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Establishing the limits of precision in the estimation of parameters for noisy quantum channels probed
by qubits is important for many areas of quantum information, such as quantum sensing, computation, and
communication. Here we consider the estimation of parameters characterizing a general class of noisy Pauli
channels. We show that two entangled qubits, such that only one of them probes the channel, may lead, under an
entangling measurement, to strong enhancement of the precision in the estimation, as compared to the precision
corresponding to sending the pair, entangled or not, through the channel. We prove that entanglement plays an
essential role, as does the entangling detection procedure, consisting in projecting the final state onto a Bell-state
basis. We also prove that quantum advantage is obtained only when the output state, after interaction with the
sample, is not entangled anymore. This behavior has striking similarities with quantum illumination, where
initial entanglement of probe and ancilla beams, followed by an entangling measurement, lead to enhancement
of the sensitivity of photodetection, even after the output beams are disentangled. Similarities and differences
with ghost imaging are also discussed.
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I. INTRODUCTION

Quantum illumination [1–6] uses entangled light to illumi-
nate objects in the presence of high levels of ambient noise
and loss. Each signal sent out is entangled with a retained
ancilla, and detection is made via an entangling measurement
of the returning signal together with the ancilla. Interestingly,
enhancing of the sensitivity of photodetection is achieved even
when the two beams are not entangled anymore. Here we
show that quantum sensing of parameters of open systems
may have remarkable similarities with quantum illumination.
This is illustrated through the estimation of parameters char-
acterizing a broad class of quantum channels acting on qubits:
the Pauli channels.

We show that, for Pauli channels probed by qubits, the use
of a single probe maximally entangled with an ancilla may
lead to strong enhancement of the precision in the estimation
of a parameter that describes the probability of errors on a
qubit, as compared to the use of two independent probes or
even of two probes in a maximally entangled state, when each
one probes the channel independently. With the further benefit
that, for the same number of resources, only half of them go
through the sample, which could be advantageous for fragile
samples.

Quantum advantage is obtained only when the final state,
after interaction with the sample, is not entangled anymore,
corresponding to a high-noise limit and the channel becoming
entanglement breaking. There is a similar but not identical
effect in quantum illumination [1], where the enhancement of
signal-to-noise ratio persists when no entanglement survives
at the detector, but is also present for entangled final states,

while here loss of entanglement is essential for quantum ad-
vantage.

Interestingly, each of the probes of the entangled pair has
null information on the parameter, which is fully retrieved
only by implementing an entangling measurement, consisting
in projecting the final state on the Bell-state basis. This is
similar to ghost imaging, which uses two correlated light
beams to get an image of an object, in such a way that only
one of them interacts with the object to be imaged, reach-
ing a single-pixel detector, while the other one reaches the
imaging detector [7–14]. Neither of the beams has complete
information on the image, which is retrieved from the clas-
sical correlation between the two beams. In that case, even
though the initial demonstration used an entangled initial state
[7–9], many of the properties of a ghost imaging system can
be demonstrated using classical correlations [10–14]. Here,
however, entanglement plays an essential role in increasing
the precision of estimation over the one corresponding to
sending the two probes, entangled or not, through the sample.
And the entangling measurement is essential for getting the
enhancement in the precision.

Parameter estimation is closely related to the quantum
channel identification problem [15–20]. There is, however, an
important difference between the two tasks. While for param-
eter estimation the total amount of resources should be con-
sidered, including probe and ancilla, in channel identification
only the number of uses of the channel is counted, that is, the
ancillas are not counted when one compares the role of a sin-
gle probe with the one corresponding to an entangled probe-
ancilla input. The consequences of these different strategies
are actually very interesting, and are discussed in this paper.
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II. PARAMETER ESTIMATION
AND THE CRAMÉR-RAO BOUND

The estimation of parameters characteristic of a physi-
cal process usually presupposes the indirect procedure of
extracting information on these parameters from a probe
that has undergone the process. The uncertainty �X =√

〈X 2〉 − 〈X 〉2 in the estimation of a parameter X satisfies the
quantum version of the Cramér-Rao relation [21–25],

�X � 1/
√
NFQ(X ), (1)

where N is the number of independent measurements,
FQ(X ) is the quantum Fisher information (QFI), and it is
assumed that the measurement is unbiased, that is, the av-
eraged value of the measurements of X is equal to the
true value Xtrue of the parameter for a neighborhood of
Xtrue, so that d〈X 〉/dX |X=Xtrue = 1. The quantum Fisher in-
formation is defined as the maximization, over all possible
measurements, of the classical Fisher information F (X ) =∑

j[dPj (X )/dX ]2/Pj (X ), where Pj (X ) is the probability of
getting an experimental result j if the value of the parameter
is X . The inequality (1) is saturated when N � 1 or for Gaus-
sian probability distributions. Therefore, the crux for getting
a lower bound for the uncertainty is the evaluation of the
quantum Fisher information.

A general expression for the QFI corresponding to mea-
surements on a probe described by a parameter-dependent
density operator ρ̂(X ) is [23]

FQ(X ) = tr[ρ̂(X )L̂2(X )], (2)

where the operator L̂, the symmetric logarithmic derivative, is
defined by

d ρ̂(X )

dX
= 1

2
[ρ̂(X )L̂(X ) + L̂(X )ρ̂(X )]. (3)

This implies that the matrix elements of L̂ in the basis of
eigenstates of ρ̂(X ) are

L̂i j = 2

pi + p j

[
∂ρ̂(X )

∂X

]
i j

, (4)

where pi, j are eigenvalues of ρ̂(X ).
The eigenstates of L̂i j constitute an optimal measurement

basis leading to the quantum Fisher information, which can
therefore be obtained from the diagonalization of the density
matrix. For unitary evolution of the probe, this yields simple
analytical expressions. For open systems, analytic solutions
can be obtained for low-dimensional systems or for Gaussian
processes. Otherwise, procedures that lead to upper bounds
for the QFI but not necessarily to exact results have been
proposed [26–30]. For the class of noisy channels considered
here, exact solutions can be easily found.

III. CHANNEL DISTINGUISHABILITY, PAULI
CHANNELS, AND ANCILLAE

A quantum channel � is a completely positive trace-
preserving map acting on operators in a Hilbert space H1.
This implies that, when applied to a density operator, it yields
another density operator, and also that � ⊗ 1 is positive when
acting on all possible extensions H1 ⊗ H2 of H1.

A measure of the distinguishability between two channels,
occurring with probabilities p1, p2, is the minimal error prob-
ability p′

E , given by [17]

p′
E = 1

2 [1 − max
ρ̂∈H

||p1�1(ρ̂) − p2�2(ρ̂)||], (5)

where || . . . || denotes the trace norm.
As shown in Ref. [17], use of ancillae that do not interact

with the channels may enhance the distinguishability between
them. That is, by allowing entangled input states, and defining

pE = 1
2 [1 − max

ρ̂∈H
||(p1�1 ⊗ I)ρ̂ − p2(�2 ⊗ I)ρ̂||], (6)

then one may have pE < p′
E .

Parameter estimation is intimately related to the distin-
guishability of two channels, given with the same probability,
and which differ by an infinitesimal variation of one or more
parameters. For two Pauli channels, given with the same prob-
abilities, and defined as

�i[ρ̂] =
3∑

α=0

q(α)
i σ̂αρ̂σ̂α, (i = 1, 2), (7)

where
∑

α q(α)
i = 1, σ̂0 = 1, and σ̂i, i = 1, 2, 3 are the Pauli

matrices, the use of ancillae will increase the distinguishabil-
ity between the two channels if and only if [17]∏

α

rα < 0, rα = 1

2

(
q(α)

1 − q(α)
2

)
. (8)

We are interested here in the estimation of the parameter
� characterizing the class of Pauli channels ��, acting on a
two-dimensional Hilbert space, defined by

��[ρ̂] = (1 − �)ρ̂ + �

3∑
α=1

qασ̂αρ̂σ̂α, (9)

with
∑

α qα = 1. The three Pauli operators stand for the
following transformations on a probe interacting with the
channel, which reflect possible errors in the transmission:
spin-flip (σ̂1), phase flip (σ̂3), and spin and phase flip (σ̂2).

The parameter � determines the probability of occurrence
or not of an error: 1 − � is the probability that no error occurs,
while �qα is the probability that the error associated with σ̂α

occurs. When q1 = q2 = q3 = 1/3 this channel reduces to the
isotropic depolarizing channel.

The precision of estimation of � is related to the distin-
guishability of �� and ��+d�. From (8), it follows that use
of ancillae for parameter estimation—when they are counted
as resources—may be advantageous only if, in (9), qα > 0.
This will be assumed from now on.

If one applies the result in Ref. [17] to the estimation of
the channel parameter �, it is straightforward to see that the
use of ancillae, in conjunction with a probe system sent trough
the channel, increases the quantum Fisher information about
the parameter encoded in the joint output state of probe plus
anciillae. In fact, the results obtained in Ref. [31] imply that,
when sending a single probe trough the channels described
by (9), with allowance for ancillae, corresponding to a single
use of channel, the maximum quantum Fisher information
about the parameter � is obtained with the use of a single
two-level ancilla maximally entangled with the probe. In order
to evaluate the enhancement of the precision due to the use of
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ancillae, we discuss in Sec. III A the sensing of Pauli channels
with a single probe, without ancillae.

A. Sensing Pauli channels with single probes

We consider now the quantum Fisher information of a
single probe, and discuss the corresponding initial pure state
that produces the largest quantum Fisher information on �,
after being sent through the channel, for different values of the
qα

′s. Aiming at simplifying this analysis, we introduce some
symmetry into the channels represented by (9). We consider
the situation where two of the coefficients qα are equal. For
example, q1 = q2 = q and q3 = 1 − 2q.

If an arbitrary pure state of a single probe, given by

ρ̂in = 1

2

(
1 +

3∑
α=1

< σ̂α > σ̂α

)
, (10)

where σ̂α, α = 1, 2, 3 are the Pauli operators, is sent through
the channel, the output state is

ρ̂out (�) = 1

2

(
1 +

3∑
α=1

[1 + 2(qα − 1)�] < σ̂α > σ̂α

)
.

(11)
In the Bloch sphere, the point corresponding to the state
ρ̂out (�) may be represented by the vector V(�), with com-
ponents

Vα (�) = [1 + 2(qα − 1)�]〈σ̂α〉, (12)

where α = 1, 2, 3. The output state with the largest QFI
moves with the largest speed in the Bloch sphere when the
parameter � changes infinitesimally. This state can be found
via maximizing the absolute value of the vector V̇(�) ≡

d
d�

[V(�)], which has components V̇α = 2(qα − 1)〈σ̂α〉. The
squared modulus of V̇(�) is

|V̇(�)|2 =
3∑

α=1

4(qα − 1)2〈σ̂α〉2. (13)

For definiteness, we consider here the channels for which
q1 = q2 = q and q3 = 1 − 2q. Furthermore, since ρ̂in is a pure
state, one must have 〈σ̂1〉2 + 〈σ̂2〉2 + 〈σ̂3〉2 = 1. Under these
conditions, one gets

|V̇(�)|2 = 4(q − 1)2(〈σ̂1〉2 + 〈σ̂2〉2)

+ 16q2[1 − (〈σ̂1〉2 + 〈σ̂2〉2)] (14)

= 4(1 − 2q − 3q2)(〈σ̂1〉2 + 〈σ̂2〉2) + 16q2.

Notice that the allowed values of q are q ∈ [0, 0.5]. As q
changes from 0–0.5, the locuses of optimal pure states of the
probe on the surface of the Bloch sphere change in an interest-
ing way: they lie initially on the equator of the Bloch sphere,
then at precisely q = 1/3, corresponding to the depolarizing
channel, all states on the surface of the Bloch sphere become
optimal, and finally, for q > 1/3, the optimal states lie on the
poles of the Bloch sphere. Indeed, it is easy to see that the root
of 1 − 2q − 3q2 that lies inside the interval ∈ [0, 0.5] is q =
1/3. Consequently, it turns out, from Eq. (14), that, for this
value of q, |V̇(�)| = 16q2 and does not depend on the initial
state ρ̂in, so that, in this situation, all pure states of the probe

produce the same QFI. For q ∈ [0, 1/3), 1 − 2q − 3q2 > 0
and, in order to maximize |V̇(�)|, one has to maximize the
value of 〈σ̂1〉2 + 〈σ̂2〉2. This means that the pure input states
ρ̂in that produce the largest QFI are those which have 〈σ̂1〉2 +
〈σ̂2〉2 = 1. Consequently, for these values of q, all the pure
states on the equator of the Bloch sphere produce the same
and largest QFI. For q ∈ (1/3, 0.5], 1 − 2q − 3q2 < 0. Now,
the states that maximize the QFI must have 〈σ̂1〉2 + 〈σ̂2〉2 = 0
and lie on the poles of the Bloch sphere.

The quantum Fisher information for each value of q and
the corresponding best initial state of the probe can be found
with the help of (4) and (9). It reads

F (p)
Q (�) = 1 − q

�[1 − (1 − q)�]
, (15)

for q � 1/3. When q > 1/3, one has to replace q → 1 − 2q
in the above expression. This information can be retrieved via
a measurement of the output state of the probe in the basis
consisting of the initial state and the state orthogonal to it.

B. Ancilla-assisted sensing of Pauli channels

Here we show a further advantage of the ancilla strategy:
for a range of values of � and qα , the use of a single probe
maximally entangled with an ancilla may lead to better esti-
mation of the parameter � than the use of two independent
probes or even of two probes in a maximally entangled state,
when each one probes the channel independently. As � in-
creases from 0, first the two entangled probes produce a larger
QFI than the two independent probes and the probe entangled
with an ancilla. This happens until � reaches a value where
the output state of the two initially entangled probes, after test-
ing the channel, has no entanglement at all. From this point, as
� increases further, the two independent probes produce the
largest QFI. This changes when � reaches a value where the
joint output state of probe plus ancilla becomes completely
disentangled. From that point, up to the value � = 1, the
probe plus ancilla produce the largest QFI. Remarkably, in
order to fully recover the QFI of their joint output state, probe
plus ancilla have to be measured in a maximally entangled
basis, although no entanglement remains in that state. Indeed,
we prove that the largest information one can recover about
the parameter, via joint measurements of local observables of
probe and ancilla, is equal to the QFI of a single probe, so the
ancilla is not useful in this case.

The quantum Fisher information F (p+a)
Q (�) of the output

state of probe plus ancilla, initially in a maximally entangled
state, is obtained from the output state of the channel exten-
sion 1 ⊗ ��. For instance, for an initial singlet Bell state
|	−〉 = 1√

2
(| + −〉 − | − +〉), where {|+〉, |−〉} are eigen-

states of the Pauli operator σ̂3, the density operator for the
outgoing state is

ρ̂
(p+a)
out (�) = 1 ⊗ ��[|	−〉〈	−|] = (1 − �)|	−〉〈	−|

+ �[q1|
−〉〈
−| + q2|
+〉〈
+|
+ q3|	+〉〈	+|], (16)

where {|	+〉, |	−〉, |
+〉, |
−〉} are the four Bell states. Note
that ρ̂

(p+a)
out (�) is diagonal in the Bell basis. Since these

eigenstates do not depend on �, it follows from (4) that the
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Bell basis is an optimal measurement basis and, therefore, the
Fisher information connected to the measurement in this basis
equals the quantum Fisher information of the output state.
The corresponding quantum Fisher information can be easily
calculated from (4) and (16), giving

F (p+a)
Q (�) = 1

�(1 − �)
, (17)

where we used the relation
∑

α qα = 1. Note that the above
quantity is independent of the values of qα . This means that
probe plus ancilla in a maximally entangled initial state pro-
duce the same QFI on � for the whole class of channels given
by (9). The quantum Fisher information in (17) is always
larger than the QFI of a single probe given in (15), when
q ∈ (0, 0.5). For q = 0 and q = 0.5, the two QFI’s coincide,
consistently with the condition (8) for the usefulness of the
ancilla-assisted strategy.

One may wonder how important is the initial entangle-
ment of probe plus ancilla, and also the final entangling
measurement, in achieving the superiority of the ancilla-based
protocol. This is discussed in the following.

1. Ancilla is not useful for separable initial states

It is important to note that if the initial state is separable,
the ancilla plays no role in the estimation of �. Indeed, for an
initial state ρ̂0 = ∑

k pk ρ̂
k
a ⊗ ρ̂k

p, with
∑

k pk = 1 and pk � 0,
where ρ̂k

a and ρ̂k
p are density operators for the ancilla and

probe, respectively, one has ρ̂� = 1 ⊗ ��(ρ̂0) = ∑
k pk ρ̂

k
a ⊗

��(ρ̂k
p). Therefore, using the convexity and additive proper-

ties of the quantum Fisher information,

F (a+p)
Q (ρ̂�) �

∑
k

pk FQ
[
ρ̂k

a ⊗ ��

(
ρ̂k

p

)]

=
∑

k

pk FQ
[
��

(
ρ̂k

p

)]
, (18)

where the equality follows from the fact that ρ̂k
a does

not depend on � and FQ[ρ̂k
a ⊗ ��(ρ̂k

p)] = FQ[ρ̂k
a ] +

FQ[��(ρ̂k
p)] = FQ[��(ρ̂k

p)].
Consequently, for separable initial states of probe plus an-

cilla, the quantum Fisher information reduces to the average of
QFIs corresponding to single probes testing the channel, and
cannot be higher than the QFI for a single probe in an optimal
(pure) state. Therefore, classical correlations in the initial state
of probe plus ancilla play no role in any possible advantage of
the use of ancillae for the estimation of �.

2. Ancilla is not useful when joint local
measurements are performed

Entangling measurement is essential for the superiority of
the ancilla-assisted protocol. Indeed, we show now that the
maximization over all local observables of the Fisher informa-
tion produced by measurement of local observables of ancilla
plus probe in the output state ρ̂

(p+a)
out (�), given in Eq. (16),

leads to the QFI of an optimal input state of a single probe
testing the channel.

Any pure state in a 2 × 2 Hilbert space is eigen-
state of an observable σ̂n = (σ̂1 î + σ̂2 ĵ + σ̂3k̂) · n̂, where σ̂i,
i = 1, 2, 3, are Pauli operators, (î, ĵ, k̂) is a basis in

tridimensional Euclidean space, and n̂ = sin(θ ) cos(ϕ)î +
sin(θ ) sin(ϕ)ĵ + cos(θ )k̂ is an unitary vector pointing in the
direction determined by the polar angle θ and the azimuthal
angle ϕ.

Consequently, the measurement of any two local
observables of the system ancilla plus probe may
be represented by measurement in a product basis
{|σ̂ (a)

n,+, σ̂
(p)
n′,+〉, |σ̂ (a)

n,+, σ̂
(p)
n′,−〉, |σ̂ (a)

n,−, σ̂
(p)
n′,+〉, |σ̂ (a)

n,−, σ̂
(p)
n′,−〉}. Here

the states |σ̂ (a)
n,±〉 are the two eigenstates of the operator σ̂ (a)

n ,
acting on the Hilbert space of the ancilla, with n̂ pointing in
the direction given by the angles (θ, ϕ), and |σ̂ (p)

n′,±〉 are the

two eigenstates of the operator σ̂
(p)
n′ , acting on the Hilbert

space of the probe, with n̂′ pointing in the direction given by
the angles (θ ′, ϕ′). These eigenstates are given by∣∣σ̂ (a,p)

n,+
〉 = 1√

2

[
cos(θ/2)

∣∣σ̂ (a,p)
3,+

〉 + eiϕ sin(θ/2)
∣∣σ̂ (a,p)

3,−
〉]
,

∣∣σ̂ (a,p)
n,−

〉 = 1√
2

[
sin(θ/2)

∣∣σ̂ (a,p)
3,+

〉 − eiϕ cos(θ/2)
∣∣σ̂ (a,p)

3,−
〉]
.

The probabilities P++, P+−, P−+, and P−− of the four pos-
sible measurement results can be obtained from the output
state ρ̂

(p+a)
out (�) via the relations

Pi j = tr
[∣∣σ̂ (a)

n,i , σ̂
(p)
n′,j

〉〈
σ̂

(a)
n,i , σ̂

(p)
n′,j

∣∣ρ̂ (p+a)
out (�)

]
. (19)

For simplicity, we put q1 = q2 = q3 = 1/3. For this situation,
using the above relation and Eq. (16), it is straightforward to
show that

P++(�) = P−−(�) = 1

4
(1 − A) + A

3
�

P+−(�) = P−+(�) = 1

4
(1 + A) − A

3
�, (20)

with A = cos(θ ) cos(θ ′) + cos(ϕ − ϕ′) sin(θ ) sin(θ ′). Notice
that |A| � 1. Using these quantities and the expression for the
resulting Fisher information

F (�) =
∑

i j

1

Pi j

(
d

dPi j
�

)2

, (21)

one obtains

F (�) = 16A2/9

[(1 − A) + 4A�/3][(1 + A) − 4A�/3]
. (22)

The maximum value of F (�) is reached when |A| = 1 and is
given by

Fmax(�) = 2

3

1

�(1 − 2�/3)
. (23)

This is precisely the QFI for a single probe testing the channel
in the optimal input state, given in Eq. (15), when q = 1/3.
Therefore, the measurement in an entangled basis is essential
for the usefulness of the ancilla-based strategy.

C. Two entangled probes sensing Pauli channels independently

The quantum Fisher information F (p+p)
Q (�) of the output

state of two probes initially in a maximally entangled state
|	−〉, with each probe testing the channel independently,
is obtained from the output state of the channel extension
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�� ⊗ ��, corresponding to two independent uses of the channel:

ρ̂
(p+p)
out = �� ⊗ ��[|	−〉〈	−|] = [(1 − �)2 + (1 − 4q + 6q2)�2]|	−〉〈	−| + 2q�(1 − 2q�)|
−〉〈
−|

+ 2q�(1 − 2q�)|
+〉〈
+| + 2[�(1 − �)(1 − 2q) + q2�2]|	+〉〈	+|. (24)

Note that this state is also diagonal in the Bell basis. Therefore a measurement of the output state in that basis retrieves the
QFI contained in that state, which is given by

F (p+p)
Q (�) = 4[(6q2 − 4q + 2)� − 1]2

1 + 2�[(3q2 − 2q + 1)� − 1]
+ 4q2(1 − 4q�)2

q�(1 − 2q�)
+ 2[2�(q2 + 2q − 1) + 1 − 2q]2

�(1 − 2q) + (q2 + 2q − 1)�2
. (25)

We note that since the output states (16) and (24) are Bell
diagonal, it is very simple to determine whether they are
entangled or not [32]: the necessary and sufficient condition
for entanglement is that the largest eigenvalue of those states
is larger than 1/2.

IV. COMPARISON OF THE DIFFERENT STRATEGIES
FOR PAULI-CHANNEL PARAMETER ESTIMATION

We compare now the three different strategies for the esti-
mation of �, corresponding to three two-qubit initial states:
the initial two-qubit probe plus ancilla and two probes in-
dependently testing the channel, either in a product state or
in a maximally entangled state. The QFI for two probes in a
product state is twice the one for a single probe.

Figure 1 compares the respective quantum Fisher in-
formation for the depolarizing channel (q = 1/3). Several
properties of this channel were investigated in Ref. [15] from
the viewpoint of channel identification. For the parameter esti-
mation considered here, the conjunction of its symmetry with
proper counting of resources leads to very interesting results,

FIG. 1. Quantum Fisher information (QFI) for the estimation of
�, for the depolarizing channel (q = 1/3), and for three different
two-qubit initial states: (a) probe plus ancilla (full blue line), and two
probes independently testing the channel, either in (b) a product state
(dot-dashed green line) or in (c) an entangled state (dashed orange
line). At � = �1 = (3 − √

3)/4 the quantum Fisher information of
(c) becomes smaller than the one for (b). At � = �2 = 0.5, the out-
put state corresponding to probe plus ancilla becomes disentangled
and the respective QFI becomes the largest one.

which relate quantum advantage with the entanglement of the
outgoing qubits, as described in the following.

The two probes initially in a maximally entangled state
lead to the best precision for � ranging from 0 to �1 = (3 −√

3)/4, the value for which the corresponding output state
becomes disentangled. From this point, up to � = 1, the cor-
responding QFI becomes worse than the one for two probes
in an initial product state. Interestingly, the probe plus ancilla
initial state leads to the largest QFI when � > �2 = 0.5, with
�2 being the value of the parameter for which the channel
becomes entanglement breaking and the output state becomes
disentangled. In this case, the region of supremacy of the
probe plus ancilla setup is precisely the one where the output
state becomes disentangled, in strong contrast with the two
initially entangled probes. However, in order to recover the
full information on the parameter, it is essential to implement
a global measurement in the Bell-state basis. As shown before,
a measurement of local observables of probe and ancilla leads,
at most, to the quantum Fisher information of a single probe in
an optimal initial state. In the strong-noise limit, the advantage
of the probe plus ancilla setup is outstanding: For � � 0.9
(strong depolarization), the QFI for the probe plus ancilla
becomes much larger then those for two probes, entangled or
not.

The close connection here between usefulness of the an-
cilla and disentanglement, as well as the need for a Bell-basis
measurement, has a striking similarity with the behavior of
quantum illumination [1]. In both cases, it is necessary to
perform the final detection in the Bell basis in order to
get maximal quantum advantage. In quantum illumination,
enhanced sensitivity of photodetection persists even after dis-
entanglement, but it also occurs while the output state is
entangled. Here, loss of entanglement of the output state is
strictly necessary for quantum advantage.

Figure 2 compares the three strategies for an anisotropic
channel, with q = 0.25. This implies that in (9) q1 = q2 =
0.25 and q3 = 0.5. In this case, the output state corresponding
to probe plus ancilla becomes disentangled before its quantum
Fisher information is the largest one. Disentanglement now is
still necessary for quantum advantage, but it is not sufficient
anymore. Also, the precision in the estimation of � for two
initially entangled probes becomes smaller than the one for
the optimal initial product state shortly before the output state
becomes disentangled. These results hold for a range of values
of q from approximately 0.25–0.37.
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FIG. 2. Quantum Fisher information for the estimation of the pa-
rameter �, for the anisotropic channel with q = 0.25, corresponding
to three different two-qubit initial states: (a) probe plus ancilla (full
blue line), and two probes independently testing the channel, either
in (b) a product state (dot-dashed green line) or in (c) an entangled
state (dashed orange line).

V. CONCLUSION

We have considered here a very general class of quantum
channels acting on qubits and demonstrated the relevance of
setups consisting of probe plus ancilla for parameter estima-
tion, even when taking the same resource counting for all
possible setups involving an incoming pair of qubits, as is
usually the case in parameter estimation. Several interesting
features of this approach have been discussed. In particu-
lar, we have shown that an isotropic depolarizing channel
leads, for an initial maximally entangled state of probe and
ancilla, to a precision in the estimation of the depolar-
ization parameter better than other setups involving two

probes testing the channel, entangled or not, precisely
when the output state becomes disentangled. Interestingly,
this behavior is opposite to the one for two entangled
probes, when quantum advantage disappears after entangle-
ment is lost. Similar features can be found for anisotropic
channels.

The optimal measurement on the probe plus ancilla pair
is a global one, on the Bell basis, even when the output
state is disentangled. These results are similar but not iden-
tical to those for quantum illumination, which also requires
an entangling measurement for maximal sensitivity, and for
which enhancement of the sensitivity of photodetection is still
present even when the output is disentangled, but it also occurs
while the output state is entangled.

We have shown the remarkable result that, in the strong-
noise limit, the probe plus ancilla setup may lead to strong
enhancement of the precision of estimation, as compared to
two qubits, entangled or not, probing the channel. On the
other hand, for weak depolarization, entangled probes, test-
ing independently the channels, lead to the best precision. In
view of the ubiquity of Pauli channels in dynamical processes
involving qubits, the results demonstrated in this paper should
be useful for quantum information tasks that hinge on the
precise assessment of parameters.
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