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Using optimal control, we establish and link the ultimate bounds in time (referred to as the quantum speed
limit) and energy of two- and three-level quantum nonlinear systems which feature 1:2 resonance. Despite the
unreachable complete inversion, by using the Pontryagin maximum principle, we determine the optimal time,
pulse area, or energy for a given arbitrary accuracy. We show that the third-order Kerr terms can be absorbed
in the detuning in order to lock the dynamics to the resonance. In the two-level problem, we determine the
nonlinear counterpart of the optimal π -pulse inversion for a given accuracy. In the three-level problem, we
obtain an intuitive pulse sequence similar to the linear counterpart but with different shapes. We prove the (slow)
logarithmic increasing of the optimal time as a function of the accuracy.
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I. INTRODUCTION

The accurate control of quantum dynamics is at the core
of the quantum world. Quantum control protocols have been
developed in order to design specific shaped pulses, includ-
ing composite [1–6], adiabatic [7–9], shortcut-to-adiabatic
[10–13], and single-shot shaped-pulse [14–16] techniques.
However, these protocols, even when accelerated compared
to standard adiabatic passage, do not specifically control the
time of operation, which can lead to severe obstructions to
experimental implementation. In this context, optimal control
theory (OCT) [17] has emerged as a powerful tool to mitigate
intensities of pulses, allowing one to attain the ultimate time
bound in the system, which is also interpreted as the quantum
speed limit [18–21]. Besides numerical implementation of
OCT, such as the monotonically convergent iteration algo-
rithm [22–25], global Krotov method [26], Gradient ascent
pulse engineering algorithm (GRAPE) [27], one can highlight
the Pontryagin maximum principle (PMP) [28–32], which,
transforming the initial infinite-dimensional control problem
into a finite-dimensional problem, allows analytic derivation
of the optimal controls (typically with respect to time or
energy). One can also mention recent geometric approaches
[33–35] treating simultaneously robust and optimal control.

The extension of quantum control techniques to nonlinear
quantum systems relevant to describe Bose-Einstein conden-
sation (BEC), e.g., when one considers the conversion from
atomic to molecular BEC, leading to a so-called 1:2 Fermi
resonance [36], is a nontrivial issue. The system has to be
reinterpreted and analyzed with tools from classical mechan-
ics, where the concept of integrability, without a counterpart
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in the standard linear quantum physics, plays an important
role [37,38]. When the system is integrable, adiabatic-passage
techniques can be formulated with trajectories formed by the
instantaneous (stable) elliptic fixed points defined at each
value of the adiabatic parameters and continuously connected
to the initial condition. Obstructions to classical adiabatic
passage are given by the crossing of a separatrix [39–41].
In addition, for a two-level problem with a 1:2 resonance,
the north pole of the generalized Bloch sphere (associated
with the upper state and thus corresponding to a complete
population transfer from the ground state) is unstable since
it is associated with a hyperbolic fixed point in the classical
phase-space representation [42]. This prevents adiabatic pas-
sage from being robust when it approaches the north pole. The
system is not controllable at this point in the sense that the
nonlinearity prevents reaching the upper state exactly [40].
However, one can approach it as closely as required, and
inverse-engineering techniques [43,44] have been developed
for that purpose.

Ultimate bounds, e.g., the quantum speed limit [19], can
be defined via the minimization of a given cost (such as time,
pulse area, or energy) determined from optimal control; their
extension to nonlinear systems is an open question. The pur-
pose of this work is to establish and link these ultimate bounds
in terms of time and energy using optimal control. We present
a complete study of optimal control via the PMP for the two-
and three-level systems featuring a 1:2 resonance, considering
the cost as time or energy. Since the complete inversion from
the ground state is unreachable, we define the target with a
given (arbitrary) accuracy.

Reference [32] considered optimal time in two-level sys-
tems for various constraints (fixed detuning and coupling).
Here, we consider the more general problem of optimal
time and energy without assuming a constant coupling. We
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establish in this paper several results for nonlinear models fea-
turing a 1:2 nonlinearity: (i) time or energy optimality, which
induces a constant coupling for both two- and three-level
systems (considering the generalized coupling for the latter
case), (ii) asymptotic logarithmic scaling of the optimal pulse
area (and, consequently, optimal time for a given coupling)
as a function of the chosen accuracy for nonlinear two- and
three-level models, and (iii) isomorphism between nonlinear
three-level and two-level models and mapping of the nonlinear
three-level model on the standard Bloch sphere (rather than
the generalized drop-shaped Bloch sphere relevant for the
nonlinear two-level problem).

Sections II and III are devoted to two- and three-states
problems, respectively. We conclude in Sec. IV.

II. 1:2 NONLINEAR TWO-LEVEL MODEL

A. The model

The two-level model including second-order (with a 1:2
resonance) and third-order Kerr nonlinearities is characterized
by following equations of motion [40]:

iψ̇1 =
[
−�

3
+ �11|ψ1|2 + �12|ψ2|2

]
ψ1 + �√

2
ψ∗

1 ψ2, (1a)

iψ̇2 =
[
�

3
+ �21|ψ1|2 + �22|ψ2|2

]
ψ2 + �

2
√

2
ψ2

1 , (1b)

where ψ1 and ψ2 are the state probability amplitudes, satis-
fying |ψ1|2 + 2|ψ2|2 = 1, which can vary in the respective
ranges |ψ1|2 ∈ [0, 1] and |ψ2|2 ∈ [0, 1/2]. The controls are
time dependent: � ≡ �(t ) and � ≡ �(t ), representing the
detuning and Rabi frequency, respectively. Here, �i j (i, j =
1, 2) denote the third-order nonlinearities (in units of angular
frequency), and �21 = �12. Second-order nonlinearities ap-
pear in the form of the coupling. We will use units such that
h̄ = 1.

We can describe the dynamics on a generalized non-linear
Bloch sphere (see, e.g., [42,45]) by introducing the nonlinear
coherences and the population inversion, respectively:

η1 =
√

2 Re
(
ψ2

1 ψ̄2
)
, η2 =

√
2 Im

(
ψ2

1 ψ̄2
)
, (2a)

η3 = |ψ2|2 − 1
2 |ψ1|2, η3 ∈ [− 1

2 , 1
2

]
, (2b)

leading to

|ψ1|2 = 1
2 (1 − 2η3), |ψ2|2 = 1

4 (1 + 2η3). (3)

The generalized 1:2 nonlinear Bloch sphere is characterized
by the following surface equation:

η2
1 + η2

2 − (
1
2 − η3

)2( 1
2 + η3

) = 0. (4)

The south and north poles correspond to |ψ1|2 = 1 and
|ψ2|2 = 0 (i.e., η3 = −1/2) and |ψ1|2 = 0 and |ψ2|2 = 1/2
(i.e., η3 = 1/2), respectively. It was proved that η3 = 1/2 is
an unreachable (unstable) target with or without Kerr terms in
[40,41]. Using Eq. (1), we have

η̇1 = (−� + �a − 2�s|ψ2|2)η2, (5a)

η̇2 = �

2

(
3η2

3 − η3 − 1

4

)
+ (� − �a + 2�s|ψ2|2)η1, (5b)

η̇3 = �η2, (5c)

with the effective third-order nonlinearities

�s = 2�11 + �22/2 − 2�12, �a = 2�11 − �21. (6)

It can be seen that �a can be trivially compensated by a static
shift of the detuning, while the term proportional to �s de-
pends on the dynamical variable |ψ2|2. However, it was shown
in [43] that one can lock the resonance using the freedom
in the choice of the time dependance of � by incorporating
the term 2�s|ψ2|2. Hence, we define the effective detuning
(which includes a change in the sign of � for convenience):

�̃ = −�+ �a − 2�s|ψ2|2 = −� + �a − �s
(

1
2 + η3

)
, (7)

such that the set (5) of differential equations features only the
second-order nonlinearity:

η̇1 = �̃η2, (8a)

η̇2 = �

2

(
3η2

3 − η3 − 1

4

)
− �̃η1, (8b)

η̇3 = �η2. (8c)

This generalizes the standard Bloch equations to the 1:2
nonlinear system with the detuning �̃ (7) featuring an ex-
plicit (linear) dependance on η3 via the effective third-order
nonlinear term �s. To determine the expression of optimal tra-
jectories in this system, we apply the PMP, taking for the cost
the time (time-optimal control) or the energy (energy-optimal
control). The 1:2 nonlinear two-state time-optimal control was
solved in [32], and we closely follow its derivation in order to
apply it for the energy-optimal control and, in the next section,
for the three-level problem.

To achieve a given transfer from a population η3i ≡ η3(ti )
at the initial time ti, we define the targeted final population
η3f ≡ η3(t f ) = 1

2 − ε at the final time t f , i.e., |ψ2(t f )|2 =
1
2 (1 − ε). When one targets the upper state, the deviation ε

will be taken to be small but different from zero since the
second-order nonlinearity prevents reaching it exactly.

B. Time- and area-optimal control

Various situations were considered in [32]. Here, we partic-
ularly focus on the (almost) complete transfer from the ground
state as a function of ε and will show that the minimum time
(or pulse area) increases in a (slow) logarithmic way with re-
spect to small deviations ε, or, reciprocally, that the deviation
ε decreases exponentially with respect to the minimum time
(or pulse area).

We consider the time-minimizing functional

J =
∫ t f

ti

dt . (9)

The corresponding control (or pseudo) Hamiltonian from the
set (8) of differential equations is (where we have added a
constant p0)

hc = �̃(λ1η2 − λ2η1) + �

[
λ2

2

(
3η2

3 − η3 − 1

4

)
+ λ3η2

]
,

(10)
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with Hamiltonian’s equation for the (dimensionless) costate
� = [λ1, λ2, λ3]T gathering the conjugate momenta of η1, η2,
and η3, respectively:

λ̇1 = − ∂hc

∂η1
= λ2�̃, (11a)

λ̇2 = − ∂hc

∂η2
= −λ1�̃ − λ3�, (11b)

λ̇3 = − ∂hc

∂η3
= −λ2

2
�(6η3 − 1) − ∂�̃

∂η3
(λ1η2 − λ2η1). (11c)

In order to prevent an arbitrarily large field amplitude
detrimental to experimental implementation, we impose a
boundary on the field � � �0 as a constraint. The maxi-
mization of hc according to the PMP corresponds thus to the
necessary condition

∂hc

∂�̃
= 0, (12)

i.e.,

λ1η2 − λ2η1 = 0. (13)

This leads to the shape of the external field �,

� = 2

λ2
(
3η2

3 − η3 − 1
4

) + 2λ3η2
, (14)

from (10) and (13) and the fact that the system (10) is au-
tonomous, i.e., hc = const. In Eq. (14), we have renormalized
λ2/hc → λ2 and λ3/hc → λ3 without loss of generality. Dif-
ferentiating Eqs. (13) and (14) gives

λ1

2

(
3η2

3 − η3 − 1

4

)
+ λ3η1 = 0, (15)

�̇ = 0, (16)

from which we conclude that � is constant, taken at its maxi-
mum � = �0. Multiplying Eq. (14) by η1 and Eq. (15) by η2

also using (13), we obtain a linear system of equations for the
variables λ2 and λ3:

λ2
η1

2

(
3η2

3 − η3 − 1

4

)
+ λ3η1η2 = η1

�
, (17a)

λ2
η1

2

(
3η2

3 − η3 − 1

4

)
+ λ3η1η2 = 0 (17b)

of determinant zero, which can give a solution when the inho-
mogeneous terms are zero, i.e., η1 = 0. This implies λ1 = 0
from Eq. (15) (for a nonconstant η3), and η̇1 = 0 in Eq. (8a)
gives �̃ = 0, i.e., for the original detuning � from (7),

� = �a − �s
(

1
2 + η3

)
. (18)

This leads to an optimal trajectory along the meridian connect-
ing the south pole to the target near the north pole (of distance
ε from it) in the (η2, η3) plane. The dynamics can be solved
exactly from (8). For instance, when we consider a population
transfer from the ground state (south pole), i.e., η3i = −1/2,
we obtain (taking ti = 0)

η3(t ) = tanh2
(

1
2�0t

) − 1
2 . (19)

FIG. 1. Population (bottom) and coherence and population inver-
sion (top) history, given by (19) and integration of (8b), governed
by the time-optimal (constant) pulse �0 for ε = 0.002, giving
A ≈ 7.60, i.e., Tmin ≈ 7.60/�0.

From Eq. (14), taken at the initial time, we obtain �0 = 2/λ2i

(independent of the initial value of λ3,i). To obtain the explicit
expression of the minimum time Tmin = min(t f − ti ) for a
given �0, we calculate the corresponding minimum pulse area
by integrating (8c) using (4), which is fully determined by the
(given) initial and final boundaries of η3,

Amin ≡ �0Tmin = ±
∫ η3f

η3i

dη3√(
1
2 − η3

)2( 1
2 + η3

) . (20)

The ± sign ensures a non-negative pulse area; that is, the +
(–) sign corresponds to η3i < η3f (η3i > η3f). Therefore, we
consider η3i < η3f = 1

2 − ε and finally get the minimum time
for given ε and �0,

Tmin = 2

�0

∣∣∣∣atanh

√
1

2
+ η3f − atanh

√
1

2
+ η3i

∣∣∣∣. (21)

This gives, for the nonlinear final transfer probability from the
ground state in optimal time Tmin,

p = 2|ψ2(Tmin)|2 = tanh2
(

1
2�0Tmin

) = 1 − ε. (22)

We notice in the limit case of unbounded pulse amplitude a
Dirac δ pulse, i.e., of infinite amplitude and zero duration with
a finite area �0Tmin given by (21). The dynamics from the
ground state is shown in Fig. 1 for ε = 0.002. As expected,
its trajectory is a curve along a meridian on the generalized
drop-shaped Bloch sphere, as shown in Fig. 2.
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FIG. 2. Optimal trajectory obtained from time-optimal control
of the nonlinear two-level model on the generalized drop-shaped
Bloch sphere, which connects the initial (magenta dot) and target
states, very close to the north pole (blue dot), defined by η3 = 1 − ε

(ε = 0.002).

The minimum time Tmin can be used as the definition
of the so-called quantum speed limit in this system, as
suggested in [20]. In linear systems, the minimum time is
given by Tmin,lin.: cos(�0Tmin,lin./2) = 1

2

√
1 − η3i

√
1 − η3f +

1
2

√
1 + η3i

√
1 + η3f [20,29], with η3i = −1 for the ground

state and η3f = 1 for the excited state. In the nonlinear case

we obtain tanh(�0Tmin/2) =
√

1
2 + η3f for η3i = −1/2 from

Eq. (21).
We consider η3i = −1/2 (south pole). The pulse area

Amin = �0Tmin is given from Eq. (21) with its leading order
for ε → 0:

Amin = 2 atanh
√

1 − ε ∼ − ln

(
ε

4

)
, (23)

i.e., ε ∼ 4e−Amin . We conclude that the minimum time (or
pulse area) for the (almost complete) inversion increases in a
(slow) logarithmic way with respect to small deviations ε, or,
reciprocally, that the deviation ε decreases exponentially with
respect to the minimum time (or pulse area). Figure 3 com-
pares the pulse-area cost between the linear probability, plin =
sin2(�0Tmin/2), and the nonlinear probability (22). One can
observe that the nonlinearity weakly affects the transfer for
small transfers (ε → 1).

C. Energy-optimal control

We consider the cost functional for the energy-optimal
control

J ≡ E = h̄
∫ t f

ti

�2(t )dt . (24)

In this case, we can rewrite the control Hamiltonian (in units
such that h̄ = 1) as

hc = �̃(λ1η2 − λ2η1)

+ �

[
λ2

2

(
3η2

3 − η3 − 1

4

)
+ λ3η2

]
− p0�

2, (25)

FIG. 3. Population-transfer probability 1 − ε as a function of
the optimal pulse area for the linear plin = sin2(�0Tmin/2) (green
dotted-dashed line) and nonlinear (red solid line) two-level models.
The asymptotics (23) of the probability (blue dashed line) shows its
accuracy when ε → 0.

with the standard choice p0 = 1/2. In this case, the costate
has the angular frequency unit. After applying the PMP,

∂hc

∂�̃
= 0,

∂hc

∂�
= 0, (26)

we obtain λ1η2 − λ2η1 = 0 and

� = λ2

2

(
3η2

3 − η3 − 1

4

)
+ λ3η2. (27)

The control Hamiltonian can be rewritten as

hc = 1
2�2, (28)

leading to a constant coupling � = �0 = √
2hc. Like for the

time-optimum case, we obtain η1 = 0, λ1 = 0, �̃ = 0, and
thus the same dynamics as in Fig. 1. We also derive Eq. (21)
but interpret it differently; that is, for a given time of interac-
tion T = t f − ti, we determine the minimum �0:

�0,min = 2

T

∣∣∣∣atanh

√
1

2
+ η3f − atanh

√
1

2
+ η3i

∣∣∣∣, (29)

leading to the minimum energy

Emin = h̄�2
0,minT = h̄A2

min/T (30)

corresponding to the minimum area given by (29): Amin =
�0,minT = 2|atanh

√
1
2 + η3f − atanh

√
1
2 + η3i|.

III. 1:2 NONLINEAR THREE-LEVEL � MODEL

A. The model

The equations of motion for the three-level Raman model
(forming a � system), including the second- and third-order
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nonlinearities, read

iψ̇1 = K1ψ1 + �pψ
∗
1 ψ2, (31a)

iψ̇2 = K2ψ2 + �Pψ2 + �p

2
ψ2

1 + �s

2
ψ3, (31b)

iψ̇3 = K3ψ3 + �s

2
ψ2 + (�P − �S )ψ3, (31c)

where �p and �s are the time-dependent pump and Stokes
fields, respectively, �P is the one-photon detuning associated
with the pump coupling, and �P − �S is the two-photon de-
tuning associated with the Raman process. The second-order
1:2 nonlinearity appears here through the pump coupling.
This is typically the situation for the two-color photoasso-
ciation process [36]. The third-order nonlinearities Kj ( j =
1, 2, 3) can be absorbed in the definition of the detunings and
the change of phases ψ1 → ψ1e−iγ and ψ2,3 → ψ2,3e−2iγ ,
γ̇ = K1, �P = 2K1 − K2, and �S = K3 − K2, in order to lock
the (one- and two-photon) resonances [43]:

iψ̇1 = �pψ
∗
1 ψ2, (32a)

iψ̇2 = �p

2
ψ2

1 + �s

2
ψ3, (32b)

iψ̇3 = �s

2
ψ2. (32c)

The amplitude probabilities satisfy |ψ1|2 + 2(|ψ2|2 +
|ψ3|2) = 1. We decompose the components into real and
imaginary parts, ψi = xi + iyi (i = 1, 2, 3), and assume real
Rabi frequencies, which allows us to separate the original
problem into two disjoint dynamics that emerge according to
the real and imaginary parts of the initial state. We consider
the initial state ψ1 to be real, x1(ti ) = 1, and we get the
equations of motion from (32):

ẋ1 = �px1y2, (33a)

ẏ2 = −�s

2
x3 − �p

2
x2

1, (33b)

ẋ3 = �s

2
y2. (33c)

This system of equations can be analyzed using an isomor-
phism with the nonlinear two-level problem similarly to the
linear problem [46] (see the Appendix). One can also show
the incomplete transfer between the two ground states for
finite pulse areas. We, however, prefer to keep the original
coordinates for solving the problem.

Without loss of generality, we can parametrize the dynam-
ics with the two dynamical angles θ (t ) ∈ [0, π ] and φ(t ) ∈
[0, 2π [:

x1 = cos φ cos θ, (34a)

y2 = − 1√
2

sin φ, (34b)

x3 = −cos φ sin θ√
2

, (34c)

which satisfies the normalization condition x2
1 + 2(y2

2 +
x2

3 ) = 1. Inserting definition (34) into Eqs. (33) leads

to

φ̇ = �p cos φ cos2 θ√
2

− �s sin θ

2
, (35a)

θ̇ = sin φ sin θ

cos φ cos θ

(
�s

2 sin θ
+ �p cos φ cos2 θ√

2
− �s sin θ

2

)
,

(35b)

which, by inversion, provide the shape of the fields as a func-
tion of the angles:

�s = 2(θ̇ cot φ cos θ − φ̇ sin θ ), (36a)

�p =
√

2

(
φ̇

cos φ
+ θ̇ tan θ

sin φ

)
. (36b)

We define the target state in the vicinity of state 3:

|x3(t f )|2 = 1
2 (1 − ε), (37)

where ε is, as in the two-level case, a small deviation due to
the incomplete population transfer in such a nonlinear system
[43]. To determine the expression of the optimal trajectories
from the ground state to the target state (for a given ε), we
apply the PMP, taking for the cost the time or the energy.

B. Time-optimal control

1. Definition

We consider the time-minimizing cost functional (9) and
impose, like in the two-level case, the constraint of bounded
pulses amplitudes:

�2
p + �2

s � �2
0. (38)

The control Hamiltonian reads (where we have added a con-
stant p0)

Hc = λφφ̇ + λθ θ̇ (39)

= λφ

(
�p cos φ cos2 θ√

2
− �s sin θ

2

)

+λθ

(
�s cos θ tan φ

2
+ �p cos θ sin θ sin φ√

2

)
, (40)

where λφ,θ are the components of the (dimensionless) costate
� = [λφ, λθ ]T with the dynamics

λ̇φ = −∂Hc

∂φ
= λφ�p sin φ cos2 θ√

2

− λθ

(
�s cos θ

2 cos2 φ
+ �p sin 2θ cos φ

2
√

2

)
, (41a)

λ̇θ = −∂Hc

∂θ
= λφ

(
�p cos φ sin 2θ√

2
+ �s cos θ

2

)

+ λθ

(
�s sin θ tan φ

2
− �p cos 2θ sin φ√

2

)
. (41b)

Without loss of the generality, we can consider the control
functions satisfying constraint (38) as follows:

�p = �m(t ) cos β(t ), �s = �m(t ) sin β(t ), (42)

with the condition

�2
s + �2

p = �2
m � �2

0. (43)
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Constraint (38) is thus transferred to condition (43) (which
is independent of β). The PMP maximization of Hc is thus
reduced to the necessary condition

∂Hc

∂β
= 0, (44)

which gives

∂Hc

∂β
= ∂�p

∂β
H1 + ∂�s

∂β
H2 = −H1 sin β + H2 cos β = 0,

(45)
where

H1 = λφ cos φ cos2 θ√
2

+ λθ sin 2θ sin φ

2
√

2
, (46a)

H2 = λθ cos θ tan φ

2
− λφ sin θ

2
. (46b)

We then deduce

cos β = H1√
H2

1 + H2
2

, sin β = H2√
H2

1 + H2
2

. (47)

Substituting Eq. (47) in Eq. (39), we obtain

Hc = �m

√
H2

1 + H2
2 , (48)

from which we conclude that the control Hamiltonian is maxi-
mum for �m = �0, i.e., when the maximum of (38) is reached
at all times.

2. Numerics

We first determine the systematic landscape of the time
T to reach the target (for a given ε) by solving the set of
equations (35) and (41) with the controls (42) and �m = �0

rewritten as a function of the angles and the costate compo-
nents via (47) and (46) as a function of parameters λφ,i and
λθ,i, which, with θi = 0 and φi = 0, form the set of initial
conditions. The landscape is shown in Fig. 4, where the white
areas corresponds to the absence of a solution reaching the
given target in the prescribed interval. Figure 4 shows an infi-
nite set of initial λφi and λθ i forming two straight (symmetric)
lines that lead to the same minimum Tmin ≈ 7.4/�0.

The four quadrants give all the possible respective signs
of the controls. The controls are both positive when the ini-
tial values λφi and λθ i are taken to be positive. In order to
determine a more accurate value of the optimum, we choose
a certain value of λφi (e.g., λφi = 1.85) and run an optimal
procedure leading to the (positive) value λθ i ≈ 0.45266 corre-
sponding to the minimum time (using a Nelder-Mead simplex
algorithm as described in [47]).

Figure 5 shows, as a function of ε, the minimum time
via the minimum generalized pulse area defined as Amin =∫ Tmin

0 dt
√

�2
p + �2

s = Tmin�0. It exhibits a logarithmic de-

creasing behavior similar to the two-level case. This suggests
the following ansatz for the population inspired by the two-
level problem and the behavior of the optimal pulse area in
Fig. 5 (taking ti = 0):

y2
2 + x2

3 ≈ 1

2
tanh2

(
�0√

2
t

)
, (49)

FIG. 4. Contour plot for log10(T − Tmin ) as a function of di-
mensionless λφ,i and λθ,i when the dynamics reaches the targeted
transfer for a given ε. The transfer time is determined in a given
range T ∈ [0, T̂ ] (taken here as T̂ = 15/�0). The white areas mean
that there is no transfer time found in the prescribed interval. We
obtain Tmin ≈ 7.40/�0 for ε = 0.002 (top) and Tmin ≈ 6.78/�0 for
ε = 0.005 (bottom) along the dark straight lines.

which fits well the numerics of the dynamics shown in Fig. 6
but slightly overestimates the accuracy (of the order of ε).
The boundary at t f = Tmin gives the asymptotic expansion for
small ε (with y2

2f 	 x2
3f):

y2
2f + x2

3f ≈ 1
2 (1 − ε) ∼ 1

2 (1 − 4e−√
2Amin ), (50)

i.e.,

Amin ∼ − 1√
2

(ln ε − ln 4). (51)

We notice that the resulting logarithmic scaling with respect
to ε is the same as the scaling of the fit determined from Fig. 5.
The absolute value is different due to the systematic error of
(49) mentioned above.

The dynamics and controls of Fig. 6 show an intuitive
sequence of pulses with a large transient population in the
upper state, similar to the linear case, which features pulses of
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FIG. 5. Optimal pulse area (blue solid line) as a function of ε

(in a logarithmic scale) for λφi = 1.85 and the resulting optimum λθ i

and logarithmic fit of the asymptotics for small ε: Amin = �0Tmin ∼
−(ln ε)/

√
2 + 3 (red dashed line).

explicit form cos − sin [29,48]. Figure 7 shows the trajectory
in the angle φ, θ space corresponding to the optimal nonlinear
solution for ε = 0.002; it is compared to the optimal solution
of the linear problem.

FIG. 6. Optimal pulse shapes (36) in units of �0 with ε = 0.002,
λφi = 1.85, and λθ i ≈ 0.45266 operating in minimum time Tmin ≈
7.40/�0 (top) and the resulting population history and the ansatz
(49) (bottom).

FIG. 7. Trajectories in the φ, θ space of the optimal nonlinear
solution corresponding to the dynamics shown in Fig. 6 (solid line)
and the optimal solution of the linear model (dotted line).

C. Energy-optimal control

For the energy optimization, we use the cost functional

J ≡ E = h̄
∫ t f

ti

(
�2

p + �2
s

)
dt . (52)

We derive the control Hamiltonian (using the standard value
p0 = 1/2):

Hc = λφφ̇ + λθ θ̇ − p0
(
�2

p + �2
s

)

= λφ

(
�p cos φ cos2 θ√

2
− �s sin θ

2

)

+ λθ

(
�s cos θ tan φ

2
+ �p cos θ sin θ sin φ√

2

)

− 1

2

(
�2

p + �2
s

)
. (53)

The PMP ∂Hc
∂�p

= 0 and ∂Hc
∂�s

= 0 leads to the pulse shape:

�p = λφ cos φ cos2 θ√
2

+ λθ sin 2θ sin φ

2
√

2
, (54a)

�s = λθ cos θ tan φ

2
− λφ sin θ

2
, (54b)

and

Hc = 1
2

(
�2

p + �2
s

)
, (55)

which is constant as before, i.e., �2
p + �2

s = �2
0. The dynam-

ics of the components of the (angular frequency unit) costate
� = [λφ, λθ ]T is still given by (41). We thus obtain the same
dynamics shown in Fig. 6 as in the time-optimal control but
for a given time of interaction T = t f − ti (instead of Tmin).
The corresponding optimal generalized pulse areaAmin is de-
termined from Fig. 5 for a given ε: Amin ≈ − ln(ε)/

√
2 + 3,

and we deduce the corresponding �0,min = Amin/T . The min-
imum energy is then

Emin = h̄�2
0,minT = h̄A2

min/T . (56)
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IV. CONCLUSION

In this paper, we determined the ultimate bounds in terms
of optimal time and optimal energy for the two-level and
Raman three-level problems featuring a 1:2 nonlinear reso-
nance when an accurate (but not strictly complete) population
transfer is targeted. In both cases, we incorporated the third-
order Kerr terms in the detuning locking the dynamics to the
resonance at all times. In the two-level system, we showed the
equivalence of the dynamics for the optimal time or energy,
given by a resonant and constant pulse, as is the case for
the linear problem. The behavior of the resonant nonlinear
dynamics is qualitatively different from the linear one: the
complete inversion in only (exponentially) asymptotic instead
of Rabi oscillations of the linear problem (see Fig. 3). The
optimal time features an asymptotic logarithmic increasing as
a function of the accuracy. For the three-level problem, the
optimal solution can be obtained only numerically. However,
we fitted it using the similar results of the two-level prob-
lem. In this case, the generalized pulse area is constant. We
determined the shape of the individual pulses featuring an in-
tuitive pump-Stokes sequence, like in the linear case but with
different shapes. We also obtained an asymptotic logarithmic
increasing of the optimal time as a function of the accuracy.

The finding of the ultimate bounds (time or energy) for
nonlinear systems provides an important benchmark. The is-
sue of robustness of the process will have to be considered
in future analysis involving optimal inverse engineering [34]
since the (almost) complete transfer is very unstable when the
resonance is not perfectly satisfied (see Fig. 1 of Ref. [40]).
This is also the case for two-level adiabatic transfer [42]. We
notice that this instability does not exist when only third-order
nonlinearities apply.
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APPENDIX: ISOMORPHISM BETWEEN NON-LINEAR
THREE-LEVEL AND TWO-LEVEL MODELS

The three-level problem (33) can be rewritten as

ẋ1 = −Px1z2, (A1a)

ż2 = Sz3 + Px2
1, (A1b)

ż3 = −Sz2, (A1c)

FIG. 8. Trajectories obtained from the optimal time of nonlinear
(red line) and linear (cyan line) three-level models on the standard
Bloch sphere, which connect the initial state (magenta dot) to the
target state (blue and green dots, respectively). Here, we take the final
state |x3(t f )|2 = (1 − ε)/2 (ε = 0.01) for the nonlinear problem.

with z2 = −y2

√
2, z3 = x3

√
2, P = �p/

√
2, S = �s/2, and

the normalization condition x2
1 + z2

2 + z2
3 = 1. We assume that

P and S are real and that x1(ti ) = 1. It can be reinterpreted as
a density “matrix” formulation on the Bloch sphere:

d

dt

⎡
⎣ρz

ρy

ρx

⎤
⎦ =

⎡
⎣ 0 −Pρz 0

Pρz 0 S
0 −S 0

⎤
⎦

⎡
⎣ρz

ρy

ρx

⎤
⎦, (A2)

with ρz = x1 = ρ11 − ρ22 = |a1|2 − |a2|2, ρy = z2 = i(ρ21 −
ρ12) = 2Im(a1ā2), ρx = z3 = ρ21 + ρ12 = 2Re(a1ā2), and
ρi j = aiā j for a nonlinear two-level problem

H2,n� = 1

2

[ −S P(|a1|2 − |a2|2)
P(|a1|2 − |a2|2) S

]
, (A3)

with i d
dt [a1 a2]t = H2,n�[a1 a2]t and the normalization |a1|2 +

|a2|2 = 1. As a consequence, the nonlinear three-level prob-
lem (A1) is isomorphic to the above nonlinear two-state
problem (A3). The nonlinearity which appears here is not the
one usually encountered for 1:2 resonance (1). We obtain a
similar isomorphic relation for linear problems [46]. We can
see that the standard Bloch sphere (i.e., not the generalized
drop-shaped one) is involved in this problem.

As a consequence, the transfer is, at the final time t f ,
complete, |z3(t f )| = 1, i.e., ρx(t f ) = ±1, when, in the coun-
terpart two-state problem, from the initial state ρ11(ti ) =
1, the superposition of the state of maximal coherence is
produced: ρ12(t f ) = ρ21(t f ) = ±1/2. This shows a qualita-
tive behavior similar to that for its linear analog, as shown
in Fig. 8.

The general solution of the two-state problem (A3) can be
parametrized by three angles in general:[

a1

a2

]
=

[
cos(θ/2)

sin(θ/2)e−iϕ

]
e−iγ , (A4)
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and the Schrödinger equation leads to the set of equations

θ̇ = P cos θ sin ϕ, (A5a)

ϕ̇ = S + P
cos2 θ

sin θ
cos ϕ, (A5b)

γ̇ = 1

2
(−S + P cos θ tan(θ/2) cos ϕ). (A5c)

One can solve Eq. (A5a) exactly [for any P(t ) and S(t )]:

tan(θ/2) = tanh

[
1

2

∫ t

ti

P(s) sin ϕ(s)ds

]
. (A6)

This shows that, in order to have a complete transfer from state
1 to state 3 in the original model, i.e., θ (ti ) = 0 and θ (t f ) =
π/2, one needs an infinite pulse area of P(t ). This contrasts
with the linear model, in which a complete population transfer
is possible for finite pulse areas [29].
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