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We theoretically propose and investigate a quantum Otto engine that works with a single-mode radiation
field inside an optical cavity and is driven alternately by a hot reservoir and a cold reservoir. The hot reservoir
is realized using a beam composed of thermally entangled pairs of two-level atoms that interacts resonantly
with the cavity, and the cold reservoir is composed of a collection of noninteracting boson modes. In terms of
the quantum discord of the pair of atoms, we derive analytical expressions for the performance parameters (i.e.,
power and efficiency) and the stability measure (the coefficient of variation of power). We show that nonclassical
correlations boost the quantum engine’s performance and efficiency, and they may even change the operation
mode at specified values of the two bath temperatures. We also demonstrate that the nonclassical correlations
improve the stability of the machine by reducing the coefficient of variation of power that satisfies the generalized
thermodynamic uncertainty relation. Finally, we find that these results can be transferred to another quantum
Otto engine model, in which the optical cavity is coupled alternately to a hot thermal bosonic bath and to a beam
composed of pairs of the two correlated atoms that plays the role of a cold reservoir.
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I. INTRODUCTION

The presence of nonclassical correlations is one of the
most intriguing signatures of the nonclassicality of a quantum
state. These correlations have been considered to be a type of
resource in certain quantum tasks, including quantum compu-
tation and quantum information processing [1–8]. Quantum
discord, which is generally used to quantify nonclassical cor-
relations, is more general than quantum entanglement [7,9]
and is defined as the difference between the quantum mu-
tual information and the classical correlations in a system
[7,10,11]. Although quantum discord is not always greater
than quantum entanglement, it may be nonzero even for sepa-
rable states in the absence of entanglement [2,10,12,13]. The
quantum discord represents a good figure of merit for quantum
resource characterization, not only in quantum information
theory, but also in the quantum thermodynamics field [14–17]
with a focus on quantum thermal machines [15,16].

One topic of major interest in quantum thermodynamics
is the finite-time performance of nanoscale heat engines, in
which quantum effects are apparently held in the working
substance [14–16,18–21] and may even govern the engine’s
reservoirs [22–24]. In other words, in the quantum realm, both
the working substance and the heat reservoirs can be com-
posed of finite-sized systems that can be prepared in quantum
states without classical analogues. Finite-time quantum heat
engines that work with interacting working systems have been
observed to have performance characteristics that are quite
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different from those with working systems that consist of ideal
simple systems [15,21]. While the quantum correlations that
are inherent in the working medium may boost the perfor-
mance of some quantum heat engines [20], the nonclassical
correlations that exist in the working substance may degrade
the machine performance of other engines [15,25].

When they play the roles of the reservoirs, these finite-
dimensional systems can lead to a nonthermal scenario in
which the heat engines outperform their classical analogs
[22–24]. Additionally, the fluctuations in these quantum
heat engines cannot be neglected because both the work
and the heat are stochastic and fluctuate [26–33]. Quantum
heat engines that operate with out-of-equilibrium reservoirs,
which may be squeezed [22,23,34–41], quantum coherent
[42–48], quantum measurement induced [49–54], and non-
classically correlated [5,6,55], were investigated theoretically
and demonstrated experimentally in either finite-time or
quasi-static operating modes. These engines, which outper-
form their classical counterparts, may be models based on
different cycles, e.g., the Carnot cycle [43,47], the Otto cy-
cle [22,23,35], and the Stirling cycle [41]. A photo-Carnot
engine that was introduced by Scully and co-workers [47]
was extended by including quantum coherence to explore the
engine’s thermodynamic efficiency beyond the Carnot limit
[13]. It is well known that, with the exception of the case
of the reversible Carnot engine working between two thermal
reservoirs [56,57], the performance of heat engines is always
model dependent, irrespective of the use of thermal or non-
thermal reservoirs.

In this paper, with the aim of using quantum correlations in
thermodynamic applications, we propose a quantum Otto en-
gine, which has not been studied to date. The proposed engine
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works with a single-mode optical cavity and is driven using
an out-of-equilibrium reservoir with quantum correlations. In
addition to two thermodynamic adiabatic processes, the pro-
posed engine consists of hot and cold isochoric strokes, where
the optical cavity is weakly coupled to a thermal reservoir
during the cold isochore and interacts resonantly with one of
the pair of correlated atoms along the hot isochore. It may be
more difficult to prepare the entangled pair of atoms with only
one being coupled to the optical cavity that plays the role of
the reservoir than to realize the entangled modes under fully
noninteracting reservoir conditions. However, it is important
to consider such a physical model because it provides a plat-
form for understanding of nanoengines in which the quantum
effects of the reservoirs are involved.

We examine the finite-time machine performance and the
fluctuations by varying the quantum discord. We show that
although the machine will operate as a heat engine at certain
bath temperatures with any value of quantum discord, a modu-
lation of the quantum discord may change the operation mode,
e.g., a thermal device that is expected to operate as a refriger-
ator in the absence of quantum discord may operate as a heat
engine when the nonclassical correlations are present. For the
heat engine, we find that these nonclassical correlations (i) in-
crease both work extraction and thermodynamic efficiency but
reduce the relative power fluctuations, with the latter satisfy-
ing the generalized thermodynamic uncertainty relation [58],
and (ii) enable the finite-time engine to operate at efficiencies
beyond the Carnot limit. Finally, we demonstrate that these
results are applicable to an alternative quantum Otto cycle,
in which the hot reservoir is composed of quantized boson
modes and the cold reservoir consists of pairs of two-level
atoms that pass sequentially through the optical cavity.

The remainder of this paper is organized as follows. We
briefly review quantum discord and quantum entanglement
and clarify the difference between these two quantities in
Sec. II, where we also explain why the quantum discord
rather than the concurrence is used to describe the nonclassical
correlations. In Sec. III, the performance of the quantum Otto
engines is investigated. We describe the Otto cycle model in
Sec. III A and subsequently discuss the machine performance
and the power fluctuations in Sec. III B, where the effects
induced by quantum discord are also explored. Finally, we
discuss the results and draw conclusions in Sec. IV. This
paper also includes four appendices: Appendix A, derivation
of the nonadiabatic factor; Appendix B, discussions of the
time durations along the two isochoric processes; Appendix C,
numerical analysis of an alternative Otto engine in which the
optical cavity is coupled to the pair of interacting atoms along
the cold isochore; and Appendix D, results with respect to
the quantum Otto engines using the two-atom system with
nonclassical correlations as the working substance.

II. QUANTUM ENTANGLEMENT AND DISCORD

Consider the Hamiltonian of two identical spin-1/2
atoms with frequency ω via an XY Heisenberg interaction
(h̄ ≡ 1) [59]:

Hsp = ω

2

(
σ z

1 + σ z
2

) + ξ (σ+
1 σ−

2 + σ−
1 σ+

2 ), (1)

where ξ is the controllable strength of the interaction.
The operator σ+

j = (σ−
j )† = |e〉 j j〈g| = 1

2 (σ x
j + iσ y

j ), σ z
j =

|e〉 j j〈e| − |g〉 j j〈g|, where |g〉 j , |e〉 j , and σα
j (α = x, y, z) are

the ground state, the excited state, and the Pauli matrices for
atom j (with j = 1, 2), respectively. The eigenvalues Ei and
the corresponding eigenvectors |�i〉 of the Hamiltonian in
Eq. (1) can be calculated as

E1 = −E4 = ω, |�1〉 = |ee〉, |�4〉 = |gg〉,

E2 = −E3 = ξ, |�2〉 =
√

2

2
(|ge〉 + |eg〉),

|�3〉 =
√

2

2
(−|ge〉 + |eg〉). (2)

When the two-atom system is at thermal equilibrium with
an inverse temperature β, where β = 1/(kBT ), the density
operator can be determined using ρ12 = e−βHsp

/Zsp, where
the canonical partition function for the spin system is Zsp =
Tr(e−βHsp

). It then follows, when using Eqs. (1) and (2), that
the thermal state of the system can be described by

ρ12 = 1

Zsp
(e−βω|�1〉〈�1| + e−βξ |�2〉〈�2|

+ eβξ |�3〉〈�3| + eβω|�4〉〈�4|), (3)

where the partition function Zsp = 2[cosh(βω) + cosh(βξ )].
To describe the entanglement between the two atoms, the
concurrence [60,61] is introduced. The concurrence can be
evaluated using Eq. (3) when it is written in a closed form:

C(ρ12) = max

{
0,

sinh(βξ ) − 1

cosh(βω) + sinh(βξ )

}
. (4)

When βξ � arcsinh(1), the concurrence is zero and the
mixture is separable because of the vanishing entangle-
ment, but when βξ > arcsinh(1) ≈ 0.88, the concurrence is
positive and the entanglement between the two atoms is
non-negligible. This implies that the thermal state (3) would
be entangled in the low-temperature and/or strong-coupling
cases.

The quantum discord, which is defined as the difference
between the quantum mutual information I (ρ12) and the clas-
sical correlations J (ρ12) [10,11], takes the form of

Q(ρ12) := I (ρ12) − J (ρ12). (5)

The quantum mutual information is given by I (ρ12) =
S(ρ1) + S(ρ2) − S(ρ12), where S(ρ) = −Tr[ρlog2ρ] is the
von Neumann entropy and ρ1(2) = Tr2(1)(ρ12) is the reduced
density matrix of atom 1(2). To describe the classical corre-
lations J (ρ12), the measurement basis {Bk} is introduced to
describe the von Neumann measurement for atom 2 only. The
conditional density operator ρk

1 associated with measurement
result k is then given by ρk

1 = (I ⊗ Bk )ρ12(I ⊗ Bk )/pk , where
the probability pk = Tr[(I ⊗ Bk )ρ12(I ⊗ Bk )]. The quantum
conditional entropy with respect to this measurement basis
is S(ρ1|{Bk}) = ∑

k pkS(ρk
1 ), and the classical correlations

are then determined by J (ρ12) = sup
{Bk}

[S(ρ1) − S(ρ1|{Bk})]

[62–64]. When the parametrized basis {Bk} = {cosθ |g〉 −
sinθ |e〉,−sinθ |g〉 − cosθ |e〉} is used, it then follows that the
minimum of the discord is reached at θ = π/4 [13], which
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FIG. 1. Quantum discord Q(ρ12) and concurrence C(ρ12) as
functions of (a) the interaction strength ξ for β = 0.5 and 0.9, and
(b) the inverse temperature β for ξ = 2. The frequency is ω = 6.

reads as follows:

Q(ρ12) = − 1

ln(2)

{
2(βξ )ρnd + ρd ln[Zsp2(ρg + ρd )(ρe + ρd )]

+
∑
α=g,e

ραln

(
ρα + ρd

ρα

)
+

∑
ε=±

�ε ln�ε

}
, (6)

where ρg = 〈gg|ρ12|gg〉 = exp(βω)/Zsp, ρe = 〈ee|ρ12|ee〉 =
exp (−β ω)/ Zsp, ρd = 〈eg|ρ12|eg〉 = cosh(βξ )/Zsp, ρnd =
〈eg|ρ12|ge〉 = 〈 ge|ρ12|eg〉 = − sinh (βξ )/Zsp, and �ε =
(1 + ε

√
(ρe − ρg)2 + 4ρ2

nd )/2. In the high-temperature
and/or weakly coupling limit, where βξ � 1, Eq. (6) can be
simplified to give Q(ρ12) 	 (βξ )2/(8ln2).

In Fig. 1(a) we plot the concurrence C(ρ12) and the quan-
tum discord Q(ρ12), which are calculated using Eqs. (4) and
(6), respectively, as functions of the interaction strength ξ

for both β = 0.5 and β = 0.9. Both the quantum discord and
the concurrence, which depend on the inverse temperature β,
decrease monotonically as the interaction strength decreases,
and they both vanish in the absence of interparticle interac-
tions, as expected. As the inverse temperature increases, these
two quantities begin at zero before rising to their respective
maximum values and then decrease again before vanishing at
large values of the inverse temperature, as shown in Fig. 1(b).
Figure 1(b) shows that when β � 0.441, the concurrence is
zero, but the quantum discord only vanishes when β → 0,
showing that the quantum discord holds in the region in which
the concurrence is not observed. This means that the quantum

2atom

2atom

(a)

atom1

2atom

(b)

FIG. 2. (a) Sketch of a single-mode optical cavity coupled to one
of two correlated atoms. (b) Illustration of a finite-time quantum
Otto engine. During the first stroke A → B, the working substance
at the thermal state undergoes a unitary compression within the
time period τch, and its Hamiltonian changes from H (ωc ) to H (ωh ).
During the second stroke B → C, the optical cavity for the fixed
frequency (ω = ωh) is coupled to one of the two correlated atoms
with inverse temperature βh, and this atom reaches the stationary
state at the end of this stroke. The coupling is realized by sending
this atom to pass through the optical cavity. The third stroke C → D
is a unitary expansion in which the Hamiltonian evolves from H (ωh )
to H (ωc ) during the time τhc. During the cooling stroke D → A, the
working substance with constant frequency ωc is in contact with the
cold thermal bath of inverse temperature βc and relaxes to the thermal
state by closing the cycle. The average heat values absorbed by the
working system along the hot and cold isochoric strokes are denoted
by 〈qh〉 and 〈qc〉, respectively. We assume that the time spent on the
isochoric stroke is much shorter than that spent on the unitary stroke
[22] and the time to complete a cycle is given by τcyc = τch + τhc.

discord may be nonzero even when the nonentangled states
are separable. Therefore, we will use the quantum discord
Q(ρ12) here, rather than the concurrence C(ρ12), to capture the
information about the correlations of the two-atom system.

III. QUANTUM OTTO ENGINE

A. Four consecutive strokes in a machine cycle

We consider a quantum engine cycle that uses a single
mode of the quantized radiation within an optical cavity as
its working substance and operates between hot and cold heat
reservoirs. During the cold isochoric process, the thermal bath
is composed of an infinite collection of noninteracting bosonic
modes, but during the hot isochoric stroke, the optical cavity
interacts resonantly with a beam composed of thermally en-
tangled pairs of two-level atoms [see Fig. 2(a)] that play the
role of the hot nonthermal reservoir. The interaction of the
cavity with these atoms is realized by sending only one of a
pair of atoms to pass through the cavity, which means that
only one of the atoms in the pair interacts with the radiation
field [13]. The engine model under consideration as a quantum
version of the Otto cycle is drawn schematically in Fig. 2(b).
This model consists of two unitary strokes denoted by A → B
and C → D, where the system is isolated from the two heat
reservoirs, and two isochoric branches denoted by B → C
and D → A, along which the optical cavity with the constant
Hamiltonian is weakly coupled to the hot reservoir or the cold
reservoir, respectively. We now describe the four consecutive
steps of the proposed Otto engine cycle as follows.

(i) Unitary compression A → B: The system is isolated
from the heat reservoir and undergoes a unitary compres-
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sion in time τch. The system’s Hamiltonian is changed from
Hca(ωc) = ωc(â†â + 1/2) to Hca(ωh) = ωh(â†â + 1/2) with
a driving function ωch(t ) = ωcωhτch/[(ωc − ωh)t + ωhτch],
where â and â† are the annihilation and creation operators of
the oscillator, respectively. Because no heat is exchanged, the
change in the system’s internal energy is equal to the work
done on the system. We use a two-projective-measurement
scheme [29] to calculate the probability distribution of the
quantum work as follows:

p(wch) =
∑
n,m

δ
[
wch − (

εh
m − εc

n

)]
pch

n→m pA
n , (7)

where εc
n and εh

m are the measured energies at the beginning
and the end of this stroke, respectively. Here, pA

n is the ini-
tial occupation probability and pch

n→m = |〈n|Uch|m〉|2 with the
unitary operator Uch is the transition probability from state
|n〉 to |m〉.

(ii) Isochoric heating B → C: For this stroke, we consider
the case in which only one atom of the correlated pair with
the constant inverse temperature βh is sent to pass through
the cavity. The Hamiltonian of the single radiation mode in
the cavity is constant, with a fixed frequency ωh. Therefore,
the stochastic heat injection is equivalent to an increase in
the system eigenenergy, with no work being produced along
the stroke. The probability distribution for the heat absorbed
by the system during this stroke, given that the stochastic
compression work is wch = εh

m − εc
n, can then be expressed

as [29,65]

p(qh|wch) =
∑
k,l

δ
[
qh − (

εh
l − εh

k

)]
ph

k→l pB
k , (8)

where εh
k and εh

l are the measured energies at the beginning
and the end of the heating stroke, respectively. pB

k = δkm in-
dicates the probability that the system is in eigenstate |m〉
after the second projective measurement during the unitary
compression, and ph

k→l is the probability that the system will
collapse into state |l〉 after the second projective measurement
for this hot isochore. In the case where the system reaches
the unique steady state at the end of the isochore [29,65], the
probability satisfies the following generalized canonical form:
ph

k→l = e−βeff
h Hca(ωh )/Tr[e−βeff

h Hca(ωh )], where βeff
h is called the

effective temperature and will be defined in Eq. (11).
The atom that passes through the optical cavity interacts

with the cavity via a resonant Jaynes-Cummings coupling,
which is given by H int = −γ (âσ+ + â†σ−) [66] with a cou-
pling constant γ . When an ensemble composed of many
atoms is sent to the optical cavity, the cavity state dynamics
can be described by [13,67]

dρt

dt
= i[Hca(ωh), ρt ] + rh

1 (γ τ )2

(
â†ρt â − 1

2
ââ†ρt − 1

2
ρt ââ†

)

+ rh
2 (γ τ )2

(
âρt â

† − 1

2
â†âρt − 1

2
ρt â

†â

)
, (9)

where τ is the time spent by the atoms inside the cavity
and Hca(ωh) = ωh(â†â + 1

2 ) is the Hamiltonian of the single-
mode cavity. The coefficients rh

1 and rh
2 are the arrival rates for

the atoms in the excited and ground states, respectively, and
these coefficients are thus associated with the probabilities of

emission and absorption of a photon in the cavity, respectively.
These two coefficients are determined using rh

1 = ρh
e + ρh

d
and rh

2 = ρh
g + ρh

d , where ρh
e = exp(−βhωh)/[2cosh(βhωh) +

2cosh(βhξ )], ρh
g = exp(βhωh)/[2cosh(βhωh) + 2cosh(βhξ )],

and ρh
d = cosh(βhξ )/[2cosh(βhωh) + 2cosh(βhξ )].

The optical cavity, as the working substance, is allowed
to relax to the stationary state at the end of the hot isochoric
stroke, where the first term on the right-hand side of Eq. (9) is
vanishing because [Hca(ωh), ρt ] = 0, and the time duration τh

of this stroke is assumed to be much shorter than the duration
of the unitary stroke. The asymptotic steady-state solution to
Eq. (9), which describes the stationary state of the optical
cavity, is then obtained as

ρss = (eβeff
h ωh/2 − e−βeff

h ωh/2)e−βeff
h Hca(ωh ), (10)

where βeff
h is introduced to denote the effective inverse tem-

perature of the optical cavity. The detailed balance condition
exp(−βeff

h ωh) = rh
1/rh

2 then produces

βeff
h = βh − 1

ωh
ln

1 + eβhωh cosh(βhξ )

eβhωh + cosh(βhξ )
. (11)

Given the frequency ωh and the interaction strength ξ , the
effective inverse temperature βeff

h will thus increase monoton-
ically with increasing inverse temperature βh, as illustrated in
Fig. 3(a). The normalized temperature βeff

h /βh as a function
of ξ is plotted in Fig. 3(b), demonstrating that βeff

h /βh is a
monotonically decreasing function of ξ and βeff

h /β = 1 for
a vanishing ξ , as expected. The discord Q(ρ12) given by
Eq. (6) is determined by the interaction strength ξ , which
means that the effective temperature βeff

h is closely dependent
on the discord Q(ρ12). Because the discord is a monotoni-
cally increasing function of the interaction strength, the ratio
βeff

h /βh decreases with increasing Q(ρ12) [see the inset of
Fig. 3(b)]. Physically, a greater discord means that the system
deviates further away from the thermal state of the inverse
temperature β. We also note from Eq. (11) that the expression
for the normalized temperature βeff

h /βh can be simplified to
give βeff

h /βh 	 1 − (βhξ )2/4 = 1 − 2Q(ρ12)ln2 in the high-
temperature and/or weak-coupling limit .

(iii) Unitary expansion C → D: The optical cavity is iso-
lated again from the heat reservoir and undergoes a unitary
expansion during the time period τhc with the driving function
ωhc(t ) = ωcωhτhc/[(ωh − ωc)(t − τch) + ωcτhc]. Because this
stroke can be accomplished by reversing the protocol used in
the compression process described above, we set τdri ≡ τhc =
τch to obtain ωhc(t ) = ωch(2τdri − t ). During this stroke, no
heat is exchanged, and the change in the system’s internal
energy is equal to the work done on the system. For the given
quantum expansion work wch and heat injection qh, by using
the two-point-measurement scheme again, the probability dis-
tribution of the stochastic work during the expansion process
is given by

p(whc|wch, qh) =
∑
i, j

δ
[
whc − (

εc
j − εh

i

)]
phc

i→ j pC
i , (12)

where pC
i = δil is the probability that the optical cavity is

in eigenstate |l〉 after the second projective measurement in
the isochoric heating. In addition, phc

i→ j = |〈 j|Uhc|i〉|2 is the
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FIG. 3. (a) Effective temperature βeff
h as a function of βh with ωh = 6. (b) Dimensionless temperature βeff

h /βh as a function of the interaction
strength ξ ; the inset shows the dimensionless temperature βeff

h /βh as a function of the quantum discord Q(ρ12); the parameter βh = 0.3.
(c) Work output −〈w〉, quantum discord Q(ρ12), concurrence C(ρ12), and the heats 〈qh〉 and 〈qc〉 absorbed by the system as functions of ξ . In
(c) the parameters are βc = 0.6, βh = 0.3, ωh = 4.5, ωc = 2, and τdri = 0.95.

transition probability between the instantaneous eigenstates
|i〉 and | j〉, where Uhc is the unitary operator.

(iv) Isochoric cooling D → A: The system, which has
the constant Hamiltonian Hca(ω) = Hca(ωc), is coupled to a
thermal reservoir of constant inverse temperature βc in the
time duration τc, which is much shorter than the adiabatic
driving time τdri. The system reaches thermal equilibrium
with the heat reservoir at the end point of the cold isochore,
and the state of the system at this end point is given by
ρ0 = e−βcHca(ωc )/Tr[e−βcHca(ωc )].

After a single cycle, the joint distribution of the total work
w and the heat injection qh can be calculated by combining
Eqs. (7), (8), and (12) to give [29,33,65,68]

p(w, qh) =
∑

n,m,i, j

δ
(
w + εc

n − εc
j + εh

i − εh
m

)
× δ

(
qh − εh

i + εh
m

)|〈m|Uch|n〉|2|〈 j|Uhc|i〉|2

× e−βcε
c
n e−βeff

h εh
i

Zca
c Zca

h

, (13)

where the partition functions of the optical cavity are Zca
c =

Tr[e−βcHca(ωc )] and Zca
h = Tr[e−βeff

h Hca(ωh )].

B. Machine performance and fluctuations

To determine the statistics of the work and the
heat, the characteristic function of the joint dis-
tribution function given in Eq. (13), denoted by
G(u, v) ≡ ∫∫

p(w, qh)e−ivqh−iuwdwdqh, can be obtained as
follows [68,69]:

G(u, v) = 〈e−ivqh−iuw〉 = GcGh

1 + φ
, (14)

where

Gc = eβcωc − 1√
rφcosh(βcωc + iv0) + cosh(βcωc + iu0) − 2

(15)

and

Gh = eβeff
h ωh − 1√

rφcos
(
v0 − iβeff

h ωh
) + cos

(
iβeff

h ωh + u0
) − 2

. (16)

Here, we have used u0 = u(ωc − ωh) + vωh, v0 =
u(ωc + ωh) − vωh, and rφ = (1 − φ)/(1 + φ). As shown in

Appendix A, the parameter φ can be derived to be

φ ≡ 1 + 1 − cosh
(√

1 − ζ ln ωh
ωc

)
ζ − 1

, (17)

where ζ = [2τdriωcωh/(ωh − ωc)]2, and this parameter is
called the nonadiabatic factor. In the case where ζ > 1,
Eq. (17) then becomes φ = 1 + 1−cos[

√
ζ−1ln(ωh/ωc )]
ζ−1 , indicating

that the extreme limit of ζ � 1 leads to φ → 1. Within the
long time limit, φ approaches 1, and thus the quantum adia-
batic condition is satisfied .

The average and the variance of the work, and the average
heat injection, can be obtained explicitly as

〈w〉 = −i
∂lnG(u, v)

∂u

∣∣∣∣
u=v=0

= ωh
(
φ
〈
neq

c

〉 − 〈
nss

h

〉) + ωc
(
φ
〈
nss

h

〉 − 〈
neq

c

〉)
, (18)

δw2 = 〈w2〉 − 〈w〉2 = −∂2lnG(u, v)

∂u2

∣∣∣∣
u=v=0

= ω2
h

[
−1

2
+ (2φ2 − 1)

〈
neq

c

〉2 + 〈
nss

h

〉2]

+ω2
c

[
−1

2
+ 〈

neq
c

〉2 + (2φ2 − 1)
〈
nss

h

〉2]

+ωhωcφ
(
1 − 2

〈
neq

c

〉2 − 2
〈
nss

h

〉2)
, (19)

〈qh〉 = −i
∂lnG(u, v)

∂v

∣∣∣∣
u=v=0

= ωh
(〈

nss
h

〉 − φ
〈
neq

c

〉)
, (20)

respectively, where we have used 〈neq
c 〉 = coth(βcωc/2)/2 and

〈nss
h 〉 = coth(βeff

h ωh/2)/2 to denote the mean numbers of the
cavity with the cold thermal reservoir and the hot nonthermal
reservoir, respectively.

The average values of the work and the heat injection
depend on the quantum discord, which enters into 〈nss

h 〉, and
under this condition, even the operation mode can change
when the quantum discord is involved. Notably, the mean
work given by Eq. (18) can be split into the following sum
of two parts: −〈w〉 = 〈wadi〉 − 〈wfric〉, where the first part
〈wadi〉 = (ωh − ωc)(〈nss

h 〉 − 〈neq
c 〉) is the mean work in the

quantum adiabatic case and the second part 〈wfric〉 = (φ −
1)(ωh〈neq

c 〉 + ωc〈nss
h 〉) is the frictional work caused by diabatic

transitions occurring along the two unitary driven processes.
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FIG. 4. Work output −〈w〉 and heat values 〈qh,c〉 absorbed by the system (upper panel), and the thermodynamic efficiency ηth (lower panel)
as a function of the quantum discord Q(ρ12) for (a) βh = 0.15, (b) βh = 0.3, and (c)βh = 0.5. The parameter values here are βc = 0.6, ωh = 6,
ωc = 2, and the driving time τdri = 0.8.

As repeatedly emphasized in the work above, the quantum
entanglement is vanishing in the case of multipartite separable
states, where the quantum discord is, however, nonzero [see
Fig. 1(b)]. The quantum discord is thus considered to be a
more general quantum resource than the quantum concur-
rence in our engine model. To complete this picture, we have
produced, as shown in Fig. 3(c), the average values of the
work, the absorbed heat, the concurrence, and the discord as
functions of the interaction strength ξ . We see that, for the
given parameters, Q(ρ12) > 0 for ξ > 0 but C(ρ12) > 0 only
for ξ > 2.922; however, in the range where C(ρ12) is finite,
both C(ρ12) and Q(ρ12) are monotonically increasing func-
tions of ξ . Furthermore, the ranges of the quantities (−〈w〉
and 〈qc,h〉) when parametrized using Q(ρ12) are much larger
than those obtained when using C(ρ12). Therefore, we use the
quantum discord rather than the concurrence in the analysis of
the quantum machine’s performance.

The thermodynamic efficiency, which acts as one of per-
formance measures and is defined by ηth = −〈w〉/〈qh〉, where
〈w〉 and 〈qh〉 were given by Eqs. (18) and (20), respectively,
can then be obtained as

ηth = 1 − ωc

ωh
− ωc

ωh

(φ − 1)
(〈

nss
h

〉 + 〈
neq

c
〉)

〈
nss

h

〉 − φ
〈
neq

c
〉 , (21)

which reduces to the so-called Otto efficiency, ηO = 1 −
ωc/ωh, if two unitary strokes are quantum adiabatic, irre-
spective of the existence of any correlations between the two
atoms. The efficiency (21) can then be rewritten as ηth =
η

gen
C − 〈σ 〉/(βeff

h 〈qh〉), where η
gen
C = 1 − βeff

h /βc is the so-
called generalized Carnot efficiency, and 〈σ 〉 = −βeff

h 〈qh〉 −
βc〈qc〉 � 0 is the average entropy production of the heat en-
gine during a single cycle [70]. Although the efficiency ηth

may surpass the Carnot efficiency ηC = 1 − βh/βc, it does
satisfy the second law of thermodynamics because it must
be bound by the generalized Carnot value η

gen
C as a result of

positive entropy production.

Figure 4(a) shows that, for βc = 0.6 and βh = 0.15, as
the quantum discord increases, both the mean heat injection
〈qh〉 and the average work −〈w〉 also increase, leading to
higher thermodynamic efficiency ηth. Given the specifications
selected for the control parameters, including ωc,h and βc,h,
the machine always operates as a heat engine with −〈w〉 > 0
and ηth > 0 for finite or vanishing quantum discord. However,
when different bath temperature values βc,h are selected, the
machine mode may be changed by varying the discord. When
the control parameters ωc,h are given for appropriate values of
the bath temperature, gradually increasing Q(ρ12) results in
the occurrence of the following three consecutive operating
modes [upper panels, Figs. 4(b) and 4(c)]: (i) the refrig-
erator mode (−〈w〉 < 0, 〈qh〉 < 0, 〈qc〉 > 0), (ii) the heater
mode (−〈w〉 < 0, 〈qc〉 < 0), and (iii) the heat engine mode
(−〈w〉 > 0, 〈qh〉 > 0, 〈qc〉 < 0).

When the quantum discord Q(ρ12) increases gradually, the
thermodynamic efficiency also increases and tends towards
the Otto limit ηO = 1 − ωc/ωh, as shown in lower panels of
Fig. 4(a)–4(c). For the heater mode, where the heat must flow
into the cold reservoir, 〈qc〉 < 0, the average heat injection
〈qh〉 can be an arbitrary real number, and no useful work
is extracted, i.e., −〈w〉 � 0. When operating as a refriger-
ator, the machine absorbs the heat from the cold reservoir,
which entails 〈qc〉 > 0, and releases this heat into the hot
reservoir, such that 〈qh〉 < 0, and work should be consumed,
i.e., −〈w〉 < 0. The refrigerator’s coefficient of performance
is defined as the ratio of the cooling load to the work input,
i.e., ε = 〈qc〉/〈w〉, which is positive [see the lower panels
in Figs. 4(b) and 4(c)]. We also note from comparison of
Fig. 4(b) with Fig. 4(c) that, even at a constant quantum
discord, the machine mode can be changed when the bath
temperature is modified.

The nonadiabatic factor (17) is dependent on the driving
time τdri, and thus the efficiency ηth is a function of both
the quantum discord Q(ρ12) and the driving time τdri. When
the driven stroke speeds downward, the nonadiabatic factor
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FIG. 5. (a) Thermodynamic efficiency ηth and (b) power output P
as a function of the driving time τdri with Q(ρ12) = 0, 0.031, 0.116.
The inset in (a) shows the nonadiabatic factor φ as a function of
the driving time τdri. The parameters here are βc = 0.6, βh = 0.3,
ωh = 3.8, and ωc = 2. For the selected parameters, the quantum
discord values of Q(ρ12) = 0, 0.031, 0.116 correspond to the inter-
action strengths of ξ = 0, 1.5, 3, respectively.

decreases, although not monotonically, and it approaches the
lower bound of φ = 1 for large values of τdri [see the inset of
Fig. 5(a)]. Consequently, the efficiency increases very quickly
at first and then levels off, becoming asymptotic to the Otto
efficiency [see Fig. 5(a)]. In addition to the efficiency, the
power output P = −〈w〉/τcyc represents another important
measure of the machine’s performance. The power output
as a function of τdri shows similar behavior to the efficiency
[see Fig. 5(b)]. The average work output −〈w〉 (18) is depen-
dent on the driving time τdri because of the time-dependent
nonadiabatic factor φ = φ(τdri ), and it reaches its maximum
value (−〈w〉)max when φ = 1. Therefore, for different values
of the quantum discord, the values of the dimensionless work
−〈w〉/(−〈w〉)max obtained as a function of τdri fall on top of
each other at the point φ(τdri ) = 1, as illustrated in the inset of
Fig. 5(b). We also observe that, when using the given param-
eters βh,c and ωc,h, the driving time at the maximum work is
independent of the interaction strength and thus remains fixed,
but the driving time at the maximum power output changes if
we change the interaction strength associated with the quan-
tum discord. The power initially increases rapidly to approach
the maximum value and then decreases nonmonotonically.
In physical terms, when the driving time τdri increases, the
frictional work 〈wfri〉 drops rapidly, and then decreases very

40

32

24

16

8

0
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τdri
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√ δP
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FIG. 6. Coefficient of variation of power (black solid line)
as a function of the quantum discord for τdri = 0.8 compared
with its lower bound csch[ f (〈σ 〉)] (dot-dot-dashed line), where
f (x) is the inverse function of x tanh(x) and x = 〈σ 〉 denotes the
average entropy production in each engine cycle. The parameters
are the same as those used in Fig. 4(b). The inset, in which the
ordinate axis is spaced logarithmically, shows the coefficient of vari-
ation of power as a function of the driving time for different quantum
discord values. The other parameters are the same as those used in
Fig. 5.

slowly to zero. We also observe from Figs. 5(a) and 5(b) that
both the power output and the efficiency are enhanced by the
quantum discord. This enhancement behavior is caused by the
dependences of the excitation number 〈nss

h 〉 in Eqs. (18) and
(21) on the quantum discord Q(ρ12). Physically, the quan-
tum discord, as a type of quantum resource, contributes to
the mean work extracted and thus enhances the machine’s
performance by increasing its power output and efficiency.
Furthermore, we note that the oscillations of the curves for
the efficiency and the power diminish with increasing quan-
tum discord. The final observation from Fig. 5 is that the
quantum entanglement is vanishing at the fixed quantum dis-
cord Q(ρ12) = 0.031, and the engine is thus fueled by the
reservoirs in separable states. The presence of the quantum
discord enhances the machine’s performance by increasing
its efficiency and power and also improves its stability by
reducing the relative fluctuations in power (see also the inset
of Fig. 6), even in the case where the reservoirs driving the
quantum heat engines are in separable states, i.e., where the
quantum entanglement is vanishing.

For quantum heat engines where the heat and the work
are stochastic, the fluctuations in the power must be consid-
ered because they are associated with the machine’s stability.
We consider the coefficient of variation of power

√
δP2/P,

which is equal to the square root of the relative work fluctua-
tions, given by −

√
δw2/〈w〉. This dimensionless coefficient

is shown as a function of the quantum discord in Fig. 6,
with the same coefficient being shown as a function of the
driving time τdri in the inset. The coefficient of variation
of power decreases monotonically and its oscillations are
damped as the quantum discord increases, thereby illustrating
that the quantum discord can be used to damp the oscillations
and the fluctuations in the power output, and thereby can
improve the machine’s stability.

The total stochastic entropy production σ is distributed
according to the probability distribution p(σ ), where
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σ (qh,w) = (βc − βeff
h )qh + βcw. These distributions for the

working system, which involve time-reversal symmetry and
satisfy the fluctuation theorems, can be expressed as p(σ ) =
pR(−σ )eσ [71], with pR(−σ ) being the probability distribu-
tion of the time-reversed cycle [in the clockwise direction in
Fig. 2(b)]. These theorems always imply the generalized ther-
modynamic uncertainty relationship for the stochastic work of
the following form: δw2/〈w〉2 � csch2[ f (〈σ 〉)] [58], where
f (x) is the inverse function of x tanh(x). Therefore, the co-
efficient of variation of power should satisfy the following
relation:

√
δP2/P � csch[ f (〈σ 〉)], as shown in Fig. 6, where

the function csch[ f (〈σ 〉)] is indicated by the green dot-dot-
dashed line.

IV. DISCUSSION AND CONCLUSIONS

As an initial remark, we must emphasize that all these
results were obtained by assuming that the times τh and τc

spent on the two thermalization strokes were negligible. The
actual time periods for these two processes may have some
importance in attempts to determine the machine performance
in two very fast isochores because the quantum coherence
[16,51,70] cannot be erased during the partial thermalization
process. However, for the engine model under consideration
here, where the two isochoric processes proceed at slow
speeds, the quantum coherence can be assumed to be trivially
small and even to be vanishing. In such a case, we prove in
Appendix B that the effects of the values of τh and τc on
the machine’s performance can be neglected, as we did in the
main text of the paper.

A natural extension of our model allows us to discuss
another quantum Otto engine model, in which an infinite
collection of boson modes and a beam composed of correlated
pairs of atoms flying sequentially through the cavity act as
the hot thermal and cold nonthermal reservoirs, respectively.
Unlike the case in our previous model, where only one atom
is weakly coupled to the optical cavity in the hot isochore,
in the cold isochoric stroke for the present engine cycle, both
atoms in a pair will pass through the optical cavity. As shown
in Appendix C, numerical calculations of the average values
of the heat, work, efficiency, and power demonstrate that the
results obtained in the main text here are reproduced. Based on
such a model, we find that the quantum discord (even beyond
quantum entanglement) in either the cold reservoir or the hot
reservoir is quite beneficial to the machine’s performance and
stability, and it may also change the mode of the machine.

As another important model extension, the machine under
consideration can be translated into a machine model in which
the two reservoirs are both thermal but where nonclassical
correlations exist in the working substance. One typical ex-
ample of such a machine is a quantum Otto engine that works
using a two-atom system (1) that is driven alternately by the
two thermal reservoirs with constant inverse temperatures βh

and βc. The quantum Otto engine model can be controlled by
controlling either the interaction strength ξ or the frequency ω

(see Appendix D for details). In contrast to our model, which
is driven by the nonthermal reservoir, the discord associated
with the nonclassical correlations that exist in the working
medium may reduce the efficiency under certain regimes and
increase the power fluctuations, because interactions between

the two atoms result in quantum fluctuations and thus lead to
an inevitable increase in entropy [25].

In summary, we have set up a quantum engine working
with a single-mode radiation field inside a resonant optical
cavity, which is driven alternately by a thermal reservoir and
an out-of-equilibrium reservoir with nonclassical correlations.
The former reservoir is composed of boson modes and the
latter is realized by sending one of two correlated atoms to
interact weakly with the optical cavity. In a specific regime
involving two bath temperatures, the machine will work as
a heat engine for any values of the quantum discord, but for
some bath temperature selections, modulation of the quantum
discord may cause a change in the operation mode of the
machine. We have investigated the performance parameters,
which are characterized by both the power and the thermo-
dynamic efficiency, and the machine stability as measured
by the variations in the power, all of which are dependent
on the quantum discord associated with the nonclassical cor-
relations. We have demonstrated that the quantum discord
enables the machine to work as a heat engine in the extended
regime, where the machine without the quantum discord
may operate as either a refrigerator or a heater. Moreover,
our quantum Otto engine, when driven by the nonthermal
reservoir with the nonclassical correlations, has enabled us
to obtain superior levels of both efficiency and power when
compared with a counterpart engine with thermal reservoirs,
coinciding with the results obtained from previous models that
showed superior performance characteristics for nonthermal
reservoirs, such as squeezed reservoirs [22,23,70]. Finally,
we have demonstrated that the results presented here can be
reproduced using another quantum Otto engine model, which
is driven by a hot thermal reservoir and a cold nonthermal
reservoir by coupling a pair of spin atoms to the optical cavity.
Our theoretical results may be helpful when using quantum
discord as a type of resource to enable the design of efficient
machines from a longer-term perspective.
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APPENDIX A: DERIVATION OF THE
NONADIABATIC FACTOR

To describe the system dynamics along a unitary
driven stroke, we rewrite the Hamiltonian of the opti-
cal cavity in terms of the momentum and position op-
erators p̂ and x̂ to give Hca(t ) = p̂2/(2m) + mω2(t )x̂2,
and we also introduce the Lagrangian L̂ca(t ) = p̂2/(2m) +
mω2(t )x̂2 and the position-momentum correlation D̂ca(t ) =
ω(t )(x̂ p̂ + p̂x̂)/2. Next, we introduce a vector [72]

−→
ψ (t ) =

(〈Hca(t )〉, 〈L̂ca(t )〉, 〈D̂ca(t )〉, 〈Î〉)T, where the superscript T
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denotes the matrix transpose. The dynamics for the vector−→
ψ (t ) can be given by

d

dt
−→
ψ (t ) = R(t )

−→
ψ (t ), (A1)

where

R(t ) = ω(t )

⎛
⎜⎜⎜⎜⎝

ω̇(t )
ω2(t ) − ω̇(t )

ω2(t ) 0 0

− ω̇(t )
ω2(t )

ω̇(t )
ω2(t ) −2 0

0 2 ω̇(t )
ω2(t ) 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠. (A2)

We assume that the system is in the thermal state at the
beginning of the unitary driven stroke, as stated in our engine
cycle, where the thermalization of the system is complete at
the end of a hot or cold isochoric stroke. Using Eq. (A1), at
the end of a unitary stroke with time duration τdri and with the
driving protocol ωch(t ) = ωcωhτdri/[(ωc − ωh)t + ωhτdri], the
system energy can be obtained via simple algebra [69]:

〈Hca(τdri )〉 =
[

1 + 1 − cosh
(√

1 − ζ ln ωh
ωc

)
ζ − 1

]
ωh

ωc
〈Hca(0)〉,

(A3)

where we have used ζ ≡ [2τdriωcωh/(ωh − ωc)]2. The first
factor in Eq. (A3) can be identified as the nonadiabatic factor
φ [ see Eq. (17)]. Within the quench limit with ζ → 0, we
find that φ = (ω2

h + ω2
c )/(2ωcωh). In the special case where

ζ > 1, the nonadiabatic factor (17) can be reexpressed as

φ = 1 + 1 − cosh
(
i
√

ζ − 1 ln ωh
ωc

)
ζ − 1

= 1 + 1 − cos
(√

ζ − 1 ln ωh
ωc

)
ζ − 1

. (A4)

APPENDIX B: TIME DURATIONS ALONG THE TWO
ISOCHORIC PROCESSES

Here, we analyze the time required to complete the hot and
cold isochoric strokes, with reservoir temperatures of βα (α =
h, c). To proceed, we consider only the transitions between
two adjacent energy levels. Under this condition, the dynam-
ics for the probability of occupying a state |n〉(n = 0, 1, 2, ...)
are obtained by using Eq. (9) [67], where

d pn

dt
= kα

u npn−1 − [
kα

u (n + 1) + kα
d n

]
pn + kα

d (n + 1)pn+1,

(B1)

where ku = rα
1 (γ τ ) and kd = rα

2 (γ τ ). Here, rα
1 /rα

2 satis-
fies the detailed balance requirements, which are rh

1/rh
2 =

exp(−βeff
h ωh) for the hot isochoric stroke and rc

1/rc
2 =

exp(−βcωc) for the cold isochoric process. Then, when using
the mean photon number 〈n〉 = ∑∞

n=0(n + 1/2)pn = 〈ñ〉 +
1/2 with 〈ñ〉 ≡ ∑∞

n=0npn, it follows that the evolution of the
mean photon number over time is given by

d〈n〉
dt

= d〈ñ〉
dt

= kα
u

∑
n′

(n′ + 1)2 pn′ −
∑

n

[
kα

u n(n + 1)

+ kα
d n2

]
pn + kα

d

∑
n′′

(n′′ − 1)n′′ pn′′ , (B2)

where we have used n′ = n − 1 and n′′ = n + 1. The sums
that contain the square of the summation index n cancel,
leading to

d〈ñ〉
dt

= −(
kα

d − kα
u

)〈ñ〉 + kα
u , (B3)

the solution of which is given by

〈ñ(t )〉 = e−(kα
d −kα

u )t 〈ñ(0)〉 + kα
u

kα
d − kα

u

[1 − e−(kα
d −kα

u )t ]. (B4)

The mean photon numbers at the ends of the hot isochore B →
C and the cold isochore D → A can then be obtained by using
Eq. (B4), where

〈nC〉 = e−�hτh (〈nB〉 − 1/2) + nqd
h (1 − e−�hτh ) + 1/2 (B5)

and

〈nA〉 = e−�cτc (〈nD〉 − 1) + nth
c (1 − e−�cτc ) + 1/2, (B6)

respectively, and we have used �α = kα
d − kα

u , nqd
h =

kh
u/(kh

d − kh
u ) = [exp(βeff

h ωh) − 1]−1, and nth
c = kc

u/(kc
d −

kc
u ) = [exp(βeff

h ωh) − 1]−1. Here, �α denotes the heat
conductivity between the system and the heat reservoir
at a temperature βα (α = c, h). Within the long time limit
(τh,c � 1), the system reaches the steady state (i.e., thermal
equilibrium) at the instant C (A) within a single cycle
[as illustrated in Fig. 2(b)], yielding 〈neq

c 〉 = nth
c + 1

2 and

〈nss
h 〉 = nqd

h + 1
2 .

The mean populations at the initial and final states of two
unitary driven strokes satisfy the following relations [22]:

〈nB〉 = φ〈nA〉, 〈nD〉 = φ〈nC〉, (B7)

where φ was defined in Eq. (17). Through consideration of
Eqs. (B5)–(B7), the mean photon numbers at the respective
ends of the cold and hot isochores, described by Eqs. (B5)
and (B6), respectively, become

〈nA〉 =
〈
neq

c
〉
e�hτh (e�cτc − 1) + 〈

nss
h

〉
φ(e�hτh − 1)

(e�cτc+�hτh − φ2)
, (B8)

〈nC〉 =
〈
nss

h

〉
e�cτc (e�hτh − 1) + 〈

neq
c

〉
φ(e�cτc − 1)

(e�cτc+�hτh − φ2)
. (B9)

The average population 〈nA〉 (〈nC〉), as an exponentially de-
creasing (increasing) function of τc and τh, approaches the
specific limit 〈neq

c 〉 (〈nss
h 〉). By replacing 〈neq

c 〉 and 〈nss
h 〉 with

〈nA〉 and 〈nC〉 in Eqs. (18), (19), and (21), the output work,
the fluctuation of work, and the thermodynamic efficiency
become

〈w〉 = ωh(φ〈nA〉 − 〈nC〉) + ωc(φ〈nC〉 − 〈nA〉), (B10)

δw2 = ω2
h

[− 1
2 + (2φ2 − 1)〈nA〉2 + 〈nC〉2

]
+ω2

c

[− 1
2 + 〈nA〉2 + (2φ2 − 1)〈nC〉2]

+ωhωcφ(1 − 2〈nA〉2 − 2〈nC〉2), (B11)

ηth = 1 − ωc

ωh
− ωc

ωh

(φ − 1)(〈nC〉 + 〈nA〉)

〈nC〉 − φ〈nA〉 , (B12)

respectively. Using Eqs. (B10)–(B12), we can then numer-
ically determine the power output [P = −〈w〉/(2τdri + τc +
τh)], the efficiency, and the relative power fluctuations. As
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FIG. 7. (a) Thermodynamic efficiency and (b) power output as
functions of driving time τdri with different quantum discord values.
The parameters used here are �c = �h = 1 and τh = τc = 4. The
other parameters are same as those used in Fig. 5.

an example, by setting γh = γc = 1 and τc = τh = 4, we plot
the power output and the efficiency in Fig. 7 as functions
of the driving time τdri for different values of the quantum
discord. The shapes of the efficiency and power output curves
in Figs. 7(a) and 7(b) are similar to the corresponding results
in Figs. 5(a) and 5(b), respectively. Because 〈nA〉 (〈nC〉) in-
creases very rapidly with increasing τc and τh, it approaches
〈neq

c 〉(〈nss
h 〉) when the times τc,h are long enough. The long

time required to complete a thermalization process gives the
results similar to those obtained using our model when assum-
ing τc,h to be negligible, which means that selection of τc and
τh such that they fell into a very specific range produced the
same results, and thus our theory is applicable to our machine
model, where the working medium is very close to the steady
state at the end of each isochore.

APPENDIX C: AN OTTO ENGINE IN WHICH THE
OPTICAL CAVITY IS COUPLED TO THE PAIR OF

INTERACTING ATOMS ALONG THE COLD ISOCHORE

Here, we consider an alternative quantum Otto engine in
which the optical cavity interacts simultaneously with the pair
of correlated atoms (1) of inverse temperature βc during the
cold isochore. The inverse temperatures of the two reservoirs
are also still denoted by βh and βc(> βh). In each cycle, the
single-mode radiation field in the optical cavity acting as the

working substance reaches the steady (thermal) state at the
end of the cold (hot) isochoric stroke.

To proceed, we define rc
1 = ρc

e + ρc
d + ρc

nd and
rc

2 = ρc
g + ρc

d + ρc
nd , with ρc

e = exp(−βcωc)/[2cosh(βcωc) +
2cosh(βcξ )], ρc

g = exp(βcωc)/[2cosh(βcωc) + 2cosh(βcξ )],
ρc

d = cosh(βcξ )/[2cosh (βc ωc) + 2 cosh (βcξ )], and ρc
nd =

−sinh(βcξ )/[2cosh(βcωc) + 2cosh(βcξ )]. By replacing
rh

1 and rh
2 with rc

1 and rc
2, respectively, in Eq. (9),

the asymptotic stationary solution is given by ρss
c =

(eβeff
c ωc/2 − e−βeff

c ωc/2)e−βeff
c Hca(ωc ), where βeff

c denotes the
effective inverse temperature of the optical cavity. With
the detailed balance condition, the ratio of rc

1/rc
2 becomes

rc
1/rc

2 = exp(−βeff
c ωc), which leads to [13]

βeff
c = βc − 1

ωc
ln

1 + eβc (ωc−ξ )

eβcωc + e−βcξ
, (C1)

which then produces the excitation number 〈nss
c 〉 =

[exp(βeff
c ωc) − 1]−1. While remaining in contact with

the hot thermal reservoir, the working substance relaxes
to the thermal state at the end of the hot isochoric
stroke, and its excitation number is then given by
〈neq

h 〉 = [exp(βhωh) − 1]−1. The important point here is
that the nonadiabatic factor (17) is only dependent on the
system Hamiltonian and the driving time. Therefore, the
work statistics (〈w〉 and 〈δw〉2) and the efficiency (ηth) are
still given by Eqs. (18), (19), and (21), respectively, while
replacing 〈nss

h 〉 and 〈neq
c 〉 with 〈neq

h 〉 and 〈nss
c 〉, respectively. In

an analogous manner to the efficiency of the heat engine, the
coefficient of performance, which is defined as ε = 〈qc〉/〈w〉,
is a performance measure for the refrigerator. The numerical
results for the average work, the average heat values during
the hot and cold isochores, the power output, and the
efficiency (coefficient of performance) are presented in
Fig. 8.

The operating mode of the thermal machine can be
changed if the strength of the quantum discord varies; we
find that, for a given set of control parameters, the quantum-
discord-dependent operating mode may cause the machine
to act as a refrigerator, a heater, or a heat engine, as shown
in Fig. 8(a). In addition, the machine can operate with high
efficiency, including at efficiencies greater than the Carnot
efficiency, if the quantum discord is large enough, which is
consistent with the results presented in Fig. 4. Figure 8(b)
shows that the power and efficiency are both improved as
the quantum discord in the cold isochoric state is increased,
which is consistent with the results in Fig. 5. Our additional
calculations of the power fluctuations, which are not plotted
here, demonstrate that the variance of the power behaves in a
manner corresponding to that shown in Fig. 6. Therefore, for
this machine model, the quantum discord (even beyond the
quantum entanglement) in either the cold or the hot heat reser-
voir is quite beneficial to machine performance and stability,
and can even cause a change in the machine mode.

APPENDIX D: QUANTUM OTTO ENGINES BASED
ON THE TWO-ATOM SYSTEM WITH NONCLASSICAL

CORRELATIONS

Here, we consider a quantum Otto engine working with
the two-atom system of the Hamiltonian given by Eq. (1)
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FIG. 8. (a) Work output and heat values absorbed by the system (upper panel), and thermodynamic efficiency (lower panel) as functions
of the quantum discord for τdri = 0.8 and ωh = 6. (b) Output power (upper panel) and thermodynamic efficiency (lower panel) as functions of
the driving time for different values of the quantum discord at ωh = 3.8. The other parameters are the same as those used in Fig. 6.

that is driven by two thermal bosonic baths. A machine cycle
consisting of two unitary and two isochoric strokes can be
realized by modulating the interparticle interactions and the
frequency, respectively. Specifically, in the former case, the
hot (cold) isochoric stroke proceeds with ξ = ξh (ξ = ξc),
and in the latter case, the hot (cold) isochore corresponds to
ω = ωc(ω = ωh).

When the interaction strength is controlled, the energy
gap is changed during the unitary compression and expan-
sion strokes with the following interaction strength: ξcom =
ξc(1 − t/τdri ) + ξht/τdri, and ξexp = ξh(1 − t/τdri ) + ξct/τdri.

The driving Hamiltonian of Eq. (1) becomes Hsq
com(t ) =

ω
2 (σ z

1 + σ z
2 ) + ξcom(σ+

1 σ−
2 + σ−

1 σ+
2 ) during the unitary com-

pression and Hsq
exp(t ) = ω

2 (σ z
1 + σ z

2 ) + ξexp(σ+
1 σ−

2 + σ−
1 σ+

2 )
along the expansion stroke. The system Hamiltonian is
thus kept constant at Hsq = Hsq

c ≡ ω
2 (σ z

1 + σ z
2 ) + ξc(σ+

1 σ−
2 +

σ−
1 σ+

2 ) during the cold isochore and at Hsq = Hsq
h ≡ ω

2 (σ z
1 +

σ z
2 ) + ξh(σ+

1 σ−
2 + σ−

1 σ+
2 ) along the hot isochore. The uni-

tary operators in the compression and expansion operations
can be written as Uch,hc = T>{− i

h̄

∫ τdri

0 dtHsq
com,exp(t )} with the

time-ordering operator T>. At the end of the hot or cold
isochoric stroke, the system reaches the thermal state with
ρ

eq
α = e−βαHsq

α /Tr(e−βαHsq
α ), where α = c, h.

Because the work is only produced during the two unitary
driven strokes, the characteristic function [73] can be given by

X (u) = Xcom(u)Xexp(u), (D1)

where Xcom(u) = Tr[eiuHsq
h Uche− iu

2 Hsq
c ρ

eq
c e− iu

2 Hsq
h U †

ch] and
Xexp(u) = Tr[eiuHsq

c Uhce− iu
2 Hsq

h ρ
eq
h e− iu

2 Hsq
c U †

hc]. With this func-
tion, the average work and work fluctuations can be obtained

according to −〈w〉 = i ∂lnX (u)
∂u |u=0 and δw2 = − ∂2lnX (u)

∂u2 |u=0.
The average heat injection during the hot isochoric stroke,
which is equivalent to the difference between the system
energy at the initial state and that at the final state, is
given by 〈qh〉 = Tr[ρeq

h Hsq
h ] − Tr[Uchρ

eq
c U †

chHsq
h ]. This result,

together with the work output −〈w〉, determines the efficiency
ηth = −〈w〉/〈qh〉. In Fig. 9(a), numerical results are presented
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FIG. 9. (a and c) Numerical results for the work output and heat
values absorbed by the system. (b and d) Thermodynamic efficiency
(left axle) and coefficient of variation of power (right axle) as func-
tions of the quantum discord. The parameters for (a) and (b) are βc =
0.6, βh = 0.1, ω = 2, ξc = 4. The parameters for (c) and (d) are
βc = 0.6, βh = 0.1, ωc = 2, ωh = 6. The parameter τdri = 1.
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for the work output (−〈w〉) and the heat values absorbed (〈qc〉
and 〈qh〉) as a function of the quantum discord. The machine
operation modes comprise three types: heat engine (red),
heater (yellow), and refrigerator (blue). Because of the
nonmonotonic behaviors of the work output and the heat
injection as a function of the quantum discord, the curve
between the efficiency and the discord is parabola-like [c.f.
Fig. 9(b)]. The quantum chaos is enlarged by the interactions
within the working substance [25], and thus the relative power
fluctuations increase as the quantum discord increases, as also
shown in Fig. 9(b).

The quantum Otto engine can be set up via modula-
tion of its external field (i.e., frequency ω) while keeping
ξ constant. During the unitary compression and expansion
strokes, the variation of the frequency satisfies the following
relationship: ωcom = ωc(1 − t/τdri ) + ωht/τdri, and ωexp =
ωh(1 − t/τdri ) + ωct/τdri. The driving Hamiltonians of Eq. (1)
along the compression and expansion directions are found
to be Hsp

com(t ) = ωcom
2 (σ z

1 + σ z
2 ) + ξ (σ+

1 σ−
2 + σ−

1 σ+
2 ) and Hsq

exp

(t ) = ωexp

2 (σ z
1 + σ z

2 ) + ξ (σ+
1 σ−

2 + σ−
1 σ+

2 ), respectively. The
Hamiltonian along an isochoric remains fixed, and it then
reads as Hsq = Hsq

c ≡ ωc
2 (σ z

1 + σ z
2 ) + ξ (σ+

1 σ−
2 + σ−

1 σ+
2 ) for

the cold isochore and as Hsq = Hsq
h ≡ ωh

2 (σ z
1 + σ z

2 ) +
ξ (σ+

1 σ−
2 + σ−

1 σ+
2 ) during the hot isochore. By using the same

approach that was adopted in the model based on modulation
of the interaction strength, we can determine the performance
measures, including the work output −〈w〉, the efficiency
ηth, and the relative power fluctuations

√
δP2/P, as shown in

Figs. 9(c) and 9(d). Given this choice of the parameters, the
machine can then only work as a heat engine in the region
Q(ρ12) � 0.018; otherwise, it operates as a refrigerator. For
the heat engine, the quantum discord yields a reduction in effi-
ciency but an increase in power fluctuations. We therefore find
that when the engines operate with an interacting quantum
system, the nonclassical correlations in the working medium
affect the machine performance negatively, in contrast to our
model, where the quantum correlations in the reservoir lead to
improved performance.
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