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Metrology of Rydberg states of the hydrogen atom
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We present a method to precisely measure the frequencies of transitions to high-n Rydberg states of the
hydrogen atom which are not subject to uncontrolled systematic shifts caused by stray electric fields. The method
consists in recording Stark spectra of the field-insensitive k = 0 Stark states and the field-sensitive k = ±2
Stark states, which are used to calibrate the electric field strength. We illustrate this method with measurements
of transitions from the 2s( f = 0 and 1) hyperfine levels in the presence of intentionally applied electric fields
with strengths in the range between 0.4 and 1.6 Vcm−1. The slightly field-dependent k = 0 level energies are
corrected with a precisely calculated shift to obtain the corresponding Bohr energies (−cRH/n2). The energy
difference between n = 20 and n = 24 obtained with our method agrees with Bohr’s formula within the 10-kHz
experimental uncertainty. We also determined the hyperfine splitting of the 2s state by taking the difference
between transition frequencies from the 2s( f = 0 and 1) levels to the n = 20, k = 0 Stark states. Our results
demonstrate the possibility of carrying out precision measurements in high-n hydrogenic quantum states.
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I. INTRODUCTION

The hydrogen atom is a fundamental two-body quantum
system. Studies of its spectrum by experiment and theory have
played a key role in the development of the quantum theory
[1–5] and of quantum electrodynamics [6–9]. Spectroscopic
measurements of energy intervals between the quantum states
of the hydrogen atom have reached exceptional precision and
the results can be exactly explained by first-principles calcu-
lations and accurately known physical constants such as the
Rydberg constant R∞, the fine-structure constant α, and the
proton charge radius rp. The theoretical treatment of the H
atom by relativistic quantum mechanics and quantum electro-
dynamics is indeed so accurate that the comparison with the
results of precision measurements in the H atom can serve to
determine the values of these constants [10].

In the past years, a significant revision of the values of
R∞ and rp became necessary after a new measurement of
the Lamb shift in muonic hydrogen [11–13] challenged ear-
lier results from H-atom spectroscopy, a challenge that was
referred to as the proton-radius puzzle. This challenge es-
sentially results from the correlation between the R∞ and rp

values, which necessitates the combination of at least two
transition frequencies in the H atom to determine these con-
stants. The latest CODATA values of R∞ and rp are based on
a combination of multiple results, in which the 1s-2s interval
in H [14,15] and the Lamb shift in muonic hydrogen [11]
play a central role. Several recent precision measurements in
H confirmed the revised values [16,17], whereas others cover
the range between the old and the new values of R∞ and rp

[18–20]. Measurements of quantities that are only sensitive to
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either rp, such as electron-scattering measurements [21–29],
or R∞, such as measurements in nonpenetrating Rydberg se-
ries of H, have regained interest.

Early, remarkable experiments designed to determine R∞
from transition frequencies between circular states, i.e., states
with orbital-angular-momentum quantum number � = n − 1
and magnetic quantum number m� = ±�, of high principal
quantum numbers in the H atom were carried out in the group
of D. Kleppner at MIT [30–32], giving values of R∞ compat-
ible with the recommended CODATA values available at the
time [33]. In that work, the frequencies of �n = 1 transitions
between circular states of H were measured with 2–3 Hz
accuracy at n values around 30. These transition frequencies
scale as 2R∞/n3 and are completely insensitive to the pro-
ton size because the Rydberg electron does not penetrate in
the core region. The 2/n3 sensitivity factor to R∞ of these
measurement is only ∼1 × 10−4 for the transition between
the n = 27, � = 26, m� = 26 and n = 28, � = 27, m� = 27
circular states, but this disadvantage could be compensated for
by the fact that circular states are not sensitive to stray electric
fields to first order, and through the exceptional control of all
aspects of the millimeter-wave-spectroscopic experiments by
the MIT team. An R∞ value with an absolute uncertainty of
69 kHz and a relative uncertainty of 2.1 × 10−11 was deter-
mined [32], close to the R∞ uncertainty value of 7.6 × 10−12

of the 1998 CODATA adjustment. Since this pioneering work,
circular Rydberg states of Rb have been proposed as an alter-
native system to determine R∞ [34]. The properties of circular
Rydberg states of any atom or molecule are indeed ideally
suited to metrology, as illustrated by the use of such states as
ultrasensitive electric-field sensors [35].

If circular Rydberg states are excepted, high Rydberg states
are usually not considered to be suitable for precision mea-
surements because of their high sensitivity to stray electric
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fields (see discussion in, e.g., Refs. [36,37]). In the context
of metrology in the H atom, this sensitivity has implied that
almost all precision experiments involving Rydberg states
of H with n � 3 have targeted states with n values below
12 [16,18,38] and that the measurements required a careful
evaluation of the Stark effect on the level structure induced by
stray electric fields.

We introduce here an alternative method to determine R∞
which relies on measuring the spectra of |m�| = 1 Rydberg
states of the H atom in the presence of intentionally applied
electric fields. Stark states of the H atom exhibit shifts of
∼1.5a0eknF that are linear in the field strength F at low
fields and proportional to the integer difference k = n1 − n2

between the quantum numbers n1 and n2 that arise in the
solution of the Schrödinger equation in parabolic coordinates
[k = 0,±1,±2, . . . ,±(n − 1 − |m�|), where m� is the mag-
netic quantum number associated with the electron orbital
motion] [9,39]. Consequently, even-n, k = 0, |m�| = 1 states
are to first order field insensitive, as circular Rydberg states.
Their magnetic moments are, however, much smaller than for
circular states, which makes them less sensitive to Zeeman
shifts by magnetic stray fields. |m�| = 1 Stark states do not
possess any s character and their �-mixed wave functions
are dominated by nonpenetrating high-� components; con-
sequently, their spectral positions are also insensitive to the
proton size. Experimentally, we measure the frequencies of
transitions from the 2s( f = 0 and 1) states to n = 20, k =
0,±2, |m�| Stark states and use the separation between the
k = ±2 states to precisely determine the value of the ap-
plied field. We then extract the position of the k = 0 state to
determine the Bohr energy (−hcRHn−2) after correcting for
the quadratic Stark shifts. To obtain a value of R∞ without
having to consider its correlation with rp, the positions of the
2s levels and the n = 20, k = 0,±2, |m�| Stark states can be
related to the position of the 2p levels using the 2s Lamb shift
determined by Bezginov et al. [17]. The sensitivity factor of
the measurement to R∞ is thus 1/4, i.e., more than 3000 times
higher than for the measurement based on circular states at
n ≈ 30. Consequently, an accuracy of about 20 kHz would
make this measurement competitive with the MIT measure-
ments, and we believe that this is achievable. The price to
pay for this advantage is that the transition frequencies are
in the UV range of the electromagnetic spectrum rather than
in the millimeter-wave range and, therefore, compensation of
the Doppler effect becomes much more critical.

In this article, we present several of the key aspects of this
method of determining R∞. We are still in the middle of the
data-acquisition process, and use subsets of the data to discuss
systematic uncertainties in the measurements of nkm� ← 2s
transition frequencies originating from the Stark effect. We
also present the determination of (i) the f = 0 − f = 1 hy-
perfine interval in the 2s state, which we obtain by combining
two sets of measurements, from 2s( f = 0) and 2s( f = 1) to
n = 20 Stark states, and (ii) the difference between the n = 20
and n = 24 Bohr energies by combining measurements from
the 2s( f = 1) hyperfine state to n = 20 and 24 Stark states.
The article is structured as follows: Sec. II describes the
experimental setup and provides details on the laser systems
used to prepare H atoms selectively in the 2s( f = 0 and 1)
hyperfine states and to record spectra of the nkm� ← 2s( f )

transitions, as well as the detection system and the procedure
we follow to cancel the Doppler shifts. Section III describes
how we calculate the energies of the Stark states of H and
draws attention to the aspects that are most relevant for the
determination of the Bohr energies. Section IV illustrates the
current status of our measurements by using small data sets
to compare spectra recorded at different electric fields from
the two hyperfine components of the 2s state and to n = 20
and 24 Stark states. The results we present here only concern
small energy intervals [∼ 177 MHz for the 2s( f = 1 ← f =
0) interval and 2.51 THz for the difference between the Bohr
energies at n = 20 and 24] obtained by building differences
of (currently still blinded) UV laser frequencies. Absolute
transition frequencies will be reported when the analysis of the
systematic errors related to the Doppler effect is completed. In
the last section, we draw several conclusions concerning our
approach.

II. EXPERIMENTAL SETUP

The experimental setup is presented schematically in
Fig. 1. It consists of (i) a differentially pumped set of vac-
uum chambers in which the H atoms are produced and
entrained in a pulsed supersonic beam and subsequently pho-
toexcited to Rydberg states via the metastable 2s state within
a double-layer mu-metal magnetic shield; (ii) a pulsed near-
Fourier-transform-limited laser system delivering radiation
at 243 nm to drive the 2s ← 1s transition; and (iii) an SI-
traceable single-mode cw UV laser to further excite the H
atoms to Rydberg states. The experiment is run in a pulsed
mode at a repetition rate of 25 Hz.

The hydrogen atom source has been described in Ref. [40],
to which we refer for details. The hydrogen atoms are
produced by dissociating molecular hydrogen in a dielectric-
barrier discharge near the orifice of a pulsed cryogenic valve
and are entrained in a supersonic beam of H2. The temperature
(T0) of the valve can be adjusted between 45 K and 160 K to
vary the forward velocity of the supersonic expansion between
970 ms−1 and 1800 ms−1. The final longitudinal temperature
of the supersonic beam (∼ 12 mK) and its forward velocity
(vz ≈ √

2kBT0γ/mH2 (γ−1)) can be well approximated using the
model of an adiabatic expansion [41]. At valve temperatures
below the characteristic rotational temperature of the carrier
gas H2 (θrot ≈ 90 K), the heat capacity ratio γ can be approx-
imated by the one of a monoatomic gas, i.e., γ = 5/3. The
central part of the supersonic beam is selected by two skim-
mers with diameters of 2 mm and 3 mm placed at distances of
45 cm and 135 cm from the nozzle orifice, respectively. At the
distance of almost 1 m from the valve orifice, the gas flow is
in the collision-free regime and the density of H2 molecules
has dropped to below 4 × 1011 cm−3.

The skimmed supersonic beam enters a magnetically
shielded chamber in which the H atoms are excited to Ry-
dberg states in a sequential three-photon absorption process.
The 2s ← 1s transition is first induced between two copper
plates kept at the same electric potential of 4Vdc by the
third-harmonic (λ = 243 nm) beam of a pulse-amplified near-
Fourier-transform-limited Ti:Sa laser [42] which crosses the
supersonic beam at right angles. The molecular beam then
traverses a region with a weak homogeneous electric field
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FIG. 1. Schematic representation of the experimental setup. Upper part: laser system and geometry of the photoexcitation from the
metastable 2s state of H to Rydberg states. Lower part: vacuum chambers in which the supersonic beam of H atoms is generated, these
atoms are photoexcited to Rydberg states and the Rydberg states are detected by pulsed field ionization. Top right inset: Configuration of laser
and supersonic beams used for the determination of Doppler-free frequencies. See text for details.

Fdc = Vdc/cm−1, where it intersects a single-mode cw UV laser
(λ ≈ 368 nm) used to excite the metastable H(2s) atoms to
specific Rydberg-Stark states. These states are field ionized by
a large pulsed electric field (up to 6 kVcm−1) and the resulting
protons are accelerated towards a micro-channel-plate (MCP)
detector. The different components are discussed in more
detail in the following subsections. Spectra of Rydberg-Stark
states are recorded by monitoring the H+ field-ionization yield
as a function of the UV laser frequency.

A. Laser system for the 2s ← 1s transition

The 243-nm radiation used to excite the H atoms to
the 2s state by nonresonant two-photon excitation is gen-
erated by amplification of the 120-ns-long chopped output
of a titanium-sapphire (Ti:Sa) seed laser at 729 nm using a
Nd:yttrium-aluminum-garnet(YAG)-pumped Ti:Sa multipass
amplifier, as described in Ref. [42]. The output pulses, with
pulse energies of ∼15 mJ, are frequency tripled in two succes-
sive β-barium-borate (BBO) crystals, resulting in 40-ns-long
pulses at 243 nm with typical pulse energies of 800 µJ. The
243-nm-laser beam is focused slightly beyond the supersonic
beam using a 30-cm-focal-length lens. The use of two skim-
mers reduces the Doppler width of the 2s ← 1s transition
and enables the full resolution of the f = 0 ← f = 0 and
f = 1 ← f = 1 hyperfine components.

Because the 243-nm laser beam propagates along the x axis
(see Fig. 1), perpendicularly to both the supersonic beam and
the cw UV laser, the focus selects a narrow cylinder (diameter

of 0.1 mm) of H atoms with a reduced velocity distribution
along the y axis (see axis system in Fig. 1). This selection
narrows down the Doppler width of the Rydberg-excitation
spectra from the 2s level. The photoexcitation only excites
H(1s) atoms in a very restricted longitudinal phase-space vol-
ume. Consequently, the H(2s)-atom cloud remains compact
and hardly expands as the beam propagates through the 4-cm-
long distance separating the 2s ← 1s excitation region from
the nkm ← 2s excitation region. However, the spatial and ve-
locity selection can lead to a nonthermal velocity distribution,
potentially resulting in asymmetric Doppler profiles in the
Rydberg-excitation spectra.

The 243-nm laser unavoidably ionizes a significant fraction
of the H(2s) atoms [43]. To avoid stray fields from the gener-
ated protons, they are accelerated out of the H(2s) cloud by the
electric field Fdc resulting from the potentials applied between
the different electrodes within the mu-metal magnetic shield
(see Fig. 1). To eliminate line broadening caused by interac-
tions between closely spaced Rydberg atoms in the sample
volume, the measurements are carried out in a regime where
at most one Rydberg atom is in the excitation volume and on
average much less than one field-ionization event is detected
per experimental cycle.

B. Laser system for the nkm ← 2s excitation

The primary laser used for the precision spectroscopy
of the nkm ← 2s transition is a commercial cw Ti:Sa ring
laser (Coherent, 899-21) pumped by a 12 -W solid-state laser
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(Coherent, Verdi V-12). The Ti:Sa ring laser is operated in the
range 729–736 nm and provides 1 W of output power. In ad-
dition to the standard actuators of the ring laser, an intracavity
electro-optic modulator (EOM) (QUBIG, PS3D-BC) is used
as a fast actuator to maintain a phase lock to an ultrastable
reference laser, as discussed below. Around 98 % of the opti-
cal power is sent to a home-built second-harmonic-generation
enhancement cavity (SHG) equipped with a 12-mm-long
lithium-triborate (LBO) crystal cut at Brewster’s angle. The
SHG cavity is stabilized using a Hänsch-Couillaud scheme
[44]. The typical conversion efficiency to the second harmonic
is 20 %. The 368-nm output of the SHG cavity is coupled into
an optical fiber and guided to an actively stabilized retroreflec-
tor (AFR) setup for Doppler-shift compensation (see below).
The forward-propagating and retroreflected laser beams cross
the molecular beam at right angles 4 cm downstream of the
2s ← 1s excitation spot.

The remaining 2 % of the fundamental laser power is
used for the frequency calibration and stabilization. The
light is tightly collimated and sent through an acousto-optic
modulator (AOM) (Isomet, M1260-T350L). The first-order
diffraction is retroreflected and its polarization turned by 90 ◦,
as illustrated in the upper left part of Fig. 1. The double-pass
configuration induces a shift of the fundamental frequency νL

by 2 νAOM which can be adjusted up to 320 MHz. A polarizing
beam splitter then deflects the frequency-shifted radiation and
sends it through an optical fiber to an amplified, spectrally
broadened, and frequency-doubled optically stabilized ultra-
low-noise frequency comb (MenloSystems, FC1500-ULN &
M-VIS). The repetition rate of the frequency comb is locked to
an ultrastable laser, the frequency of which is referenced to an
SI-traceable frequency standard, as characterized in Ref. [45].
The output of the spectrally broadened frequency comb is dis-
persed with a reflective grating and the spectral components
around νL are selected and spatially overlapped with the laser.
The beat, with frequency

νb = νc − νL′ (1)

between the shifted laser frequency νL′ = νL + 2 νAOM and
the spectrally closest frequency-comb tooth νc, is recorded
using a balanced photodiode (Thorlabs, PDB425A-AC) and
processed using the electronic circuit depicted in Fig. 2. A
bandpass filter centered at 60 MHz is used to suppress beat
frequencies originating from neighboring comb teeth. The rf
beat signal is amplified with an automatic-gain-control (AGC)
amplifier and sent to a frequency counter (K+K Messtechnik,
FXM50). A fraction of the rf signal is used to establish a
phase-lock of the Ti:Sa laser to the frequency comb. To this
end, the beat signal is amplified again and fed to a phase-
frequency detector (PFD) (Analog Devices, HMC403), where
νb is compared to a 60 MHz local oscillator. The error signal
is transmitted to the control box of the ring laser [46] via
an isolation amplifier (IA). The frequency components in the
range 0–20 MHz are isolated with a diplexer, preamplified,
and distributed to an inverting bipolar high-voltage amplifier
(APEX Microtechnology, PA90) and an amplifier (Comlinear,
CLC103). The amplified signals are applied to the intracav-
ity EOM as shown in Fig. 2. This frequency-offset-locking
scheme provides a phase lock of the Ti:Sa ring laser to the
ultra-low-noise frequency comb and makes νL SI traceable.

FIG. 2. Schematic electric-circuit diagram of the laser-
stabilization electronics (see text for details). Color-shaded inset:
Spectral density (SD) of the in-loop beat note νb recorded with
a bandwidth of 3 kHz with (black) and without (gray) active
stabilization using the intracavity EOM.

C. Detection of the nkm ← 2s transition

The nkm ← 2s excitation is carried out in the center of two
electropolished stainless-steel plates separated by ∼2.1 cm
and designed for the application of homogeneous electric
fields. A ring electrode consisting of four segments is inserted
between the two plates to eliminate all line-of-sight trajecto-
ries of charged particles to insulators. This measure effectively
prevents accumulation of charges near the excitation volume
and is crucial to reduce stray electric fields. The segmented
geometry enables one to apply transverse electric fields for
stray-field compensation. A short plate distance of 2.1 cm
between the ion-repeller plate and the grounded extraction
plate was chosen to be able to generate electric fields up to
6 kVcm−1 in less than 29 ns with a home-built 12.5 –kV low-
noise high-voltage switch. With such fields, Rydberg states
with a principal quantum number as low as 20 can be effi-
ciently field ionized (see Fig. 7 below).

The electronic circuit was conceived to combine the high
voltage pulse with low-noise dc potentials (2Vdc) on the re-
peller plate using a 20-bit digital-to-analog low-noise voltage
source. This enabled us to either minimize stray-electric-field
components or to apply well-defined electric fields in the z
direction. The only openings in the electrode structure sur-
rounding the photoexcitation region are 5-mm-diameter holes
along the molecular-beam axis and 9-mm-diameter holes for
the UV laser beam.
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D. Doppler-shift cancellation

The inset of Fig. 1 schematically describes the photoex-
citation geometry, where �v is the H(2s)-atom velocity and
�k the wave vector of the forward-propagating (blue) and re-
flected (red) UV radiation. Any deviation δα from 90 ◦ of
the angle between the laser beam and the supersonic beam
leads to a first-order Doppler shift. To cancel this shift, we
choose δα to be large enough so that the spectral lines from
the forward-propagating and reflected UV laser beams do
not overlap. In addition, a 180 ◦ reflection angle is enforced
through an active-stabilization feedback system, based on a
design introduced in Refs. [37,47,48]. This procedure re-
sulted in a mirror-symmetric double-line profile with center
at the first-order Doppler-free frequency [49]. Choosing δα

as close to zero as possible, as advocated in Refs. [47,48],
turned out not to be practical in our case because the non-
thermal nature of the H(2s)-atom velocity distribution made
it challenging to extract the central frequency from the line
shapes under conditions where the fine structure is not fully
resolved.

An aberration-free set of four antireflection-coated lenses
[50] with an effective focal length of 21.35 mm is used to col-
limate the diverging beam emerging from a pure-silica-core,
polarization-maintaining, single-mode optical fiber (mode-
field diameter 2.3 µm), resulting in a parallel beam with a
M2 value of ∼1.02. The focus of the resulting Gaussian beam
is located ∼20 m beyond the chamber. Consequently, the re-
flected beam almost exactly retraces the incoming beam and
the change of wavefront curvature is negligible.

The active stabilization of the alignment of the 180 ◦ re-
flecting mirror is achieved by dithering its tip and tilt angles
by applying sinusoidal electric potentials to piezoelectric ele-
ments installed at the back of the mirror holder (see Fig. 1).
The dithering leads to a modulation of the incoupling effi-
ciency of the reflected beam into the silica-core fiber beyond
the lens system. These modulations are detected with an au-
tobalanced photodiode (PD). The dithering frequencies are
selected to minimize cross talk between the motions of the
tip and tilt axes. The error signal used to correct the mirror
position is produced by lock-in amplifiers (LIA) (Femto, LIA-
MVD-200L) connected to a proportional-integral controller
(PI). To compensate slow drifts, the time constant of the
feedback loop was chosen to be 0.1 s.

III. THEORETICAL DESCRIPTION OF RYDBERG STATES
OF THE H ATOM IN ELECTRIC FIELDS

The energy levels of the H atom in a static homoge-
neous electric field �F = (0, 0,F ) are eigenvalues of the
Hamiltonian

Ĥ = Ĥ0 + eF ẑ, (2)

where Ĥ0 is a diagonal matrix containing the field-free
energies of the |n� j f m f 〉 states with principal quantum num-
ber n, orbital angular momentum quantum number �, total

(a)

(b)

(c)

FIG. 3. Stark effect in the n = 20, mf = 0 manifold of the H
atom. (a) Field dependence of the k = 0 state revealing a quadratic
shift below 50 mVcm−1 caused by the intramanifold mixing of differ-
ent orbital-angular-momentum components, and a smaller quadratic
shift at larger fields arising from the interaction between different n
manifolds. (b) Overview of the field dependence of all m� = 0 Stark
states, which is essentially linear. (c) Calculated spectra for different
electric-field strengths and electric-field vectors �F pointing parallel
or perpendicular to the laser polarization �εp.

angular momentum quantum number without nuclear spin j,
total angular momentum quantum number f , and associated
magnetic quantum number m f . The field-free hyperfine-
centroid energies, including terms arising from relativistic,
quantum-electrodynamics (QED), and finite-nuclear-size cor-
rections, can be accurately calculated using Eqs. (7)–(41)
of Ref. [10] and the latest recommended physical constants
(2018 CODATA, see Ref. [51]). To obtain the field-free
energy-level structure at high n values, we used Bethe
logarithms tabulated in Ref. [52] and included the hyper-
fine splittings using the analytical expressions provided in
Ref. [53]. The calculated structure of the m� = 0 levels at
n = 20 is depicted in the inset of Fig. 3(b).

The operator eF ẑ in Eq. (2) describes the effect of the
external field. The perturbation can be treated in excellent
approximation in a nonrelativistic framework, and relativis-
tic corrections to the Stark effect as discussed in Ref. [54]
become negligible as n increases. eF ẑ only contributes off-
diagonal elements connecting zero-field states differing in �

by ±1. These matrix elements can be expressed in analytic
form using standard angular-momentum algebra (see, e.g.,
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Refs. [55,56]) as

〈n′�′ j′ f ′m′
f |ẑ|n� j f m f 〉 = (−1)� f +� j+��−m′

f +I+S

(
�′ 1 �

0 0 0

)(
f ′ 1 f

−m′
f 0 m f

){
j′ f ′ I
f j 1

}{
�′ j′ S
j � 1

}

×
√

�( f ′)�( f )�( j′)�( j)�(�′)�(�)
〈
n′�′∣∣r|n�〉, (3)

where the expressions in parentheses and curly parentheses
are Wigner 3j and 6j symbols, respectively; �(x) = 2x + 1,
�x = x′ − x, and 〈n′�′|r|n�〉 are radial integrals connecting
the r-dependent parts of the solutions of the Schrödinger
equation of the H atom (see Eqs. (63.2) and (63.5) of Ref. [9]).
Restricting the calculations of the Stark effect to a single n
value, one obtains an intramanifold quadratic Stark effect at
low fields and a linear Stark effect at intermediate fields, as de-
picted in Fig. 3. The Stark states are commonly labeled by the
parabolic quantum numbers n1 and n2 or by their difference
k = n1 − n2 [9,57]. At intermediate field strengths, the states
can approximately be described by their k and m� values.
States of a given value of k form near degenerate groups with
m� values ranging from −(n − |k| − 1) to (n − |k| − 1) in
steps of 2. The k = 0 states, highlighted in red in Fig. 3, are
the only states retaining almost pure parity [(−1)n−1]. They
have a zero electric dipole moment and are insensitive to the
field over a large range of fields, which makes them attractive
for precision measurements, except at fields very close to zero.
All other states exhibit a dipole moment in the field. At inter-
mediate to high field strengths, the coupling between states
of different n values induced by the field becomes significant
and the states start exhibiting an intermanifold quadratic Stark
effect. This behavior is displayed on an enlarged vertical scale
for m f = 0 in Fig. 3(a). To reliably calculate Stark shifts
in this field range, it is necessary to include basis states of
neighboring n values until convergence with the size of the
basis set is reached.

Figure 4 presents the decomposition of the n = 20, k = 0
Stark states with m f = 0 − 2 in the |� j f m f 〉 basis. For each
m f value, the eigenstates possess contributions from up to
four hyperfine-structure components, as indicated by the color
labels. The intensities of transitions from the 2s level corre-
spond to the coherent squared sum of the p characters in the
evaluation of electric-dipole-moment matrix elements.

Figure 3(c) depicts calculated intensity distributions in
spectra of the n = 20 ← 2s transitions at field strength below
1 Vcm−1 and for laser polarizations parallel and perpendicular
to the dc electric field. At fields below 20 mVcm−1, corre-
sponding to typical stray fields, the center of gravity of the
distribution depends on the polarization and varies strongly
and nonlinearly with the field strength, making precision mea-
surements prone to systematic uncertainties. This behavior
explains why high-n Rydberg states are usually avoided in
precision measurements. However, in the linear regime of
the Stark effect, i.e., above 0.2 Vcm−1 at n = 20, the spectra
regain a regular intensity pattern and the spacings between the
Stark states encode the field strength. When the polarization
is parallel to the field (π transitions), the intensity is strongest
at the outer edges of the manifold and vanishes at k = 0,
for even n values because k = 0, m� = 0 states do not exist,

and for odd n values because k = 0 states have vanishing p
character. When the polarization is perpendicular to the field,
the opposite behavior is observed [see right panel of Fig. 3(c)].

Consideration of Fig. 3 leads to the following conclu-
sions concerning precision spectroscopy in high-n states of
hydrogen-like systems:

(1) Because of the nontrivial field dependence of the line
profiles, precision measurements are not attractive in the re-
gion of the intramanifold quadratic Stark effect.

(2) In the linear regime of the Stark effect, regular spectral
patterns are restored and the states with |k| � 0 form pairs of
levels with Stark shifts of opposite sign. The positions of the
k �= 0 states can be used for the electric-field calibration, as
will be demonstrated in Sec. IV.

(3) If an easily calculable shift from the Bohr en-
ergy (−hcRHn−2) arising from the quadratic Stark effect is
disregarded, the k = 0 Stark states are essentially field inde-
pendent. Consequently, spectra of k = 0 Stark states in the
linear regime are not subject to broadening by inhomogeneous
fields and their positions can be converted into the Bohr en-
ergy by adding the calculated Stark shift [see red curves in
Fig. 3(a)].

(4) The linear Stark manifold is thus perfectly suited for
metrological purposes, in particular for precise determination

FIG. 4. Expansion coefficients of the k = 0, |mf | = 0, 1, and 2
Rydberg-Stark wave functions in the |l j f mf 〉 angular-momentum
basis as labeled in the figure. Only basis states with odd
orbital-angular-momentum quantum numbers make significant
contributions.
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FIG. 5. Energy level structure of the eight n = 20, k = 0 Stark
states with m� = 1 character, calculated at an electric field strength
F = 0.8 V cm−1. These states split into two groups of four states
each, separated by ∼600 kHz. The Zeeman effect induced by a
magnetic field pointing along the quantization axis is schematically
illustrated on the right side and lifts all remaining degeneracies.

of the Bohr energy. It has previously been used to determine
the binding energy of Rydberg states of H2 [58].

The wave functions of the Stark states can be used to
estimate their magnetic moments and systematic shifts aris-
ing from the Zeeman effect caused by residual magnetic
fields, as illustrated in Fig. 5 with the example of the k =
0, |m�| = 1 Stark states. In this case, the electric field splits
the structure into two m f = 0, two m f = 1, and one m f = 2
components and a total of eight states. The magnetic moments
are given by the relative orientations of the electron orbital-
angular-momentum, electron-spin, and nuclear-spin vectors.
A magnetic field parallel to the electric field further splits
these components according to their magnetic moments, as
displayed schematically on the right-hand side of Fig. 5. Be-
cause the Zeeman shifts are symmetric and extremely small
in a magnetically shielded environment (less than 2.4 kHz for
μ = 2 µB and |B| � 100 nT), we conclude that the Zeeman
effect in low-m� states can be neglected in metrological ap-
plications relying on Stark states in the linear regime. This
is also the case for perpendicular magnetic-field components
because the corresponding Zeeman effect couples states with
�m� = ±1 which are located in different k manifolds and thus
energetically too distant for significant mixing to occur.

As explained in Sec. II, the maximal electric-field strength
we apply to record Stark spectra is 2 Vcm−1. The applied
fields also induce shifts of the 2s level energies, which need
to be considered when extracting the absolute positions of the
Rydberg-Stark states. The Stark shifts of the 2s levels can be
calculated in the same manner as explained above for higher
n values. The calculated shifts are displayed in Fig. 6. They
are positive and quadratic for small electric fields because the
dominant interactions are with the 2p1/2 states, which are lo-
cated energetically just below the 2s states. When determining
the absolute positions of the nkm Rydberg-Stark states from
spectra of the nkm ← 2s transitions, the 2s Stark shifts must
be added to the measured transition frequencies.
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FIG. 6. Stark shifts of the metastable 2s levels of the H atom
calculated for electric fields in the range between 0 and 2 Vcm−1.

IV. RESULTS

Figure 7 displays pulse-field-ionization (PFI) spectra of
the n = 20 Stark manifold recorded from the 2s( f = 1)
hyperfine level using laser radiation polarized linearly in
the direction orthogonal to the applied dc electric field Fdc.
The upper (lower) trace was recorded by field ionizing the
Rydberg states with a pulsed field FPFI pointing in the same

FIG. 7. PFI spectra of the n = 20 Rydberg-Stark states of H
recorded from the 2s( f = 1) hyperfine component in an electric field
Fdc ≈ 200 mVcm−1. The direction of the strong pulsed electric-field
(FPFI = 5.7 kVcm−1) used for ionization was set parallel to F↑↑

dc

to record the upper spectrum and antiparallel F↑↓
dc to record the

lower, inverted spectrum. The red and blue stick spectra represent
the calculated intensity distributions. Inset: The alignment of the two
fields leads to ionization without change of the field polarity (red) or
to ionization after a diabatic state inversion upon reversal of the field
polarity.
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(opposite) direction as the dc field [FPFI = 5.7
kVcm−1,Fdc = 0.2 Vcm−1(−0.2 Vcm−1)]. The orthogonal
laser-polarization arrangement led to the observation of
dominant transitions to Stark states of even k values, as
assigned at the top of the figure. The intensity distributions
in both spectra are very similar, except at the edges of the
manifold. Whereas the intensities of the transitions to the
highest k states (k � 14) are strongly depleted in the upper
spectrum, the lowest k states (k � −14) are depleted in the
lower spectrum. The reason for the disappearance of the
intensities at the edges of the Stark manifold are twofold:
First, the transition dipole moment gradually decreases with
increasing |k| value. Second, the ionization rates of the Stark
states that are shifted to higher energies by the pulsed field
rapidly decrease with increasing k value. In the case of the
upper spectrum, these states are those observed at the highest
frequencies. For the lower spectrum, they are observed at
the lowest frequencies because of the reversal of the sign
of k when the field polarity changes upon application of the
pulsed field, which diabatically inverts the Stark manifold,
as schematically illustrated in the inset. This interpretation
is fully supported by calculations of the spectral intensities,
as depicted in the red and blue stick spectra in Fig. 7.
These intensities were obtained by multiplying the squared
transition dipole moments calculated as explained in Sec. III
with the field-ionization probabilities over the 80-ns-long
detection window calculated using the analytical expressions
reported by Damburg and Kolosov [59].

Before recording the lower spectrum in Fig. 7, the
transverse stray fields were carefully compensated and no
deviations from a perpendicular arrangement of the linear
laser polarization with respect to the applied electric field
could be detected. Under these conditions, transitions to Stark
states of odd k values have zero intensity. In the case of the
upper spectrum, a weak transverse stray field made the Stark
states with odd k values optically accessible. Transitions to
these states are strongest at the edges of the manifold and
weakest at the center. The calculated intensities of transitions
to odd k states in the presence of the transverse stray field
(∼10 mVcm−1) are depicted as gray sticks in Fig. 7. They
are only observable at the low-frequency edge of the Stark
manifold because the Stark states at the high-frequency edge
are not efficiently ionized by the pulsed field, as explained
above. The good agreement between measured and calcu-
lated intensity distributions enables us to conclude that the
Rydberg-Stark states located near the center of the n = 20
manifold are fully ionized by the 5.7 kVcm−1 pulsed field
used in the experiments.

Figure 8 displays a typical spectrum of transitions to the
k = 0,±2 Stark states of the n = 20 manifold recorded from
the H(2s, f = 1) state using laser radiation with linear polar-
ization orthogonal to the 0.8 Vcm−1 dc field. The spectrum
was recorded at an angle deviation δα = 1.1 mrad from exact
orthogonality between the H-atom beam and the laser beam,
leading to two Doppler components per k state, separated by
6.28 MHz. The two Doppler components are slightly asym-
metric with mirror-symmetric line shapes [opposite sign of
γ in Eq. (4) below]. To optimize the data acquisition rate
when recording the Stark spectra, the frequency was scanned
in steps of 400 kHz within the line profiles and of 2 MHz
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FIG. 8. (a) Typical experimental (dots) and fitted (blue) spec-
tra of the three (k = 0, ±2) Rydberg-Stark states near the center
of the n = 20 Stark manifold of H, each exhibiting two Doppler
components. (b) Weighted residuals in the spectral regions where the
Poisson noise dominates.

between the lines. In addition, the data points within the spec-
tral lines were obtained by averaging over 500 experimental
cycles (i.e., over 20 s), whereas only 100 cycles were averaged
for data points between the lines. The central frequency, the
electric field strength, and additional parameters were deter-
mined in a least-squares fit to the experimental data (black
dots) based on the following line profile for each k value:

gk (ν) =
2∑

i=1

2∑
m f =−2

IiIm f (F ) exp

{
−[

ν − ν
i,m f

0 (F , γ )
]2

2
(
σ 2

D + |k|σ 2
S

)
}

×
[

1 + erf

(
(−1)iγ

(
ν − ν

i,m f

0 (F , γ )
)

√
2σD

)]
, (4)

with

ν
i,m f

0 (F , γ ) = ν0 + ν
m f

S (F ) + (−1)i{νD − δν(γ )}. (5)

In Eqs. (4) and (5), i (= 1, 2) is an index specifying the
Doppler component, ν0 is the transition frequency to the
reference position (−cRH/n2 ) of the calculated Stark map of
the n = 20 levels (see Fig. 3), ν

m f

S (F ) is the field-dependent
Stark shift of the m f level, νD is the Doppler shift arising
from the angle deviation δα, and δν(γ ) is a frequency offset
used to compensate the shift of the intensity maximum of the
asymmetric line profiles from the centers of the hypothetical
symmetric profiles. This shift is introduced to reduce the cor-
relation between the asymmetry parameter γ and νD in the
least-squares fit. σD is the Doppler width and σS accounts for
the broadening of the |k| = 2 lines arising from weak field
inhomogeneities in the photoexcitation volume. As mentioned
in Sec. II A, the asymmetry of the line profiles originate from
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TABLE I. Results obtained in the least-squares fit of the line
profiles based on Eqs. (4) and (5).

Fitted quantity Value

ν0/kHz 0(26) (blinded)
F/(V cm−1 ) 0.8076(3)
νD/MHz 3.16(5)
σD/MHz 1.56(7)
σS/MHz 0.27(6)
γ 0.65(18)

the nonthermal velocity distribution caused by the 2s ← 1s
excitation.

The fit of the line profiles depicted in Fig. 8 resulted
in the parameters listed in Table I. These parameters are
helpful in characterizing the experimental conditions. For
instance, the homogeneous component of the field is found
to correspond closely to the 0.8 Vcm−1 applied experimen-
tally with an uncertainty of only 0.4‰ or 300 µVcm−1. The
electric field inhomogeneity leads to a broadening of the
k = ±2 Stark components and is well represented by a field
gradient of 12 ± 3 mV/ cm2 , which corresponds to a field
change of 2.4(6) mV/cm−1 over the 4 mm diameter of the
UV laser beam. The Doppler shift νD reflects the deviation
angle δα, which in this case is 1.1 mrad. σD is a measure of
the transverse velocity distribution, which in the present case
corresponds to a temperature of 40 µK and is the result of
the geometric constraints along the supersonic beam imposed
by the skimmers and the 2s ← 1s excitation. The asymmetry
parameter is alignment specific and typically varied between
-2 and 4. The central frequency was arbitrarily set to zero
because the absolute frequency determination is still in a
blinded phase. The weights used for the least-squares fits are
determined in an iterative procedure to approach a normal
distribution of the residuals.

The overall data set collected so far involves more than
500 individual spectra of transitions recorded from the initial
2s( f = 1) and 113 from the 2s( f = 0) hyperfine state to
n = 20 Rydberg states and 35 spectra from the 2s( f = 1)
to n = 24 Rydberg states. These spectra were recorded for
different valve temperatures, electric-field strengths, and de-
viation angles δα to investigate possible sources of systematic
uncertainties.

The main objective of the study presented here was to
verify that the central frequencies extracted from the spec-
tra do not depend on the strength of the applied electric
field. A typical set of four measurements recorded at nom-
inal field strengths of 0.4, 0.8, 1.2, and 1.6 Vcm−1 under
otherwise identical experimental conditions (beam velocity
of 1060 ms−1 and deviation angle δα of 1.1 mrad) is pre-
sented in Fig. 9. At the scale of the figure, the Stark effect
appears essentially linear. Table II summarizes the relevant
line-shape parameters [see Eqs. (4) and (5)] extracted from
the fits of the line shapes to the experimental data. The cen-
tral frequencies corrected for the Stark shift of the 2s state
agree within the combined uncertainties and do not reveal
any systematic dependence on the field strength within the
20 kHz accuracy of the measurements. The field strength
corresponds to the applied electric potential within the ex-
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FIG. 9. Spectra of the n = 20, k = 0, ±2, |m�| = 1 ← 2s( f =
1) transitions measured when applying nominal electric fields of 0.4,
0.8, 1.2 and 1.6 Vcm−1, respectively. Each spectrum represents the
sum of three independent scans as described in Section II. Right:
Relative positions of the line center ν0 with respect to the line center
measured at a nominal field strength of 0.4 Vcm−1. The error bars
represent 1σ uncertainties.

pected uncertainties resulting from the geometry of the
electrode plates and the electronic circuits used to apply the
potentials. The field-dependent line broadening does not re-
veal a significant dependence on the applied field strength,
which suggests that the applied field distribution does not
contribute to the observed field inhomogeneity. The slight
variations in the values of νD and σD reflect small changes
in the day-to-day alignments of the beams and the supersonic-
beam properties.

The data set collected so far was used to determine
the hyperfine splitting in the 2s level as well as the dif-
ference between the Bohr energies of the n = 20 and
n = 24 Rydberg states. Figure 10 presents spectra of the
transitions to the n = 20, k = 0,±2 Stark states recorded
from the 2s( f = 0) (red) and 2s( f = 1) (blue) states as
an illustration. Taking the difference in the central fre-
quencies ν0 [see Eq. (5)] for the two sets of data (197
spectra and 50 spectra for f = 1 and f = 0, respectively)

TABLE II. Line-shape parameters extracted from fits to the
spectra of the n = 20, k = 0, ±2, |m�| = 1 ← 2s( f = 1) transi-
tions measured when applying nominal electric fields of 0.4, 0.8, 1.2,
and 1.6 Vcm−1, respectively.

Fitted quantity 0.4 Vcm−1 0.8 Vcm−1 1.2 Vcm−1 1.6 Vcm−1

ν0/kHz 0(21) 21(18) −20(21) −0(20)
F/(Vcm−1 ) 0.4012(4) 0.7990(3) 1.1882(3) 1.5794(3)
σS/MHz 0.31(10) 0.22(9) 0.17(14) 0.23(6)
νD/MHz 4.26(5) 4.61(4) 5.20(5) 5.18(3)
σD/MHz 2.02(10) 1.78(5) 2.12(5) 1.81(5)
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FIG. 10. Spectra of the n = 20, k = 0, ±2, |m�| = 1 ← 2s( f =
1) (blue) and n = 20, k = 0, ±2, |m�| = 1 ← 2s( f = 0) (red). The
difference of the two central frequencies ν0 corresponds to the hyper-
fine interval of the 2s state.

yields a value of 177.546(11) MHz for the 2s hyperfine
splitting, which corresponds within the 1σ uncertainty to the
much more precise value of 177.55683887(85) MHz deter-
mined by Ramsey spectroscopy in the n = 2 manifold [60].

The difference in the Bohr energies of the n = 20 and
24 Rydberg states was determined in an analogous manner
from spectra of the n = 20 and 24 Stark states recorded
from the 2s( f = 1) state as illustrated in Fig. 11. The dif-
ference of the two ν0 values is 2 511 705.793(10) MHz and
also agrees within the experimental uncertainty with the value
cRH(1/202 − 1/242) = 2511705.802 MHz. The uncertainty of
10 kHz results from the addition in quadrature of the 7 kHz
uncertainties of the blinded ν0 values extracted from the ex-
perimental data.

V. CONCLUSION

In this article, we have outlined an experimental approach
to determine R∞ from k = 0, ±2, |m�| = 1 Rydberg-Stark
spectra of H. We have demonstrated that systematic errors
resulting from the Stark effect are insignificant within the
∼11 kHz precision of the four data sets used as illustrations
(see Fig. 9). We have also demonstrated that the differences
between the Bohr energy at n = 20 and the positions of the
f = 0 and 1 hyperfine components of the 2s state are con-
sistent within the 11 kHz statistical uncertainty of the present
determination with the more precise value of the 2s ( f = 0) −
( f = 1) interval determined recently by Ramsey microwave
spectroscopy [60].

Finally, we have determined the difference between the
Bohr energies at n = 20 and 24 and found the results
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FIG. 11. Spectra of the n = 20, k = 0, ±2, |m�| = 1 ←
2 s( f = 1) (top) and n = 24, k = 0, ±2, |m�| = 1 ← 2 s( f = 1)
(bottom). The energy scale has its origin at the n = 20 Bohr energy
which is located ≈2.2 MHz above the n = 20, k = 0 Stark states
(see Fig. 3). The Bohr energies are indicated by the dashed lines in
the two panels.

to agree with Bohr’s formula using the CODATA 2018
recommended value for RH [10]. The data presented in this
article was collected over a period of several months with
frequent realignment of the optical system and supersonic
beam. We did not observe inconsistencies in any of the rel-
ative frequencies determined for this article over this time.
The 2s( f = 0) − ( f = 1) and ν0(n = 24) − ν0(20) intervals
presented in this article correspond to differences of large
frequencies, and systematic errors largely cancel out when
building the differences. The main potential source of system-
atic errors in our method originates from the Doppler effect
and a possible imperfect cancellation of the Doppler shifts.
To characterize such uncertainties, measurements of absolute
frequencies are underway, in which we systematically vary the
velocity of the supersonic beam and the deviation angle δα.
Absolute transition frequencies will be reported when these
measurements are completed.
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