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Artificial intelligence discovery of a charging protocol in a micromaser quantum battery
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We propose a gradient-based general computational framework for optimizing model-dependent parameters in
quantum batteries (QB). We apply this method to two different charging scenarios in the micromaser QB and we
discover a charging protocol for stabilizing the battery in upper-laying Hilbert space chambers in a controlled and
automatic way. This protocol is found to be stable and robust, and it leads to an improved charging efficiency in
micromaser QBs. Moreover, our optimization framework is highly versatile and efficient, holding great promise
for the advancement of QB technologies at all scales.
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I. INTRODUCTION

The world is currently immersed in the “second quantum
revolution” and its associated quantum technologies [1–4],
as evidenced by the increasing investment from governments
and industries in these technologies, which promise to rev-
olutionize our society in the near future [5]. Put in simple
terms, quantum technologies are devices that leverage inher-
ently quantum phenomena like coherence and entanglement
to solve tasks that, in some cases, a classical device would
never be able to solve in a reasonable amount of time. The
possibility of using quantum mechanical effects to outper-
form classical machines has been dubbed quantum advantage,
and the most famous examples are the recently achieved
milestones in quantum information processing [6–8]. Simul-
taneously, the trend of miniaturization in technology, with
devices operating at the nanoscale, has resulted in an exten-
sion of the traditional thermodynamic concepts such as work
and heat to account for quantum mechanical effects, leading to
the emergence of the field of quantum thermodynamics—see,
for example, Refs. [9–11] for a few reviews on the topic. Inter-
secting between these two active research topics, the concept
of a quantum battery has emerged and flourished [12,13], both
as a necessary step to provide energy to nanodevices as well
as a suitable subfield of quantum technologies where quantum
effects can provide various sources of advantages, even at
larger scales.
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As their name suggests, quantum batteries are quantum
mechanical systems that can be used to store energy, which
can then be released as needed. This energy is stored in a
highly excited state (with respect to its Hamiltonian) and
released by driving the system to a lower energy state. The
first work on the subject was by Alicki and Fannes [14], after
which subsequent research works extended in several different
directions. These include the proposal of explicit theoretical
models of quantum batteries [15–21] and the analysis of the
figures of merit to address the efficiency of such devices,
such as the charging power [22,23], the maximum amount of
energy which can be unitarily extracted [24–26], the effect
of noise and imperfections [27–30], non-Markovian effects
[31,32], stability and fluctuations properties [33], or the nec-
essary conditions to achieve a quantum charging advantage
[34–36].

At the same time, although at a slower pace, the first
experimental realizations have been proposed and studied
[37,38]. On general grounds, a promising platform for the
development of quantum batteries is quantum electrody-
namics, where the interaction between light and matter
can be currently manipulated with high precision [39]. A
well-established electrodynamical setup—studied both theo-
retically and experimentally—is the micromaser [40–45]. In a
micromaser, a stream of two-level systems (qubits) interacts
sequentially with the electromagnetic field in a cavity, mod-
eled as a quantum harmonic oscillator. Indeed, this system has
recently been proposed as an excellent model of a quantum
battery [46,47] and can be described by the celebrated Jaynes-
Cummings model [48].

Optimization is a crucial aspect of many scientific and
engineering problems [49–52], and artificial intelligence (AI)
methods have shown to be particularly powerful in these
regards. Within the field of quantum technologies, AI has
demonstrated remarkable versatility and efficacy through a
diverse array of methods and applications [53–55]. Opti-
mal control methods for quantum batteries (QBs) have been
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explored [56,57]. However, with the only very recent ex-
ception of Ref. [58], the literature on using AI methods to
optimize aspects of QBs is still missing.

In this work, we present a general AI-based computational
framework that optimizes the performance of quantum bat-
teries. To exemplify it, we choose the micromaser as a QB
model and optimize model-dependent parameters using gra-
dient descent. However, this approach can be easily adapted
to accommodate a variety of models and a variety of different
figures of merit quite straightforwardly.

In our approach, we have deliberately chosen an optimiza-
tion algorithm that is as simple as possible. By doing this, we
aim to circumvent the potential obfuscation of scientific un-
derstanding that can occur when utilizing complex, black-box
AI algorithms, without compromising its performance. This
philosophy is inspired by recent works on digital discoveries
of quantum optical experimental setups [59,60].

As a first practical result of our approach, we discover a
charging protocol for micromaser QBs that allows to substan-
tially increase its energy storage while keeping the battery
stable. This result shows concretely the power of simplicity
in gaining insight into the problem at hand.

The paper is organized as follows: In Sec. II, we introduce
and describe our optimization framework, including the use
of computational graphs, the overview of the micromaser QB
model and the specific cases of interest we have studied for
optimization, and a discussion of the loss function used in
our analysis. In Sec. III, we present the numerical results.
Finally, in Sec. IV, we provide our conclusions and outline
the potential future directions of this work.

II. OPTIMIZATION FRAMEWORK

In this section, we introduce an optimization framework—
suitable for general models of quantum batteries—that
optimizes the charging process using gradient descent. The
gradient descent method is a widely used optimization tech-
nique for finding the minimum of a differentiable function of
interest, typically called a loss function L. One of the main
reasons for its popularity is its effectiveness in finding good
solutions to a wide range of optimization problems. In addi-
tion, it is relatively simple to implement, making it a useful
tool for practitioners in various fields [61]. Given an initial set
of model parameters �p, the algorithm iteratively adjusts �p in
the direction of the negative gradient of the loss function with
respect to the model parameters as follows:

�p → �p − η
∂L
∂ �p , (1)

where η is the hyperparameter known as the learning rate,
which controls the step size of the update (i.e., the fraction
of the gradient to be subtracted from the original parameters).
The optimization process terminates when the loss function
reaches an acceptable minimum value set by some tolerance.

The proposed optimization approach is illustrated in
Fig. 1(a). It has several key advantages. First, it is versatile
and can be applied to a wide range of quantum battery models
(including those involving large-scale systems) described by
a set of parameters �p, as represented by the cell C in Fig. 1(a).
Second, it is efficient and able to find the optimal solution

(a)

(b)

(c)

FIG. 1. (a) General representation of the optimization of the
charging process for a quantum battery using a computational graph.
The battery is initialized in state ρB(0) and is charged through cell
C(τ ), during time τ , which is represented, in general, by a completely
positive and trace-preserving (CPTP) map. This process results in the
final battery state ρB(τ ). The loss function L( �p), which is dependent
on the model parameters �p, is calculated at the end of the charging
process and is used for updating the parameters in the next iteration
of the algorithm. (b and c) Computational graph representing the
optimization of the charging process of a micromaser QB. Whereas
(b) shows the system with n identical qubits prepared in state ρq,
characterized by parameters �p, (c) shows the system with n × b
qubits in batches of b identical states ρqi . Each charging cell C in
(b) corresponds to a single cavity-qubit interaction and consists of the
operations

⊗
and �, as indicated inside the dashed box. In (c), each

charging cell C(b) represents the sequential interaction of a batch of
b identical qubits, as seen in (b).

to a problem in an automated manner given a loss function
L( �p) that depends on the model parameters �p either implicitly
or explicitly. Overall, this optimization framework offers a
promising solution for optimizing many different aspects of
quantum battery models.

A. Optimization of a micromaser QB

The micromaser [46] charging process consists of the se-
quential interaction of a single mode of an electromagnetic
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field in a cavity with a stream of two-level systems (qubits)
prepared in a state which can be written as

ρq = q |g〉 〈g| + (1 − q) |e〉 〈e|
+ c

√
q(1 − q)(|g〉 〈e| + |e〉 〈g|), (2)

where q is the degree of population inversion, c the coherency,
and |g〉 and |e〉 correspond to the ground and excited state of
the qubit, respectively.

In the qubit-cavity interaction picture, the evolution of the
system is described by the Hamiltonian [48],

ĤI = g(âσ̂+ + â†σ̂− + e2iωt â†σ̂+ + e−2iωt âσ̂−), (3)

where g represents the coupling constant between the qubit
and the field, and with units chosen such that h̄ = 1. The
lowering and raising operators for the qubit are denoted by
σ̂− and σ̂+, respectively; â and â† are the annihilation and
creation operators for the field, respectively. We are examining
the resonant case, where the frequencies of the qubit and field
are equal [62] and here denoted by ω.

To optimize the charging speed of a quantum battery, the
ultrastrong coupling regime, 0.1 <

g
ω

< 1, is the most inter-
esting regime to consider. This is because larger values of g
are associated with larger values of the charging power during
the charging process. This relationship between the charging
power and g has been shown numerically in Ref. [46]. Heuris-
tically, one can understand this relationship because g controls
the amount of energy that the qubit is able to transfer to the
micromaser during the interaction time. Hence, larger values
of g are associated with more energy transferred by the qubit
and, consequently, larger values of the power. Unfortunately,
in this regime the counterrotating terms [the last two terms
in Eq. (3)] are relevant and they make the dynamics much
more complicated to describe. In particular, even the choice
of which Hamiltonian must be used in this regime is a matter
of active debate [63,64]. In this paper, to avoid these com-
plications, we will make use of the approach introduced in
Ref. [65], which shows that the counterrotating terms can be
neglected by performing a simultaneous frequency modula-
tion of the qubit and the field, and the resulting dynamics is
described by the Jaynes-Cummings unitary operator [48],

ÛI (g) = e−iτg(âσ̂++â†σ̂− ), (4)

where τ = 1 can be fixed without affecting the validity of the
approach [66].

Moreover, the coherence parameter c can be set to be real
by applying a rotation along the z axis which does not alter
the time evolution operator ÛI (g).

The battery charging process, as depicted in Fig. 1(b), is
initialized by the cavity in its ground state ρB(0) = |0〉 〈0|.
The joint qubit-cavity system is obtained by the tensor product

ρ(k) = ⊗[ρB(k)] ≡ ρB(k) ⊗ ρq, (5)

where ρB(k) is the battery state after k interactions, k =
0, . . . , n. The time evolution can be recursively written as

ρB(k + 1) = �[ρ(k)] ≡ Trq[ÛI (g)ρ(k)Û †
I (g)], (6)

where ρ(k) corresponds to the system state resulting from the
previous Eq. (5), and Trq is the trace over qubit degrees of
freedom. This outputs the battery state ρB(k + 1).

The charging process can be represented computationally
by iteratively applying the operations

⊗
and � as shown in

Fig. 1(b). The system consists of an initialized battery in state
ρB(0) and a set of n identical qubits prepared in state ρq,
characterized by the parameters �p = (c, q). The interaction
between the cavity and the qubit is represented by the cell C,
where the charging process occurs. The resulting output bat-
tery state ρB(1) is injected into the next charging cell C, where
it interacts with a new qubit. This process is repeated for n
interactions, resulting in the final battery state ρB(n). In the
optimization framework, the loss function L( �p) is evaluated
after each charging cycle of n identical qubits. This function,
which depends on the qubit state parameters �p = (c, q), is
minimized by repeatedly updating the parameters after each
complete charging cycle, using a gradient-descent optimiza-
tion algorithm.

This process can be generalized to a multiqubit scheme as
shown in Fig. 1(c). In this scheme, qubits prepared in different
states are processed in different batches of b identical qubits.
Each batch interacts with the cavity in the same way as de-
scribed in Fig. 1(b). Similarly, the charging process is repeated
for n batches, resulting in the final battery state ρB(nb). In this
context, the parameters to be optimized are no longer a single
pair (c, q), but n pairs of parameters (c, q) for each batch of b
identical qubits.

One of the most appealing features of a micromaser QB
is the existence of dynamically separated trapping chambers
[40,42–44], whose relevance for energy storage purposes has
been analyzed in detail in Refs. [46,47]. The existence of the
trapping chambers is analytically demonstrated in the litera-
ture [40,42,44] for the particular case of c = 1 (qubits are fully
coherent, i.e., they are in a pure state) and g being fine-tuned
to

g = Q√
m

π, Q, m ∈ N, (7)

where Q and
√

m are integers which do not share any common
integer divisors. When these conditions are met, the harmonic
oscillator Hilbert space dynamically separates the states |n〉
with n < m from the remainder of the Hilbert space. By
doing a simultaneous redefinition of Q̃ = 2Q and m̃ = 4m,
the same argument leads to a dynamical separation of states
|n〉, m < n < 4m from the rest. Repeating the same argument
ad infinitum leads to a fragmentation of the Hilbert space
in dynamically separated chambers, meaning that one cannot
exit the initial chamber by time evolution [46]. This is illus-
trated in Fig. 2.

When g is fine-tuned according to Eq. (7), two charging
protocols are known to exist with an analytic description [47].
The first one is the coherent charging protocol, occurring
when the qubits are prepared in a coherent superposition (c =
1). In this case, after it has completely charged, the battery
reaches a steady state which is pure [67] and sustained by the
inherent dynamics of the battery. The populations of such a
steady state satisfy the following recursive relation:

ρ
(n,n)
B = 1 − q

q
cot2

(
π

2
√

m

√
n

)
ρ

(n−1,n−1)
B , (8)

where n < m. On the other hand, incoming qubits prepared in
an incoherent mixture (c = 0) define the incoherent charging
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FIG. 2. Sketch of trapping chambers for the fine-tuned value
g = Q√

m π . The first chamber is defined by Q = 1 and contains the
states |n〉 such that n < m. The second chamber is defined by Q = 2
and contains the states |n〉 satisfying m < n < 4m. For the purpose of
illustration, we only depict the lowest-lying two chambers. By uni-
tary time evolution, the initial chamber cannot be exited, effectively
trapping the system there. Em−1 = m − 1 and E4m−1 = 4m − 1 are
the energies of the highest excited states corresponding to the first
and the second chambers, respectively.

protocol. For q = 0, the battery steady state is pure and given
by the number state |m − 1〉. However, as q becomes nonzero,
its purity decreases as P ≈ 1 − 2q to first order in q.

Importantly, while creating a pure steady state, the co-
herent charging procedure results in a reduction on the total
energy stored in the battery as compared to the incoherent
charging case, making purity an energetically costly quantity.
This can be computed from Eq. (8).

For practical applications, the regime in which g is not
fine-tuned must be considered, and it was also the subject of
Refs. [46,47]. This can be achieved by introducing a parame-
ter ε as

g = Q√
m + ε

π, Q, m ∈ N, −0.5 < ε � 0.5. (9)

A subsequent numerical analysis showed that, by allowing
small perturbations on either the fine-tuned value of g or q �=
0, the incoherent charging protocol just described deviates
away from the fine-tuned steady state |m − 1〉 and instead
results in an indefinite energy growth and thus a nonexistent
steady state. On the other hand, for all values of q and even
in the presence of non-fine-tuned values of g, the coherent
charging protocol allows to reach an effectively pure steady
state with the same properties as in the fine-tuned regime (the
steady state just described is plausibly just metastable, but
its lifetime has been tested to be very long by the extensive
numerical simulations performed in Ref. [46]).

Interestingly, Eqs. (7) and (9) and the consequent structure
of the chambers allow us to obtain an inverse relationship
between the value of g and the energy (and, to a large extent,
the ergotropy as well) of the steady state: since large values of
g are associated to smaller values of m, we see that the energy
of a chamber is reduced by increasing g.

B. Loss function

The selection of an appropriate loss function is perhaps the
most delicate step in the context of posing an optimization
problem. This is due to the loss function serving as the basis
for determining how to modify the parameters of the model
in order to improve its performance. If an inappropriate loss
function is chosen, it may be challenging or even impossible
to find a satisfactory solution, as the optimization process will
be attempting to minimize a loss function that is not well
suited to the problem at hand.

In the context of quantum batteries, a quantity of interest
to be maximized is the ergotropy W , defined as the maximal
amount of work that can be extracted from the battery with a
unitary operation. It can be computed according to [16,68]

W ≡ E − EPassive = Tr(HF ρB) −
∑

k

rkεk, (10)

where EPassive denotes the energy of the passive state [69]
associated to the battery state ρB. It is computed with rk and
εk , which are the eigenvalues of the battery density matrix ρB

and the field Hamiltonian, HF = ωâ†â, respectively. It is easy
to show that when the battery state is pure, i.e., when it can be
written as ρB = |ψ〉 〈ψ | for an appropriate state |ψ〉, the asso-
ciated energy EPassive turns out to be the Hamiltonian ground
state energy ε0 (which we can always set to zero without loss
of generality). Thus, in this case it is always possible to bring
the battery state to the ground state via a unitary operation, and
the ergotropy coincides with the energy of that state. On the
other hand, if the battery is in a mixed state, it obviously can-
not evolve unitarily to the Hamiltonian ground state. In such a
case, the maximum amount of energy that can be extracted is
computed by W as in Eq. (10) and it satisfies W < E . It then
follows that a way to increase the ergotropy while keeping
constant the energy of the battery state E is by increasing its
degree of purity P . When considering the micromaser battery,
an essentially pure state can be reached when the incoming
qubits are fully coherent with c = 1. However, the value of W
can grow by increasing the energy E of the battery state. As a
result, maximizing the ergotropy effectively means finding a
good compromise between a high value of the battery energy
and a sufficiently large value of its purity.

A specific feature of the micromaser QB that we have
reviewed in Sec. II A is the existence of very long-lived
metastable steady states. These are appealing because they
are a built-in feature of the model that avoids the battery
absorbing an unbounded amount of energy in an uncontrolled
way. Steering away from these unwanted states must also be
incorporated in the definition of the loss function, and this can
be achieved by including a penalty term for large values of
the time-derivative of the energy of the battery state at the
terminal stages of the charging process.

The final two considerations that must be taken are related
to specific values of the parameters c, q themselves. Related
to the former, maintaining high values of c in qubit states is
a very challenging experimental task, while qubits carry no
energy when q = 1 since they are prepared in their ground
state. Thus, the loss function must also penalize large values
of both c and q.
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Summarizing, our task is to construct a loss function that
maximizes the ergotropy while penalizing both large values
of c and q and short-lived metastable steady states. With these
requirements in mind, we consider the loss function for a
charging process with n identical qubits to be

L = − Wn(1 − c)(1 − q)

Wn + (1 − c) + (1 − q)
+ λ

∑
k∈η

∣∣∣∣�Ek

�k

∣∣∣∣, (11)

where Wn is taken in units ω = 1 and where we have intro-
duced two hyperparameters η and λ; η is a subset of qubits,
typically a fraction of the last ones, and λ is a positive number
that penalizes unstable steady states. When the qubits that in-
teract with the cavity are not identical, Eq. (11) gets modified
by replacing c, q with their mean value over the set of qubits.

The first term in Eq. (11) looks counterintuitive at first, so
let us elaborate further on this point. Its structure stems from
wanting to simultaneously optimize three quantities, Wn, c,
and q, which have very different magnitudes, Wn � c, q. The
first term is a convenient way to normalize these three terms,
guaranteeing that each of them has a comparable weight
during the optimization. An alternative would be having a
separate term for each of these three quantities, but this would
introduce two extra hyperparameters to be varied. As a result,
the computational cost of the optimization process would have
also increased, and this is why we have discarded this path for
now.

Another point to address is the fact that large values of q are
already obviously penalized when maximizing the ergotropy
W , so it may seem that including q explicitly in the loss
function is not necessary. We have experimented with such
a loss function, and we have found it to have a landscape that
in some cases benefits reaching q = 1, especially in the case
where not all the qubits are identical.

Finally, we have used the energy and not the ergotropy
in the second term of Eq. (11) since the behavior of their
variation is extremely similar and the ergotropy is particularly
computationally costly since it requires performing a diago-
nalization.

III. RESULTS

In this section we present the optimization results con-
ducted for the micromaser charging process using (i) a set of
n identical qubits and (ii) a set of two batches consisting of b
identical qubits in each batch. While setup (i) serves as a san-
ity benchmark for our methods, in (ii) we discover a charging
protocol that is able to stabilize the battery to a state laying in
the second chamber. We have written the physics simulation
and the implementation of the optimization algorithm using
PYTHON’s NUMPY and SCIPY packages [70,71]. More specif-
ically, the optimization is conducted using the “L-BFGS-B”
solver from SCIPY, which is a method that computes gradi-
ents numerically and allows for parameters to be bounded.
The optimization is initialized using a randomized pair of
(c, q). From now on we will work in units ω = 1 and truncate
the infinite-dimensional quantum harmonic oscillator Hilbert
space to a maximal number of modes of Nc = 120 and Nc =
150 in the numerical simulations of the stream of identical
qubits and different qubit batches with identical states within,

respectively. We have checked that the results are insensitive
to these truncations, i.e., the truncations are taken at levels
which are never populated during the dynamical evolution.

A. Stream of identical qubits

We conduct the optimization of the micromaser charging
process described in Fig. 1(b), using a stream of n = 1000
identical qubits interacting with the battery. The coupling
constant is set to a non-fine-tuned value of g = π/

√
15.6 ≈

0.795. We utilize the loss function L in Eq. (11) with η

fixed to be the last 20% of qubits and consider several
values of the hyperparameter λ. For each case, we find a
set of optimal values of the pair (c, q) that minimize L.
Our results show that for λ = 1, the optimal (c, q) val-
ues are approximately (0.310, 0.145); for λ = 10, (c, q) ≈
(0.390, 0.168); for λ = 100, (c, q) ≈ (0.470, 0.183); and for
λ = 1000, (c, q) ≈ (0.553, 0.190), from which we see that by
increasing λ, which corresponds to increasing the importance
of the stability of the final state, there is a general trend in
seeking an enhancement of c.

Using the optimized (c, q) parameters, we simulate the
time evolution described by Eq. (4) and calculate the er-
gotropy W , as given by Eq. (10), for up to k = 105 collisions
to evaluate the stability of the steady state for different val-
ues of λ. The results of this simulation were then compared
to those obtained using the closest fine-tuned (FT) value of
g = π/

√
16 ≈ 0.811 using the incoherent charging protocol.

The results of this comparison are shown in Fig. 3(ai). We
see that the saturation to a steady state occurs more quickly
for the non-fine-tuned value of g = π/

√
15.6. However, these

states are metastable. The effect of the hyperparameter λ on
the system can be seen by comparing the different solid lines
in Fig. 3(ai): a smaller value of λ results in a shorter-lived
steady state, but an increase in ergotropy W . The fine-tuned
value [dashed line in Fig. 3(a)] achieves a maximal ergotropy
of W = 15 at q = 0 and a steady state (number state) that is
absolutely stable (although fragile for small perturbations of
the parameters), in agreement with the results for the inco-
herent charging protocol discussed in Sec. II A. Values of λ

above 10 [magenta up-triangle and black down-triangle lines
in Fig. 3(ai), respectively] show no signs of instability for the
time scales that we have simulated. The case λ = 10 [cyan
square line in Fig. 3(ai)] shows an instability after roughly 104

interactions, while there is no sign of stability for the remain-
ing λ = 1 (red circle) line. Besides λ = 1, all states achieved
ergotropies ranging between 9 and 11, which amounts to ap-
proximately 65% of the closest fine-tuned maximal ergotropy
value.

From these numerical considerations, we learn the impor-
tance of the hyperparameter λ: it allows, in realistic scenarios,
to maximize the ergotropy while reaching the lifetime re-
quired by the particular application under consideration.

An additional characterization of the charging process can
be obtained by computing the purity for the same pairs c, q
of optimized parameters that we have shown in Fig. 3(a).
We show the time evolution of the purity of such states in
Fig. 3(aii), from which it becomes apparent that such gains in
ergotropy come at the expense of a loss in purity. In this situa-
tion, the mean energy of the battery state increases, suggesting
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FIG. 3. Results for the ergotropy W (in units ω = 1) and purity P of the non-fine-tuned value of g = π/
√

15.6 as a function of the number
of collisions k with parameters obtained from the optimization procedure. (a) Results for the charging scheme that uses a stream of identical
qubits and (b) corresponding one for a stream of different qubit batches of identical states within. The optimal parameters (c, q) found in
(a) are (c, q) ≈ (0.310, 0.145) (red circle), (c, q) ≈ (0.390, 0.168) (cyan square), (c, q) ≈ (0.470, 0.183) (magenta up-triangle), and (c, q) ≈
(0.553, 0.190) (black down-triangle), compared with the maximum ergotropy achieved in the closest fine-tuned value of g = π/

√
16 and

incoherent charging (dashed). The optimal parameters found for (b) are { �p1, �p2} = {(c, q)Batch=1, (c, q)Batch=2}: {(0.150, 0.079), (0.361, 0.150)}
(red circle), {(0.229, 0.123), (0.414, 0.165)} (cyan square), {(0.270, 0.152), (0.486, 0.179)} (magenta up-triangle), {(0, 0), (0.449, 0.208)}
(green cross). In all cases, the effect of the hyperparameter λ is inversely proportional to ergotropy. It is also observed that a loss in purity
results in a gain of ergotropy.

that steady states become more unstable as they approach the
upper level of the first chamber.

The charged battery steady state can be further charac-
terized by computing the population of each number state
present in the mixture and its associated quasi-probability
Wigner function [72,73], which describes the quantum state
of the battery in phase space (represented by position x and
momentum p). The analysis has been computed using QUTIP

[74] and the results are presented in Fig. 4(a). There, we see a
crescent shape symmetric in x for the Wigner function around
the negative value p ≈ −5. Moreover, by comparing panels
(i) and (ii) in Fig. 4(a) we see that a bump of highly excited
Fock states appears for λ = 10, which is a diagnostic of the
instability of the (metastable) steady state.

It can be verified that the Wigner function of a state charged
according to the fully coherent charging protocol looks essen-
tially like that of a squeezed coherent state. By decreasing the
coherency parameter c, the Wigner function becomes more
warped, as we see in our plots. A similar shape can be seen
for nonlinear coherent states driven by a Kerr nonlinearity
[75,76], which suggests that the dynamics of the model can
be reinterpreted as a cavity interacting with a bath of qubits.

Finally, it is worth mentioning that the generic behavior
described in this section is also observed when repeating the
calculation with different non-fine-tuned values of g. More-
over, this scheme is robust, as a very similar time evolution is
seen even when random noise is introduced to the optimized
(c, q) parameters.
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(a) (b)

FIG. 4. Population distribution of number states ρ
(n,n)
B in the steady state of the battery ρB(k) after k = 105 collisions with the optimized

c, q parameters shown in Fig. 3 and its associated Wigner function for (a) charging with a stream of identical qubits and (b) charging with a
stream of different qubit batches of identical states within.

B. Stream of different qubit batches of identical states within

Here we conduct the more interesting optimization of the
micromaser charging process described in Fig. 1(c), using a
stream of n = 1000 qubits divided into two batches consisting
of b = 500 identical qubits in each batch. The coupling con-
stant is set to the same non-fine-tuned value g = π/

√
15.6 ≈

0.795 as in the previous case of Sec. III A.
Contrary to the previous case, we now have two pairs of

parameters corresponding to the first and the second batches
of identical qubits: { �p1, �p2} = {(c, q)Batch=1, (c, q)Batch=2}, re-
spectively, which means that in the loss function, defined in
Eq. (11), we modify c and q by their mean value, as described
previously. In this case we take η to be the last 10% qubits
instead of the 20% we took when all qubits were identical
to allow a comparatively similar relaxation time between the
two cases. As before, we vary the hyperparameter λ and run
the optimization algorithm several times.

We find the optimized pairs of parameters for different
values of λ to be as follows: for λ = 1, {(0.150, 0.079),
(0.361, 0.150)}; for λ = 10, {(0.229, 0.123), (0.414, 0.165)};
for λ = 100, {(0.270, 0.152), (0.486, 0.179)}. It is interesting
to notice that as λ gets smaller, the optimized strategy is
to first charge according to the incoherent charging protocol
followed by a new set of parameters that are able to stabilize
the trajectory to a state that is long-lived while maximizing W
as much as possible.

Using the optimized parameters { �p1, �p2}, we simulate the
time evolution described by Eq. (4) and calculate the er-
gotropy, W as explained in Eq. (10), for up to k = 105

collisions. To make clear this point, the first set of 500 interac-
tions are simulated using the pair of parameters corresponding
to �p1 = (c, q)Batch=1, whereas for the qubit k = 501 up the
105, the parameters correspond to the second optimized pair,
�p2 = (c, q)Batch=2. The results are shown in Fig. 3(bi).

The main result of this first procedure are the red circle,
cyan square, and magenta up-triangle lines in Figs. 3(ai) and

3(bi). Let us first focus on the red circle one. From this curve
we see that the algorithm has been able to automatically find a
transition to the second chamber, albeit the state is not stable
past 104 interactions. However, the fact that this is possible is
already extremely valuable.

Motivated by the results of the previous section, the next
natural step is increasing λ, whose effect can be seen in the
cyan square and magenta up-triangle curves. What we see is
that a greater stability can only be guaranteed by staying in
the first chamber, which in turn suggests that by adding more
qubits one should be able to stabilize much better well inside
the second chamber.

These observations lead naturally to what we call the im-
proved strategy, which makes use of two ingredients: the first
one consists in fixing the parameters in the first batch to the
incoherent charging protocol regime (c1, q1) = (0, 0), such
that the charging, during this first batch, becomes transparent
to the presence of the chambers. The second ingredient is
increasing the number of stabilizer qubits from 500 to 1000
and choosing a large enough value of λ to guarantee stability.
Interestingly, we find that stability is obtained by a fairly
small value of λ, i.e., λ = 10. The result of this optimization
is the green cross line in Fig. 3(b), where the second pair
of optimized parameters are (c2, q2) = (0.449, 0.208), which
perform notably better than the previous cases. In panel (ii)
of Fig. 3(b) we show the trajectories for the purity of each of
the states shown in panel (i), and we observe that the purity
decreases as ergotropy increases.

The second interesting thing that we notice from Fig. 3(b)
is that using this same strategy of first driving the instability
followed by new stabilizing parameters allows to reach much
more stable states in the high end of the first chamber than
with identical single copies of qubits. Again, we have checked
that all the trajectories shown in Fig. 3(b) are stable even in the
presence of noise in the (c, q) parameters.

As in the previous section, we further characterize the
charged battery steady state by computing the distribution of
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the populations in the final state and its associated Wigner
function. The results are presented in Fig. 4(b). In addition
to the crescent shape symmetric in x for the Wigner func-
tion around the negative value p ≈ −5, another one appears
around p ≈ −10 when considering the state from the second
chamber. However, there is no appreciable sign of interfer-
ence between the two, suggesting that they participate as a
semiclassical mixture more than a superposition. Moreover,
by comparing panels (i) and (ii) within Fig. 4(b), we see that
the bump of highly excited Fock states is much suppressed in
this new case, signaling the greater stability of this state.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have successfully developed a compu-
tational framework for optimizing parameters in quantum
battery models using gradient descent. The method is very
general and, as a proof of concept, we have studied the op-
timization of the micromaser QB in a comprehensive and
detailed way, by studying two distinct charging scenarios.
As a result, and to confirm the power of this method, we
discovered a charging protocol that allows for automatic and
controlled transitions between different trapping chambers in
Hilbert space, ultimately leading to the stabilization of the
micromaser QB and improved charging efficiency.

The potential implications and future directions prompted
by this work are multiple. The computational framework pre-
sented in this study is both robust and highly versatile, with
the potential for application to a wide range of QB models.
Furthermore, it allows for large-scale optimization, thus en-
abling the optimization of a significant number of parameters.
An immediate case of interest to consider is extending the
micromaser QB charging optimization to a setup in which
dissipation and other imperfections are present [35,47]. Sim-
ilarly, it would be interesting to test the effectiveness of this
method by taking loss functions tailored towards figures of
merit other than the ergotropy, like the charging power. Re-
maining with possible further developments involving the
micromaser setup, it would be important to study how to
include the effect of the counterrotating terms in the opti-
mization protocol. In this paper, we made use of the results
of Ref. [65] to infer that the counterrotating terms can be
ignored in the ultrastrong coupling limit, but it would be
very interesting (and also relevant for potential experimental

realizations) to consider their effect too. Perhaps develop-
ments along this line may be considered by means of the
well-known Magnus expansion. Additionally, the authors of
Ref. [32], for the particular architecture considered in that
case, have been able to obtain an analytical relation between
the ergotropy, the energy, and the purity of the battery’s steady
state. For the case of micromaser the situation is more com-
plicated, especially since the battery states are, at best, almost
steady states. Nevertheless, it would be very interesting if such
a relation could be obtained.

Additional research opportunities that stem from our find-
ings are to explore optimized dynamics of QB models for
many-body systems [16,19], such as SYK [18] or spin chains
[17], which would be of particular interest from the point of
view of achieving a quantum charging advantage. Another
potential direction for future research would be to investigate
the design of practical QB devices with the support of artificial
intelligence tools. Specifically, the optimization framework
hereby presented allows for the optimization of parame-
ters within the constraints of QB model-dependent variables,
which are closely aligned with real-world application require-
ments [77]. Also, from a more theoretical perspective, it will
be interesting to compare this approach with the reinforce-
ment learning methods of Ref. [58]. Such a close comparison
could show in which cases one of the two approaches is
preferable.

In conclusion, this avenue of research holds great promise
for the advancement of QB technology and its potential for
future developments and practical applications in the field.
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