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We study continuous-variable graph states with regular and complex network shapes, and we report their cost
as a global measure of squeezing and the number of squeezed modes that are necessary to build the network.
We provide an analytical formula to compute the experimental resources required to implement the graph states,
and we use it to show that the scaling of the squeezing cost with the size of the network strictly depends on its
topology. We show that homodyne measurements along parallel paths between two nodes allow one to increase
the final entanglement in these nodes, and we use this effect to boost the efficiency of an entanglement routing
protocol. The devised routing protocol is particularly efficient in running time for complex sparse networks.
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I. INTRODUCTION

Network science has been used to model the structures
and properties of many biological, physical, and technological
systems, including the internet and the World Wide Web.
Photonics quantum networks are essential resources for quan-
tum information processing and notably for quantum internet
applications, where quantum states of light will allow for the
efficient distribution and manipulation of information [1–4].
To develop large-scale quantum communications and build a
quantum internet it is compulsory to grasp the potentialities of
quantum networks and exploit all their exceptional features.
We can expect that complex network theory can be used, like
in the case of classical networks, to study and drive efficient
quantum complex network design for quantum technologies
[5].

In this work we study continuous variable (CV) quantum
networks in the form of CV graph states with regular and com-
plex topologies. CV quantum information describes quantum
states living in infinite dimensional Hilbert spaces; protocols
mainly rely on coherent (homodyne) detection which, differ-
ently from photon counting detectors, can be highly efficient
at room temperature. Moreover, CV quantum networks can
be generated deterministically with a large number of nodes
[6–10], they can be easily reconfigured [11–14], and they have
been also exploited in quantum advantage demonstrations
[14].

It is known that the quantum feature of CV states can be
lost because of losses and noise during transmission. Never-
theless, substantial progress has been made in CV quantum
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state distribution [15] and CV quantum repeater design [16].
Moreover, CV quantum networks, which are easily reconfig-
urable and with a large number of components [7,8,10,14],
can be easily exploited as local area quantum networks.

In this work we discuss Gaussian graph states using math-
ematical tools from network science to estimate how the
cost of their experimental implementation is affected by the
topology and the size of the network. In particular, we de-
rive an equation providing the squeezing values required to
experimentally build a graph state as a function of its graph
spectrum. We then adopt a resource theory of squeezing to
estimate the cost of expanding the network. Although in
entangled qubits networks the resource usage is always pro-
portional to the number of links, we show that in CV Gaussian
networks the trend of the squeezing cost presents nontrivial
scaling with the size of the network and this is strictly depen-
dent on its topology.

Thereafter, we propose a CV architecture for the quantum
internet based on the Gaussian network previously described.
We simulate quantum communication protocols through the
network by letting the spatially separated agents present at
each node perform a homodyne measurement on their optical
mode and look for the optimal measurement strategy to max-
imize the logarithmic negativity—an entanglement measure
[17–19]—of the entangled pair shared by the two users who
want to communicate, Alice and Bob. We prove that when
multiple entangled paths connect Alice to Bob the optimal
measurement strategy allows one to increase the logarithmic
negativity in the final pair. This parallel enhancement of en-
tanglement can be used to increase the quality of quantum
communications in some selected network topologies.

Last, we employ our previous findings to implement a
heuristic routing protocol for distributing and boosting the
entanglement between two arbitrary agents. The algorithm
we provide, on the one hand, is much more efficient than
directly checking all possible combinations of quadrature
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measurements, and, on the other hand, it always provides
higher logarithmic negativity than the classical scheme, which
directly employs the shortest path between Alice and Bob and
neglects the parallel channels.

II. GAUSSIAN QUANTUM NETWORK

A. Gaussian quantum states

The generation of continuous variables multimode en-
tangled states has been demonstrated in several optical
setups. In such experiments we recover network structures as
naturally appearing entanglement correlations [20], reconfig-
urable Gaussian interactions [11], or imprinted cluster states
[7–10,21].

These quantum states produced via parametric processes
and linear optical transformations are characterized by Gaus-
sian statistical distribution of the quadratures of the involved
optical modes [22]. The quadratures q̂ j and p̂ j of the jth mode
are canonical conjugate variables, such that [q̂ j, p̂k] = iδ j,k ,
associated with the quantum harmonic oscillator describing
the light mode. In this work we adopt the following relation
with creation and annihilation operators â† = (q̂ − ip̂)/

√
2

and â = (q̂ + ip̂)/
√

2, such that the variance of the vacuum
quadratures is normalized to 1/2.

The produced states can then be completely characterized
by the first two moments of the quadratures r̄ = Tr[ρr̂] and
σ = Tr[ρ{(r̂ − r̄), (r̂ − r̄)T }], where ρ is the density matrix
of the Gaussian state and r̂ = (q̂1 . . . q̂N , p̂1 . . . p̂N ); we follow
here qp ordering.

Parametric processes are described by quadratic Hamilto-
nians ĤI = r̂H r̂T , whose dynamics is implemented on the
quadratures by SH = e�Ht , as

r̂′ = SH r̂0, (1)

where r̂0 are quadratures of the initial state, r̂′ are the quadra-
tures of the final state, and � = ( 0 1

−1 0) is a 2N × 2N
skew-symmetric matrix associated with the N-dimensional
Hilbert space allowing us to write the commutation relation
of the canonical variables as

[r̂, r̂T ] = i� = i

(
0 1

−1 0

)
.

Since any pure Gaussian state can be obtained by the appli-
cation of a unitary generated by a quadratic Hamiltonian H to
the vacuum, the most general pure Gaussian state covariance
matrix is given by applying SH by congruence to the vacuum
covariance matrix σ0 = 1/2:

σ = SHσ0ST
H = SH ST

H

2
. (2)

Singular value decomposition allows one to write the
symplectic transformation in the so-called Bloch-Messiah de-
composition [22] as a product of an orthogonal, a diagonal,
and an orthogonal matrix SH = O�O′, which can be inter-
preted as a basis rotation, a squeezing in the diagonal basis,
and another rotation. The mode basis in which the covari-
ance matrix is diagonal and each component is independently
squeezed is named the supermode basis. In [7,20] where the
pump and the phase matching function can be described by

a Gaussian spectral profile, the supermode basis corresponds
to Hermite-Gauss spectral modes. The squeezing values of
� can be derived from the eigenvalues of the Hamiltonian
ĤI , while the orthogonal matrix O can be interpreted as a
measurement basis change or, equivalently, as a passive lin-
ear optical transformation. The other orthogonal matrix O′ is
simplified in the product SH ST

H and can be disregarded:

σ = SH ST
H

2
= 1

2
O�2OT . (3)

The diagonal matrix � contains the information on the
minimum number of squeezed modes in the system and their
value of squeezing, which will later be used in the cho-
sen resource theory. If we consider a single-mode field, the
squeezing operation is defined as a Gaussian transformation
that reduces the variance of p̂ by a factor 10−s/10, where s,
measured in dB throughout this article, is called the squeez-
ing factor. Squeezing is represented by the local symplectic
matrix

Ssq(s) =
(

10s/20 0

0 10−s/20

)
.

The multimode � matrix can then be written as

� = diag
{
10s1/20, 10s2/20, . . . , 10sN /20,

10−s1/20, 10−s2/20, . . . , 10−sN /20
}
. (4)

This formalism can be used to visualize and manipulate
Gaussian quantum states, which are readily available in most
well-equipped photonics laboratories, and, although the num-
ber of modes and their connections is still in large part limited,
many efforts are employed to improve the capacities of these
systems.

Targeted Gaussian quantum states, including the quantum
networks of the next section, can be generated via the two
following strategies: (1) by tailoring Hamiltonians ĤI of mul-
timode parametric processes in order to get the decomposition
of Eq. (3) corresponding to the desired covariance matrix
[6,7,23–26]; and (2) by getting a number of single-mode
squeezers equal to the number of elements with s j �= 0 of
� in Eq. (3) and producing the corresponding s j squeezed
states, which are injected in a linear optic intereferometer
corresponding to the orthogonal matrix O in Eq. (3) [27–29].

B. Graph states as quantum networks

The above formalism can be employed to describe Gaus-
sian graph states that can be used as CV quantum networks.
We at first recall that a network is mathematically described
by a graph G(V, E ), which is a set of vertices V (or nodes)
connected by a set of edges E . Labeling the nodes of the
graph in some arbitrary order, we can define a symmetric
adjacency matrix A = AT whose ( j, k)th entry Ajk is equal
to the weight of the edge linking node j to node k (with no
edge corresponding to a weight of 0). Typically, the adjacency
matrix is enough to completely characterize a graph; however,
we will see that in our case there are other degrees of freedom
such as the squeezing of a node and its angle.
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We can now describe the quantum networks we use in
this work, which are called graph- or cluster states [30–32].1

Theoretically, they can be built by entangling several squeezed
modes of light via CZ gates, which is a Gaussian operation
implementing a correlation of strength g between the q̂ and
the p̂ of the two modes on which it acts. The corresponding
symplectic matrix is

SCZ (g) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 g 1 0
g 0 0 1

⎞
⎟⎟⎠.

The graph associated with the graph states identifies edges
as CZ gates applied between nodes, which are the squeezed
modes, weighted with g.

To simplify the many degrees of freedom present in our
networks, for the moment we shall assume that all the nodes
will be squeezed in p̂ by s and all the edges have a correlation
strength of g. If we apply a CZ gate network with adjacency
matrix A to a multimode squeezed vacuum σs, with squeezing
factor s we obtain a Gaussian network with covariance matrix
[33]

σ =
(

σqq σqp

σpq σpp

)
=

(
1 0

A 1

)
σs

(
1 A

0 1

)

=
(

R1 RA

RA RA2 + 1/R

)
, (5)

where R = 10s/10. The 2N × 2N covariance matrix σ is di-
vided in four N × N blocks, where the blocks σqq and σpp

represent the correlations among the different nodes’ q- and
p-quadratures, respectively, whereas the blocks σqp and σpq

describe the correlations between q- and p-quadratures.
Bear in mind that the CZ-gate operations that theoretically

identify the edges of the networks are seldom realized in any
laboratory, being very challenging to accomplish. What is
commonly done, as explained in the previous subsubsection,
is the reduction of the covariance matrix of the graph state in
(5) to the form of Eq. (3), which is also a recipe for building
the graph states from a certain number of squeezed modes (�)
and linear optics transformations (O).

Our model aims at reproducing the existing photonic plat-
forms [7,8,10,14] with realistic experimental constraints, such
as a limited amount of squeezing, but without taking into
account propagation losses. This work is focused on the capa-
bilities of pure CV quantum states to act as quantum networks
and the resources needed for their generation. Generation
losses can be very low, so the hypothesis of pure states is a
realistic one, whereas propagation losses can be mitigated by
considering local (short distances) networks, and their effect
on long distances will be included in future works. At the
same time, we probe the capabilities of photonic platforms
while the scaling of the network increases beyond the capaci-
ties allowed by state-of-the-art technology.

1While usually the name cluster is used when the graph shape
allows for universal quantum computing, in this work we will use
the terms cluster state and graph state as synonyms.

III. COST OF QUANTUM NETWORKS

Gaussian bosonic states are of particular significance in the
theory of CV quantum information. They are in fact resources
for measurement-based quantum computing [30,32], quantum
simulations [11], multiparty quantum communication [7,34],
and quantum metrology [35,36]. Furthermore, their graphical
structure simplifies their study through graphical calculus, a
formalism introduced by Menicucci, Flammia, and van Loock
[31]. Some elements of graphical calculus are summed up in
Appendix D.

The correlations between the quadrature measurements of
Gaussian states are fully described by their covariance matrix
σ . Therefore, as usual in the literature, we will not further
mention the first moments, which describe only a determinis-
tic shift of the measurements which can easily be compensated
when known and are therefore irrelevant.

Through the Bloch-Messiah decomposition (see Sec. II A),
one can see that the eigenvalues λ±

i of the covariance matrix
σ represent the squeezed and antisqueezed variances of the
uncoupled oscillators, e.g., the uncertainty of measuring the
real and imaginary part of the electromagnetic field. Together
they form the squeezing spectrum. The first result of this paper
is the following analytical relation between the squeezing
spectrum of the Gaussian state and the adjacency spectrum
of the graph:

λ±
i = 1

2

(
1 + D2

i /2 ±
√

D2
i + D4

i /4
)
, (6)

where Di are the eigenvalues of the adjacency matrix A. Equa-
tion (6) shows the interplay between the physical resources
necessary to experimentally implement a CV graph state and
the spectrum of the underlying graph. This implies that we
can use spectral graph theory to characterize analytically the
physical requirements of building Gaussian networks and thus
predict which one will be easier to realize. A first crucial
consequence is that different graph states whose underlying
graphs are cospectral, e.g., their adjacency matrices have the
same eigenvalues, can be transformed into each other applying
passive linear optics.2 The intrinsic connection between the
squeezing of a Gaussian network and its topology was already
put in evidence in the limit of large squeezing by Gu et al. [32],
who showed a relation between the squeezing required to pro-
duce a CV graph state and the singular value decomposition of
the associated adjacency matrix. Our result is a generalization
of Theorems 2 and 3 of Ref. [32], exact and valid for finite
squeezing, i.e., in a regime accessible with current technology.

Another crucial consequence of Eq. (6) is that for CV
graph states the number of independent squeezed modes in
their Bloch-Messiah decomposition corresponds to the rank
rk(A) of the associated adjacency matrix A. This immediately
translates into the number of squeezers needed to construct
said state.

Squeezing is the essential resource for building Gaus-
sian entangled states. A natural question is thus: what is the

2In general, any CV graph can be reshaped in any other graph via
a symplectic transformation; in this case, it is an orthogonal trans-
formation, and its physical realization involves only linear optics
without any supplementary squeezing.
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squeezing cost of producing a quantum state? A general re-
source theory for Gaussian states is provided by Lami et al.
[37], with the specific case of squeezing described in [38],
where Idel, Lercher, and Wolf find an operational squeezing
measure, the squeezing cost. Its expression for any pure3

Gaussian state of covariance matrix σ is

G : R2N×2N → R, G(σ ) =
N∑

i=1

10 log10[2λ+
i (σ )], (7)

where we chose to express it in dB.
We employ this to classify network topologies, depending

on the scaling of their squeezing cost with the size of the
network. In the rest of the paper (unless explicitly specified),
we will consider an initial set of N modes vacuum states with
no initial squeezing (s = 0), as it can be easily proved that
initial uniform squeezing only adds a constant factor to the
final squeezing cost. We also assume that the CZ-gate coupling
strength Ai j = g = 1 for every edge of the graph, keeping the
effects of nonuniform correlations for future works.

Notice that there is also a simple relation between the
adjacency matrix A of a graph state and the mean energy
difference between the state and the vacuum. Assuming that
the energy E of the state is the mean value of the harmonic
oscillator Hamiltonian on the state

E = 〈ĤHO〉 = h̄

2

∑
i

ωi
(〈

x̂2
i

〉 + 〈
p̂2

i

〉) = h̄ω

2
Tr(σ ), (8)

where we also assumed that all the modes have the same
frequency ωi = ω. From this, we can write

�E = E − E0 = h̄ω

2
Tr(σ − σ0) = h̄ω

2
Tr(A2). (9)

The quantity on the right-hand side is proportional to the
second moment of the eigenvalues distribution, and it sets
a fundamental lower bound on the energy necessary to im-
plement such states. From a topological point of view, the
trace of the nth power of the adjacency matrix equals the
number of closed loops of length n on the graph [39]. Thus, for
n = 2, it corresponds to the number of edges in the network
and implies that each independent application of the CZ gate
adds the same amount of energy. A resource scaling that is
linear with the number of edges in the network is typical of
DV networks (i.e., DV graph states), where each new edge
requires a new Bell pair. The scaling of the squeezing in
CV networks with the size of the network, as we have seen,
depends instead on the structure of the underlying graph and
can be nonlinear with the number of edges. We want to stress
here that squeezing—and not energy—is the technologically
nontrivial enabling resource to be implemented for building
the CV networks. If we look again at the example of the
star and the diamond graph, the number of edges in the two
graphs is different, hence they would have different energies.
As they have the same number of squeezed modes, we can

3The more generic expression for mixed states is slightly more
involved: G(σ ) = −∑N

i=1 10 log10[max(2λ−
i (σ ), 1)]. For pure Gaus-

sian states, i.e., all the states considered in this work, this expression
is equivalent to Eq. (7) because

√
λ+

i λ−
i = 1

2 .

transform one into the other with passive optics, e.g., without
spending energy or changing the squeezing cost. However,
it has to be clarified that the two main squeezed modes for
the diamond have larger eigenvalues than the star network.
Thus, if we transform a star graph into a diamond with linear
optics, it would be equivalent to a graph state obtained by the
application of CZ gate with a weaker coupling g. But again this
behavior is accounted for by the squeezing cost, which is the
relevant quantity in designing CV networks.

In the following, we will consider an initial set of N modes
vacuum states with no squeezing (s = 0), as it can be easily
proved that initial uniform squeezing only adds a constant
factor to the final squeezing cost. We also assume that the
CZ-gate coupling strength g = 1 for simplicity; however, the
analytical results we provide apply also in the general case.

A. Regular networks

Let us first discuss some regular network structures. We
shall consider the following topologies:

(i) The linear graph LN , with N nodes and N − 1 edges,
is accomplished by connecting each node in series to the next:

(ii) The ring graph RN , with N nodes and N edges, is a
linear graph with a closed loop:

(iii) In the star graph topology SN , with N nodes and
N − 1 edges, every peripheral node is linked to a central node,
called a hub:

(iv) The diamond graph DN , with N nodes and 2(N − 2)
edges, has two hubs, each linked to all the N − 2 central nodes
of the network. It is isomorphic to the complete bipartite graph
in which one of the subsets has two nodes and the other has
N − 2 nodes:
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FIG. 1. Squeezing cost distribution, measured in dB, for regular networks. For each mode, the networks are ordered as linear LN , ring RN ,
star SN , diamond DN , fully connected FN networks in the N = 50 modes, s = 0, g = 1. All the networks present some squeezing in each mode
except the S and D, which have an equal amount of squeezing only in the first two modes. The F network has a large peak of squeezing in the
first mode, while the remaining amount of squeezing is equally distributed in the other modes.

(v) In the complete (or fully connected) graph FN , with N
nodes and N (N−1)

2 edges, all nodes are interconnected:

Let us first take a look at the full squeezing spectrum of
these topologies for a fixed number of nodes N = 100. This
is shown in Fig. 1, where the values were computed starting
from the adjacency matrix spectrum of regular graphs [40].
We can see that, as expected, the linear and the ring graphs
have a very similar spectrum, with small deviations induced
by the periodicity of the latter that becomes negligible for
large N . The star and the diamond networks have only two
identically squeezed modes for all N . They are thus cospectral
up to a factor and can be transformed into each other with
linear optics. Finally, the fully connected graph has one large
eigenvalue that grows with N and N − 1 equal eigenvalues,
independent of the size of the graph. These eigenvalues are
computed analytically by diagonalizing the adjacency matrix
A and using Eq. (6) in Appendix B.

Let us now see how the total squeezing cost G(σ ) scales
with the number of nodes N for each of the network topologies
presented above. This scaling is computed analytically using
Eq. (7) in Appendix B. In Fig. 2 we can see how the linear and
the ring graphs are superposed, sharing the same squeezing
cost per node that, as shown in Appendix B, is constant with
N . The cost of the star and diamond grows logarithmically
with N and in both cases has a simple expression and presents
the lowest cost among the regular graphs we studied. In all
these cases, although the actual squeezing cost would be
smaller for these networks, the amount of squeezing required
in each mode is much larger, so, depending on the experimen-
tal scenario, their implementation could be the easiest or the
most challenging from an experimental point of view. In any
case, these networks have interesting applications for quantum
communications. In particular, the star graph can be used for
secret sharing [7], while the diamond produces an effect that
we call parallel enhancement of entanglement, which will
be explained in the next section. Finally, the fully connected

graph has a cost that grows linearly with N and, despite having
the largest number of edges and thus squeezing increasing
operations, for a large number of nodes is slightly cheaper
than the linear graph.

A relevant application of these results would be to mini-
mize the experimental difficulty—modeled by the squeezing
cost and/or the number of squeezers—to prepare the Gaussian
graph states used as resources for universal quantum compu-
tation. To our knowledge, all such proposals rely on 2D-lattice
structures [30,32], similar to the ones proved to be necessary
for DV measurement-based quantum computation [41]. We
show in Appendix B the squeezing cost of a D-dimensional
cubic lattice to scale linearly with the number of qumodes
they contain. We conjecture the same proportionality holds for
any D-dimensional regular lattice. Furthermore, we conjec-
ture this cost is proportional to the number of qubits used for
the equivalent DV measurement-based quantum computation
[41], which is itself proportional to the spacetime complex-
ity of the corresponding quantum computation in the circuit
model.

B. Complex networks

In the previous section, we described graphs that are built
through a deterministic algorithm, though we can also con-

FIG. 2. Trend of the squeezing cost G(σ ), measured in dB, for
the regular topologies: linear LN , ring RN , star SN , diamond DN ,
fully connected FN networks for N = 100 nodes.
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FIG. 3. Some complex networks and their adjacency matrix eigenvalues distribution for N = 1000 nodes: (a) Erdős-Rényi (ER)
GER rk(AGER ) = 1000, Barabási-Albert GBA rk(AGBA ) = 997, (c) Watts-Strogatz GW S rk(AGW S ) = 1000, (d) AS internet GAS rk(AGAS ) = 278,
and (e) proteins interaction GPP rk(AGPP ) = 492. In the distributions of the BA, AS, and PP the y axis is in log scale.

struct a graph based on statistical models [42,43]. This is
the difference between the regular networks of the previous
section and the random networks shown in Fig. 3. An exem-
plary standard for random networks is the Erdős-Rényi (ER)
model GER(N, p), in which each pair of the N nodes have a
probability p to be linked; the network thus has

(N
2

)
p edges on

average [44].
Most natural networks cannot be described by regular

or random graphs. A branch of research, called complex
networks, studies these networks. Complex networks have
unique topological features not found in regular or random
graphs and resemble real-world systems [45]. One important
class of complex networks is the “small world” network.
These networks have short average path lengths and high clus-
tering. The Watts-Strogatz model GW S (N, Q, β ) exemplifies
these properties. It starts as a regular periodic graph with N
nodes and Q neighbors per node. With probability β, edges
are rewired to other nodes, avoiding self-loops and duplicates.
Another class is “scale-free” networks with “long-tailed”
structures. They follow a power-law degree distribution,
P(k) ∝ k(−γ ), unlike regular and Watts-Strogatz models.
The Barabási-Albert model GBA(N, K ) captures this behavior
and emulates network growth and preferential attachment.
“Technological networks” are designed for resource distribu-
tion, like the internet autonomous system (AS) GAS (N ). To
study AS topology, reference work by Elmokashfi et al. [46]
is used. Complex networks also appear in nature, including
various “biological networks.” One example is the protein-
protein interaction network model GPP(N, σ ) from Ref. [47].

Complex networks are important in many natural and
technological systems [45]; similarly CV graph states with
complex network shapes are particularly relevant for simu-
lating quantum complex networks environments [11,48] and
to study future quantum information and communication net-
works mimicking the structure of the classical communication
networks. It is then worth studying the scaling of the necessary
squeezing resources for their implementation. In Fig. 4 we
show the squeezing cost distribution for the various topologies
of complex networks by showing the squeezing cost of all the
principal modes. Notice that, since complex networks are a

subset of correlated random networks, the set of eigenvalues
of the adjacency matrix is not deterministic. However, the
eigenvalues follow a probability distribution f (x), well known
in some selected cases [49], which allows us to derive the
expected value of the total squeezing cost as

〈G(σ )〉 = 10N
∫

f (x) log10[λ(+)(x)] dx, (10)

where λ(+)(x) is the largest eigenvalue deduced from Eq. (6)
and x indicates the corresponding mode. This gives us a
straightforward recipe to compute G from the distribution f .
Furthermore, it allows us to deduce the scaling of G from the
distribution of the eigenvalues and especially from the width
of this distribution. If the distribution does not change with
N , then G scales linearly with N , whereas any growth in the
width of f would imply a superlinear scaling of G.

In Fig. 5 we report the trend of the total squeezing cost as a
function of the number of nodes for each of the above complex
topologies. In this case, the networks were simulated and the
values obtained were averaged over ten different samples.

From the plots, we notice that the linear trend is the most
common case. The spectral theory of real graphs is a much
less established field, and there is only a handful of results
we can apply to make predictions. In particular, to the best
of our knowledge, there are only empirical results about the
convergence of the spectral density for the scale-free and the
small-world models. In Ref. [49], however, Farkas et al. show
some crucial properties of the spectra of scale-free and small-
world graphs, although further studies are required to have a
deeper insight into the properties of complex quantum graph
states. In particular, it is shown that, fixing the other network’s
parameters, the width of their distribution is constant with N ,
implying as we discussed a linear trend of G, consistent with
the observed one.

The protein-protein [47] and AS networks, which are scale-
free networks, have the additional property of having many
nodes sharing the same neighborhood, which implies a large
kernel of their adjacency matrix and thus a slower growth of G
compared to the other complex graphs, which are essentially
full rank. More specifically, the low rank of the protein-protein
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FIG. 4. Squeezing cost distribution, measured in dB, for complex topologies. For each mode, the networks are ordered as Erdős-Rényi
GER, Barabási-Albert GBA, Watts-Strogatz GW S , AS internet GAS , and protein-protein interaction GPP networks in the N = 50 modes.

interaction graph of Ispolatov, Krapivsky, and Yuryev [47]
is explained by the duplication process at the heart of its
generation, which, by definition duplicates the neighborhood
of vertices. For the AS graph, a model of the internet by
Elmokahfi, Kvalbein, and Dovrolis [46], many of the nodes
are leaves (clients) connected to a few client providers. This
results in a very low, but still linearly increasing with N , rank,
explaining why its squeezing cost is the lowest of the line in
Fig. 5.

The anomalous superlinear trend of the ER model is a
direct consequence of the same theory. As we show in Ap-
pendix C, this N log N scaling is due to the widening with N
of the Wigner semicircular law [50] followed by the ER graph.

Now that we have characterized the cost of implementing
Gaussian quantum networks, we will describe how to use
them as a substrate to perform quantum communications.

IV. ROUTING ENTANGLEMENT

Quantum entanglement is a paramount resource for
quantum information purposes. In particular, bipartite entan-
glement represents the fundamental requirement that a shared
quantum channel should have to enable a truly quantum
teleportation. In the framework of quantum communica-
tions, the networks previously described can be seen as

FIG. 5. Trend of the squeezing cost, measured in dB, for complex
topologies: Erdős-Rényi GER, Barabási-Albert GBA, Watts-Strogatz
GW S , AS internet GAS , and protein-protein interaction GPP networks
up to N = 500 nodes.

distributed Gaussian quantum teleportation networks [51],
where each pair of nodes can employ the preestablished quan-
tum correlations together with Local Operations and Classical
Communications (LOCC) to teleport a Gaussian quantum
state from one node to the other.

A typical approach of quantum networking and routing
consists of distributing photonics states like single photons,
Bell pairs, or Gaussian states and then use synchronous
local operations that build the wanted entanglement struc-
ture between the agents [3,52–60]. We remark that our type
of communication quantum networks is inherently different
from the typical qubit networks that are currently being de-
ployed in different metropolitan areas [61]. In those cases,
for example, each entanglement link is pairwise between two
qubits, and as a consequence each node of the network will
have to receive, store, and measure as many quantum states as
it has neighbors. Conversely, in a Gaussian quantum network,
the same qumode can be entangled with an arbitrary number
of other nodes. Moreover, the production of such states, their
manipulation to increase the entanglement among two nodes,
and their measurement to perform quantum teleportation can
be achieved deterministically, unlike the discrete variables
case. Nonetheless, qubits networks have been extensively
studied over the past years, whereas Gaussian teleportation
networks are a very recent emerging field. Our purpose is,
thus, not to prove the superiority of the latter, but rather to ex-
plore its properties and the differences from the DV schemes
to get the best of both worlds.

We consider the case where a preexisting CV multipartite
entangled state is distributed among the players and then
local operations reconfigure the entanglement connections,
similarly to some protocol in the DV case [62]. The choice
is motivated by the fact that multimode entangled states can
be directly generated via an optical platform [6,8–10,20], and
their shape can be easily manipulated [7,11].

In our framework, if two nodes A and B need to teleport
a quantum state, they can be helped by the other nodes in the
network that will perform a quadrature measurement in one of
the two complementary canonical variables q̂ or p̂ to increase
the strength of the entanglement in the final pair. In a naive
strategy, the teleportation between two arbitrary nodes can
be implemented simply by ignoring all the other nodes and
exploiting the residual bipartite entanglement together with
classical communications. This strategy is a direct extension
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of the standard teleportation protocol from two to more sta-
tions and is called nonassisted protocol [63].

Another set of strategies is based upon cooperative behav-
ior, where all the other nodes assist the teleportation between
the chosen pair (Alice and Bob) using LOCC. If the external
nodes perform suitable local measurements and then classi-
cally communicate their outcomes to Bob, the latter can use
this additional classical information to improve the process
via modified conditional displacements. These strategies are
called assisted protocols and are the ones that determine what
we call routing protocol in this article.

According to Gu et al. [32] quadrature measurement on a
mode of a Gaussian network like the ones we considered so
far can be described by two simple rules:

(1) Vertex Removal: a q̂-measurement on a qumode re-
moves it from the network, along with all the edges that
connect it.

(2) Wire Shortening: a p̂-measurement on a qumode is just
a q̂-measurement after a Fourier transform, which corresponds
to a phase rotation of π/2: SF = SR(θ = π

2 ). The node will
thus be removed, but the phase shift will induce correlations
between the neighboring edges. Thus, measurements in the
momentum basis allow us to effectively shorten linear graph
states.

These rules are exposed more formally in Appendix D, us-
ing the graphical calculus introduced by Menicucci, Flammia,
and van Loock [31].

If two nodes A and B need to teleport a quantum state,
they can be helped by the other nodes in the network that will
perform these operations to increase the strength of the entan-
glement in the final pair. A typical measure of entanglement
is the logarithmic negativity [17–19,64]

N = −2 log2 ν̃−, (11)

where ν̃− is the smallest symplectic eigenvalue of the partially
transposed covariance matrix of the pair. Partial transposition
is a necessary operation for the positive partial transpose
(PPT) criterion [65] and is easily implemented in Gaussian
states by changing the sign of the momentum of one of the
two subsystems.

The symplectic eigenvalues ν± of a two-mode system can
be computed through the invariants of the covariance matrix
[64]. More specifically, we can define the seralian

� = det σA + det σB + 2 det σAB, (12)

where σA and σB are the local covariance matrices of the
single-mode subsystems A and B, and σAB represents their
correlations. From this, we can compute the symplectic eigen-
values as

ν2
± = � ± √

�2 − 4 det σ

2
. (13)

A. Regular networks

In Fig. 6 we compare the effect of different regular topolo-
gies of quantum networks to distribute entanglement between
two of the farthest nodes inside the network.

For each regular network topology, we employ the opti-
mal measurement strategy to maximize the entanglement. The
simplest cases are the star and complete networks. In the first

FIG. 6. Logarithmic negativity in the final two modes states after
all the other agents have locally measured their node for the regular
topologies: linear LN , ring RN , star SN , diamond DN , fully con-
nected FN networks up to N = 100 nodes.

case the best assisted strategy is to let everyone perform a q̂-
measurement on their node except the central one, which will
make a wire shortening to link the final pair. In the complete
network, A and B are already linked by an edge, so it is suffi-
cient to measure the position in all the other qumodes (notice
that this strategy outperforms the nonassisted protocol). In
both these cases, the entanglement is constant with the number
of nodes in the network as we would expect, and the wire
shortening of the central node in the star graph decreases the
logarithmic negativity with respect to the complete graph [66].
In the linear graph, all the nodes have to wire shorten from A
to B. Here the logarithmic negativity quickly decreases with
the number of nodes.

The decrease of entanglement with the size of the net-
work seems to be typical in all configurations except the
diamond graph, where all the central nodes are p̂-measured.
This behavior is quite counterintuitive and might be expected
to increase the fidelity of quantum communications. We show
in Appendix E that the lowest symplectic eigenvalue of the
partially transposed covariance matrix for this system goes
like (

ν̃
(DN )
−

)2 = 1

1 + 2NRg2
, (14)

where R = 10s/10 is the inverse of the squeezing in p̂, with
squeezing factor s in dB. Hence, the logarithmic negativity
grows logarithmically with NRg2,

N (DN ) = log2(1 + 2NRg2), (15)

and the two modes become perfectly correlated in the limit of
either infinite squeezing, infinite strength CZ gate, or infinitely
many nodes in the network.

B. Complex networks

We present a naive entanglement routing protocol that
takes into account some of the properties studied in the
previous section (notably, the parallel enhancement of entan-
glement), and we will apply it to complex topologies to show
that the enhancement of the entanglement with respect to the
trivial protocol is, in principle, easily achievable. Imagine we
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FIG. 7. Scheme of the three protocols for the entanglement distribution: (a) the Routing protocol takes a list of the shortest paths connecting
A and B and measures in p̂ those that increase the logarithmic negativity while the rest is measured in q̂; (b) the Shortest protocol considers
only one of the shortest paths to be measured in p̂ and the rest in measured in q̂; (c) the All P measures the nodes with only one connection in
q̂ and all the rest in p̂.

have a distributed network of entangled harmonic oscillators,
where each node is honest and can perform classical com-
munication and local homodyne measurement, and we want
to establish an entangled pair between two nodes, Alice and
Bob, that want to teleport a quantum state or perform quantum
key distribution (QKD). The trivial protocol—called Shortest
in the following—would be to find the shortest path between
them and measure in p̂ all the qumodes along this path and
in q̂ all the others. A careful look at the inner structure of the
network, however, might help us increase the strength of the
correlation. For example, if at any point, two nodes on the path
are linked by multiple parallel routes, we can measure these
in p̂ to exploit the parallel enhancement of this diamond-like
subnetwork.

To show this in practice, we test the performances of three
different routing protocols (shown in Fig. 7) on various com-
plex networks to establish a highly entangled pair [50]. We
choose Alice to be one of the hubs of the graph and evaluate
the efficiency of the protocol in delivering entanglement to
all the other nodes. The quantum protocol that we propose
to exploit the parallel enhancement of entanglement will be
called simply Routing:

Routing: it takes as input the target node, Bob; it lists all the
shortest paths connecting it to Alice and measures all the
nodes that are not in these paths in the q̂ quadrature, so
that they will not influence the protocol. Among the list
of paths, it checks one by one those to be measured in
p̂ to maximize the logarithmic negativity N of the final
pair, while the rest will be measured in q̂.

In the Routing protocol, in principle, we could have con-
sidered parallel paths of longer lengths that might have
contributed to improving the logarithmic negativity. However,
in practice, the only observed effect was the slowing of the
performances while the entanglement was not increasing for
all the cases we considered. The effect of the parallel paths
can be appreciated when comparing the logarithmic negativity
produced by Routing with that produced by Shortest:

Shortest: the difference of the latter is that it exploits only
one of the shortest parallel paths, directly measuring
everything else in q̂.

In some cases the two protocols do not give a substantial
difference, either because there are no parallel routes or be-
cause these do not help increase the entanglement; however,
in many instances the effects of parallel routing are significant.
The last protocol we compare with is All P:

All P: it measures in q̂ all the terminal nodes of degree 1—
the leafs—and the rest in p̂.

This protocol is less effective than the first two but is
always the quickest to simulate, whereas Routing can be
computationally very slow on regular networks, which are
characterized by long distances and many parallel paths, but
becomes very efficient on complex sparse networks. The fol-
lowing simulations can be reproduced using our Python code,
available at [50].

One instance of this program is given in Fig. 8, which
shows the logarithmic negativity provided by the three dif-
ferent protocols for each node of an Autonomous System
(AS) network [46] with 1000 nodes GAS (N = 1000). At the
beginning of the protocol, we pick Alice as the node, or one
of the nodes, with the highest degree. The nodes are then
sorted by their distance from Alice and, for the same distance,
by the number of all the shortest paths connecting them to
Alice. Additionally, the gray column represents the fraction
of parallel paths useful to increase the entanglement. Notice
that nodes at distance 1 cannot show any difference between
the Routing and the Shortest protocols; however, many nodes
at distance 2 present a greater logarithmic negativity than
those at shorter distance after the Routing. This feature of
quantum communication networks, e.g., that two nodes can
benefit from improved communication if they are at a larger
distance due to the parallel enhancement of entanglement, has
no classical equivalent.

In Fig. 9 we show the graph of the network, where the
nodes are again sorted by distance and number of parallel
paths and the size of each node is proportional to its degree.
In this figure, Alice is 0 and has a thick red contour. The
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FIG. 8. Logarithmic negativity produced by the three different protocols applied to each node of the Autonomous System GAS (N = 1000)
network. The nodes are labeled in order of distance and of number of paths connecting to Alice. The blue (above), orange (middle), and
green (below) stems represent the logarithmic negativity of the final pair after the Routing, Shortest, and All P protocols, respectively, while
the dashed lines represent the mean value for all the nodes. The gray columns represent the ratio of paths that improved the entanglement in
Routing, with respect to all the paths connecting A to B.

FIG. 9. Scheme of the GAS (N = 1000) network on which we
performed the protocol and subgraph of the paths connecting to the
node with highest logarithmic negativity. The nodes are set in circles
according to their distance from Alice, and their size is proportional
to their degree.

node with the highest logarithmic negativity and all the paths
that improved its entanglement are highlighted with red thick
lines.

Appendix F presents the results of the same analysis we
applied to other networks differing in size and topology, and
for which we obtained different results.

V. CONCLUSION AND OUTLOOK

In this work we have investigated Gaussian multimode
graph states with regular and complex topologies and stud-
ied their potential application for quantum communication
protocols.

First, we have shown analytically and numerically that the
cost of the networks is in general nonlinear with the number
of edges and nodes and there are particular (regular and com-
plex) graph shapes that optimize the cost and the number of
squeezers over a number of nodes and edges in the networks.
Among regular networks the diamond and the star graph need
only two squeezed nodes to be built, independently from their
number of nodes. Among the complex network shapes, the
AS model is the most convenient in the number of needed
squeezed states [46].

Then we studied the assisted teleportation protocol in
Gaussian entangled networks, where a couple of nodes are as-
sisted in the teleportation by local measurement in all the other
nodes. This naturally defines a routing protocol in Gaussian
networks. In particular, we have considered q̂ and p̂ homodyne
quadrature measurements that allow respectively for vertex-
removal and wire shortening. We showed analytically the
effect of parallel enhancement of entanglement to improve the
quality of quantum communication in the diamond network.

Finally, inspired by this quantum effect, we have devised
a routing protocol that exploits wire shortening in parallel
paths, and we have applied it to complex network graphs. The
protocol named Routing is compared with Shortest, where
wire shortening is done only in the shortest path, and All P,
which removes all the terminal nodes while it wire shortens all
the others. In most cases, the Routing improves the entangle-
ment compared with Shortest. Also, in terms of computational
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complexity, the Routing is much slower than All P in regular
networks, where there are long distances between nodes and
several parallel paths, but it is very efficient in complex sparse
networks.

The devised Routing protocol is very general so that it
can be applied to arbitrary networks, and it is particularly
efficient for sparse not regular networks. Our simple graph
exploration approach would be improved in computational ef-
ficiency by real graph-based algorithms, especially if we allow
for approximate solutions [67]. Also, it would be interesting
to allow for nonuniform distributions of squeezing s and CZ-
gate strength g or more general homodyne measurements,
i.e., going beyond the two p̂ and q̂ cases and considering
measurements along q̂θ = cos(θ )q̂ + sin(θ ) p̂. In addition, it
could be interesting to examine a scenario in which the inter-
mediate nodes are dishonest and do not cooperate to perform
the routing, exploiting, for example, non-Gaussian operations.
Finally the routing protocol has been implemented to solve
the particular task of creating a perfect EPR pair between
two nodes; future protocols will consider general reshaping
in arbitrary multiparty states.

The numerical data that support the finding are available
from the authors upon request and can be reproduced using
the repository [50].
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APPENDIX A: INTERPLAY BETWEEN SQUEEZING
AND ADJACENCY SPECTRA

Consider an N-dimensional graph with adjacency matrix A.
If we apply a set of CZ gates to the set of N modes of a vacuum
state according to the edges defined by A, we end up with
a Gaussian graph state with the following 2N-dimensional
covariance matrix:

σ = 1

2

(
1 A
A 1 + A2

)
, (A1)

where we assumed that the vacuum state variance is
normalized to 1/2. Since A is symmetric, it is always

diagonalizable,

VAV T = D = diag({Di}), (A2)

for some orthogonal matrix V , where {Di}N
i=1 is the set of the

real eigenvalues of A. It follows that VA2V T = VAV T VAV T =
D2. Let us consider the following matrix:

W = 1√
2

(
V V
V −V

)
. (A3)

We can verify easily that WW T = 1, hence W is an orthogo-
nal matrix implementing a basis change that would not change
the spectrum of the matrix to which it is applied. If we apply
it to σ we get

σ ′ = W σW T = 1

2

(
1 + D + D2/2 −D2/4

−D2/4 1 − D + D2/2

)
,

(A4)
which is a block matrix composed of diagonal matrices. We
can permute the rows and columns of the matrix to get a
diagonal block matrix

�σ ′�T =
N⊕

i=1

Mi, (A5)

where � is a permutation operator, while

Mi = 1

2

(
1 + Di + D2

i /2 −D2
i /4

−D2
i /4 1 − Di + D2

i /2

)
. (A6)

In this basis, each block Mi represents a single-mode covari-
ance matrix of a pure unentangled Gaussian state. We can
hence diagonalize each block independently. In particular,
notice that det(Mi ) = 1

4 , thus the eigenvalues of σ are given
by

λ±
i = (Tr(Mi ) ±

√
Tr(Mi )2 − 4 det(Mi ))

= 1
2

(
1 + D2

i /2 ±
√

D2
i + D4

i /4
)
. (A7)

These values represent the squeezed and antisqueezed vari-
ances of the uncoupled oscillators of Eq. (4), e.g., the
uncertainty of measuring the real and imaginary part of the
electromagnetic field. Equation (A7) shows the interplay be-
tween the physical resources necessary to experimentally
implement a CV graph state and the spectrum of the un-
derlying graph. This implies that we can use spectral graph
theory to characterize analytically the physical requirements
of building Gaussian networks and thus predict which one
will be easier to realize. A first crucial consequence is that
different graph states whose underlying graphs are cospectral,
e.g., their adjacency matrices have the same eigenvalues, can
be transformed into each other applying passive linear optics.4

We will see later that the star and diamond networks have this
property, making them a relevant class of Gaussian networks

4In general, any CV graph can be reshaped in any other graph via a
symplectic transformation; in this case it is an orthogonal transforma-
tion, and its physical realization involves only linear optics without
any supplementary squeezing.
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for applications. The intrinsic connection between the squeez-
ing of a Gaussian network and its topology was already put in
evidence by Gu et al. [32], by proving a relation between the
squeezing required to produce a CV graph state and the sin-
gular value decomposition of the associated adjacency matrix.
Our result is an exact generalization of Theorems 2 and 3 of
Ref. [32], beyond the limit of large squeezing, i.e., in a regime
that is accessible with current technology.

Another crucial consequence of Eq. (A7) is that for CV
graph states the number of independent squeezed modes
(squeezers) in their Bloch-Messiah decomposition corre-
sponds to the rank rk(A) of the associated adjacency matrix.

For any nontrivial graph, we have

2 � rk(A) � N. (A8)

The impossibility of rank 1 adjacency matrices comes from
their null trace. If A is not full-rank, it has a non-null kernel.
A common source of such kernel vectors is when one has k
linearly independent sets S1, . . . , Sk of vertices sharing the
same neighborhood AS1, where, by a slight abuse of notation,
Si denotes both a set of vertices and the corresponding column
vector:

∀1 � i � k, ASi = AS1. (A9)

We have then

A
k∑

i=1

αiSi =
(

k∑
i=1

αi

)
AS1, (A10)

which is null if and only if
∑

i αi = 0. This gives us a null
eigenspace of dimension k − 1.

The most obvious example of this is the star graph, where
N − 1 vertices share the same neighbor, giving a null space
of dimension N − 1 − 1 = N − 2, hence rk(A) = N − (N −
2) = 2. If one now looks at the complete (k, N − k)-bipartite
graph, one easily finds two null eigenspaces of dimension k −
1 and N − k − 1. This leads to rk(A) = 2. Any rank 2 graph
is a complete bipartite graph, as can be shown by looking at
A matrices one can build from two orthogonal vectors. Its two
non-null eigenvalues of a rank-2 graph are

±D = ±
√

TrA2

2
= ±

√
k(N − k). (A11)

APPENDIX B: SQUEEZING SPECTRA OF REGULAR
GRAPHS

Given any graph’s spectrum we can employ Eq. (6) to
compute the amount of squeezing in each mode required to
build the Gaussian network. In the following calculations, we
used the spectra of regular graphs known in the literature. A
detailed reference on the spectra of regular graphs and how to
obtain them can be found at [39,68].

Unlike energy, the squeezing cost has a nontrivial scaling
with the number of edges, as can be seen in Fig. 10, where
we plot the ratio between G and the number of edges in each
regular network topology. In particular, the complete network
shows the least squeezing cost per edge, having the largest
number of edges.

We use the linear graph as a benchmark to see how the
squeezing cost scales with the number of nodes and links.

FIG. 10. Trend of the squeezing cost, measured in dB, divided by
the number of edges in the network for the regular topologies: linear
LN , ring RN , star SN , diamond DN , fully connected FN networks for
N = 100 nodes.

Single-mode squeezing and the CZ gate both require a fixed
amount of squeezing to be implemented, so we would expect
G(σ ) to scale linearly with the number of links and nodes.
This is a direct consequence of the spectral distribution of the
linear graph, which is

Dk (LN ) = 2gcos
πk

N + 1
, {k = 1, . . . , N}. (B1)

We can use Eqs. (6) and (7) to compute the squeezing cost
exactly for any given N . For N 
 1, the sum in Eq. (7)
allowing us to compute the average squeezing cost per mode
Ḡ = G/(No. of squeezed modes) = G/rk(A) can be seen as a
Riemann integral, which converges to

Ḡ � 10
∫ 1

0
log10

(
1 + g2 cos2 πy2

2

+
√

g2 cos2 πy + g4 cos4 πy

4

⎞
⎠dy. (B2)

This can be easily generalized to the case of a D-dimensional
cubic lattice L(D)

N , considering that adding a new dimension
would just add a new set of eigenvalues of the form (B1), as
shown in Sec. 2.6 of [40]. As a consequence, the squeezing
cost of the L(D)

N is G = O(ND), whereas the average cost per
mode would be again constant with the number of nodes N ,
as shown in Fig. 11.

Similarly, we can use the eigenvalue expression of the
circular graph (or its generalization with Q > 1 nearest
neighbors)

Dk
(
GC(Q)

) = g
sin[(Q + 1)kπ/N]

sin[kπ/N]
− g, k = {0, . . . ., N − 1}.

(B3)
From this, we can see why the linear and circular graphs have
the same scaling. In fact, for Q = 1, we have Dk (GC(Q1 ) =
2gcos(kπ/N ) − g.
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FIG. 11. Trend of the average squeezing cost per mode Ḡ(σ ),
measured in dB, for 1D, 2D, and 3D lattices, with N , N2, and N3

nodes, respectively. Notice that the cost becomes asymptotically
constant, as predicted by the theory.

The spectra of the star and diamond graph have only two
non-null eigenvalues [68]:

{Dk (SN )} = {
g
√

N − 1, 0⊗(N−2),−g
√

N − 1
}
, (B4)

{Dk (DN )} = {
g
√

2N, 0⊗(N−2),−g
√

2N
}
. (B5)

As a consequence, the cost of the star and diamond Gaus-
sian networks grows logarithmically with N and has the
following expressions:

G(σSN ) = 20 log10

× 2 − g2 + g2N +
√

g4N2 − 2(2g4 − g2)N + g4 − 4g2

2
(B6)

= 20 log10 N + 20 log g2 + O

(
1

N

)
, (B7)

G(σDN ) = 20 log10(1 + g2N + g
√

N (g2N + 4)) (B8)

= 20 log10 N + 20 log10 2g2 + O

(
1

N

)
. (B9)

Finally, the spectrum of the fully connected graph is

{Dk (SN )} = {
g(N − 1),−g⊗(N−1)

}
, (B10)

yielding a squeezing cost that can be expressed as the sum of
two contributions

G(σFN ) = 10(N − 1) log10
2 + g2 + g

√
g2 + 4

2

+ 10 log10

⎡
⎢⎣1 +

1 +
√

1 + 4
g2(N−1)2

2
g2(N − 1)2

⎤
⎥⎦

(B11)

= 10(N − 1) log10
2 + g2 + g

√
g2 + 4

2

+ 20 log10 N + 20 log10 g + O

(
1

N

)
, (B12)

which sums up to a cost growing essentially linearly in N .

FIG. 12. Comparison between the theoretical prediction of
Eq. (10) and the experimental numerical simulation of the squeezing
cost, measured in dB, of the Erdős-Rényi graph state, for different
values of p.

APPENDIX C: SQUEEZING SPECTRUM
OF ERDŐS-RÉNYI GRAPHS

From Fig. 5 we notice that the most expensive growth be-
longs to the Erdős-Rényi (ER) topology, which is the only one
among the topologies we studied whose trend is superlinear.
This behavior is the easiest to predict from random matrix
theory: the Wigner semicircular law for the distribution of
the eigenvalues of a random graph [50] gives their probability
distribution in the form f (x) = fER(x) = 2

πR2

√
R2 − x2 [see

Fig. 3(a)], where R = 2g
√

N p(1 − p), with a supplementary
large eigenvalue D1 such that limN→∞ D1/gN = p, with prob-
ability 1. Casting it in Eq. (10) gives

〈G(σER)〉 = 10 log10[2λ+(gpN )]

+ 40N

πR2

∫ R

0

√
R2 − x2 log10[2λ+(x)]dx, (C1)

where we used the parity of fER(x), and the fact that the
support is in [0, R]. Figure 12 shows the comparison between
the theoretical behavior of the squeezing cost of the ER graph
and the numerical experiments from the simulations. It shows
a superlinear ∝ N log N increase of the squeezing cost, which
is explained by the widening of the support of f due to the
increasing values of R. More formally, making the variable
change x = Ry, we have

log10[2λ+(Ry)] = 2 log10 R + log10
y2

2
+ O

(
1

R2y2

)
. (C2)

The second term in Eq. (C1) then becomes

40N

π

∫ 1

0

√
1 − y2 log10[λ+(Ry)]dy

= 80N log10(R)

π

∫ 1

0

√
1 − y2dy + O(N )

= 10N log10[g2N p(1 − p)] + O(N ) (C3)

and is the dominant term in the squeezing cost.
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FIG. 13. Graphical representation of the diamond graph and its
parallel enhancement of entanglement.

APPENDIX D: GRAPHICAL CALCULUS

In Ref. [31] Menicucci, Flammia, and van Loock provide a
unified graphical calculus for all Gaussian pure states which is
particularly suited for describing highly multimode Gaussian
networks.

In this framework, an N-mode Gaussian state is completely
described, up to displacements, by a N × N complex valued
adjacency matrix:

Z = V + iU, (D1)

where the real and imaginary parts of Z , V , and U , re-
spectively, are related to the covariance matrix through the
following unique decomposition:

σ = 1

2

(
U −1 U −1V

VU −1 U + VU −1V

)
. (D2)

Gaussian graph states have a particular simple graphical
representation, being

Z = A + iD, (D3)

FIG. 14. Different measurement strategies for two types of dia-
mond network: the standard DN we have seen so far and the D̃N , in
which the central nodes are connected to their neighbors. We apply
two different strategies to D̃N : one is to measure all the central nodes
in P, and the other is to alternate a p and a q measurement. We can
see that measuring always in p is not necessarily the optimal strategy.
On the right side, you can see a scheme of the D̃ network and the two
different measurement strategies.

FIG. 15. Trend of the ratio between the logarithmic negativity of
the final state and (a) the squeezing cost of the initial state, measured
in dB, or (b) the total number of modes in the initial state for regular
topologies: linear LN , ring RN , star SN , diamond DN , and fully
connected FN networks up to N = 100 nodes.

where A is the weighted adjacency matrix of the graph and
D is a diagonal matrix that represents momentum squeezing,
i.e., for D = 10−2s/101 the momentum variance of all modes
is reduced by 2s decibels.

All symplectic operations can be reproduced in this lan-
guage; however, since we already know how to represent the
resource graph states, we need only to implement the quadra-
ture measurements in x̂ and p̂. We can express the state as

Z =
(

t RT

R W

)
, (D4)

where the scalar t is the target mode we want to measure, W ∈
R(N−1)×(N−1) the subgraph of the untouched modes, and R ∈
R(N−1)×1 their correlations with the target mode. We have the
following two rules:

(1) Z −→ Zq = W after a q̂ measurement.
(2) Z −→ Zp = W − RRT

t after a p̂ measurement.
Thus, for a measurement in q̂ we simply remove the node

and its links from the graph, whereas for a measurement in
p̂ we also change the correlation between its neighbors, since
(RRT )i j �= 0 iff both i and j are in the node’s neighborhood.

FIG. 16. Scheme of an entanglement routing protocol in a dia-
mond chain with K = 3. All the central nodes are measured in P to
concentrate entanglement between Alice and Bob.
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FIG. 17. (a) Trend of the logarithmic negativity of the output
state for the diamond chain network, for various values of the number
of branches K (K = 1 is the linear network). (b) Trend of the ratio
between the logarithmic negativity of the final state and the squeez-
ing cost of the initial state, measured in dB, for the diamond chains.

APPENDIX E: PARALLEL ENHANCEMENT OF
ENTANGLEMENT

We can use the rules described in Appendix D to prove
Eq. (14), which expresses analytically the power of parallel
enhancement of entanglement in the diamond network when
measuring the central nodes in p̂. Let us assume that the nodes
A and B are squeezed by a factor SA and SB, respectively, there
are N central nodes, and the kth mode has squeezing Sk and is
correlated with A and B through a CZ gate with strength gAk

and gBk . It can then be easily shown that the final pair will
have a purely imaginary adjacency matrix of the form

ZAB = i

(
�A �

� �B

)
, (E1)

where �A = SA + ∑
k

g2
Ak

Sk
, �B = SB + ∑

k
g2

Bk
Sk

, and � =∑
k

gAkgBk

Sk
. These results can be derived by direct application of

the rule for measuring p̂ in the graphical calculus formalism,
schematized in Fig. 13.

Employing Eqs. (D1) and (D2) and noticing that V = 0,
we can reconstruct the covariance matrix of the final pair:

σ f =

⎛
⎜⎜⎜⎜⎝

�B
�A�B−�2 − �

�A�B−�2 0 0

− �
�A�B−�2

�A
�A�B−�2 0 0

0 0 �A �

0 0 � �B

⎞
⎟⎟⎟⎟⎠.

(E2)
Notice that this state differs from a graph state by a local
phase.

By computing the seralian—defined in Eq. (12)—of the
partially transpose covariance matrix of the pair σ̃ f and ap-
plying formula (13), we obtain the general lowest symplectic
eigenvalue of the partial transpose of the state

ν2
− = (

√
�A�B − �)2

�A�B − �2
. (E3)

Finally, if we assume that all the modes are equally squeezed
in p̂ of a factor R−1 = 102s/10 and all the CZ-gate correlations
have a strength g, we arrive at Eq. (14).

This property of the diamond network, however, is not eas-
ily generalized to all graphs that present parallel connections,
and the quest for the optimal measurement strategy to improve
the final entanglement is by no means trivial. This is the case,
for example, of the D̃ graph shown in Fig. 14, generated

FIG. 18. Comparison between the entanglement capacity be-
tween two nodes at the same distance of three lattice graphs, the
square lattice QN×N and the two triangles TN×N , formed from the
square by adding edges on the diagonals in such a way that the
distance between A and B is the same, T̃N×N formed by adding edges
to the diagonals so that the distance is the same as the linear graph,
and the linear graph LN . To compare the networks with the same
distance we doubled the size of the T̃ and the L graphs.

by taking the diamond network and adding a CZ-gate link
between adjacent central nodes. We can see that for N > 9
always measuring p̂ in this network is not the optimal strategy,
whereas a better strategy is to alternate a p̂ and q̂ measurement
to restore a (smaller) diamond network.

FIG. 19. Negativity produced by the three different protocols
applied to each node of the GER(N = 1000, p = 0.4) network.
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FIG. 20. Negativity produced by the three different protocols
applied to each node of the GBA(N = 1000, K = 4) network.

Another important figure of merit is the entanglement per
squeezing cost, shown in Fig. 15(a).

We see that the diamond is the only one that gives
the ratio of entanglement per cost of the network that be-
comes constant for large N . However, the linear graph is
the one that links two nodes that are the farthest away
from each other. Conversely, Fig. 15(b) shows the logarith-
mic negativity in the final pair divided by the number of
modes in the initial state. Once again, the diamond structure
is particularly convenient, yielding the highest logarithmic
negativity while keeping a constant number of independent
squeezers.

To give a fair comparison between the capacity of the linear
network to bridge distant nodes and that of the diamond to
increase the final entanglement we need to generalize the
diamond graph to a diamond chain graph, DCK,N , where K
is the number of parallel branches linking the two hubs that
want to perform quantum communications as in Fig. 16.

We can then compare the entanglement concentrated using
multiple path strategies to link two nodes far away from each
other. We can see in Fig. 17 that the presence of parallel links
has indeed the desired effect, despite the quality of the final
pair, which still decreases exponentially with the distance.
On the other hand, notice that the parallel links can help
concentrate more entanglement until the system reaches a
plateau and even the additional channels will not allow one
to increase the logarithmic negativity. Moreover, the value for

FIG. 21. Negativity produced by the three different protocols ap-
plied to each node of the GW S (N = 1000, Q = 4, β = 0.9) network.

the effort of these networks, specifically the ratio between the
entanglement of the pair after the protocol and the squeezing
cost before the protocol, is maximized by the linear graph.

Another important class of networks, notably for
measurement-based quantum computation, is constituted by
grid cluster states that belong to graph shapes that allow for
universal quantum computation [41]. Similarly to the diamond
network, the presence of ancillary nodes between the emitter
and the receiver can improve the quality of the quantum link
concerning the linear network. This, however, is not a general
rule, and sometimes the presence of additional links can be
detrimental. This is the case of the triangular lattice, generated
from the square lattice by adding a link between the nodes in
the diagonal. There are two ways of generating the triangular,
and only one of the two, T̃ , decreases effectively the distance
between Alice and Bob. In both cases the result is detrimental;
however, T is slightly better than T̃ , while the square lattice Q
seems to be the most effective. This result is shown in Fig. 18.

APPENDIX F: ROUTING IN COMPLEX NETWORKS

The same analysis of Sec. IV B was done in several net-
works with different sizes and topologies with very different
results that we report in Figs. 19–22. A property that is not ap-
parent in Fig. 9 is that the node with the highest enhancement
of entanglement due to the multiple paths is not necessarily
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FIG. 22. Negativity produced by the three different protocols ap-
plied to each node of the GW S (N = 1000, Q = 4, β = 0.9) network.

the one with the highest logarithmic negativity in absolute.
This is the case of the ER network of Fig. 19, in which
the node with the highest entanglement, highlighted in green
in the graph representation, is at distance 1 while the node

with the highest difference in logarithmic negativity between
the Routing and the Shortest protocols, highlighted in red,
is at distance 3. In this case, the structure of the subgraph
used throughout the Routing is not a diamond chain and the
intercorrelations among the parallel branches have limited the
increase of the entanglement, as for the D̃N network in Fig. 14.
In any case, in this network the nodes at greater distances are
the ones that are most affected by our protocol, and, although
in some cases many parallel paths have been disregarded, as
shown by the height of the gray column, all the nodes at
distance 4 received a substantial enhancement.

The results of the simulation on the BA topology of Fig. 20
are similar to the AS, although the first only reaches a distance
of 3. The nodes with the highest absolute logarithmic negativ-
ity and the highest logarithmic negativity difference produced
by the Routing protocol coincide and are at distance 2 from
Alice, whereas this time the subgraph of is a diamond with no
interconnections. Also in this case distance 2 is favorable to
perform quantum communications.

The WS structure of Fig. 21, on the other hand, is the worst
to apply the Routing protocol. Only a few nodes were poorly
enhanced and mostly at large distances, while the logarithmic
negativity averaged over all the nodes for Routing and Shortest
is comparable. Node 44 at distance 3 is the one that received
the greatest boost from our protocol, whereas node 1 (like
all the other nodes at distance 1) has the highest logarithmic
negativity.

Finally, the biological network of Fig. 22 produced the
most interesting results. Once again, many nodes at distance
2 end up having more logarithmic negativity than those at
distance 1, and at this distance, the nodes with the same
degree have the same logarithmic negativity that decreases
exponentially with their degree. The nodes with the highest
logarithmic negativity and highest difference coincide with
node 139, which is linked to Alice through 33 intermediate
nodes, forming a diamond network with no interconnections.
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