
PHYSICAL REVIEW A 108, 042609 (2023)

Impact of the form of weighted networks on the quantum extreme reservoir computation

Aoi Hayashi ,1,2,3,* Akitada Sakurai,2,3 Shin Nishio,1,2,3 William J. Munro ,2,3,4 and Kae Nemoto1,2,3,†

1School of Multidisciplinary Science, Department of Informatics, SOKENDAI (the Graduate University for Advanced Studies),
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

2Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
3National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

4NTT Basic Research Laboratories & Research Center for Theoretical Quantum Physics, 3-1 Morinosato-Wakamiya,
Atsugi, Kanagawa, 243-0198, Japan

(Received 14 November 2022; revised 22 July 2023; accepted 18 September 2023; published 16 October 2023)

The quantum extreme reservoir computation (QERC) is a versatile quantum neural network model that
combines the concepts of extreme machine learning with quantum reservoir computation. Key to QERC is
the generation of a complex quantum reservoir (feature space) that does not need to be optimized for different
problem instances. Originally, a periodically driven system Hamiltonian dynamics was employed as the quantum
feature map. In this work we capture how the quantum feature map is generated as the number of time-steps of the
dynamics increases by a method to characterize unitary matrices in the form of weighted networks. Furthermore,
to identify the key properties of the feature map that has sufficiently grown, we evaluate it with various weighted
network models that could be used for the quantum reservoir in image classification situations. At last, we show
how a simple Hamiltonian model based on a disordered discrete time crystal with its simple implementation route
provides nearly optimal performance while removing the necessity of programming of the quantum processor
gate by gate.
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I. INTRODUCTION

In recent years we have seen the steady growth of the
number of qubits available on a variety of quantum pro-
cessors [1–4]. This has lead to the new phase of quantum
computer development, often called the “NISQ” era. Here
NISQ stands for noisy intermediate-scale quantum, which
indicates that the quantum processor is too small to im-
plement logical quantum operations and hence is inherently
noisy. The number of qubits in these quantum processors
(well in excess of 50 [3,5,6]) has already reached the point
where the quantum computational tasks they can perform
are intractable in a conventional computer, however, noise
prevents us fromextracting the quantum advantage such quan-
tum computer promise. Hence, for the NISQ era to mark its
significance in computer history, quantum advantages for real
applications have to be demonstrated.

Many of the current NISQ processors are designed to op-
erate via quantum gates [1,7–9]. To run a quantum algorithm,
we need to obtain a quantum gate circuit from the quantum
algorithm and then decompose each quantum gate into one
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implementable on the quantum processor at hand. The noise
in these quantum processors necessitates the optimization of
quantum gate circuits to minimize their effect. As long as the
physical qubits are directly used for computation, quantum al-
gorithms also need to be relatively short and resilient to noise.
Variational quantum algorithms (VQAs) have attracted a lot of
attention from this viewpoint and have been intensively inves-
tigated [10–12]. However, there have been several issues with
them, with the most significant obstacle being the difficulty
in the optimization of the variational models [13,14]. VQAs
are a type of model of quantum neural networks (QNNs). It
is well known that there are other models for using QNNs.
One such example is quantum reservoir computation [15–19],
which should be expected to be more implementation friendly.
Similarly to the chaotic dynamics used in the (classical) reser-
voir computation [20,21], the quantum reservoir generates
complex dynamics in the quantum system. Realizing such
dynamics using a quantum gate circuit approach is, however,
not that simple [1,22–25]. We do not require precise pro-
gramming to generate a sufficient complexity in the quantum
reservoir to realize our quantum algorithm [16,18]. Instead, an
effective quantum reservoir can potentially be generated by a
simpler quantum system giving us a better way to utilize the
computational power of QNNs.

Recently the quantum extreme reservoir computation
(QERC) was proposed [26] as a more advanced yet simpler
QNN model based on reservoir computation and extreme
machine learning [27]. This model uses a quantum reservoir
to generate a quantum neural network which is then used
for extreme machine learning. The use of quantum reservoirs
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for extreme machine learning has been discussed. However,
there had been no attempts to image classifications until recent
years [19], and the previous models have been presented only
in a general form. Unlike the previous models, the QERC was
able to perform the MNIST image classification task, which is
considered an important task in computer vision. This model
has numerically shown to achieve the highest accuracy in
classifying handwritten digits using the MNIST dataset with
the smallest number of qubits [28]. An interesting feature of
this approach is that it utilizes a discrete time crystal (DTC)
as the feature map, which is much simpler to implement
than the quantum gate circuit needed to generate a random
unitary matrix. This suggests that, if we could understand
the mechanism associated with using the complexity of the
quantum dynamics for generating an effective feature space, it
would become possible to design quantum feature maps more
efficiently.

One of the versatile methods to study the complexity of
quantum dynamics is to characterize it as a complex network.
Such network approaches have allowed us to quantify the
complexity of quantum states around critical points of quan-
tum phase transitions [29], to build a graphical calculus for
Gaussian pure states [30], and to reveal the preferential attach-
ment mechanism during the melting process of the DTC [31].
Furthermore, these network approaches can be also applied to
analysis of quantum machine learning models. In Ref. [26],
the performance behavior of the QERC with the DTC dynam-
ics was explored with the complex network emerging in the
Hilbert space of the DTC dynamics [31].

Now let us outline the focus and structure of this paper. We
will use the QERC proposed in Ref. [26] as a tool to investi-
gate the role of the feature map in quantum neural networks.
This model provides a convenient platform to do so, as the
quantum contribution fully relies on the quantum reservoir.
We start in Sec. II with a description of the QERC model. In
Sec. II, we also present our method to characterize the unitary
map, which is responsible for the quantum reservoir, as a
complex network. By our method, we investigate the feature
map properties with the DTC and some random unitaries and
will observe the difference in their dynamics in Sec. III. Then,
in Sec. IV, by benchmarking the QERC performance with
those unitaries with concrete practical tasks, we discuss what
properties of the performance arises based on the difference in
the models’ dynamics. We will confirm that the difference is
not only the quantum reservoir properties, but also, in fact, can
be exploited for a better QERC performance for the practical
tasks. In Sec. V, we summarize our results.

II. QERC MODEL AND ITS CHARACTERIZATION

Let us begin with a brief description of QERC. As shown in
Fig. 1(a), QERC can be described in terms of three key com-
ponents: the encoder, the quantum reservoir, and the classical
processor.

Encoder: Here, the data to be classified is preprocessed
(if necessary) and encoded into the initial state of the
quantum reservoir. In more detail, as shown in Fig. 1(a), a
principal component analysis (PCA) map is used for the
preprocessing of the classical data. Then an appropriate

encoding strategy needs to be chosen for the problem
at hand. For a quantum reservoir of L qubits, the 2L
most significant parameters from the PCA map will be
encoded by single-qubit rotations.

Quantum reservoir: In this step, the quantum reservoir
provides the feature space for QERC. The quantum
dynamics of the quantum reservoir determines the
feature-map properties for the quantum computation,
which is given by the unitary operator Û .

Classical processor: In this final step, the state given by the
unitary operator Û acting on the initial state is measured
projectively on the computational basis. The process will
be repeated to obtain the amplitude distribution of the
state generated by the unitary operator. This amplitude
distribution is then processed through a one-layer neural
network (ONN).

We immediately notice that this is a hybrid quantum-
classical algorithm. In QERC the feature space is provided
by the quantum reservoir, whereas the optimization is carried
out on the classical processor (ONN). Typically the quantum
reservoir does not need to be optimized for different problem
instances [15,18,26].

Now our interest in this paper is the properties we require
for the quantum reservoir and their influence on the perfor-
mance of QERC. In particular, we want to show that how
we set the quantum reservoir is important. In this work, we
first employ the DTC model used in [26] as our choice of
a quantum reservoir. The DTC model has a parameter that
controls the complexity of the dynamics, namely, starting with
the perfect discrete time crystal when the rotation parameter
error ε = 0, the dynamics gradually deviates from a DTC,
acquiring its complexity as ε increases. This parameter ε

represents an error in the single-qubit rotation in the DTC
Hamiltonian, which is given by

Ĥ (t )=
{

Ĥ1 = h̄g(1 − ε)
∑

l σ̂ x
l , t ∈ [0, T/2),

Ĥ2 = h̄
∑

lm Jlmσ̂ z
l σ̂ z

m + h̄
∑

l Dl σ̂
z
l , t ∈ [T/2, T ),

(1)

where σ̂ a
l (a = x, y, z) represent the Pauli operators on the lth

qubit. Next, T is the cycle of driving, while the DTC cycle is
2T . Furthermore, g is the rotation strength, and in this case, we
set gT = π . Now Jlm = J0/|l − m|α is the coupling strength
between the qubits l and m with a power-law decay that scales
with a constant α. Finally, Dl is a disordered external field for
each qubit l . Unless explicitly stated, all the DlT are set to
zero in this work.

The time-periodic system is conveniently characterized by
the Floquet operator F̂ = exp[−iĤ2T/2h̄] exp[−iĤ1T/2h̄]
where the stroboscopic time evolution can be obtained by
the unitary operator Û (nT, 0) = F̂n for n ∈ N. Hence, we
use the unitary operator Û (nT, 0) for different values of n to
characterize the quantum reservoir.

A. Characterization of the unitary matrices

The next step is the characterization of the unitary operator
Û (nT, 0). This unitary operator acts as a map between the
input and the output states given by the feature map used for
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(a)

(b) (c)

FIG. 1. (a) Schematic architecture of the QERC processor. It begins with an image of size 28 × 28 pixels, is processed through principal
component analysis, and is compressed to 2L components (where L is the number of qubits). Using these 2L components, an initial state
corresponding to the image is created by single-qubit rotations. The quantum reservoir then lets the initial state evolve. By projective
measurements on the computational basis, the final state is converted to classical information. The amplitude distribution of this classical
information is fed into the ONN. (b) Schematics of the weight distributions for the x, y, and z components. Panel (c) summarizes the
definition of the ratio Rν = s(ν,G)

+ /s(ν ) for the ν component, where s(ν ) is given by s(ν ) = (s(ν )
max − s(ν )

min)/2 with s(ν )
max (min) being the maximum

(minimum) value of s in the ν component. Next one can consider a Gaussian fitting function f (s; u, v) = u exp(−vs2), which allows us to
define s(ν,G)

+ := √
ln(u/d )/v where d corresponds to the possible minimum nonzero height of the density function ρ(s) = h(s)/Nνds, that is,

d = (Nνds)−1.

the quantum computation. Such a map can be considered as a
weighted network [32,33]. However, as the unitary operators
are defined on the complex field, the translation to a weighted
network is not trivial. Here we apply a generator decomposi-
tion of a unitary matrix U in the unitary group U(N ), where N
is the dimension of the unitary matrix to represent the unitary
operator as a weighted network. The generators of U(N ) are
the Hermitian matrices forming the Lie algebra.

Now a unitary matrix U ∈ U(N ) can be written in the
form U = e−iG where G is a Hermitian matrix. This Hermitian
matrix can be represented with real coefficients alm, blm, and
ck by the decomposition of G with respect to the generators
λ as

G =
∑
l<m

(
almλx

lm + blmλ
y
lm

) +
∑

k

ckλ
z
k, (2)

where those λ generators are the generalized Gell-Mann ma-
trices [34–36](

λν
lm

)
i j

= δliδm jσ
ν
12 + δl jδmiσ

ν
21 (ν = x, y), (3)

λz
k =

√
2

k(k + 1)
diag(1, . . . , 1︸ ︷︷ ︸

k times

,−k, 0, . . . , 0), (4)

λz
N = I. (5)

Here δi j represents the Kronecker delta, σ ν
i j (ν = x, y) is the

(i, j) component of the Pauli matrices and I the identity ma-
trix. Next G as a weight matrix has three components x, y, and
z with {alm}, {blm}, and {ck} being the x, y, and z contributions
of the weight matrix, respectively.

The Hermitian matrix G obtained from the unitary ma-
trix U is not necessarily unique. To uniquely determine G
for a given unitary matrix, we employ the principal loga-
rithm of a matrix [37] in our numerical analysis. If A is a
complex-valued matrix of dimension N with no eigenvalues
on the negative real line R−, then there is a unique natural
logarithm X of a matrix A such that all of its eigenvalues
lie in the strip {z : −π < Im(z) < π}. Here X is called the
principal logarithm of A and denoted by X = log(A). For the
DTC model, we compute the Hermitian matrix for period n,
G(n) = i log[Û (nT, 0)] noting that G(n) is not simply equal
to n × G(1).

To convert the weight matrix to its weight distribution,
we first count how many coefficients are in a certain value
window (s, s + ds] for s, ds ∈ R. This gives us a histogram
h(s) to show how likely the coefficients are to take a cer-
tain value (s, s + ds]. In numerical calculations, we take 100
segments for each coefficient set to determine the value of
ds: let the support of the histogram denoted by a sequence
S = {s0, s1, . . . , sM−1}, where si − si−1 = ds > 0 for all i =
0, 1, . . . , M − 1 and M is the number of segments in the
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range (s0, sM−1]. Then, once we define s0, sM−1, and M, we
have ds = (sM−1 − s0)/M. After obtaining the histogram, we
have a density function ρ(s) = h(s)/Nνds where Nν is the
number of elements in the component ν = x, y, or z, that is,
Nν = ∑M−2

i=0 h(si ). We refer to this as the weight distribution
of the ν components (ν = x, y, z) [see Fig. 1(b)].

B. Characterization of the weight distributions

We will show weight distributions for the DTC model
in different configurations and other models in Sec. III. To
quantitatively characterize those weight distributions, we cal-
culate two quantities for each weight distribution. The first
is the empirical standard deviation σν is given by the standard
deviation of values of elements in a component ν, for example,
in the case of ν = x, σx = √

varlm(alm).
Our second quantity is a ratio that represents how far the

weight distribution reaches from its center compared with
a Gaussian function approximating the weight distribution,
which is analogous to the MP rank defined in Ref. [38]. The
ratio Rν for the weight distribution of the ν component is
given by

Rν = s(ν,G)
+
s(ν)

. (6)

The denominator s(ν) is defined as a quantity representing
how far the weight distribution reaches from its center in
the horizontal axis. Since the weight distribution ρ(s) is not
necessarily symmetric with respect to s = 0, s(ν) is given
by s(ν) = (s(ν)

max − s(ν)
min)/2 with s(ν)

max (min) being the maximum
(minimum) value of s in the ν component, that is, max{s ∈
S|ρ(s) �= 0} (min{s ∈ S|ρ(s) �= 0}). Next, s(ν,G)

+ represents
how far a Gaussian distribution function reaches from s = 0
obtained by a Gaussian fitting to the weight distribution. The
Gaussian function reaches s = ∞ in general. Thus, we intro-
duce a cutoff for the Gaussian function. In more detail, let
f (s; u, v) denote the Gaussian function given by the Gaussian
fitting with fitting parameters u, v: f (s; u, v) = u exp(−vs2).
To introduce the cutoff, we consider cross points between
f (s; u, v) and a horizontal line at a value of d , that is, d =
f (s; u, v). Then, s(ν,G)

+ is given as s(ν,G)
+ = √

ln(u/d )/v. In our
numerical calculations, we set d = (Nνds)−1, which corre-
sponds to the possible minimum nonzero height of the density
function ρ(s) = h(s)/Nνds. In Fig. 1(c), the definition of Rν

is summarized.

C. Simulation setup for the QERC

We begin our considerations here by first directly eval-
uating the properties of the feature map generated by our
DTC dynamics using the method outlined above. Setting a
computational task is not essential to do the analysis, however,
it is extremely useful when later we compare these properties
to the performance of the QERC. It is convenient to set a
computational task to evaluate both at the same time and on a
similar footing. In this paper, we use the well-known MNIST
dataset [39] where each image has 784 (= 28 × 28) pixels.
We employ PCA to reduce each image data to the 2L com-
ponents, which can then be encoded in the initial state of
the quantum reservoir of L qubits by single-qubit rotations.
Finally, to optimize the parameters of the ONN, we employ

(a)

(b)

FIG. 2. (a) Convergence of the weight distribution in the DTC
model. From the left to right panels, the weight distribution functions
for alm, blm, and ck are depicted where the colors correspond to
different periods. The blue (dot), green (upward triangle), brown
(downward triangle), and orange (filled circle) curves are for n =
2, 10, 50, and 100, respectively. (b) The n dependency of the em-
pirical standard deviations, σx = √

varlm(alm ) (blue with diamonds),
σy = √

varlm(blm ) (orange with hexagons), and σz = √
vark (ck )

(green with pentagons).

the stochastic gradient descent method used in Ref. [26].
Throughout this work, our parameters are set as L = 10,
J0T = 0.12 with α = 1.51, These are compatible with the
current ion trap experiments [40]. We also set ε = 0.03 as the
highest accuracy rate that has been reported for the QERC
with this parameter value [26].

III. QUANTUM RESERVOIR WEIGHT DISTRIBUTION

It is important to emphasize that, unless perfectly period-
ical, the quantum dynamics of the DTC model deviates from
its initial state in time as it evolves. This allows for the growth
of the complexity in the system. To observe such complex-
ity growth in the unitary dynamics, we evaluate the weight
distribution of G(n) for various time periods: n = 2, 10, 50,
and 100. From Eq. (2), we can determine the real coefficients
alm, blm, and ck characterizing G(n) for each n. The Hermitian
weight matrix G(n) is equivalent to the n-period effective
Hamiltonian up to the constant factor h̄/nT . Thus, the diag-
onal (corresponding to {ck}) and off-diagonal (corresponding
to {alm}, {blm}) entries of G(n) are associated with the energies
of the basis states and the transition energies between the basis
states, respectively.

In Fig. 2(a) we plot the weight distribution for the x (alm), y
(blm), and z (ck) components of G(n), respectively. Each color
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(symbol) represents a different period of the time evolution.
For n = 2 (blue line), we observe very sharp peaks at s = 0
for the x and y components. As these components correspond
to the off-diagonal entries of the Hermitian matrix G(n), the
sharp peaks around s = 0 mean very few transitions between
the basis states for this time period. However, for large peri-
ods, n = 50 (brown curve), 100 (orange curve), the weight
distributions for all the components converge to a similar
shape that is approximately quadratic in the log-scaled plots
(Gaussian in the linear plot). In the middle of these two time
regions, at n = 10 (green curve) the x and y components have
already converged to the typical distribution, however, the z
component has broadened the most. This suggests that there
is a tradeoff in this time regime; the stationary elements of
the z component significantly suppress the effect of the x
and y components. This trade-off captures the dynamics of
the DTC melting slowly in time in this (ε = 0.03) parameter
regime.

The behavior for those components can be quantitatively
observed by the empirical standard deviation for the weight
distributions, defined in Sec. II B. In Fig. 2(b), the empirical
standard deviations are depicted against the number of periods
n. While the z component is broadened at n = 10, the x and y
components gradually get higher standard deviations and then
they converge.

A. Comparing the weight distribution

To capture the characteristics of the weight distribution
for the DTC model, we first introduce the Haar measure
sampling of unitary operators [25,41,42]. The Haar measure
sampling can be considered to exhibit a typical complexity
that a quantum computer may provide, and its gate imple-
mentation is usually given through unitary t design [22,23].
Hence the similarity and disparity in the weight functions for
these cases would give us valuable insights into understanding
the DTC dynamics and its role in QERC. In our analysis, to
obtain a typical distribution given by the Haar measure sam-
pling, the N × N unitary matrix UH is created using the QR
decomposition [43] where N = 2L = 210 = 1024. We com-
pare this unitary map, which we refer to as the Haar-random
model, to the converged weight distribution of the DTC
model.

Now as shown in Figs. 3(a) and 3(b), the typical weight
distributions are approximately Gaussian for all components
x, y, and z. Here we use only one sample from the Haar-
random model since one sample and not the average of many
samples will be used within the QERC. Further, we do not
lose generality as discussed in Appendix D.

We can now compare the DTC model to the Haar-random
model, where we characterize the weight distributions of the
DTC model with two properties, broadness, and tail. Although
the DTC’s y component has a narrower distribution compared
to the Haar-random model, the broadness of the distribution
for the x and z components are comparable as shown by the
empirical standard deviations in Table I.

However, only the DTC model has a tail in the weight
distribution of the x component; a few large elements at the
edge of the weight distribution. To quantitatively observe tails
in the weight distribution, we calculate the ratio R defined

(a)

(b)

(c)

FIG. 3. Comparison of the Haar-random, Cauchy-random, and
DTC models for n = 100 in (a). In each case from the left to right
panels, the distributions of the x, y, and z components are depicted,
respectively. In (b), the weight distributions of those models are
shown for the range [−0.75, 0.75]. Finally, in (c), a comparison
is shown between the DTC model with and without disorder for
n = 100.

in Sec. II B. Table I shows the averages of the ratios for the
DTC and Haar models where R denotes the average, that is,∑

ν=x,y,z Rν/3. One can see that the averaged ratio of the DTC
model is smaller than that of the Haar model, which is close
to the unit. It implies that the weight distribution of the DTC
model deviates from that of the Haar model in terms of the
tail.

Next, to explore the difference associated with the tail we
found in the DTC models distribution, we employ the Cauchy
distribution. The reason for this is as follows. In classical
reservoir computation, the Cauchy distribution was used to
obtain the edge of chaos where the reservoir computation
should be optimal [44]. Hence it is interesting to see the prop-
erties of the feature map generated by the Cauchy distribution.
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TABLE I. The empirical standard deviations and the ratios R
for different models. R denotes the average of the ratios over three
components, that is, R = ∑

ν=x,y,z Rν/3.

σx σy σz R

Haar 0.0400 0.0402 0.0406 0.8592
Cauchy 0.0402 0.0394 0.2733 0.0978
DTC 0.0564 0.0028 0.0770 0.5189
DDTC 0.0410 0.0393 0.1914 0.2245

The Cauchy distribution is given by

Cauchy(x; γ ) =
(

1

πγ

)
1

1 + (x/γ )2
, (7)

where γ is the scale parameter. Since the Cauchy distribution
has a power-law tail, one would expect that the weight dis-
tribution exhibits a long tail. The unitary matrix UC for this
Cauchy-random model is defined as follows. First, we gener-
ate an N × N Hermitian matrix A whose real and imaginary
parts in each independent entry are drawn from the Cauchy
distribution (7). Then we define the unitary matrix UC as
UC = e−iA.

Further, we set γ = 0.04 in Eq. (7) for consistency with
the corresponding parameter of the Haar-random model (σ ≈
0.04), and the size N is set as N = 2L = 1024.

Applying the decomposition (2) to GC = i log(UC), we
obtain each weight distribution for the three components
x, y, and z, which are depicted in Figs. 3(a) and 3(b). The
weight distributions for the Cauchy-random model definitely
have a tail, much longer than that in the DTC model, for
all the components x, y, and z. Table I shows the averaged
ratio of the Cauchy-random model, which is even smaller
than the other two models. This reflects the nature of the
Cauchy distribution (7), and we will come back to this point
later.

IV. RELATION BETWEEN THE QERC PERFORMANCE
AND THE WEIGHT DISTRIBUTION

As we have characterized the three models through the
weight distribution, let us now turn our attention to the perfor-
mance of the QERC employing these three different models
as its feature space. In the previous work [26] it was shown
that the accuracy of the QERC increases with the number of
the time periods of the DTC model saturating near n = 50.
The behavior of this accuracy rate can be predicted from the
time evolution of the weighted distributions seen in Fig. 2,
as the unitary map of the DTC model acquires the typical
complexity around n = 50. To illustrate this further, Fig. 4
summarizes the comparison between the accuracy rate and
the weight distribution. Here we plot the accuracy rates for
training (blue dot) and testing (orange downward triangle)
against the time period n in the DTC model and insert the
weight distributions for n = 2, 10, 50, 100.

The broadness in the x and y components of the weight
distribution are essential for the quantum reservoir to achieve
a higher performance. The trade-off between the x, y compo-
nents and z component is reflected in the average accuracy

FIG. 4. Average accuracy rates for training and testing with the
associated standard deviation against the period in the DTC model.
The blue (dot) and orange (downward triangle) curves correspond to
training and testing, respectively. At each datapoint, the average and
the standard deviation are taken for 250 to 300 epochs in the ONN
optimization.

rates. This suggests that even if the system dynamics is com-
plex enough, within a short coherent regime, the system does
not evolve enough to achieve the computational power the
system would promise.

The complexity generated in a finite system has to be
bounded, and unlike unitary maps from the Haar-measure
sampling, the DTC model does not reach the maximum ran-
domness allowed for the system to have certain tendencies in
its dynamics. Next, we further investigate the effect of this
difference in these models on the performance of the QERC.

A. Tails in the distribution and the performance

The unitary operators we characterized through the weight
distributions directly serve as the feature map for the QERC.
We will now explore how these different weight distributions
and their associated feature maps affect the performance of
the QERC with the MNIST dataset.

Table II(a) presents the accuracy rates for each model (see
also Appendix A). Before the comparison of the quantum
feature maps, we first provide the performance of the case
where the PCA components are directly fed into the ONN
(without quantum feature maps). One can immediately ob-
serve that the case, denoted by “PCA” in Table II(a), has the
lower accuracy rates in both training and testing than any other
cases with quantum feature maps. It states that those quantum
feature maps significantly help the QERC achieving a high
performance.
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TABLE II. Average accuracy rates with the associated standard
deviation of the various feature models with (a) the MNIST and (b)
FashionMNIST datasets. For the FashionMNIST case, we picked
three classes: t-shirt, pullover, and dress. The average and the stan-
dard deviation are taken from 250 to 300 epochs and �acc. denotes the
gap between training and testing. The label “PCA” denotes the case
where the PCA components are directly fed into the ONN (without
any quantum feature maps). The results for the DTC cases with or
without disorder are for the period n = 100. In the random models,
the accuracy rates are from a specific realization.

(a) MNIST Testing acc. (std.) Training acc. (std.) �acc.

PCA 0.8635(±0.0009) 0.8688(±0.0005) 0.0053
Haar 0.9657(±0.0005) 0.9949(±0.0003) 0.0292
Cauchy 0.9673(±0.0005) 0.9945(±0.0003) 0.0272
DTC 0.9655(±0.0006) 0.9897(±0.0005) 0.0242
DDTC 0.9671(±0.0005) 0.9911(±0.0005) 0.0240

(b) FashionMNIST
Haar 0.9427(±0.0017) 0.9744(±0.0017) 0.0317
Cauchy 0.9440(±0.0029) 0.9720(±0.0023) 0.0280
DTC 0.9388(±0.0039) 0.9662(±0.0049) 0.0274
DDTC 0.9407(±0.0050) 0.9589(±0.0044) 0.0182

Next, we compare the accuracy rates of the quantum fea-
ture maps. In testing, the DTC (n = 100) model is comparable
to the Haar-random model, whereas not so in training. More-
over, it is interesting to notice that the Haar-random model
does not give the best testing accuracy rate in this setting,
but the Cauchy-random model does. These observations may
suggest that the tail in the weight distribution of the DTC and
Cauchy models contributes to the higher accuracy rate.

To see the relation between the accuracy rate and the
weight distribution, we show the correlation between the test-
ing accuracy rate and the quantities we used to characterize the
weight distribution: the averaged empirical standard deviation
(σ ) and ratio (R) in Fig. 5(a). The quantities correspond to the
vertical and horizontal axes, respectively, and the color of the
markers indicates the testing accuracy rate. One can find that
the color becomes darker as the ratio R gets smaller.

To investigate this further, we introduce the t-random
model whose unitary is defined using the Student’s t-
distribution in the same way to generate the Cauchy-random
model. The Student’s t-distribution is defined as

g(x; 0, γt, ν) = �
(

ν+1
2

)
γt

√
πν�

(
ν
2

)(
1 + (x/γt )2

ν

)−(ν+1)/2

, (8)

where �(·) denotes the Gamma function and γt is a scale pa-
rameter. ν is a parameter determining how heavy the tail of the
distribution is. This parameter connects the standard Cauchy
(ν = 1) and normal (ν = ∞) distributions when γt = 1. In
our context, this parameter allows us to generate the weight
distribution located in between the Haar- and Cauchy-random
models in Fig. 5(a) with γt = σ = γ = 0.04.

In Fig. 5(a), the stars correspond to the averaged data
points over ten realizations of the unitary for each value of
ν (ν = 1, 2, 3, 5, 10, and 100). The error bars correspond to
the standard deviations of each data point (see Appendix B
for detailed results of the t-random model). One can find that

(a)

(b)

FIG. 5. Scatterplot of the models we consider in this paper
against σ and R with colored markers indicating (a) the testing
accuracy rate and (b) the gap �acc. of accuracy rates between training
and testing.

the ratio and the testing accuracy rate tend to be smaller and
darker, respectively, as ν gets smaller. Moreover, data points
close to each other in the plot have similar testing accuracy
rates. This simulation with the Student’s t distribution illus-
trates the correlation between the testing accuracy rate and the
tail in the weight distribution.

Considering the implementability of the QERC with an
effective quantum feature map, one may wonder what phys-
ical system is close to the Cauchy- and t-random (for ν = 1)
models in Fig. 5(a) and achieves a high testing accuracy rate
since the DTC model is far from such models, and there still
seems to be room to improve it. We here consider disorder to
the DTC model in Eq. (1), and actually, the disordered DTC
(DDTC) model has a higher accuracy rate, as we will see
later.

In Eq. (1), we set DlT = 0 to enable us to consider the
DTC model without the disorder. That constraint can now be
relaxed. The disorder in Floquet systems has been considered
to be important to suppress the thermalization and stabilize the
DTCs [8,40]. Actually, it is more realistic to have a little disor-
der in such quantum systems, and so it is worth checking if our
QERC’s performance is robust to such disorder. We choose
the disorder terms DlT in Eq. (1) independently drawn from a
uniform distribution on [0, 2π ). As illustrated in Fig. 3(c), the
introduction of the disorder changes the form of the weight
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distribution, and it is characterized by the empirical standard
deviation and the ratio (see Table I). So the DDTC model is
now located around the upper left region of Fig. 5(a), and one
can find that the model achieves a similar testing accuracy
rate to that of the Cauchy- and t-random (with ν = 1) models
[see also Table II(a)].

So far, we only discussed our testing accuracy and it is
important we now turn our attention to the training accuracy
and the difference between the testing and training accuracy
rates. The difference �acc. is an important parameter in terms
of the overfitting and the generalization performance of this
machine learning model. Neural networks often show the
effects of overfitting [45,46] where the neural networks are too
well optimized to the training date and lose their flexibility to
deal with the testing data. The generalization performance is
hence an important factor in designing QNNs.

In Table II, we also provide the training accuracy and
difference �acc. for the various feature models we consider.
We also plot the correlation between the generalization per-
formance and the properties of the weight distribution in
Fig. 5(b). One can observe that the Cauchy-random model
has the smallest gap �acc. among the artificial models, and the
value of �acc. tends to be higher for a larger value of the ratio.
It is strongly suggestive that the tail in the weight distribution
helps the QERC to acquire the generalization performance
suppressing the training accuracy rate. One can also find that
the physical models (DTC and DDTC) have even smaller
gaps. Therefore, from our analysis, the DDTC model gives the
best generalization performance and a nearly optimal testing
accuracy rate among quantum feature maps we show. It is
an encouraging fact that a simple Hamiltonian system could
perform at least as good as a t-designed unitary map, which
makes the implementation of such QNNs much simpler and
more feasible.

B. Simulations in other settings

First, we consider the optimizer for the ONN. We used the
stochastic gradient descent method as the optimizer for the
ONN in these numerical simulations. The method has been
broadly employed in many situations. Hence, our observations
above can be seen in many scenarios. Moreover, we found
the same effect of the tail with a more technical optimizer
ADAGRAD [47] (see Appendix C).

Next, we direct our attention to the dataset. So far, we used
the MNIST dataset to benchmark quantum feature maps and
concluded that the tail in the weight distribution contributes to
the testing accuracy rate and generalization performance. In
this section, we see the difference in the QERC performance
between the quantum feature models we considered with
another dataset. To see the difference in the generalization
performance, we need to choose a dataset carefully. If it is
a simple dataset such as the two-dimensional (2D) isotropic
Gaussian samples demonstrated in Ref. [26], all the feature
models would have high accuracy rates, and it should be hard
to see the difference between our models. In contrast, if we
choose a hard dataset such as the FashionMNIST [48], all
the models we have may achieve poor performance and there
should not be any room to discuss generalization.

For our calculations, we choose the FashionMNIST dataset
with a few classes since classifying all the classes is too hard

for the QERC. Then we picked three classes: t-shirt, pullover,
and dress, and show the accuracy rate in Table II(b). One
can see the same trend we obtain with the MNIST dataset:
the models with the tail tend to have higher testing accuracy
rates and better generalization. This examination suggests that
the choice of a tailed feature map is an effective technique to
push the QERC performance up more when the performance
is good but not perfect.

V. DISCUSSION AND CONCLUSION

In this work, we performed network analysis on the uni-
tary maps used in the QERC. Such unitary maps U can be
converted to a weighted Hermitian matrix G = i logU that is
characterized by the set of three weighted distribution func-
tions. We observed that the weight distribution for the DTC
model grows in time to near n = 50 where it converges to
its typical shape. We compared the DTC model weight dis-
tribution against those associated with the Haar-random and
Cauchy-random models. The DTC and Haar-random models
are similar with respect to the Gaussian-like broadness of their
weight distributions, whereas the DTC and Cauchy-random
models are similar in terms of the tails in their respective
weight distribution. This suggests that the unitary map for
DTC’s period over n = 50 is nearly as complex as the one

(a)

(b)

(c)

FIG. 6. Plot of the accuracy rates (with error bars) shown in
Table II with (a) the MNIST and (b) FashionMNIST datasets. (c) Ac-
curacy rates for testing and training of the t-random model against ν

with the MNIST dataset. The dashed lines and shaded areas corre-
spond to the accuracy rates averaged over ten realizations for each
value of ν. The horizontal solid lines are the averaged accuracy rates
of the Haar-random model.
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FIG. 7. Accuracy rates for testing and training of various models
with ADAGRAD. The same specific realizations are used for the
random models as in the numerical simulations in the text. At each
data point, the average is taken from 250 to 300 epochs. The error
bar indicates the associated standard deviation.

by the Haar-random model, yet it still has power-law charac-
teristics and so is not totally random.

Next, in the comparison of the performance of the QERC
with the MNIST and FashionMNIST datasets, we found that
the power-law tendency (tail) in the unitary map contributes
to the high testing accuracy rate by suppressing the training
accuracy rate. This indicates that, at least for certain image
classification problems, the tendency in the feature map in
QNNs would help the QNNs to acquire better generaliza-
tion performance. Although similar observations have been
noted in classical neural network models, including reservoir
computation [20,21,44,49], this is the first time for it to be
observed in the QNN scenario.

Not only could the properties found here serve as a guide-
line for designing more effective feature maps in the future,
but our network approach to the quantum machine learning
model could also be used to investigate other useful network
properties in quantum feature spaces. Furthermore, the ap-
proach could provide a physical interpretation of information
processing in quantum machine learning schemes. As the long
tail in the weight distribution implies strong connectivities
between certain basis states in the network dynamics, our
approach may provide physical insights in the performance
of quantum machine learning.

Finally, the fact that the QERC can perform with the fea-
ture map generated by a simple Hamiltonian model, such as
the DTC with the disorder, is encouraging for the QERC’s
implementation. It strongly suggests that it can significantly

FIG. 8. Weight distributions of the (a) Haar random model,
(b) the Cauchy random model, (c) and the disordered DTC model.
The total number of realizations in each case is 10. The colored
curves are corresponding to each curve in Figs. 3(a), 3(b), and 3(d),
respectively. The other realizations are plotted as gray curves.

reduce the overhead for the feature map in many other
QNNs.

On the other hand, another overhead seems to remain;
the reconstruction of the probability amplitudes of all com-
putational basis states may require an exponentially large
number of samples of the same initial states. However, it is
nontrivial whether such a precise reconstruction is needed for
the ONN. In fact, we need to acquire enough information
for the task performed for the ONN. Hence, it remains an
open question how much it is possible to reduce the mea-
surement overhead while maintaining the good performance
with a simple Hamiltonian model used for the quantum feature
map.
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APPENDIX A: PLOT WITH ERROR BARS ASSOCIATED
WITH TABLE II

Figure 6 is a plot associated with Table II. It clearly shows
the difference in the training and testing accuracy rates be-
tween different models. In Fig. 6(a), the improvements in
testing by the tail are significantly observed. In Fig. 6(b),
one may think that the effect of the tail is not so significant.
However, it is noteworthy that the training accuracy rate is
significantly low in the Cauchy and DDTC models compared
to the Haar and DTC models, respectively, whereas the test-
ing accuracy rate is slightly higher. Moreover, the error bars
are associated with epochs, and we usually pick the neural
network parameters at a single epoch with good performance.
Hence, we can extract the improvement by the tail in such a
practice situation in the FashionMNIST case.

APPENDIX B: PERFORMANCE
OF THE T-RANDOM MODEL

Figure 6(c) shows the accuracy rates for training and test-
ing against ν. The dashed lines and shaded areas correspond
to the accuracy rates averaged over ten realizations for each
value of ν and the associated standard deviations, respectively.
The horizontal solid lines are the averaged accuracy rates
of the Haar-random model. As ν increases, that is, as the
effect of the tail decreases, the accuracy rates for both training
and testing converge to the averaged one of the Haar-random
model.

APPENDIX C: PERFORMANCE
WITH THE ADAGRAD OPTIMIZER

In this section, we will see the QERC performance with an-
other optimizer for the ONN instead of the stochastic gradient

TABLE III. Realization- and epoch-averaged accuracy rates of
the various models. The epoch average involves from 250 to 300
epochs. The realization average is taken over ten realizations for
each model with the means (and standard deviations in parentheses)
shown. �acc. denotes the difference between the means for training
and testing.

MNIST Testing (std.) Training (std.) �acc.

Haar 0.9657 (±0.0011) 0.9947 (±0.0003) 0.0290
Cauchy 0.9678 (±0.0013) 0.9943 (±0.0002) 0.0265
DTC w/disorder 0.9668 (±0.0005) 0.9910 (±0.0002) 0.0242

descent (SGD) we use in the text. Here, we adopt ADAGRAD

[47] as the optimizer. It uses an adaptive algorithm to update
the parameters in the ONN based on the geometry of the data
observed in the earlier iteration steps. Hence, it is considered
that the training loss converges more quickly than with SGD.
In Fig. 7, the accuracy rates for training and testing are shown
for various models. The accuracy rates for the DTC model
with SGD are also plotted for comparison. In fact, the training
accuracy rate tends to be higher than that of the SGD case, and
consequently, the generalization is poorer. In this case, it can
still be observed that the tail affects the testing accuracy rate
and the generalization performance. Furthermore, the DDTC
model has a nearly optimal testing accuracy rate and the best
generalization in the ADAGRAD case as well as the SGD case.

APPENDIX D: REALIZATION-AVERAGED
ACCURACY RATES

In Fig. 8, we show that the weight distribution of each
model is depicted with ten realizations. The colored curves
here correspond to those in Figs. 3(a)–3(c). We clearly
observe that the width and tail properties of the weight
distribution are not strongly dependent on the particular re-
alizations.

The realization-averaged accuracy rates for the Haar-
random, Cauchy-random, and disordered DTC models are
also shown in Table III. As the mean difference �acc. shows,
the models which have a tail in the weight distribution poten-
tially avoid overlearning. The disordered DTC model achieves
the highest generalization performance.
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