � = 0 partial
waves so that the cumulative sums of Sum_A, Sum_B, and
Total_B will converge to the self-energy E2s(5α).

At the DJA level, it can be seen that EMP(20) only goes
down to 0.0132 and Sum_A(20), at 2.7855, is far from con-
vergence. With DJB, however, EMP − Ẽ2P is already down
to 0.0000 3 at � = 20 and Sum_B(20), at 2.9567, is nearly
converged to the last digit. When high-� corrections ��−4

2,5
are added, Total_B actually converges to 2.9569 with only
eight partial waves even though high-� correction is still rather
large at 0.0025. While ��−4

2,5 continues to drop by an order of

magnitude to 0.0002 at � = 20, Total_B remains constant to
the fourth decimal point. This is a good check on the accuracy
of the final result and affirms the use of high-� extrapolation
methods to accelerate the partial wave convergence. Compar-
ing to the test case, it is clear that the DJB method converges
much faster with non-Coulomb potentials even for higher-n
(2s vs 1s) states. There is also no doubt that DJB is an impor-
tant improvement over DJA even though the latter can give
accurate enough results in most cases with larger partial wave
expansions.

VI. CONCLUSION

We have deliberately used only a modest number of partial
waves in this paper. This is because we wish to emphasize
that relatively simple calculations can allow quite accurate
self-energies to be computed. However, one application that
requires extremely high accuracy is the self-energy of hy-
drogen. As with our test case, it has been evaluated with
extremely high accuracy in Ref. [12]. Because that accuracy is
needed in the treatment of the finite size of the proton, a check
using different methods would be useful.

One of the advantages already present in the DJA method
is the fact that the numerical methods used allow one to go
up to values of � ≈ 60, though extreme care and very fine
radial grids are needed. In fact, it is possible to control the
high-� extrapolation so well that the DJB method is usually
not qualitatively more accurate, but it works just as well as
DJA with fewer partial waves and can deal with low Z better
than DJA. DJB thus supersedes DJA as a general approach
to self-energy calculations. However, calculations at Z = 1
of radiative corrections are particularly challenging even for
DJB. Sophisticated summation schemes were required in the
framework of the Mohr method in Ref. [12] to reach the
very high accuracy results presented there. To reach similar
accuracy with potential-expansion methods, many numerical
issues would have to be addressed. Techniques that are more
than adequate for calculations demanding parts per million
accuracy may fail at higher levels.

We are at present working on evaluating the self-energy
of hydrogen and hydrogenic ions with low Z . Because of the
numerical problems that may be present that we have not
detected, we are also looking into the use of different gauges.
There are advantages to the use of both the Coulomb gauge
and Yennie gauge that are known to help with the infrared
behavior of radiative corrections [15]. While very accurate
calculations have in fact already been carried out in Feynman
gauge, getting the same result using another gauge would
clearly be a check on the calculation and getting different
answers could uncover numerical problems that had been
missed. However, we conclude by emphasizing the utility and
relative ease of using the DJB method described in this paper
for those interested in evaluating the self-energy part of the
Lamb shift.
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