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Entanglement purification is a crucial technique for promising the effective entanglement channel in noisy
large-scale quantum networks, yet complicated in designing protocols in multi-degree of freedom (DoF). To
execute the above tasks easily and effectively, developing a learning framework for designing the entanglement
purification with multi-DoF is a promising way and still an open research question. Inspired by variational
quantum circuit (VQC) with remarkable advantage in learning optimal quantum operations with near-term
quantum devices, in this paper we propose an effective VQC framework for the entanglement purification in
multi-DoF and exploit it to learn the optimal purification protocols of the objective function which are based
on postselection. By properly introducing additional circuit lines for representing each of the ancillary DoFs
of all the particles, e.g., space and time, the parametrized quantum circuit can effectively simulate scalable
entanglement purification. To verify our framework, the well-known protocols in linear optics are learned
well with alternative operations in low-depth quantum circuit. Moreover, we simulate the multipair cases with
multi-DoF to show the scalability and discover one-round protocols. Our work provides an effective way for
exploring the entanglement purification protocols in multi-DoF and multipair with near-term quantum devices.
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I. INTRODUCTION

Quantum entanglement which shows the nonlocal correla-
tion between two or more objects is an intriguing phenomenon
in quantum mechanics and has no classical counterpart [1].
One usually uses quantum entanglement as a crucial resource
for building quantum channel in quantum networks [2–6].
However, in practice, entanglement is so fragile in a noisy
environment that it is hard to be used directly as an effective
quantum channel. The reason is that under the influence of
noise, a pure maximally entangled state becomes a mixed
one. To overcome this problem, a technique called entan-
glement purification is proposed to improve the fidelity of
the damaged entangled state [7–28]. The first entanglement
purification protocol utilizes another copy of mixed entan-
gled state in Werner form as an auxiliary “target” state and
executes bilateral controlled-NOT (CNOT) operations and
parity check to acquire the information of “source” pair [7].
Subsequently, the protocol is developed without requirement
of Werner form and has higher efficiency in recursive pro-
cedure [8]. The above protocols are based on CNOT gates
between two entangled pairs. It is hard to accomplish this
operation in experiment, especially for photons. Therefore,
in optical systems, the feasible way is to bring in ancillary
photonic degrees of freedom (DoF), such as space and time.
The first photonic entanglement purification protocol which
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makes use of ancillary DoF is based on selecting the spatial
modes of entangled pairs [10] and subsequently performed in
experiment [19]. Besides, one can design entanglement purifi-
cation protocols with only one pair of photons with multi-DoF
hyperentanglement [11–16,23–26], e.g., Simon-Pan [11] and
Hu-Huang-Sheng-Zhou et al. (HHSZ+) [23] protocols. Up to
now, many interesting purification protocols have been pro-
posed for various cases but lack of a learning framework. As
the number of entangled pair and DoF increases, the design
of entanglement purification becomes more complicated and
challenging.

In recent years, machine learning has been considered
for processing quantum information [29–32]. Some basic
protocols in quantum communication, such as quantum
teleportation [33], entanglement purification, and quantum
repeaters [34], are discovered by classical agents [35].
Quantum gate operations play a key role in quantum
information processing. Therefore, compared with classical
machine learning, an approach directly optimizing quantum
gates called variational quantum circuit (VQC) has its inherent
advantage for handling quantum information tasks [36–38].
The VQC learning has been widely applied in various areas,
such as quantum computing and quantum chemistry, for its
remarkable advantage in training with near-term quantum
devices. This inspires that VQC learning may be an effective
way to design the protocols of entanglement purification
in multi-DoF. Recently, entanglement purification has been
performed as a simple instance in local operation and classical
communication framework based on parametrized quantum
circuits [39]. However, directly simulating operations on two
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pairs is limited in some cases, such as the difficult CNOT
operation of photons. Therefore, developing an effective VQC
learning framework for entanglement purification including
multi-DoF has practical significance but there is still no
research.

In this paper, we propose an effective VQC learning frame-
work for the entanglement purification in multi-DoF and
exploit it to learn the optimal purification protocols of the
objective function which is based on postselection. Additional
quantum circuit lines are introduced in VQC to represent the
high-dimensional DoFs of the particle. In our VQC learning
framework, the parametrized ansatz part plays the central role
in learning the local quantum operations of entanglement pu-
rification. The classical communications used for exchanging
the information between two users are included in a mea-
surement part. As examples, the well-known linear optical
entanglement purification protocols, including Pan-Simon-
Brukner-Zeilinger (PSBZ) [10], HHSZ+ [23], Simon-Pan
[11], etc., are learned well and the different operations of
entanglement purification are discovered automatically. To
verify the scalability of our framework, the cases of multi-
pair with multi-DoF are also performed well and the results
indicate that multipair entangled states can be purified by
a one-round way that is different from the conventional
recursive process. Moreover, entanglement purification is
also simulated with different noisy channels. Our framework
provides an alternative way to understand and design the en-
tanglement purification in multi-DoF by variational quantum
learning and has extensive applications for the other areas of
quantum information, such as quantum networks.

The article is organized as follows: In Sec. II, we introduce
our VQC learning framework for the entanglement purifica-
tion in multi-DoF. In Sec. III, the well-known protocols of
the entanglement purification with multi-DoF are learned. In
Sec. IV, the cases of multipair with multi-DoF are verified.
In Sec. V, the noisy channels are considered in simulations.
Section VI covers discussion and summary.

II. VQC FRAMEWORK FOR THE ENTANGLEMENT
PURIFICATION IN MULTI-DOF

A pure entangled state labeled with ρpure will become a
mixed one ρmixed when it is distributed over a noisy quan-
tum channel. However, entanglement purification is an inverse
process which can improve the fidelity of a mixed state. Those
two processes can be described by the formula

ρpure
noise−→ ρmixed

EP−→ ρpurified. (1)

Here, EP is entanglement purification, and ρpurified is the
density matrix of a purified mixed state and can equal to
ρpure after a perfect entanglement purification protocol. In
long-distance quantum channel, an entangled state is usually
shared by two nonlocal quantum nodes shown in the upper
part of Fig. 1(a). Because of nonlocality, the two users are
only allowed to execute entanglement purification using local
operations and classical communications. The local opera-
tions are a series of local quantum gates, and the classical
communications are used for exchanging the measurement
results in two nodes. The variational quantum algorithm

FIG. 1. The VQC learning framework of the entanglement pu-
rification with multi-DoF. (a) The simple schematic diagrams of the
entanglement purification in optical systems and VQC. LO, local
operations; CC, classical communications. (b) An instance for the
VQC of the entanglement purification with polarization and spatial
DoFs. (c) The physical implementations of some basic quantum
gates in linear optics. The meanings of symbols are p (s), polarization
(spatial) DoF; u (l), upper (lower) spatial DoF; H, Hadamard gate; X ,
Pauli-X gate; HWP, half-wave plate; PBS, polarizing beam splitter.

shown in lower part of Fig. 1(a) is a hybrid quantum-classical
simulator using classical optimizer to optimize parametrized
quantum circuits. Here, we propose a general VQC framework
shown in Fig. 1(b) to simulate the entanglement purifica-
tion with multi-DoF. Its main architecture includes ansatz,
measurement and classical optimizer. In conventional entan-
glement purification protocols, local operations usually have
two parts arranged before and after measurement, we assume
the ansatz in our VQC framework expresses only the part
before measurement for simplicity. The ansatz is the main
concern in learning entanglement purification and prepared
with parametrized quantum circuits based on practical condi-
tions. The gate operations in the ansatz between circuit lines
of Alice and Bob are forbidden because of only allowing local
quantum operations. By optimizing the parametrized quantum
circuits in the ansatz, the process of local operations in entan-
glement purification can be simulated effectively. Each circuit
line represents one DoF of entangled particle. We assume that
Alice and Bob share n pairs of entangled photons denoted
by sets A = {A1, A2, . . . , An} and B = {B1, B2, . . . , Bn}, re-
spectively. Ai and Bi are entangled pairs. The photons with
m DoFs in the sets A and B are also described as sets
Ai = {DAi1, DAi2, . . . , DAim} and Bi = {DBi1, DBi2, . . . , DBim},
and the elements DAi j and DBi j stand for the different DoFs
of photons, such as polarization, space, and time. Preparing
the quantum circuits in the VQC for entanglement purifica-
tion, the circuit lines arranged for Alice and Bob’s photons
are represented with sets CA = {CA1,CA2, . . . ,CAn} and CB =
{CB1,CB2, . . . ,CBn}, respectively. All the elements in the sets
CAi and CBi contain the circuit lines for the DoFs of pho-
tons and expressed by CAi = {LAi1, LAi2, . . . , LAim} and CBi =
{LBi1, LBi2, . . . , LBim}. The construction of the circuit lines
in VQC is actually a map from entangled photons to lines,
i.e., f : DAi j (DBi j ) �→ LAi j (LBi j ). The dimension of each line
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LAi j , LBi j is decided by DAi j , DBi j and has the relation of
dim(LAi j ) = dim(DAi j ), dim(LBi j ) = dim(DBi j ). An instance
of photons in which two entangled pairs with two DoFs shared
by Alice and Bob is given in Fig. 1(b), the horizontal solid
and dashed lines represent photonic polarization and spa-
tial DoFs, respectively. The circuit lines CA1 = {LA11, LA12},
CA2 = {LA21, LA22} belong to Alice and CB1 = {LB11, LB12},
CB2 = {LB21, LB22} belong to Bob. The CA1, CB1 are nonlo-
cal entangled pair, and the CA2, CB2 are another entangled
one. The polarization has horizontal (H) and vertical (V)
directions, and the spatial DoF is assumed with only up-
per and lower paths. Therefore, the dimension of DoF is
dim(LAi j ) = dim(LBi j ) = 2. In entanglement purification, the
goal is to obtain the output state with higher fidelity. The target
state |ψtarget〉 usually is a pure state and the learning objec-
tive function is chosen with fidelity fout = 〈ψtarget|ρout|ψtarget〉
whose direction of optimization is maximization. Here, ρout

is the density operator of residual entangled pairs after en-
tanglement purification, i.e., depending on U (θ)ρinU †(θ) and
postselection. Therefore, when the measurement outcome is
chosen, the goal is to train the parameter vector θ. Figure 1(c)
shows the instances of the physical implementations of sev-
eral basic quantum gates on polarization and spatial DoFs in
linear optics. The half-wave plate can act as the Hadamard or
Pauli-X gate of photonic polarization DoF with different input
angles. The polarizing beam splitter (PBS) which reflects V
and transmits H polarization of photon realizes a CNOT gate
on photonic polarization (source) and spatial (target) DoFs.
A reversed CNOT between polarization (target) and spatial
(source) DoFs can be realized by adding a Pauli-X gate (a
half-wave plate) in the lower path.

III. LEARNING THE ENTANGLEMENT PURIFICATION
WITH MULTI-DOF IN LINEAR OPTICS

A. PSBZ protocol

Four Bell states are considered in entanglement purifica-
tion as follows:

|�±〉 = 1√
2

(|00〉 ± |11〉),

|�±〉 = 1√
2

(|01〉 ± |10〉). (2)

To learn entanglement purification by our VQC framework,
we first study the PSBZ protocol proposed by Pan et al.
[10] for linear optics. In the protocol, photonic spatial DoF
is introduced to overcoming the problem of difficult CNOT
operations between photons. The ideal case is that Alice and
Bob share Bell pairs |�+

ab〉 = 1√
2
(|0a0b〉 ± |1a1b〉) in polariza-

tion DoF from ideal source. Here, the states 0 and 1 in |�+
ab〉

represent for the V and H polarization of photon, respectively.
The photons labeled with “a” and “b” belong to Alice and
Bob, respectively. A mixed state considered with only bit-flip
error before entanglement purification is given by

ρab
in = fin|�+

ab〉〈�+
ab| + (1 − fin)|�+

ab〉〈�+
ab|. (3)

The two copies of this mixed state ρa1b1
in ⊗ ρa2b2

in have
four components, including |�+

a1b1〉|�+
a2b2〉 with fidelity f 2

in,
|�+

a1b1〉|�+
a2b2〉 with fidelity fin(1 − fin ), |�+

a1b1〉|�+
a2b2〉 with

FIG. 2. The VQC learning of the PSBZ protocol. (a) The physi-
cal schematic diagrams of entanglement purification. “s” represents
ideal entanglement source. “u” and “l” are upper and lower spatial
DoF, respectively. (b) The quantum circuit version of PSBZ protocol.
(c) The numerical and theoretical results of fidelities.

fidelity fin(1 − fin), and |�+
a1b1〉|�+

a2b2〉 with fidelity (1 −
fin)2. Different with protocols [7] and [8], the PSBZ protocol
replaces the CNOT between two photons with the CNOT
between the two DoFs of each photon. As shown in Fig. 2(a),
two symmetric PBSs are used by both Alice and Bob. The
whole process is described with quantum circuit language in
Fig. 2(b). For simplicity of calculation, we label Alice and
Bob’s photons with 1, 3, 5, 7 and 2, 4, 6, 8, respectively.
Circuit lines 1 (3) and 2 (4) are polarization entangled. All
the circuit lines 5, 6, 7, and 8 are spatial DoF and plot-
ted together. The initial state of spatial DoF is |05061718〉
and 0 (1) stands for the upper (lower) path. The two PBSs
play roles in applying four CNOT gates between the po-
larization and spatial DoFs of each photon. Actually, the
CNOT gates on all spatial DoF produce the two pairs of
four-qubit entangled state. Alice and Bob should measure
their lower spatial DoF with basis |±〉 = 1√

2
(|0〉 ± |1〉) and

choose the case of all output with photons, i.e., so-called
“four-mode cases” [19]. The detailed derivation process of
the above protocol is given in Appendix A. If Alice and
Bob get the result | + +〉 or | − −〉, the state of source
pair is

ρ±±
upper = f ±±

out |�+〉〈�+| + (1 − f ±±
out )|�+〉〈�+|, (4)

where the new fidelity is f ±±
out = f 2

in

f 2
in+(1− fin )2 . When the result

is | + −〉 or | − +〉, the output state will be translated to |�+〉,
whose new fidelity is f ±∓

out = f ±±
out , by applying a local phase

flip gate on the one of the residual photons.
Using the VQC framework to learn the above entangle-

ment purification protocol, we directly learn the ansatz by
assuming a series of parametized universal quantum gates
including single-qubit arbitrary rotation gates and two-qubit
CNOT gates. The input of ansatz is ρin = ρa1b1 ⊗ ρa2b2 ⊗
|05061718〉〈05061718|. Our goal is to optimize the fidelity
of the final output state given by objective function fout =
〈�+|ρout|�+〉 and the ρout is chosen with ρout = ρ++

upper in our
simulations. Numerical results are shown in Fig. 2(c). The
points in the figure are our numerical fidelities and match
the theoretical curve f ±±

out very well. Each point shown in
the figure is the best one chosen from learning results by
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FIG. 3. The VQC learning of HHSZ+ and Simon-Pan proto-
cols with hyperentanglement. (a) The physical schematic diagrams
of the two protocols. (b) The quantum circuit version of the two
protocols. Lines 1 (2) and 3 (4) are polarization and spatial DoFs
of photon belonging to Alice (Bob), respectively. (c) The numerical
and theoretical results of fidelities. The solid curves and markers are
theoretical and numerical results, respectively.

randomly initializing the ansatz with 10 times as the one time
learning might give a local optimal fidelity rather than global
optimal one. The learned ansatz suggests the optimal fidelities
of entanglement purification are the same as the PSBZ proto-
col in Fig. 2(b) for the input mixed state ρin. The learned local
operations are not unique due to the learning of fidelity.

B. Hyperentanglement-based protocols

Another kind of entanglement purification protocols using
multi-DoF is based on hyperentanglement. Only one pair of
photons entangled in both polarization and spatial DoFs are
required. The Bell states of polarization and spatial DoFs have
the same form with Eq. (2) and are, respectively, labeled with
|�±

p 〉, |�±
p 〉, |�±

s 〉, and |�±
s 〉. Subscripts “p” and “s” represent

polarization and spatial DoFs, respectively. The typical entan-
glement purification protocols based on hyperentanglement
are HHSZ+ [23], Simon-Pan [11], Li [12], Sheng-Deng [13],
etc. We first study the HHSZ+ protocol whose initial state is
described by ρin = ρ

p
in ⊗ ρs

in, where the density operators ρ
p
in

and ρs
in are

ρ
p
in = f p

in|�+
p 〉〈�+

p | + (
1 − f p

in

)|�+
p 〉〈�+

p | (5)

and

ρs
in = f s

in|�+
s 〉〈�+

s | + (
1 − f s

in

)|�+
s 〉〈�+

s |. (6)

Here, f p
in and f s

in are the fidelities of |�+
p 〉 and |�+

s 〉, respec-
tively. The equivalent entanglement purification using time
DoF is protocol [24]. Here, only one entangled pair and two
PBSs are required for accomplishing the entanglement pu-
rification of the polarization DoF shown in Fig. 3(a) when
the input fidelities satisfy f p

in > 1
2 and f s

in > 1
2 . In the VQC

framework, two polarization and another two spatial lines are
introduced in Fig. 3(b). Compared with the PSBZ protocol,
the physical devices are the same but the quantum circuit
only has two CNOT gates in the HHSZ+ protocol. Shown

in Appendix B, the output fidelity is f p
out = f p

in f s
in

f p
in f s

in+(1− f p
in )(1− f s

in )

for the selection of |0304〉 (two upper) or |1314〉 (two lower).
Three cases are considered as f p

in = f s
in, fixed f s

in ∈ (0.5, 1.0)
and f s

in = 1 in numerical simulations. For the fixed f s
in ∈

(0.5, 1.0), without loss of generality, we learn the output

fidelities by fixing the f s
in with 0.70 and 0.85. When the fidelity

satisfies f s
in = 1, HHSZ+ protocol transforms to the Simon-

Pan protocol. As shown in Fig. 3(c), the curve of f p
in = f s

in is
the same with the PSBZ protocol. Each point shown in the
figure is also the best one chosen from learning results by ran-
dom initializations with 10 times for avoiding local optimum.
For instance, the case with input fidelities f s

in = 0.70 and
f p
in = 0.55 is executed with given ansatz, the optimal output

fidelity is f p
out = 0.7404. But there exists a local optimal point

f p
out = 0.70 which suggests a swap operation to exchange the

states between polarization and spatial DoFs. This operation
will obtain a higher fidelity in polarization DoF, i.e., f p

out =
0.70 > f p

in = 0.55, but is not a global optimum. In f s
in = 1,

the output purified state is a pure entangled state. Results in
Fig. 3(c) indicate all the assumed cases are discovered well by
our VQC framework.

If we study the case considering phase errors, terms
|�−〉〈�−| and |�−〉〈�−| are added in density operators.
When spatial DoF is a pure entangled state, the corresponding
protocols are the Li [12] and Sheng-Deng [13] protocols.
As an instance, we simulate the Li protocol here. In Li’s
protocol, all the output states appearing in spatial DoF |00〉,
|01〉, |10〉, and |11〉 are |�+

p 〉. To keep the same target with
Li’s protocol, we use a new objective function with f p

obj =
f p
00 ∗ f p

01 ∗ f p
10 ∗ f p

11, where f p
00, f p

01, f p
10, and f p

11 are the fi-
delities of output states in the spatial DoF |00〉 (two upper),
|01〉(one upper one lower), |10〉 (one upper one lower), and
|11〉 (two lower), respectively. One can find that when the
objective function f p

obj is optimized to 1, all the four fidelities
f p
00, f p

01, f p
10, f p

11 are 1. The detailed explanations of the Li
protocol are given in Appendix C. Compared with the Simon-
Pan protocol, the operations in this case need three bilateral
CNOT gates in Alice and Bob. The physical implementation
and its corresponding quantum circuit of the Li protocol are
plotted in Figs. 4(a) and 4(b), respectively. By the VQC learn-
ing, Li protocol is also learned well. Moreover, the results of
optimized parameters in the ansatz also suggest some other
different local operations whose final outputs are the same
with those of Li. We show one of the equivalent protocols
discovered by the VQC learning in Figs. 4(c) and 4(d) with
quantum circuit and setup versions where four PBSs and two
half-wave plates are used. This simple result can be learned
by adaptively reducing and adjusting the gate operations in
the ansatz. The learning curves of fidelities chosen with one
of the best results from random initializations 10 times for
each point are shown in Fig. 4(e). Here, the initial input fideli-
ties of each state are assumed with f p

in,�− = (1 − f p
in,�+ )/2,

f p
in,�+ = (1 − f p

in,�+ )/4, f p
in,�− = (1 − f p

in,�+ )/4, and f s
in,�+ =

1. With about 30 steps (actual steps not shown in the figure,
breaking up the optimizing processes is usually more than 35
steps), all the 9 learning processes, i.e., input with f p

in,�+ =
{0.55, 0.60, . . . , 0.90, 0.95}, achieve their optimal values.

IV. ENTANGLEMENT PURIFICATION OF MULTIPAIR
AND MULTI-DOF INPUT

To verify the scalability of the framework, we simulate the
entanglement purification of mutipair cases with multi-DoF
and show the results of two pair (4 qubits), three pair (6
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FIG. 4. The VQC learning of the Li protocol with hyperentan-
glement. (a) The physical schematic diagrams of the Li protocol.
(b) The corresponding quantum circuit of the Li protocol. Lines 1 (2)
and 3 (4) are polarization and spatial DoFs of photon belonging to
Alice (Bob), respectively. (c) The quantum circuit of an example of
new equivalent entanglement purification protocols learned by VQC.
(d) The physical schematic diagrams of the new equivalent entan-
glement purification circuit in (c). (e) The learning curves of chosen
fidelities based on VQC with a set of random initial parameters.

qubits), four pair (8 qubits), and five pair (10 qubits). As
shown in Fig. 5(a), the model given by the case of five en-
tangled pairs (10 qubits) is chosen with applying the two-qubit
ansatz between nearest-neighbor qubits for simplicity, and one
ancillary DoF is considered. The initial input entangled states
are assumed as

ρin =
n⊗

i=1

ρ i
in, (7)

where n is considered with n = 2, 3, 4, 5 corresponding to
4, 6, 8, 10 qubits, and for simplicity, all the ρ i

in have the same
fidelities as

ρ i
in = fin|�+

i 〉〈�+
i | + (1 − fin)|�+

i 〉〈�+
i |. (8)

We assume that the residual pair is kept when we chose
the case of |0〉⊗2(n−1) or |1〉⊗2(n−1) of the n − 1 nonlocal
entangled pairs. The output density matrix calculated in ob-
jective function is chosen with ρout = ρ1

out + ρ0
out, where ρ1

out
(ρ0

out) is residual state corresponding to measurement outcome
|0〉⊗2(n−1) (|1〉⊗2(n−1)). In numerical simulations, input fideli-
ties {0.5, 0.55, 0.6, . . . , 0.95, 1.0} are performed. For each
point of the input fidelities, we also simulate it for 10 times by
initializing the parameters of ansatz randomly and choose the
best fidelity as the final output result rather than expectation.
For the case of five pair (10 qubits), when the output optimal
numerical result is larger than the optimal fidelity of the four-
pair case, the simulation is ended at this round for saving time.
All the purification results shown in Fig. 5(b) indicate that the
output fidelity can be increased by using more input pairs in
domain fin ∈ (0.5, 1.0). For instance of fin = 0.65 shown in

FIG. 5. Entanglement purification for the cases of multipair with
multi-DoF. (a) The purification model and ansatz structure of five
entangled pairs (10 qubits). The connection labeled with a vertical
line and two dots between two circuit lines is two-qubit ansatz.
(b) The learning fidelities of all cases from two to five input entangled
pairs. (c) The learning fidelities of fin = 0.65 from two to five input
entangled pairs.

Fig. 5(c), the fidelity is purified to fout � 0.7752 [purification
rate pr = ( fout − fin)/ fin � 19%] in the two-pair case and this
result can be further enhanced to fout � 0.8650 (pr � 33%),
fout � 0.9225 (pr � 42%), and fout � 0.9567 (pr � 47%) in
the cases of three pair, four pair, and five pair, respectively.
Our calculations indicate that the entanglement purification
with multipair cases can be carried out with only one round.
In conventional protocols, the purifications of multipair mixed
entangled states are usually based on a recursive process in
which two-pair case is carried out in each round. For the
instance of four entangled pairs’ input, the conventional recur-
sive process is two rounds described by 4 pairs → 2 pairs →
1 pairs, but this process is only one round in our protocol, i.e.,
4 pairs → 1 pairs.

V. ENTANGLEMENT PURIFICATION WITH NOISE

To simulate practical cases, we consider the three types of
noisy channels, i.e., phase-damping, amplitude-damping, and
symmetric depolarizing channels, in our simulations of en-
tanglement purification. The noisy channels are described by
applying Kraus operators Ek to density matrix by conjugation
as follows:

ρ = N(ρ) =
∑

k

EkρE†
k . (9)

The Kraus operators of phase-damping channel Npd are given
by

E1 =
[

1 0
0

√
1 − γ

]
, E2 =

[
0 0
0

√
γ

]
. (10)
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FIG. 6. The simulation of entanglement purification with noise.
(a) The results of the case with the input entangled states fin = f i

in =
f j
in. (b) The results of the case with the input entangled states fin = f i

in

and f j
in = 0.80.

For amplitude-damping channel Nad, the Kraus operators has
form of

E1 =
[

1 0
0

√
1 − γ

]
, E2 =

[
0

√
γ

0 0

]
. (11)

Symmetric depolarizing channel is described by a set of Pauli
operators as

Nsd(ρ) =
(

1 − 3γ

4

)
ρ + γ

4
(σxρσx + σyρσy + σzρσz ).

(12)

The parameter γ in the above expressions stands for the mag-
nitude of the noise.

Two-qubit gates have higher noise rate than one-qubit ones
in physical considerations [40]; for simplicity, the noise is
applied only after CNOT gates in our simulations. The two
cases of initial input fidelities, i.e., f i

in = f j
in and fin = f i

in with
fixed f j

in = 0.80 are simulated by considering noisy channel
with γ = 0, 0.01, 0.02. The learning results of entanglement
purification with noise are shown in Figs. 6(a) and 6(b). The
measurement choices of all types of noise channel are the
same, i.e., choosing |00〉 or |11〉 of ancillary DoF, and each
data point shown in the figure is the best result of random
initializations with 10 times. The objective function is chosen
with fidelity fout = 〈�+|(ρ00

out + ρ11
out )|�+〉, where ρ00

out (ρ11
out) is

the output state of measurement outcome 00 (11). γpd, γad, and
γsd represent the magnitude of the noise of the phase-damping,
amplitude-damping, and symmetric depolarizing channels,

FIG. 7. The quantum circuits of the ansatz used in our simula-
tions between two different DoFs. (a) A universal quantum circuit
for two-qubit operations. (b) A limited ansatz with no single-qubit
operations in spatial DoF. Ry and Rz are single-qubit rotation gates
about the y and z axes, respectively.

respectively. In the case of f i
in = f j

in, we calculate the result
of fout − fin called net fidelity. While in the case of fixed
f j
in = 0.8, we choose the net fidelity fout − fin in which fin

is chosen with the modulated input fidelity f i
in rather than the

fixed one f j
in. The results in the two figures show that noise

reduces the quality of entanglement purification. As the noise
(γ ) increases, the net fidelities decrease. If the net fidelity is
less than zero where the area below dashed line is fout = fin

in Fig. 6(a), it indicates the purification fails. In Fig. 6(b), the
case is little different: we give two dashed lines, i.e., the line
fout = fin and fout − 0.8. In some cases of multi-DoF purifi-
cation, for instance in linear optics, one usually uses ancillary
DoF, i.e., path, to purify the primary one, i.e., polarization. If
the output fidelity of polarization is greater than the input, the
purification is valid although the output fidelity is less than the
input fidelity of spatial DoF. We give a dashed line fout = fin

as the critical line for the above case and a line fout − 0.8
for a common case whose requirement is fout greater than all
the input fidelities. So in our simulations, the second dashed
line is fout − 0.8 as the fidelity of input ancillary DoF is 0.8.
In Fig. 6(b), we mark two valid areas I + II and II for the
requirements of fout > fin and fout > fin and 0.8, respectively.
Comparing three types of noise, the phase-damping and sym-
metric depolarizing channels have the smallest and biggest
influence on entanglement purification, respectively.

VI. DISCUSSION AND SUMMARY

The circuit of the ansatz with parameters θu =
[θ1, θ2, . . . , θ15] used in our simulations is given in Fig. 7(a).
It is a universal quantum circuit for two-qubit operations
with a series of single-qubit operations and three CNOT
gates [41,42]. In some practical cases, the operations can
not be realized with experimental conditions. Therefore,
we introduce a limited ansatz with θl = [θ1, θ2, . . . , θ12]
by assuming the single-qubit operations are difficult in the
spatial DoF in Fig. 7(b). In practical numerical simulations,
we learned the optimal fidelities by using a universal
ansatz and also can repeat the process with a limited one
according to experimental conditions if necessary. The
parameter vector θu in the ansatz is assigned with random
numbers in domain [0, 2π ], so the learning curves are
usually different in each round, but the final stationary
results of fidelities are almost the same (local optimum
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can be detoured by repeating learning process more times).
Our numerical simulations are mainly performed by using
MINDQUANTUM [43]. The optimizer is chosen with the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) [44–47].

In conclusion, we have proposed an effective VQC
framework for learning the entanglement purification with
multi-DoF by properly introducing additional circuit lines. To
verify our framework, the well-known protocols of entangle-
ment purification in linear optics, such as PSBZ, HHSZ+,
Simon-Pan, etc., are learned with alternative operations and
the fidelities match well with the theoretical values. To show
the scalability, we simulate the cases of multipair with multi-
DoF well and show that the entanglement purification of
multipair can be carried out with only one round. Moreover,
the influence of noise is performed. The results indicate that
our VQC learning method is effective in designing the proto-
cols of the entanglement purification in multi-DoF. Our work
introduces an effective way to design entanglement purifica-
tion by variational quantum learning with near-term quantum
devices.

APPENDIX A: PSBZ PROTOCOL IN QUANTUM
CIRCUIT LANGUAGE

The density operator of an initial mixed state is described
as

ρ12 = ρ34 = fin|�+
ab〉〈�+

ab| + (1 − fin )|�+
ab〉〈�+

ab|. (A1)

Therefore, the system composed of two entangled pairs has a
density operator given by

ρ1−4 = ρ12 ⊗ ρ34

= [
f 2
in|�+

12〉〈�+
12| ⊗ |�+

34〉〈�+
34|

+ fin(1 − fin)|�+
12〉〈�+

12| ⊗ |�+
34〉〈�+

34|
+ fin(1 − fin)|�+

12〉〈�+
12| ⊗ |�+

34〉〈�+
34|

+ (1 − fin)2|�+
12〉〈�+

12| ⊗ |�+
34〉〈�+

34|
]
. (A2)

The state of spatial DoF at the beginning is a product state
expressed with ρ5−8 = |05061718〉〈05061718|, where 0 and 1
stand for upper and lower paths, respectively. The density
operator of the whole system can be written as

ρ1−8 = ρ1−4 ⊗ ρ5−8

= f1(|0102030405061718〉 + |1112030405061718〉
+ |0102131405061718〉 + |1112131405061718〉)〈. . . |
+ f2(|0102031405061718〉 + |1112031405061718〉
+ |0102130405061718〉 + |1112130405061718〉)〈. . . |
+ f2(|0112030405061718〉 + |1102030405061718〉
+ |0112131405061718〉 + |1102131405061718〉)〈. . . |
+ f3(|0112031405061718〉 + |1102031405061718〉
+ |0112130405061718〉 + |1102130405061718〉)〈. . . |.

Here, the symbols 〈. . . | mean they are the bras of correspond-
ing kets in their left brackets. The fidelities f1, f2, and f3 are
f1 = f 2

in, f2 = fin(1 − fin), and f3 = (1 − fin)2. PBS has the
function of a CNOT gate whose control qubit is polarization

and the target is spatial DoF as follows:

U PBS
CNOT =

4⊗
i=1

(|0i0i+4〉〈0i0i+4| + |0i1i+4〉〈0i1i+4|

+ |1i1i+4〉〈1i0i+4| + |1i0i+4〉〈1i1i+4|). (A3)

Here, the states 0 and 1 represent V and H polarization, re-
spectively. After the CNOT gate operations on the states of all
the spatial DoF, the two entangled pairs become

ρCNOT
1−8 =U PBS

CNOTρ1−8U
PBS†
CNOT

= f1(|0102030405061718〉 + |1112030415161718〉
+ |0102131405060708〉 + |1112131415160708〉)〈. . . |
+ f2(|0102031405061708〉 + |1112031415161708〉
+ |0102130405060718〉 + |1112130415160718〉)〈. . . |
+ f2(|0112030405161718〉 + |1102030415061718〉
+ |0112131405160708〉 + |1102131415060708〉)〈. . . |
+ f3(|0112031405161708〉 + |1102031415061708〉
+ |0112130405160718〉 + |1102130415060718〉)〈. . . |.

(A4)

The four states of spatial DoF |05061718〉, |15160708〉,
|05161708〉, |15060718〉 stand for the cases where each output
port has one photon, i.e., so-called “four-mode cases” [19].
When we make a postselection of the above case, the states
are projected into

ρCNOT
1−8 = f1(|0102030405061718〉

+ |1112131415160708〉)〈. . . |
+ f3(|0112031405161708〉
+ |1102130415060718〉)〈. . . |.

For the convenience of analysis, we rewrite the state in order
from left upper and lower to right upper and lower of the
spatial DoF, i.e., |05160718〉. Under the new order, the above
density matrix becomes

ρCNOT
1−8 = f1(|0102030405160718〉 + |1112131405160718〉)〈. . . |

+ f3(|0102131405160718〉
+ |1112030405160718〉)〈. . . |.

In the PSBZ protocol, this measurement is implemented by
measuring the photons in two lower paths with bases |+〉 =

1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). Therefore, when the

measurement result in Alice and Bob is | + +〉 or | − −〉, the
state is chosen with

ρ±±
upper = ρ++

upper = ρ−−
upper

= f1(|0103〉 + |1113〉)〈. . . | ⊗ |0507〉〈. . . |
+ f3(|0113〉 + |1103〉)〈. . . | ⊗ |0507〉〈. . . |. (A5)

Omitting the spatial DoF, the residual state of the upper path
is given by

ρ±±
upper = f 2

in|�+〉〈�+| + (1 − fin)2|�+〉〈�+|.
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If the measurement result is | + −〉 or | − +〉, the state
achieved by Alice and Bob is

ρ±∓
upper = ρ+−

upper = ρ−+
upper

= f 2
in|�−〉〈�−| + (1 − fin)2|�−〉〈�−|.

For this case, Alice or Bob should make a local phase flip gate
on her/his photon to obtain target state |�+〉.

APPENDIX B: HHSZ+ AND SIMON-PAN PROTOCOLS

Considering the HHSZ+ protocol [23] in which a hyper-
entanglement in both polarization and spatial DoFs is used,
the state of a system is ρin = ρp ⊗ ρs. Here, ρp and ρs are
the density operators of polarization and spatial DoFs, respec-
tively. The Bell states of the spatial DoF are given by

|�±
s 〉 = 1√

2
(|0304〉 ± |1314〉),

|�±
s 〉 = 1√

2
(|0314〉 ± |1304〉). (B1)

As shown in Fig. 3(b), we use subscripts 1 (3) and 2 (4) to
label the polarization (spatial) DoF of Alice and Bob, respec-
tively. Hyperentanglement is distributed to Alice and Bob, and
will be a mixed one via a noisy channel given by

ρ
p
in = f p

in|�+
p 〉〈�+

p | + (
1 − f p

in

)|�+
p 〉〈�+

p | (B2)

and

ρs
in = f s

in|�+
s 〉〈�+

s | + (
1 − f s

in

)|�+
s 〉〈�+

s |. (B3)

The coefficients f p
in and f s

in are the initial fidelities of polar-
ization and spatial DoFs, respectively. The fidelities satisfy
conditions f p

in > 1
2 and f s

in > 1
2 . Therefore, the state of the

whole system is

ρ1−4 = ρ12 ⊗ ρ34

= 1
4 [ f1(|0102〉 + |1112〉)(|0304〉 + |1314〉)〈. . . |
+ f2(|0102〉 + |1112〉)(|0314〉 + |1304〉)〈. . . |
+ f3(|0112〉 + |1102〉)(|0304〉 + |1314〉)〈. . . |
+ f4(|0112〉 + |1102〉)(|0314〉 + |1304〉)〈. . . |],

where the fidelities f1, f2, f3, and f4 are f1 = f p
in f s

in, f2 =
f p
in(1 − f s

in), f3 = f s
in(1 − f p

in), and f4 = (1 − f p
in)(1 − f s

in). To
purify the above state, the bilateral CNOT gates realized by
two PBSs are applied as

U PBS
CNOT =

2⊗
i=1

(|0i0i+2〉〈0i0i+2| + |0i1i+2〉〈0i1i+2|

+ |1i1i+2〉〈1i0i+2| + |1i0i+2〉〈1i1i+2|). (B4)

After the CNOT operations, the system is transferred to

ρCNOT
1−4 =U PBS

CNOTρ1−4U
PBS†
CNOT

= 1
4 [ f1(|01020304〉 + |11121314〉
+ |01021314〉 + |11120304〉)〈. . . |
+ f2(|01020314〉 + |11121304〉
+ |01021304〉 + |11120314〉)〈. . . |

+ f3(|01120314〉 + |11021304〉
+ |01121304〉 + |11020314〉)〈. . . |
+ f4(|01120304〉 + |11021314〉
+ |01121314〉 + |11020304〉)〈. . . |]. (B5)

Analyzing the above density operator, we find that there
are four cases, 0304, 0314, 1304, and 1314, for obtaining the
final entangled pair. The cases 0304 (two upper) and 1314

(two lower) induce the system with ρ
p
out = f p

in f s
in|�+

p 〉〈�+
p | +

(1 − f p
in)(1 − f s

in)|�+
p 〉〈�+

p |. The fidelity of the residual en-

tangled pair |�+
p 〉 is f p

out = f p
in f s

in

f p
in f s

in+(1− f p
in )(1− f s

in ) . With conditions

f p
in > 1

2 and f s
in > 1

2 , it has higher fidelity, i.e., f p
out > f p

in and
f p
out > f s

in.
In some special cases, such as strong robustness of spa-

tial or time DoFs in experiments [25,26], the distributed
state of this robust DoF could be a pure state, e.g.,
f s
in = 1 in Eq. (B3). The entanglement purification of this

case is the Simon-Pan protocol [11]. In Eq. (B5), if the
spatial fidelity is f s

in = 1, the density operator after the
CNOTs is

ρCNOT
1−4 =U PBS

CNOTρ1−4U
PBS†
CNOT

= 1
4

[
f p
in(|01020304〉 + |11121314〉

+ |01021314〉 + |11120304〉)〈. . . |
+ (

1 − f p
in

)
(|01120314〉 + |11021304〉

+ |01121304〉 + |11020314〉)〈. . . |]. (B6)

One can see that the cases 0304 and 1314 with probability f p
in

will produce |�+
p 〉, and the 0314 and 1304 with probability 1 −

f p
in obtain |�+

p 〉 which can be transformed to |�+
p 〉 by a local

bit-flip operation. The fidelity of purified state is 1.

APPENDIX C: LI AND SHENG-DENG PROTOCOLS

The entanglement purification using hyperentanglement
for cases considering the both bit-flip and phase errors of
polarization are the Li [12] and Sheng-Deng [13] proto-
cols. When considering phase errors, the density operator
will be added with the two terms of phase error and
becomes

ρ
p
in = f p1

in |�+
p 〉〈�+

p | + f p2
in |�+

p 〉〈�+
p |

+ f p3
in |�−

p 〉〈�−
p | + f p4

in |�−
p 〉〈�−

p |, (C1)

where the fidelities satisfy f p4
in = 1 − f p1

in − f p2
in − f p3

in . And
the entangled spatial DoF is the ideal case ρs = |�+

s 〉〈�+
s |.

As shown in Figs. 4(a) and 4(b), the four half-wave plates
used in the upper and lower paths act as CNOT gates
whose control and target qubit are spatial and polariza-
tion DoFs, respectively. The two kinds of CNOT operations
are

U u
CNOT =

2⊗
i=1

(|1i0i+2〉〈0i0i+2| + |0i1i+2〉〈0i1i+2|

+ |0i0i+2〉〈1i0i+2| + |1i1i+2〉〈1i1i+2|) (C2)
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and

U l
CNOT =

2⊗
i=1

(|0i0i+2〉〈0i0i+2| + |1i1i+2〉〈0i1i+2|

+ |1i0i+2〉〈1i0i+2| + |0i1i+2〉〈1i1i+2|). (C3)

Here, U u
CNOT and U l

CNOT are corresponding to Pauli-X gates
(half-wave plates) in upper and lower paths, respectively.
So, with a series of operations in sequence of bilateral
upper-CNOT, PBS-CNOT, and lower-CNOT gates shown in
Figs. 4(a) and 4(b), the entangled pair is governed by Ul pu as
follows:

Ul pu =U l
CNOTU PBS

CNOTU u
CNOT

=
2⊗

i=1

(|0i0i+2〉〈1i0i+2| + |1i1i+2〉〈0i1i+2|

+ |1i0i+2〉〈1i1i+2| + |0i1i+2〉〈0i0i+2|). (C4)

The final state of system is calculated as

ρ =Ul pu(ρp ⊗ ρs)U †
l pu

= f p1
in (|01021314〉 + |01020304〉
+ |11121314〉 + |11120304〉)〈. . . |
+ f p2

in (|01021304〉 + |01020314〉
+ |11121304〉 + |11120314〉)〈. . . |
+ f p3

in (|01021314〉 − |01020304〉
+ |11121314〉 − |11120304〉)〈. . . |
+ f p4

in (|01021304〉 − |01020314〉
+ |11121304〉 − |11120314〉)〈. . . |. (C5)

Analyzing the above density operator, one can find that all the
four cases of spatial DoF, i.e., 0304, 0314, 1304, and 1314, will
obtain |�+

p 〉 with fidelity 1.
The learning results show that the three gates arranged with

the sequences of p-s-CNOT (p is control bit and s is target) ⊗
s-p-CNOT (s is control bit and p is target) ⊗ p-s-CNOT and
s-p-CNOT ⊗ p-s-CNOT ⊗ s-p-CNOT can realize the same
goal with the Li protocol. Some kinds of gate combinations
are given as follows. The l pl gate is

Ul pl =U l
CNOTU PBS

CNOTU l
CNOT

=
2⊗

i=1

(|0i0i+2〉〈0i0i+2| + |1i1i+2〉〈1i1i+2|

+ |1i0i+2〉〈0i1i+2| + |0i1i+2〉〈1i0i+2|). (C6)

The above l pl gate equals to pl p gate, i.e., Upl p =
U PBS

CNOTU l
CNOTU PBS

CNOT = Ul pl . The pl p gate is shown as an ex-
ample in Figs. 4(c) and 4(d). The upu gate is expressed by

Uupu =U u
CNOTU PBS

CNOTU u
CNOT

=
2⊗

i=1

(|1i0i+2〉〈1i0i+2| + |0i1i+2〉〈0i1i+2|

+ |0i0i+2〉〈1i1i+2| + |1i1i+2〉〈0i0i+2|). (C7)

It is also equal to pup gate as Upup = U PBS
CNOTU u

CNOTU PBS
CNOT =

Uupu. Another gate upl is written by

Uupl =U u
CNOTU PBS

CNOTU l
CNOT

=
2⊗

i=1

(|1i0i+2〉〈0i0i+2| + |0i1i+2〉〈1i1i+2|

+ |0i0i+2〉〈0i1i+2| + |1i1i+2〉〈1i0i+2|). (C8)
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