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Decoherence is inevitable when manipulating quantum systems. It decreases the quality of quantum manipu-
lations and thus is one of the main obstacles for large-scale quantum computation, where high-fidelity quantum
gates are needed. Generally, the longer a gate operation is, the more decoherence-induced gate infidelity will
be. Therefore, how to shorten the gate time becomes an urgent problem to be solved. To this end, time-optimal
control based on solving the quantum brachistochrone equation is a straightforward solution. Here, based on
time-optimal control, we propose a scheme to realize universal quantum gates on superconducting qubits in a
two-dimensional square lattice configuration, and the two-qubit gate fidelity approaches 99.9%. Meanwhile, we
can further accelerate the Z-axis gate considerably by adjusting the detuning of the external driving. Finally, in
order to reduce the influence of the dephasing error, decoherence-free subspace encoding is also incorporated in
our physical implementation. Therefore, we present a fast quantum scheme which is promising for large-scale

quantum computation.
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I. INTRODUCTION

Due to the intrinsic superposition nature, quantum com-
putation can deal with problems that are hard for classical
computers. Recently, quantum computation has been pro-
posed to be implemented on various quantum platforms [1-4],
among which the superconducting quantum circuits system is
one of the most promising candidates [5—8]. However, besides
the existence of operational errors, a quantum system will
inevitably couple to its surrounding environment and thus
lead to an increase in the distortion of quantum states or
operations. Therefore, how to achieve high-fidelity quantum
gates on quantum systems is an urgent problem to be solved.

In the presence of noise, high-quality quantum control
can be realized by the fastest possible evolution. Therefore,
finding a shorter gate evolution path to shorten the gate time
has become an effective means to achieve high-fidelity quan-
tum gates [9]. Time-optimal control (TOC) based on solving
the quantum brachistochrone equation (QBE) [10] is an ef-
fective method to shorten the evolution time [11]. Recently,
TOC-based schemes for unitary operations have been pro-
posed [11-18] and experimentally demonstrated [19-24],
where the time needed for specific quantum gates has been
reduced significantly. However, universal quantum control
with an analytical solution can only be possible for specific
cases [12].

Here, based on TOC, we propose a scheme to realize
universal quantum gates on superconducting transmon qubits,
arranged in a two-dimensional (2D) square lattice config-
uration, which can support large-scale universal quantum
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computation. In our scheme, by time-dependent modulation
of a superconducting qubit, we can achieve tunable cou-
pling between two transmon qubits [25-27], which can be
readily used to induce target quantum gates in only one
step. Meanwhile, we can further shorten the time for Z-axis
rotations by adjusting the time-independent driving detun-
ing. Note that, in the previous work [15], Z-axis rotational
gates can only be achieved by two sequential steps, i.e., by
a combination of X- and Y-axis rotations, thus leading to
longer gate times. Furthermore, to eliminate the effect of
collective dephasing, which is an important factor affect-
ing the gate fidelity, different from the previous work [15],
decoherence-free subspace (DFS) encoding [28—30] has been
incorporated and the robustness of our gates with respect to
the decoherence is verified. Therefore, our work realized high-
fidelity universal quantum gates on superconducting circuits,
which is a promising scheme for future large-scale quantum
computation.

II. QUANTUM GATES VIA TOC

As it is well-known, quantum computation can be im-
plemented based on two-level quantum systems, i.e., using
qubit systems. Therefore, we begin with presenting a gen-
eral method of constructing quantum gates via TOC, based
on a qubit system, denoted by {|0) = (1, 0), [1) = (0, D}
Assuming 7 = 1, the general light-matter interaction can be

written as
1 8(t) Q(t)e®
") = §<Q(z)ei¢<f> —8(t) )

where (¢) and ¢(¢) are the amplitude and the phase of the
driving field, respectively, and 4(¢) is the detuning between
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the qubit frequency and the driving field frequency. Choosing
two mutually orthogonal evolution states, |V (?)), that satisfy
the time-dependent Schrodinger equation of Hamiltonian in
Eq. (1), the evolution operator can be written as

U(t) — Teif’H(l)dl
= WL @ON W 0)] + [W_(2))(V_(0)], (2)

where T is the time-ordering operator.

In order to construct a particular evolution operator, we
need to define a set of auxiliary basis vectors, |1 (2)) =
e~ =W (1)), with y£(0) = 0 and y, () = —y_(¢), which
satisfy the boundary condition of |¥i(7)) = |¥+(0)) =
|W.(0)). We select a pair of dressed states,

|4 (1)) = cos gm) + sin %e‘f(”u),
Y- (1) = sin %e—fsmm) s %m .

as a set of auxiliary basis vectors, which are the eigenstates of
the Lewis-Riesenfeld invariant [31]

I(t) = %(

cos x(t)

sin x (t)e & ® @
sin x (t)et®

—cos x(t)

of Eq. (1), where  is an arbitrary constant. The auxiliary basis
vectors |Y1(¢)) on the Bloch sphere show their geometric
evolutionary details through the parameters £(¢) and x (¢).

Then, by solving the dynamic invariant equation of
idl(t)/ot — [H(t),I(t)] =0, the parameters £(¢) and x(¢)
of |4 (¢)) are decided by the parameters €2(z), ¢(¢), and 6(¢)
of Eq. (1) as [31-33]

x () = Q@) sin[gp(r) — §@)],

£(1) = 8(t) — Q(r)cot x (t)cos[p(t) —E@)].  (5)

After an evolution time 7, by solving the Schrddinger
equation H(#)|WVL(t)) = ih% |W.(t)), we can obtain the over-
all phase as

T ;. ) _
J/(r):/ 26@sin” [x(1)/21 = 8@) ,
0 2cos x ()

(6)

Equations (5) and (6) show the correspondence between
the Hamiltonian parameters {€2(¢), ¢(¢), §(¢)} and the U ()
parameters {y(¢),§(t), x(¢)}. By setting x(¢) and §(¢) to
be constants, for less experimental demanding, Eq. (5)
reduces to

E(t)=¢@t)—m,
cot x = [p(t) — 81/Q), 7

as Q(r) cannot be zero. In this way, we can get a general
evolution operator of the process as

—l¢7
U(t) = cos y/(e 0 eg>

cos e ¢”
+isin )/( X

—cos xe'®”

sin ye i@ =)
sin y /@) » )

where y' = y(1) + ¢~ and ¢T = [¢(7) & ¢(0)]/2. We can
construct arbitrary target quantum gates by controlling the

parameters y and y via the external coupling strength 2(z)
and the phase ¢(¢). That is, our purpose is to find the general
relations between Hamiltonian parameters, see Eq. (5), so that
quantum gates in Eq. (8) can be obtained.

Considering experimental implementations, the interaction
term in Eq. (1), H.(t) = Q(t)[cos ¢(t)o, + sing(t)oy]/2,
with o, , . being the Pauli matrices, needs to satisfy the fol-
lowing two conditions. First, the coupling strength Q(¢) is
adjusted within a restricted range, so there is an upper bound
on Q(1). fi(H(t)) = [Tr(H(1))* — Q(t)*/2]/2 = 0 needs to
be satisfied. Then, the form of the interaction term H.(t)
is usually not arbitrary and an independent o, operator can-
not be achieved, so it is necessary to satisfy fo(H.(t)) =
Tr[H.(t)o,] = 0. Considering these two conditions, based on
the QBE of

dF

— = —i[H(@), F], 9
7 i[H(@), F] )

where

(X 12 i fi(He(0)))

F = = = MH(t) + A0, (10
O 1He(t) + 220z, (10)
and the Lagrange multiplier X; is defined as A; = 1/Q(¢)
and A, = —c/2, where c is a constant, we can obtain ¢(z) =

¢(0)+¢'(¢r) and ¢'(¢) = fol [cQ2(¢") + 8]1dt’. For a specific
gate, ¢~ is set, and the gate time 7 is determined by the equa-
tion for ¢(t)dt =2¢~. To get the shortest operation time T,
(}5([) should be a constant. Then, by solving Eq. (7), Q(¢) is a
constant too, which is set as its maximum Q(¢) = [Q(¢)]max =
2 according to specific systems. That is, to implement a fast
quantum gate, the coupling strength, detuning, and phase need
to satisfy the conditions Q@1)=0, §(t) =0, and ¢(t) = 1,
respectively, where 7 is constant.

Therefore, based on TOC, the evolution operator in Eq. (8)
can be rewritten as

e i 0
U(t)= ( 0 ei¢)Ugv (i
o —ip(0)
/ . . / cos x st xe
Ug — COSV —I—lslny <_ Sinxei¢(0) — COS Y )
(12)
where
t 1 0
CcO = -,
X Q
T I si 2 21 -6
y,:£+/ WSIXZ 78 g
) 0 2cos x

and U, can be used to obtain arbitrary single-qubit gates.
Note that the operation in Eq. (12) can be implemented
in a single-step way, instead of being constructed by se-
quential gates in conventional cases. Besides, in the above
example, an arbitrary single-qubit gate U, can be obtained
by simple square pulses. However, we want to emphasize
that the parameters of the driving field are only required
to meet the condition in Eq. (7); i.e., Q(¢) can be time-
dependent in general, and thus further pulse shape is also
allowed.
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FIG. 1. Illustration of our scheme. (a) A scalable 2D square
lattice consists of transmon qubits, where adjacent qubits are capac-
itively coupled. Two physical qubits of the same color encoded as
a DFS logical qubit. (b) The energy levels of two adjacent coupled
qubits, T; and T}, where different excitation subspaces can be used to
implement different quantum gates. (c) Illustration of the evolution
path of the TOC-based scheme (red line) on the Bloch sphere, where
x is the angle between the direction of the auxiliary basis vector and
the vertical axis, and £(t) — £(0) is the horizontal angle shift of the
auxiliary basis vector at a specific time t.

Now, we calculated the gate operation time t by solving
Egs. (12) and (13). We here take the universal gate set of {H,
S, T'} as a typical example. For S and T gates, setting y' = ,
¢g = —3m/4, and ¢, = —7Tm /8, we can obtain the S gate
and the T gate, respectively. The gate times are

g = —— (/1652 + 72 — 35),

22+ 82
7T
= (V6482 + 1592 — 75), 14
ETE +52)( + ). a4

where § can be adjusted to further accelerate the gates, due to
the extra freedom on .

For the H gate, xy = m /4, so that ng — 3y = Q. As
vy = /2, from Eq. (13), we get ty = 7/(v/29). When
¢o = (2n + 1), with n being an arbitrary integer, the evo-
lution operator in Eq. (11) reduces to

_11). (15)

ei(rr—nt)/Z 0 1
Un(z) = ( 0 ei(JH—r]r)/Z) <1

When we set nt = 2, we obtain an H gate, and 7y is only
determined by 2 = n — §; changing one of them will lead to
the change of the other one, and thus no acceleration of gate
time can be obtained.

Note that the implementation of our proposal with super-
conducting qubits is straightforward, as the Hamiltonian in
Eq. (1) is readily realizable experimentally [26] by directly
applying a microwave drive to a qubit. Besides the tunable
coupling of two qubits [25-27] can be used to construct
two-qubit gates. However, this direct implementation is lim-
ited by the weak anharmonicity of transmon qubits and their
crosstalk-induced Z error.

III. PHYSICAL IMPLEMENTATION WITH ENCODING

Here, to further decrease the Z errors, induced by the
qubit-crosstalk and the dephasing effect of physical qubits,
we incorporate the DFS encoding in our scheme. We consider
the implementation of the TOC scheme with encoding
based on the 2D square lattice consisting of superconducting
transmon qubits, as shown in Fig. 1(a), where a transmon
serves as a physical qubit. Labeling two adjacent transmon

qubits to be qubits 77 and 75 as shown in Fig. 1(a), the logical
qubits can be encoded in their single-excitation subspace, i.e.,
S1 = Span{|0);, = [10)1, |1)L = |01)12}. By this encoding,
the logical qubit can resist the collective Z error of the
physical qubits. Besides, this single-excitation subspace
encoding can effectively suppress the leakage error in the
single physical qubit case, due to the weak anharmonicity of
transmon qubits, as the transition between different excitation
subspaces is energetically suppressed.

A. Single-logical-qubit gates via TOC

As the coupling strength between two adjacent transmons
is usually fixed, to control single-logical-qubit units and two-
logical-qubit units independently and construct the targeted
quantum gates exactly, tunable interactions between any two
transmon qubits should be achieved. For two adjacent trans-
mon qubits 7; and 7}, the interaction Hamiltonian is

7—[?]. = Z [ D {1+ Qo — ar)12)(2]]

k=i,j
+2i;(110);(01] 4+ +/2[11);;(02]
++/2[20);;(11] + H.c.), (16)

where w; ; and «; ; are the frequency and the anharmonicity
of the ith and jth transmon qubits 7; and T}, respectively, and
|ICD);; = |C); ® |D);. To achieve tunable coupling between
T; and T;, we added a frequency modulation in the form of
w; = wjo + €jcos[v;t + ¢;(¢)] for qubit T}, with the driving
frequency and the phase being v; and ¢;(t), respectively.
Meanwhile, the frequency of 7; is fixed, which is written as
w; = wjp for the same layout as w;. Moving into the interac-
tion picture with respect to

Ul =u! x U, (17)
with
Ul = exp| =i(wob; b - %bjbjb,-b,-)t], (18)

Uj = exp {_i{wjof + T sin[vjt + ¢,()]}b7 b

O
_lgjb;rb;bjbjt}, (19)
with b ; = (10); (11 +V2[1)i; 2D, Tj=¢;/lv; + ;)]
and then using the Jacobi-Anger identity, exp(—il" sinf) =
> Ju(T) exp(—ind), where J, is the nth Bessel function, the
transformed Hamiltonian can be written as

Ml = g1 IC;{110);5(01] + v/2e™|11);(02]
++/2¢7"120);;(11]} + H.c., (20)

where A;; = —Aj; = wjp — wjo is the frequency difference
between T; and Tj, and K; = ;fioo J.(T'j) exp[—in(v;t +
¢;)]. The energy spectrum is shown in Fig. 1(b), and
adjacent levels within a certain excitation subspace can be
used to realize different quantum gates. In addition, T';
can be tuned to achieve adjustable coupling between qubits
T; and T;, and thus we can select appropriate parame-
ters of the modulation field to construct target quantum
gates.
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In order to obtain a two-level system Hamiltonian in the
form of Eq. (1) for constructing universal quantum gates, it is
natural to go into the rotating frame with respect to

)
Ua = exp [lzl(lo)dol - |1)L<1|)i|7 (21
and the transformed Hamiltonian of Eq. (20) can be written as
, 8
My = S(0)(0] = [ d11),

+ g2 {Cae™ 1 (e7%10) (1] + V2™ [11)12(02]
+ /27 20)15(11]) + H.c.}. (22)

Choose the modulating frequency to meet v; = Ay — & in
Eq. (22), and after the rotational wave approximation, we
obtain the Hamiltonian in the logical basis S| as

e _ L8 Qe
ff
2= E(Qei¢z -5 ) 23)

where Q = 2g1,J;(I";). By adjusting the pulse parameters ¢;,
vy, and ¢,, we can find a path that accords with the TOC-based
scheme. Therefore, according to the general theory in the
last section, we can use the TOC-based scheme to construct
arbitrary single-logical-qubit quantum gates. We set different
parameters of the physical qubits for the H, S, and T gates.
The H gate corresponds to y'y = 5, ¢y(0) =7, ¢y =7,
and yu = 7. For the S and T' gates, they correspond to y's =
y'r =7, ¢5 = =31 /4 ¢; = —Tn/8,and ¢s(0) = ¢ (0) =
0. Based on TOC and solving Eq. (10), here ¢(¢) is in the
form of a linear function and yx is a constant, whose path in
the Bloch sphere is illustrated in Fig. 1(c). Next, we use the
master equation

N — z
b= —ilHp@), p1+ Y (%A(bk) + %A(bi)>, (24)
k=1

where bi = b;bk, to simulate the performance of our scheme
for the single-logical-qubit gates with A(b) = 2bpb™ —
btbp — pb*h, where p is density operator of the quantum
system with N =2. And r| =r, =r~ =2 x 4 KHz and
ry =r5 =r* = 2w x 4 KHz [8] are the decay and dephasing
rates of the two transmon qubits 7} and 7>, respectively, which
correspond to 7~ = 1/r~ & 40 us and 7° = 1/(2r%) = 20 s,
respectively. As shown in Fig. 2, taking g;» and A}, as vari-
ables, we numerically obtain the fidelity of the H, S and T
gates, which are defined as F = Tr(UTU’)/Tr(U'U), where
U’ represents the evolution matrix under decoherence. For
typical examples, we consider the parameters of the physi-
cal qubits as follows. The qubit frequency difference A}, =
2m x 520 MHz; the capacitive coupling strength g, = 27w X
14.5 MHz; the detunings of the H, S, and T gates are
modulated to dy = 2w x 29.58 MHz, §g = 27 x 25 MHz,
and 67 = 2w x 15 MHz; I'; is set as 1.5; and Q =27 x
16.18 MHz. With these settings, the gate operation times of
the H, S, and T gates are 21.9, 9.5, and 7.8 ns, respectively,
and the fidelities of the H, S, and T gates can reach Fy =
99.89%, Fs = 99.96%, and Fy = 99.97%, respectively.

Next, to test the gate robustness of our scheme, we consider
the crosstalk-induced qubit-frequency drift error of the two

() 600 )1
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\E/ 0.5
= g
4 400
300 /‘ 0
(c) 600 @1
i~ 0.8
= 500
2 0.6
= 400
< 04 W
300 - 0.2
(¢) 600 ®1
= 500 0.8
=
<]§ 400 0.6
i
‘4
300 04
10 15 20 0 0.5 |
ng(MHZ) t/TH.S,T
L ee—
099 0992 0994 0996 0998 1 — Po _Pl‘

FIG. 2. The gate fidelity as a function of the qubits’ frequency
differences A, and the coupling strength g;,. The numerical results
of H, S, and T gates are shown in panels (a), (c), and (e), respectively.
The dynamics of the state population and the fidelity of H, S, and T
gates are shown in panels (b), (d), and (f), respectively. Fg is the gate
fidelity; P, and P, are the populations of the logical states |0); and
[1),, respectively.

transmon qubits 77 and 75, which is the main error source
of the superconducting qubit lattice and is in the form
of w1, = w1 + R and Wy = wy — B2 Under the
interaction picture, the interaction Hamiltonian with error can
be expressed as

7-[’12’/3 = H', + BQUbT by — bI D). (25)

As shown in Fig. 3(a), we found that under the effect of qubit
frequency drift, our scheme exhibits a better resistance than
the single-loop (S-L) scheme [34].

B. Two-logical-qubit gates via TOC

We next consider the implementation of the controlled
phase (CP) gate, which is an important element for
the universal quantum gates. As shown in Fig. 1(a),
we consider a two-logical-qubit unit with two pairs of
transmon qubits, 7} and 75, and 73 and 7). Assuming
|CDEF) = |C); ® ID); ® |[E)x ® |F);, there exists a four-
dimensional DFS, S$,=Span{|00),=|1010), |01),=]1001),
[10), = |0110), |11), = |0101)}. In addition, an auxiliary
state |a) = |0200) is needed to assist the implementation
of the CP gate. We consider the interaction between
two adjacent physical qubits, 7, and 7;. Similar to the
single-logical-qubit case, the frequency of the 7, qubit
needs to be modulated as @y = wyy + €, cos(vat + ¢y)
to achieve tunable coupling between qubits 75
and Tj.

042617-4



TIME-OPTIMAL UNIVERSAL QUANTUM GATES ON ...

PHYSICAL REVIEW A 108, 042617 (2023)

27 (©) 700

1 @

— 600 0.99
N
= g ‘ 0.98
S © 2 500 0.5
= <]<Nr 0.97
400 0.96
0 300 ‘ 0.95 0 P
0 w4 =2 3n/4 =« 1 5 10 15 0 0.5 1
(Ty) g,,(MHz) v,

FIG. 3. (a) Comparative results for the gate robustness. Frequency drift error of TOC-based (solid line) and S-L-based gates (dashed lines).
(b) The operation time 7, in units of 1/ with respect to the rotation angle y(t2) and 8,/%2. (c) State fidelity as the function of the qubits’
frequency differences A,4 and their capacitive coupling strength g,4. (d) Considering the adjacent interactions from 7, and 73, state population
and fidelity dynamics of the CP-gate process with prescribed parameters as presented in the main text, where Fg is the state fidelity with the
initial state (]10); + |11)L)/ﬂ, and Py, Po1, Pio, P11, and P, are the populations of |00),, [01),, |10)., |11),, and |a), respectively.

Assuming 7] and T3 are in the ground state, the interacting
Hamiltonian can be written as

8

Hip = = (la){al = |11).(11])
+ {8aKhe ™ (110)42(01] + V26" | 11)  (a
+V2e7 @I 20) 5 (1)) + Hee), (26)

where K, = 37 J,(T) exp[—in(vat + ¢2)]. When we
choose the resonance frequency vy = Ay — o — 82, see
Eq. (20), and assume = 2g4,J1(I'}), I'; = 1.6, and ¢ =

¢> + m, then the Hamiltonian in Eq. (26) reduces to

1 32 Qe‘i¢
eff
= — i 27
et 2(96@ _52), @7

where |a) and |11); form the set of orthogonal basis
vectors, and ¢, = nt is a linear function according to the TOC
solution. The evolution operator is shown in Eq. (8). Setting
y’ = 7, we can obtain the evolution operator in the subspace
S, as

1 0 0 0
0 1 O 0

U(n) = 0 0 1 0 , (28)
0 0 0 ¢

where y (1) = &, + . In this way, the CP gate can be ob-
tained. The gate time can be solved as

2

= 522——}—6%{52[)/(1:2) — ]

T

+ /728 - Ry P -2y @)l). (29)

Similar to the S and 7 gates, the detuning §, can also be
used to further accelerate the gate time, as shown in Fig. 3(b),

where we have set y (1) = /2, 8, = 2w x 27 MHz, and
8,/2 = 2.3929.

In order to properly evaluate the performance of the CP
gate, with the initial state |yy,) = (]10), + |11)L)/\/§, the ef-
fect of the frequency difference A4 and the coupling strength
g12 on the gate fidelity is shown in Fig. 3(c). When the param-
eters are set as Ay = 2w x 600 MHz, go4 = 2w x 7 MHz,
ap =21 x 210 MHz, and oy = 27 x 230 MHz, the fidelity
of the CP gate can reach 99.88%, approaching 0.1% gate
infidelity. Actually, the leakage about the two adjacent qubits
Ty and T; should be considered as well. When we set Ay, =
A3y =21 x 900 MHz, oy = 2 x 200 MHz, and o3 = 27 X
220 MHz, the fidelity of the CP gate can reach 99.72%. The
state evolution process is shown in Fig. 3(d). In this case,
N =4 is set in the master equation, Eq. (24), and the rates
of decay and dephasing for each transmon qubit are set as
r=r, =ri =2 x4kHz.

IV. CONCLUSION

In conclusion, we propose a protocol for constructing uni-
versal quantum gates in a single-step via TOC combined with
DFS encoding, and we suggest an implementation on super-
conducting circuits, consisting of transmon qubits. For S, T,
and CP gates, by adjusting the detuning, the gate operations
can be completed in an extremely short time, which leads
to universal quantum gates approaching 0.1% gate infidelity.
Thus, our scheme provides a promising way towards the prac-
tical realization of fast quantum gates.
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