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We investigate whether it is possible to teleport the coherence of an unknown quantum state from Alice to
Bob by communicating a smaller number of classical bits in comparison to what is required for teleporting
an unknown quantum state. We find that we cannot achieve perfect teleportation of coherence with one bit of
classical communication for an arbitrary qubit. However, we find that if the qubit is partially known, i.e., chosen
from the equatorial and polar circles of the Bloch sphere, then teleportation of coherence is possible with the
transfer of one cbit of information when we have maximally entangled states as a shared resource. In the case
of the resource being a nonmaximally entangled state, we can teleport the coherence with a certain probability
of success. In a general teleportation protocol for coherence, we derive a compact formula for the final state
at Bob’s laboratory in terms of the composition of the completely positive maps corresponding to the shared
resource state and a joint positive operator-valued measure (POVM) performed by Alice on her qubit and the
unknown state. Using this formula, we show that teleportation of the coherence of a partially known state with
real matrix elements is perfectly possible with the help of a maximally entangled state as a resource. Furthermore,
we explore the teleportation of coherence with Werner states and show that even when Werner states become
separable, the amount of teleported coherence is nonzero, implying the possibility of teleportation of coherence
without entanglement.
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I. INTRODUCTION

Quantum coherence [1] and entanglement [2] are two
central features in quantum theory that make the theory coun-
terintuitive and can also be utilized as a resource to perform
important information-theoretic and computational tasks. Mo-
tivated by this increasing importance, a general study from the
perspective of resource theory is being formulated. Several
measures based on resource-theoretic approaches are avail-
able to quantify the coherence and the entanglement present
in a quantum system [1–19]. Quantum coherence can be inter-
preted in several ways, such as a measure of nonclassicality in
physical systems, a measure of superposition, and a quantity
capturing the wave aspect of the state vector [20–22]. It is also
observed that perfect cloning and broadcasting of quantum co-
herence are not possible [23,24]. Coherence acts as a resource
in tasks like quantum algorithms [25–27], biological pro-
cesses [28,29], quantum metrology [30–34], reference-frame
alignment [35], and thermodynamic tasks [36–40]. From the
point of view of resource theory, coherence falls into two
classes, namely, speakable coherence and unspeakable coher-
ence [41]. The quantification of coherence involves a chosen
basis. In situations where the labeling of the chosen basis is
not important, the relevant notion of coherence is the speak-
able one, and in situations where the labeling or the identity

of the basis elements matters, the relevant notion of coherence
is the unspeakable one. The coherence involved in quantum
metrology, reference-frame alignment, and thermodynamic
tasks is unspeakable coherence, whereas the coherence in-
volved in computational, cryptographic, and communication
tasks is speakable coherence.

In the last two decades, several developments have been
made in quantum-based technologies. These include quan-
tum repeaters for communicating over large distances [42],
quantum teleportation [43], and broadcasting of entanglement
[44–47]. They were introduced in the process with the vision
of having quantum networks [48–50]. In particular, “quantum
teleportation” is one of the most fascinating discoveries of
the 20th century [43]. The entangled states which are useful
for teleportation are identified and detected in this process
[51–54]. Research was also done to implement the teleporta-
tion process, if not perfectly, at least with a certain probability
of success [55]. Recently, it was also utilized to understand
phenomena like closed timelike curves [56]. It has been
demonstrated in the laboratory with the help of various re-
sources like photonic qubits, nuclear magnetic resonance [57],
optical modes [58–66], atomic ensembles [67–70], trapped
atoms [71–75], and solid-state systems [76–79]. Efficient tele-
portation was also achieved in terms of distance [80,81].
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In this paper, in general, we address the question of
whether we can teleport the coherence of a quantum state with
a smaller number of classical bits than what is required to
teleport the state itself. It is already known that teleportation of
an unknown state is possible with the transfer of two classical
bits of information. The process of teleportation of a known
state is known as remote state preparation, and it requires
the transfer of one bit of information for the process to be
(only for equatorial qubits) perfect [82]. It is obvious that once
all the information about the state is recreated in a different
location, the coherence of the state is also transferred. There
are many instances where it has been seen that the coherence
of the state is not all the information about the state [23]. So
a natural question is, Will the transfer of coherence in either
known or unknown cases require a smaller number of bits? We
find in this paper that we are able to teleport the coherence of a
partially known state with one bit of classical communication
and with a maximally entangled resource when the qubits
are taken from equatorial and polar circles. In addition, we
show that if we start with a nonmaximally entangled state as
a resource, then we can teleport coherence probabilistically.
Here, we come up with a compact formula for the final state
at Bob’s laboratory. It is written in terms of the composition
of the completely positive maps corresponding to the shared
resource state and the joint positive operator-valued measure
(POVM) performed by Alice on her qubit and the unknown
particle. With this, we also determine the amount of coherence
that is teleported when the shared resource state is maximally
entangled mixed states and Werner states. We also discuss the
general teleportation of coherence for an initial mixed state
as an input state at Alice’s laboratory. The results of the paper
stand out from the perspective of transferring the coherence of
a coherent state to a state where there is no coherence. This is
important in a quantum network since coherence is a useful
resource. In a quantum network, one node can teleport the
coherence to another node where it is required. Here, we show
that this is possible without actually transferring all of the
information about the state. Interestingly, we are able to show
this can be done much more cost-effectively with a smaller
number of classical bits if the states are from the equatorial
or polar circles. Our results are useful from the perspective
of work extraction as well. Korzekwa et al. [19] showed the
existence of thermal machines that can extract work from
coherence arbitrarily well. These machines have to operate
on only individual copies of a state. When Alice and Bob
share a maximally entangled state, before the teleportation of
coherence, the coherence on Bob’s side is zero, and hence, no
work extraction is possible. However, after the teleportation,
Bob can use the teleported coherence for work extraction.

This paper is organized as follows: In Sec. II, we study
the possibility of the teleportation of quantum coherence of a
pure state with maximally as well as nonmaximally entangled
resources using fewer cbits. In Sec. III, we investigate the
same for an arbitrary mixed state with a maximally entangled
mixed state and a Werner state as resources and demon-
strate the possibility of teleporting some fraction of the initial
coherence without entanglement. We conclude the paper in
Sec. IV.

II. TELEPORTATION OF QUANTUM COHERENCE
WITH PURE ENTANGLED STATES AS A RESOURCE

In this section, our aim is to address the question of whether
we can perfectly teleport the coherence of an unknown state
with a smaller number of classical bits than what is required
for the teleportation of the state. Before we present our proto-
col, let us briefly summarize the notion of quantum coherence.

Let H = Cd be the d-dimensional Hilbert space associated
with the qudit of interest. Here, S(H) is the set of positive
trace-class linear operators, with the trace being 1 in Hilbert
space H. For a state ρ ∈ S(H), the coherence of the state is
given by Cl1 (ρ) = ∑d

i �= j |〈i|ρ| j〉|, where {|i〉} is an orthonor-
mal basis of H. It is clear from the definition that the l1-norm
of coherence is basis dependent. The states which are diagonal
in the matrix representation with respect to this chosen basis
are defined as incoherent states. Therefore, the incoherent
states are of the form ρ = ∑d

i=1 λi|i〉〈i|. Let us denote the
set of all incoherent states by I ⊂ S(H). Quantum operations
on a physical system are mathematically represented by a
completely positive and trace-preserving (CPTP) linear map
� : B(H) → B(H), with B(H) being the set of bounded linear
operators on H. It is well known that the action of a CPTP
map � on a quantum state ρ can be represented as �(ρ) =∑n

i KiρK†
i , where

∑n
i K†

i Ki = I, with I being the identity
operator on H. This representation of a CPTP map is known
as the operator-sum representation, and the linear operators
Ki : H → H are called Kraus operators. Given a CPTP map,
its Kraus representation is not unique. A quantum operation
� is said to be incoherent if KiIK†

i ⊂ I for all i = 1, . . . , n.
Now any measure of coherence C is defined to be a func-

tional from the set of quantum states to the non-negative real
numbers such that the following constraints are obeyed.

(i) C(ρ) = 0 for all ρ ∈ I; that is, for all incoherent states,
the measure of coherence is zero.

(ii) The measure of coherence should not increase under
incoherent operations. If � is an incoherent operation, then
C(�(ρ)) < C(ρ).

(iii) It is strongly monotonic: It does not increase under
selective incoherent operations on average, i.e., C(

∑
i piρi ) <

C(ρ) for all {Ki} with
∑

i K†
i Ki = I and KiIK†

i ⊂ I , where

pi = Tr(KiρK†
i ) and ρi = KiρK†

i
pi

.
Let us denote the system whose state is the unknown quan-

tum state |ψ〉 as “system 1,” one part of the shared state in
Alice’s laboratory as “system 2,” and the other part on Bob’s
side as “system 3.” We imagine that Alice and Bob share
an entangled pair in the maximally entangled state |�+〉23 =

1√
2
(|00〉 + |11〉). An unknown state ρ1 = |ψ〉〈ψ | is given to

Alice, and it has an amount of coherence equal to C(ρ1).
We consider a general scenario where Alice performs a joint
measurement �i which is a POVM on the input particle and
half of the entangled pair, and

∑
i �i = I. Now, depending

on the measurement outcomes, Bob’s reduced state, which is
un-normalized, can be written as

ρ
(i)
3 = Tr12

[
�

(i)
12 (ρ1 ⊗ |�+〉23〈�+|)�(i)

12

]
, (1)

where we have adopted the notation that �
(i)
12 means �

(i)
12 ⊗ I.

After Alice communicates the measurement outcome to
Bob via a classical channel, Bob performs a local unitary, and
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we expect the coherence of the state at Bob’s location to have
the same coherence as that of the input state, i.e., C(ρ (i)

3 ) =
C(ρ). If this condition holds, then we say that teleportation is
complete.

In this paper, we start with a two-level system as an input
and an arbitrary two-qubit shared state as a resource. In par-
ticular, we also consider both maximally and nonmaximally
entangled states as shared resources. For an unknown qubit
on Alice’s side, we question whether we can teleport the
coherence of the qubit to Bob’s side with one bit of classical
communication or not. In each of these cases, we find that we
cannot do it perfectly with one bit of classical communication
universally. However, if we have a maximally entangled state
as a resource and we have partial knowledge about the state
of the input qubit, i.e., it is chosen from one of the two great
circles (equatorial and the polar circle) on the Bloch sphere,
coherence teleportation is possible perfectly with the use of
one cbit.

A. Teleportation of coherence of a qubit with a maximally
entangled state as a resource

The main idea is to teleport the coherence of an unknown
state |ψ〉 from Alice’s laboratory to Bob’s laboratory, rather
than the state itself. If, with the help of only one cbit, Alice
can teleport a state to Bob’s laboratory that has the same l1-
norm coherence as the unknown state, |ψ〉 = α|0〉 + β|1〉 ∈
C2, where α and β are complex numbers such that |α|2 +
|β|2 = 1, then the purpose is fulfilled.

The unknown quantum state |ψ〉 can be represented as

|ψ〉 = cos(θ/2)|0〉 + sin(θ/2)eiφ|1〉, (2)

where 0 � θ � π and 0 � φ < 2π (the exact values of θ and
φ are not known to us). The coherence of the state |ψ〉 in
terms of these parameters with respect to the computational
basis {|0〉, |1〉} is C(ψ ) = 2|αβ| = sin θ . Our aim is to have
coherence C(ψ ) = sin θ in Bob’s laboratory at the end of the
protocol.

In the standard teleportation protocol, Alice and Bob share
a maximally entangled state |�〉23 = |�+〉23 = 1√

2
(|00〉23 +

|11〉23) as a resource. It is evident that if we teleport the un-
known state itself, then the coherence also gets teleported. The
l1-norm coherence of all those states (before Bob’s unitary
operation) is 2 cos(θ/2) sin(θ/2), which is the same as the
coherence of the initial state. However, this still requires two
bits of classical information.

However, the interesting question will be whether perfect
teleportation of coherence can be done with a smaller number
of cbits. The main idea is that instead of performing a Bell
measurement, we perform a POVM measurement by adding
different Bell projectors in various combinations. Given four
Bell projectors, there are only three different ways we can add
them to form a complete measurement. Let us consider the
following situations in which the state shared between Alice
and Bob is

|�+〉 = 1√
2
(|00〉 + |11〉). (3)

Case I. Let Alice and Bob share a maximally entangled
state |�+〉. The combined state of the input and the shared

state can be expressed as

|ψ〉 ⊗ |�+〉 = 1

2

3∑
i=0

|Bi〉 ⊗ ui|ψ〉, (4)

where |Bi〉 are the four mutually orthogonal Bell states and ui

are the local unitary operations (I, σx, σy, σz ).
Alice, instead of performing a Bell measurement, performs

the following POVM on the input and half of the entangled
pair:

�
(0)
12 = |�+〉〈�+| + |�+〉〈�+|, (5)

�
(1)
12 = |�−〉〈�−| + |�−〉〈�−|, (6)

where |�±〉 and |�±〉 are standard Bell states given by

|�−〉 = 1√
2
(|00〉 − |11〉), (7)

|�+〉 = 1√
2
(|01〉 + |10〉), (8)

|�−〉 = 1√
2
(|01〉 − |10〉). (9)

After Alice performs the measurement given by the POVM
element �

(0)
12 she communicates her result to Bob. The state of

the particle in Bob’s laboratory is given by

ρ
(0)
3 = 1

p0
Tr12

[
�

(0)
12 (|ψ〉〈ψ | ⊗ |�+〉〈�+|)�(0)

12

]
,

where p0 = Tr123[�(0)
12 (|ψ〉〈ψ | ⊗ |�+〉〈�+|)�(0)

12 ]. There-
fore, Bob’s state can be expressed as

ρ
(0)
3 = I

2
+ Re(αβ∗)(|0〉〈1| + |1〉〈0|).

For the measurement with the POVM element �
(1)
12 , the

state of the particle in Bob’s laboratory is given by

ρ
(1)
3 = 1

p1
Tr12

[
�

(1)
12 (|ψ〉〈ψ | ⊗ |�+〉〈�+|)�(1)

12

]
,

where p1 = Tr123[�(1)
12 (|ψ〉〈ψ | ⊗ |�+〉〈�+|)�(1)

12 ]. There-
fore, Bob’s state can be expressed as

ρ
(1)
3 = I

2
− Re(αβ∗)(|0〉〈1| + |1〉〈0|).

The coherence of the state at Bob’s site for both cases is

Cl1 = 2|Re(αβ∗)| = cos(φ)sin(θ ) �= sin(θ ).

Interestingly, this equality will hold when cos(φ) = 1. This
condition actually tells us that if we have partial information
about the state of the qubit, i.e., it comes from the equatorial
circle, then the teleportation of the coherence is possible with
the help of only one cbit.

Case II. In this case, Alice performs the following POVM
on her part:

E (0)
12 = |�+〉〈�+| + |�−〉〈�−|,

E (1)
12 = |�−〉〈�−| + |�+〉〈�+|.

The state in Bob’s part after Alice performs the measurement
with POVM element E (0)

12 and communicates the results to
Bob is given by

ρ
(0)
3 = 1

p0
Tr12

[
E (0)

12 (|ψ〉〈ψ | ⊗ |�+〉〈�+|)E (0)
12

]
,
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where p0 = Tr123[E (0)
12 (|ψ〉〈ψ | ⊗ |�+〉〈�+|)E (0)

12 ]. Therefore,
Bob’s state can be expressed as

ρ
(0)
3 = I

2
+ iIm(αβ∗)(|0〉〈1| − |1〉〈0|).

The state in Bob’s part after Alice performs the measurement
with POVM element E (1)

12 and communicates the results to
Bob is given by

ρ
(1)
3 = 1

p1
Tr12

[
E (1)

12 (|ψ〉〈ψ | ⊗ |�+〉〈�+|)E (1)
12

]
,

where p1 = Tr123[E (1)
12 (|ψ〉〈ψ | ⊗ |�+〉〈�+|)E (1)

12 ]. Bob’s
state in this case can be expressed as

ρ
(1)
3 = I

2
− iIm(αβ∗)(|0〉〈1| − |1〉〈0|).

Now the l1-norm coherence of these two states turns out to be

Cl1
(
ρ

(0)
3

) = Cl1
(
ρ

(1)
3

) = 2|Im(αβ∗)|
= 2 sin φ cos(θ/2) sin(θ/2) �= 2 cos(θ/2) sin(θ/2).

Interestingly, the equality will hold when sin(φ) = 1. Like in
the previous case, if the qubit is partially known, i.e., it comes
from the polar circle, then the teleportation of coherence is
perfectly possible with the use of only one cbit.

Case III. If Alice performs the POVM

F (0)
12 = |�+〉〈�+| + |�−〉〈�−|,

F (1)
12 = |�+〉〈�+| + |�−〉〈�−|

on her part, the state in Bob’s part after Alice performs the
measurement with POVM element F (0)

12 and communicates the
results to Bob is given by

ρ
(0)
3 = 1

p0
Tr12

[
F (0)

12 (|ψ〉〈ψ | ⊗ |�+〉〈�+|)F (0)
12

]
,

where p0 = Tr123[F (0)
12 (|ψ〉〈ψ | ⊗ |�+〉〈�+|)F (0)

12 ]. Therefore,
Bob’s state can be expressed as

ρ
(0)
3 = I

2
.

The state in Bob’s part after Alice performs the measurement
with POVM element F (1)

12 and communicates the results to
Bob is given by

ρ
(1)
3 = 1

p1
Tr12

[
F (1)

12 (|ψ〉〈ψ | ⊗ |�+〉〈�+|)F (1)
12

]
,

where p1 = Tr123[F (1)
12 (|ψ〉〈ψ | ⊗ |�+〉〈�+|)F (1)

12 ]. Therefore,
Bob’s state can be expressed as

ρ
(1)
3 = I

2
.

So, in this case, with the help of one cbit, it is not possible
to teleport the coherence of the qubit, even if it is partially
known, because the final state has zero coherence. We show
that perfect teleportation of coherence is not possible univer-
sally with a maximally entangled state as a resource and a
POVM measurement on Alice’s side with the transfer of one
cbit of information. However, if the input qubit happens to be
from the equatorial and polar circles, then we can perfectly

teleport the coherence of the qubit with the help of one cbit of
information.

When the partially known qubit is not from the equatorial
and polar circles of the Bloch sphere, it is interesting to
see whether Bob can increase the teleported coherence by
applying any general unitary transformation on his part after
receiving the cbit from Alice so that the coherence of his qubit
becomes the same as the original coherence on Alice’s side.
Consider a general SU(2) matrix

U2×2 =
[

a b
−b∗ a∗

]
,

where a and b are complex numbers such that |a|2 + |b|2 = 1.
In case I, after the application of U , the new state denoted

by ρU will be

ρU = Uρ
�0
3 U † = U

[
1/2 Re(αβ∗)

Re(αβ∗) 1/2

]
U †.

The l1-norm coherence turns out to be
Cl1(ρU ) = 2|Re(αβ∗)||(a2 − b2)|

= 2|Re(αβ∗)|
√

1 − [2Re(ab∗)]2 �= 2|α||β|. (10)

Note that the maximum possible value of the quantity√
1 − [2Re(ab∗)]2 is 1. The right-hand side of Eq. (10) can,

at most, be 2Re(αβ∗), which is not equal to 2|α||β|, so the
application of unitary operators on Bob’s part does not give
any significant advantage. Similarly, for the other cases, it can
be shown that there is no general unitary operator that can
take all of Bob’s possible states to the state which will have
the coherence of the original states. Hence, although perfect
teleportation of quantum coherence is possible for specific
classes of states (states from the equatorial and polar circles),
universally, it is not possible even if Bob applies a unitary
transform on his part.

B. Teleportation of coherence with the help
of a nonmaximally entangled state

Here, we investigate whether we can teleport the coherence
of an unknown state using a nonmaximally entangled state and
by communicating one cbit of information. We will see that,
indeed, it is possible with a certain probability of success if
we have partial knowledge of the state.

Let the state shared between Alice and Bob be the follow-
ing:

|�〉AB = 1√
1 + |n|2

(|00〉 + n|11〉), (11)

where n is a complex number. Now let us consider the follow-
ing four mutually orthonormal vectors, which form a basis of
C2 ⊗ C2:

|�+
n 〉 = 1√

1 + |n|2
(|00〉 + n|11〉),

|�−
n 〉 = 1√

1 + |n|2
(n∗|00〉 − |11〉),

|�+
n 〉 = 1√

1 + |n|2
(|01〉 + n∗|10〉),

|�−
n 〉 = 1√

1 + |n|2
(n|01〉 − |10〉).
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Notice that these are nonmaximally entangled vectors in
C2 ⊗ C2.

Case I. Alice will perform the following POVM on her
part:

e(0)
12 = |�+

n 〉〈�+
n | + |�−

n 〉〈�−
n |,

e(1)
12 = |�−

n 〉〈�−
n | + |�+

n 〉〈�+
n |.

The state in Bob’s part after Alice performs the measurement
with POVM element e(0)

12 and communicates the results to Bob
is given by

ρ
(0)
3 = 1

p0
Tr12

[
e(0)

12 (|ψ〉〈ψ | ⊗ |�+
n 〉〈�+

n |)e(0)
12

]
,

where p0 = Tr123[e(0)
12 (|ψ〉〈ψ | ⊗ |�+

n 〉〈�+
n |)e(0)

12 ]. Therefore,
Bob’s state can be expressed as

ρ
(0)
3 = 1

1 + |n|4 |0〉〈0| + |n|4
1 + |n|4 |1〉〈1|

+ |n|2
1 + |n|4 2iIm(αβ∗)|0〉〈1|

− |n|2
1 + |n|4 2iIm(αβ∗)|1〉〈0|.

The probability of success for the POVM e(0)
12 to be clicked is

given by p0 = 1+|n|4
(1+|n|2 )2 .

The coherence of the state on Bob’s side is given by

Cl1 (ρ (0)
3 ) = 4|n|2

1 + |n|4 |Im(αβ∗)|

= 2|n|2
1 + |n|4 2 sin φ cos(θ/2) sin(θ/2)

�= 2 cos(θ/2) sin(θ/2).

Unlike the case discussed in the previous section, even if the
state of the input qubit is partially known, i.e., it is from the
polar circle of the Bloch sphere, the coherence is not perfectly
teleported. It is 2|n|2

1+|n|4 times the original coherence.
The state in Bob’s part after Alice performs the measure-

ment with POVM element e(1)
12 and communicates the results

to Bob is given by

ρ
(1)
3 = 1

p1
Tr12

[
e(1)

12 (|ψ〉〈ψ | ⊗ |�+
n 〉〈�+

n |)e(1)
12

]
,

where p1 = Tr123[e(1)
12 (|ψ〉〈ψ | ⊗ |�+

n 〉〈�+
n |)e(1)

12 ]. Therefore,
Bob’s state can be expressed as

ρ
(1)
3 = I

2
+ 2iIm(αβ∗)|0〉〈1| − 2iIm(αβ∗)|1〉〈0|.

This probability that the POVM e(1)
12 will click is given by p1 =

2|n|2
(1+|n|2 )2 .

The coherence of this state is given by

Cl1

(
ρ

(0)
3

) = 2|Im(αβ∗)|
= 2 sin φ cos(θ/2) sin(θ/2)

�= 2 cos(θ/2) sin(θ/2).

In this case if the partially known state happens to be from
the polar circle of the Bloch sphere, then the coherence is
perfectly teleported.

Case II. Alice performs the following POVM on her part:

π
(0)
12 = |�+

n 〉〈�+
n | + |�+

n 〉〈�+
n |,

π
(1)
12 = |�−

n 〉〈�−
n | + |�−

n 〉〈�−
n |.

The state in Bob’s part after Alice performs the measurement
with POVM element π

(0)
12 and communicates the results to

Bob is given by

ρ
(0)
3 = 1

p0
Tr12

[
π

(0)
12 (|ψ〉〈ψ | ⊗ |�+

n 〉〈�+
n |)π (0)

12

]
,

where p0 = Tr123[π (0)
12 (|ψ〉〈ψ | ⊗ |�+

n 〉〈�+
n |)π (0)

12 ]. Therefore,
Bob’s state can be expressed as

ρ
(0)
3 = 1

1 + |n|2 |0〉〈0| + |n|2
1 + |n|2 |1〉〈1|

+ |n|2
(1 + |n|2)(|α|2 + |β|2|n|2)

2Re(αβ∗)|0〉〈1|

+ |n|2
(1 + |n|2)(|α|2 + |β|2|n|2)

2Re(αβ∗)|1〉〈0|.

The probability that the POVM π
(0)
12 will click is given by

p0 = |α|2+|β|2|n|2
(1+|n|2 ) .

The coherence of the postmeasurement state on Bob’s side
is given by

Cl1

(
ρ

(0)
3

) = 4|n|2
(1 + |n|2)(|α|2 + |β|2|n|2)

|Re(αβ∗)|.

Here, also unlike the case discussed in the previous section,
even if the partially known state is from the equatorial circle
of the Bloch sphere, the coherence is not perfectly teleported.
It is 4|n|2

(1+|n|2 )(|α|2+|β|2|n|2 ) times the original coherence.
The state in Bob’s part after Alice performs the measure-

ment with POVM element π
(1)
12 and communicates the results

to Bob is given by

ρ
(1)
3 = 1

p1
Tr12

[
π

(1)
12 (|ψ〉〈ψ | ⊗ |�+

n 〉〈�+
n |)π (1)

12

]
,

where p1 = Tr123[π (1)
12 (|ψ〉〈ψ | ⊗ |�+

n 〉〈�+
n |)π (1)

12 ]. Therefore,
Bob’s state can be expressed as

ρ
(1)
3 = 1

1 + |n|2 |0〉〈0| + |n|2
1 + |n|2 |1〉〈1|

− |n|2
(1 + |n|2)(|α|2|n|2 + |β|2)

2Re(αβ∗)|0〉〈1|

− |n|2
(1 + |n|2)(|α|2|n|2 + |β|2)

2Re(αβ∗)|1〉〈0|.

The probability that the POVM π
(1)
12 will click is p1 =

|α|2|n|2+|β|2
(1+|n|2 ) .
The coherence of this state is given by

Cl1

(
ρ

(1)
3

) = 4|n|2
(1 + |n|2)(|α|2|n|2 + |β|2)

|Re(αβ∗)|.
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Here, too, perfect teleportation of coherence is not possible,
unlike in the case discussed in the previous section, even if the
partially known state is from the equatorial circle of the Bloch
sphere. It is 4|n|2

(1+|n|2 )(|α|2|n|2+|β|2 ) times the original coherence.
Case III. In this case Alice performs the following POVM

on her part:

f (0)
12 = |�+

n 〉〈�+
n | + |�−

n 〉〈�−
n |,

f (1)
12 = |�+

n 〉〈�+
n | + |�−

n 〉〈�−
n |.

The state in Bob’s part after Alice performs the measurement
with POVM element f (0)

12 and communicates the results to Bob
is given by

ρ
(0)
3 = 1

p0
Tr12

[
f (0)
12 (|ψ〉〈ψ | ⊗ |�+

n 〉〈�+
n |) f (0)

12

]
,

where p0 = Tr123[ f (0)
12 (|ψ〉〈ψ | ⊗ |�+

n 〉〈�+
n |) f (0)

12 ]. Therefore,
Bob’s state can be expressed as

ρ
(0)
3 = |α|2

|α|2 + |β|2|n|2 |0〉〈0| + |β|2|n|2
|α|2 + |β|2|n|2 |1〉〈1|.

The probability that the POVM f (0)
12 will click is given by p0 =

|α|2+|β|2|n|2
1+|n|2 .
In this case, the coherence of this state is zero. This is not

useful for the teleportation of coherence.
The state in Bob’s part after Alice performs the measure-

ment with POVM element f (1)
12 and communicates the results

to Bob is given by

ρ
(1)
3 = 1

p1
Tr12

[
f (1)
12 (|ψ〉〈ψ | ⊗ |�+

n 〉〈�+
n |) f (1)

12

]
,

where p1 = Tr123[ f (1)
12 (|ψ〉〈ψ | ⊗ |�+

n 〉〈�+
n |) f (1)

12 ]. Therefore,
Bob’s state can be expressed as

ρ
(1)
3 = |β|2

|α|2|n|2 + |β|2 |0〉〈0| + |α|2|n|2
|α|2|n|2 + |β|2 |1〉〈1|.

The probability that the POVM f (1)
12 will click is p1 =

|α|2|n|2+|β|2
1+|n|2 .
We see that the coherence of the postmeasurement state is

zero. So we observe that only in case I is perfect teleportation
of coherence possible probabilistically, with the probability
being 2|n|2

(1+|n|2 )2 when the partially known states are from the
polar circle of the Bloch sphere.

III. TELEPORTATION OF COHERENCE
WITH AN ARBITRARY SHARED STATE AND ARBITRARY

POVM MEASUREMENT

In this section, we will talk about the teleportation of
the coherence of an arbitrary state (pure and mixed) with
the help of an arbitrary shared state and by considering, in
general, arbitrary POVM measurements. Consider two finite-
dimensional Hilbert spaces H1 and H2 over the field of
complex numbers, with the dimension of H1 being n. Let
us consider a linear map � : B(H1) → B(H2), where B(H)
is the vector space of bounded linear operators on H. Let
{ei j = |i〉〈 j|}n

i, j=1 be a complete set of matrix units for B(H1).
Then operator ρ� = ∑n

i, j=1 ei j ⊗ �(ei j ) ∈ B(H1) ⊗ B(H2)
is known as the Choi-Jamiołkowski-Kraus-Sudarshan (CJKS)

matrix [83–87] corresponding to �. It can easily be verified
that the map � → ρ� is linear and bijective and is called the
CJKS isomorphism.

Theorem 1. CJKS theorem on completely positive maps
[83–87]. The CJKS matrix ρ� = ∑n

i, j=1 ei j ⊗ �(ei j ) ∈
B(H1) ⊗ B(H2) is positive if and only if the map � :
B(H1) → B(H2) is completely positive.

From the Theorem 1. we conclude that for any state, τ

and POVM E belonging to B(H1) ⊗ B(H2) can be written as
follows for two completely positive maps T and �E :

τ =
n∑

i, j=1

ei j ⊗ T (ei j ), (12)

E =
n∑

i, j=1

ei j ⊗ �E (ei j ). (13)

In the following theorem, �∗
E denotes the completely positive

map whose Kraus operators are the complex conjugate of that
of the completely positive map �E .

Theorem 2. Let Alice have the unknown state ρ whose
coherence she needs to teleport to Bob. Let the shared state
between Alice and Bob be τ . If Alice performs a general
measurement with a POVM element E and communicates
the result to Bob, then the state in Bob’s laboratory is ρB =
T ◦ �∗

E (ρ), where T is the completely positive map corre-
sponding to the shared state τ , �∗

E is the complex conjugate
of the completely positive map corresponding to the POVM
element E , and ◦ represents the composition of the two maps.

Proof. The reduced state at Bob’s location is ρB =
Tr12[(

√
E ⊗ I)(ρ ⊗ τ )(

√
E ⊗ I)]. Let A be any operator on

the Hilbert space associated with Bob.
Now,

Tr(ρBA) = Tr{Tr12[(
√

E ⊗ I)(ρ ⊗ τ )(
√

E ⊗ I)]A}
= Tr[(ρ ⊗ τ )(E ⊗ A)]

=
∑

i, j,k,l

Tr{[ρ ⊗ ei j ⊗ T (ei j )](ekl ⊗ �E (ekl ) ⊗ A)}

=
∑

i, j,k,l

Tr{[ρ ⊗ |i〉〈 j| ⊗ T (|i〉〈 j|)][|k〉

× 〈l| ⊗ �E (|k〉〈l|) ⊗ A]}
=

∑
i, j,k,l

∑
p

〈l|ρ|k〉〈 j|Mp|k〉〈l|M†
p|i〉Tr[T (|i〉〈 j|)A]

=
∑

i, j,k,l

∑
p

〈i|M∗
p|l〉〈l|ρ|k〉〈k|Mt

p| j〉Tr[T (|i〉〈 j|)A]

=
∑
i, j

〈i|
∑

p

M∗
pρ(M∗

p )†| j〉Tr[T (|i〉〈 j|)A]

=
∑
i, j

〈i|�∗
E (ρ)| j〉Tr[T (|i〉〈 j|)A]

= Tr[T (�∗
E (ρ))A]. (14)

As A is arbitrary, we conclude that

ρB = T ◦ �∗
E (ρ). (15)
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A. Teleportation of coherence using a mixed
entangled state as a resource

In this section, we study the teleportation of coherence
using mixed entangled states as a resource state, unlike pure
entangled states in the previous sections. Here, we consider
two types of mixed entangled states as examples of resources
that can be used. They are (i) maximally mixed entangled
states and (ii) Werner states.

Maximally entangled mixed states. This class of two-qubit
states appeared first in [88,89]. It has the maximum amount
of entanglement because no global unitary transformation can
increase the entanglement of formation or even the negativity
of entanglement of the states in this class. Let Alice and Bob
share a two-qubit maximally entangled mixed state given as
follows:

τ = p1|�−〉〈�−| + p2|00〉〈00| + p3|�+〉〈�+| + p4|11〉〈11|,
where p1, p2, p3, and p4 are probabilities in decreasing or-
der, i.e., p1 � p2 � p3 � p4. Alice performs the following
POVMs on the input and half of the entangled pair:

�
(0)
12 = |�+〉〈�+| + |�+〉〈�+|, (16)

�
(1)
12 = |�−〉〈�−| + |�−〉〈�−|. (17)

Let Alice perform the measurement given by the POVM el-
ement �

(0)
12 and communicate her result to Bob. In this case,

�∗
E and T are given by the following equations:

�∗
E (A) = A + σxAσx,

T (A) = p1σyAσy + p2〈0|A|0〉|0〉〈0|
+ p3σxAσx + p4〈1|A|1〉|1〉〈1|,

where A belongs to the set of bounded linear operators on the
Hilbert space associated with Bob. The state of the particle in
Bob’s laboratory is given by

ρB = T �∗
E (ρ) = 1

1 + p1 + p3
(p1σzρσz + p1σyρσy

+ p3σxρσx + p3ρ + p2|0〉〈0| + p4|1〉〈1|).
(18)

The coherence of this state is given by

C(ρB) = 4|p1 − p3|
1 + p1 + p3

|Re(ρ01)|. (19)

The concurrence of the above-mentioned maximally entan-
gled mixed state is

C(τ ) = max{0, p1 − p3 − √
p2 p4}. (20)

Assuming p4 = 0, the concurrence reduces to C(τ ) = p1 −
p3. From Eq. (18) we get

C(ρB) = 2C(τ )

1 + p1 + p3
2|Re(ρ01)| � 2C(τ )

1 + p1 + p3
C(ρ)

� 2C(τ )

1 + C(τ )
C(ρ). (21)

When POVM �
(1)
12 clicks and Alice communicates the re-

sult to Bob, then the state in Bob’s part is the same as Eq. (18),

and hence, the relation between the coherence in Bob’s part
and the unknown state obeys Eq. (21).

Wener states. Now let’s assume that Alice and Bob share
the Warner state τ = p|�−〉〈�−| + 1−p

4 I with 0 � p � 1 and
Alice performs a measurement using the POVM described by
Eqs. (16) and (17). If the POVM given by Eq. (16) clicks and
Alice communicates the result to Bob, the state in Bob’s part
is given by

ρB = pσyρσy + pσzρσz + 1 − p

2
I. (22)

The coherence of the above state with respect to the computa-
tional basis is as follows:

C(ρB) = 2p

1 + p
|2Re(ρ01)|. (23)

If the POVM described by Eq. (17) clicks and Alice commu-
nicates the result to Bob, then the state in Bob’s part is given
by

ρB = pσxρσx + pρ + 1 − p

2
I. (24)

The coherence of the above state is the same as in Eq. (23).
It is a well-known fact that the Warner state is separable

when p � 1
3 . From Eq. (23) we clearly see that the teleported

coherence is nonzero for 0 < p � 1
3 . Hence, we conclude that

it is possible to teleport coherence without entanglement.

B. Teleportation of coherence of an unknown mixed state

Finally, we consider the case of teleportation of coherence
of an unknown mixed state with a maximally entangled state
as a resource and the POVM described by Eqs. (5) and (6). In
this case the completely positive map T is the identity map,
and the maps �∗

�
(0)
12

and �∗
�

(1)
12

are given by

�∗
�

(0)
12

(ρ) = ρ + σxρσx, (25)

�∗
�

(1)
12

(ρ) = σzρσz + σyρσy. (26)

So the state in Bob’s part when the outcomes of the measure-
ments of POVMs �

(0)
12 and �

(1)
12 are communicated to Bob is

given by

ρ
(0)
B = �∗

�
(0)
12

(ρ) = ρ + σxρσx, (27)

ρ
(1)
B = �∗

�
(1)
12

(ρ) = σzρσz + σyρσy. (28)

In both cases, the coherence with respect to the computational
basis turns out to be the same and is given by

C
(
ρ

(0)
B

) = C(ρ (1)
B ) = |ρ01 + ρ10| (29)

� |ρ01| + |ρ10| (30)

� C(ρ). (31)

Clearly, the teleported coherence is less than or equal to the
original coherence, even in the more general scenario in which
the unknown state is a mixed state. However, if we have partial
knowledge about the state, i.e., the matrix elements of the state
are real, then the teleported coherence is equal to the original
coherence.
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IV. CONCLUSION

Because quantum coherence is a useful resource in various
information processing tasks, it is of the utmost importance to
transfer the coherence of a coherent state to a state that has
no coherence. This is required in a quantum network in which
one quantum processor can teleport the coherence to another
quantum processor if there is a requirement. Therefore, it is
important to know whether it is possible to teleport coherence
without actually transferring all the information about the
state. Interestingly, we were able to show that this can be done
with a smaller number of cbits for states that are taken from
the equatorial and polar circles.

In summary, we addressed the question of whether we can
teleport the coherence of an unknown state with the transfer
of a smaller number of classical bits. We showed that by trans-
ferring one cbit of information, we can teleport the coherence
only for states which lie on the equatorial and polar circles.
This is accomplished when we have a maximally entangled

state as a resource. However, for a nonmaximally entangled
state, we can teleport coherence if not deterministically, then
with a certain probability of success. We also investigated the
possibility of teleportation of coherence using two-qubit max-
imally entangled mixed states and Werner states as resources.
We observed that even when the Werner state is separable,
the teleported coherence is nonzero, which indicates that the
teleportation of coherence is possible without entanglement.
In a nutshell, we were able to provide a cost-effective way
to teleport coherence as a resource to a place where there
is a requirement for this resource. This can be done without
actually transferring the state.
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