
PHYSICAL REVIEW A 108, 042608 (2023)

Biased random access codes

Gabriel Pereira Alves ,* Nicolas Gigena ,† and Jędrzej Kaniewski ‡

Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

(Received 28 March 2023; accepted 25 September 2023; published 13 October 2023)

A random access code (RAC) is a communication task in which the sender encodes a random message into
a shorter one to be decoded by the receiver so that a randomly chosen character of the original message is
recovered with some probability. Both the message and the character to be recovered are assumed to be uniformly
distributed. In this paper, we extend this protocol by allowing more general distributions of these inputs, which
alters the encoding and decoding strategies optimizing the protocol performance, with either classical or quantum
resources. We approach the problem of optimizing the performance of these biased RACs with both numerical
and analytical tools. On the numerical front, we present algorithms that allow a numerical evaluation of the
optimal performance over both classical and quantum strategies and provide a Python package designed to
implement them, called RAC-tools. We then use this numerical tool to investigate single-parameter families of
biased RACs in the n2 �→ 1 and 2d �→ 1 scenarios. For RACs in the n2 �→ 1 scenario, we derive a general upper
bound for the cases in which the inputs are not correlated, which coincides with the quantum value for n = 2
and in some cases for n = 3. Moreover, it is shown that attaining this upper bound self-tests pairs or triples
of rank-1 projective measurements, respectively. An analogous upper bound is derived for the value of RACs
in the 2d �→ 1 scenario, which is shown to be always attainable using mutually unbiased measurements if the
distribution of input strings is unbiased.

DOI: 10.1103/PhysRevA.108.042608

I. INTRODUCTION

In the past decades several instances have been found in
which quantum resources provide an advantage in the per-
formance of a given task. Quantum computing algorithms
[1–5], such as Shor’s factorization algorithm [6], are just
one example of the power of quantum resources: Spatially
separated parties can use entanglement [7] in a shared quan-
tum state, for instance, to improve their performance in a
nonlocal game [8–10], to quantum teleport [11–14] the state
of a third system held by one of them, or to densely en-
code classical information to be sent via a quantum channel
[15–17]. Quantum devices have also shown to be powerful
resources for certain communication tasks in which a quantum
state is prepared by one party and sent to another one, who
performs a measurement to extract information. Such tasks
are known as prepare-and-measure experiments, and they find
application in quantum information processing protocols like
quantum key distribution (QKD) [18–22], randomness certifi-
cation [23–26], and quantum random access codes [27–30].
A random access code (RAC) is a communication task in
which a string of characters, chosen at random from a given
alphabet, is encoded into a shorter string in such a way that
any of the characters in the original string can be recovered,
with some probability, by means of a decoding strategy. Both
the string to be encoded and the character to be recovered are
uniformly distributed, with the encoding party not knowing in

*gpereira@fuw.edu.pl
†nicolas.gigena@fuw.edu.pl
‡jkaniewski@fuw.edu.pl

advance which character should be retrieved by the decoding
procedure. In that sense, the RAC can be understood as a form
of nondeterministic data compression.

The implementation of the RAC protocol and its variations
have been the subject of intense research, finding applications
in cryptography [31,32], self-testing of measurements [33,34],
foundational aspects of no-signaling correlations [35], and
quantum communication complexity [36,37]. In this work,
we introduce a generalization of the RAC protocol in which
neither the string to be encoded nor the character to be re-
covered are uniformly distributed. Biasing the distribution of
inputs has a nontrivial effect on the encoding and decoding
strategies optimizing the performance of the protocol in both
quantum and classical realizations. We approach here the
problem of finding the optimal performance of such biased
RACS, and the strategies attaining it, with both numerical
and analytical techniques. In the numerical front we present
the RAC-tools Python package, built to implement algorithms
providing the exact classical value and lower bounds to the
quantum value of an arbitrary biased RAC. On the analytical
side, we derive upper bounds for the optimal performance
over projective measurements of RACs in which the charac-
ter strings to be encoded consist either of two characters to
be chosen from length d alphabet or of n characters to be
chosen from a length 2 alphabet. In the cases in which these
upper bounds are attainable, we study the optimal quantum
strategies achieving the optimal performance, paying special
attention to the dependence of the optimal measurements on
the biasing parameters and the regions in parameter space in
which quantum strategies provide an advantage over classical
ones. These analytical results are then compared with those
produced by the numerical package.

2469-9926/2023/108(4)/042608(22) 042608-1 ©2023 American Physical Society

https://orcid.org/0000-0002-5439-9665
https://orcid.org/0000-0002-3303-4739
https://orcid.org/0000-0003-1133-3786
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.042608&domain=pdf&date_stamp=2023-10-13
https://doi.org/10.1103/PhysRevA.108.042608

PEREIRA ALVES, GIGENA, AND KANIEWSKI PHYSICAL REVIEW A 108, 042608 (2023)

FIG. 1. The nm d�→ 1 RAC. Alice encodes her input x =
x0 x1 . . . xn−1 into a message μ which is sent to Bob. Based on
the message μ and his input y, Bob tries to guess the yth charac-
ter of Alice. Each character xi of x ranges from 0 to m − 1, for
i = 0, 1, . . . , n − 1.

II. BIASED RACS

A RAC scenario, as depicted in Fig. 1, involves two parties,
Alice and Bob. A RAC scenario is parameterized by integers
n, m, d , which we assume to be equal to or larger than 2. Alice
is given an n-character string x ∈ S = {0, . . . , m − 1}×n and
asked to encode it into a single character μ ∈ {0, . . . , d − 1},
which she will later send to Bob. Bob, on the other hand, is
asked to decode Alice’s message in order to retrieve the value
of the yth character xy in the original string. In order to do
so Bob evaluates the image b ∈ {0, . . . , m − 1} of μ under a
previously chosen decoding function, represented in the fig-
ure by Bob’s box. We consider the task successful when Bob
correctly guesses xy from his decoding function, i.e., when
b = xy. We denote a scenario like the one described above by
nm d�→ 1 RAC, where we allow the message and the characters
in the string to belong to alphabets with different cardinalities,
m �= d . Whenever m = d , however, we will use the notation
nd �→ 1, since it is the usual notation in the literature.

The figure of merit that is commonly used to study a
RAC is the average success probability P̄, which is simply
an average of the winning probabilities over all combinations
of x and y:

P̄ = 1

nmn

∑
x,y

p(b = xy | x, y), (1)

where p(b = xy | x, y) denotes the probability of a successful
decoding when string x is encoded and character xy is to
be recovered, and the factor 1

nmn reflects the assumption that
both x and y are uniformly distributed. The optimal pairs of
encoding-decoding strategies implemented by Alice and Bob
will therefore be those maximizing P̄. Note that the trivial
strategy of outputting a fixed (or random) value of b achieves
average success probability of 1

m , so we will be interested only
in strategies that outperform this value.

In this work we study a more general class of RACs in
which the distribution of Alice’s and Bob’s inputs, x and y,
respectively, is not necessarily uniform. We refer to these
as biased RACs, or b-RACs. In fact, let us start with the
most general real linear functional, i.e., a tensor αxyb of order
(n + 2), which attributes a specific weight to each combination
of inputs x and y and output b. The value of this functional on

a probability distribution p(b | x, y) equals

F =
∑
x,y,b

αxyb p(b | x, y). (2)

Since the probability distribution is normalized an additive
shift in the coefficients of the tensor results in an additive
shift in the value. Thus, we can focus on tensors which are
non-negative. Similarly, by normalizing the coefficients we
can, without loss of generality, consider tensors satisfying∑

x,y,b αxyb = 1. Now, we would like to focus our attention on
functionals that to some extent resemble the standard random
access code, where the winning condition reads b = xy. In this
spirit, we will consider only tensors whose coefficients vanish
whenever b �= xy. Due to non-negativity and normalization
such linear functionals can be interpreted as probability dis-
tributions over x and y, and let us denote them by αxy. Then
the value of the functional equals

F =
∑
x,y

αxy p(b = xy | x, y), (3)

and it should be clear that this is precisely the same as the
original RAC except that the distribution of inputs might be
nonuniform (in the RAC we have αxy = 1

nmn). Hence, biasing
the input distribution of a RAC is analogous to biasing or
tilting functionals in a Bell nonlocality scenario [38–40], as
the consequence of adopting bias is to modify the functional
in Eq. (1) and, in turn, the optimal realization. An interesting
aspect of this generalization is that the inputs of Alice and Bob
are not necessarily independent. To the best of our knowledge
such scenarios were first analyzed in Ref. [41]. An alternative
direction would be to change the goal of the decoding function
from recovering a given character to a more general function
of the input string, a generalization that has recently been
explored in Ref. [42], but we do not consider such scenarios
in this work.

As is the case with Bell scenarios, b-RACs can be funda-
mentally interpreted as an experiment in which a particular
behavior of the involved devices, specified by the conditional
probabilities {p(b = xy|x, y)}, determines a certain value for
the previously specified figure of merit F in Eq. (3). In the
case of b-RACs the behavior is determined by the encoding
and decoding strategies implemented by Alice and Bob. So
far we have focused on classical strategies in which, upon
receiving her input x, Alice computes its image μ under an
encoding function E : {0, . . . , m − 1}×n �→ {0, . . . , d − 1}
and sends it to Bob. Bob takes μ as the argument of his
yth decoding function Dy : {0, . . . , d − 1} �→ {0, . . . , m − 1}
producing b = Dy(μ). The strategies we just described are
deterministic, i.e., the probability of Bob’s output being b is
given by

p(b | x, y) =
{

1 if b = Dy(E (x))
0 otherwise , ∀ x, y, b. (4)

Clearly, if Alice and Bob decide to employ some nondeter-
ministic strategy (even if we allow them to share classical
randomness), the corresponding behavior {p(b = xy|x, y)}
will belong to the convex hull of classical deterministic
behaviors. It follows then that the b-RAC functional in
Eq. (3) attains its maximum FC for one of these deterministic

042608-2

BIASED RANDOM ACCESS CODES PHYSICAL REVIEW A 108, 042608 (2023)

strategies, which can be found through an exhaustive search,
as is the case for the local value of Bell functionals. It should
nonetheless be noted that in a bipartite scenario with n mea-
surement settings per party and m measurements per setting
the number of deterministic strategies scales as m2n, whereas
in the nm d�→ 1 b-RAC scenario this number grows double
exponentially, according to dmn × mdn. Therefore, computing
the classical value through exhaustive search becomes infea-
sible even for small values of n, d , and m. The following
lemma provides a simpler and more efficient approach to the
computation of the classical value.

Lemma 1. (a) For a nm d�→ 1 b-RAC and a fixed encod-
ing function E (x) = μ, the optimal decoding functions are
D∗

y (μ) = b, where b is the character that maximizes the sum∑
x∈S

αx,y,b δμ,E (x). (5)

(b) For a nm d�→ 1 b-RAC and fixed decoding functions {Dy}y,
the optimal encoding function is given by E∗(x) = μ, where
μ is the character that maximizes the sum

n−1∑
y=0

αx,y,Dy (μ). (6)

It follows from Lemma 1, which is proved in Appendix A,
that we can reduce the exhaustive search to a search either
over encoding functions only, statement (a), or over decoding
functions only, statement (b). In the first case, the complex-
ity of the problem reduces from dmn × mdn to dmn × nmd ,
whereas in the second it reduces to d × mn(d+1). A similar
treatment is usually implemented in Bell scenarios, where
optimal measurement (response function in the classical case)
can be computed if the remaining components are fixed.

A. Quantum value of a biased RAC

As an information processing task, the RAC can be gen-
eralized to quantum strategies. A quantum strategy involves
quantum devices, which transforms the b-RAC scenario into
a particular case of a prepare-and-measure experiment [43].
Such scenarios are often encountered in many new quantum
technologies such as quantum communication [44] and quan-
tum cryptography [45]. In a quantum strategy Alice, upon
receiving a string x, encodes it no longer in a classical charac-
ter μ, but in a qudit density operator ρx over a d-dimensional
Hilbert space H that she then sends to Bob. Once Bob receives
Alice’s preparation and his input y, he performs a decoding
measurement described by operators {Mb

y }m
b=1, producing out-

put b. From Born’s rule it follows then that the probability of
a successful decoding is p(b = xy|x, y) = tr(ρxM

xy
y), and the

ensuing value of the figure of merit in Eq. (3) reads

F =
∑
x,y

αxytr
(
ρxM

xy
y
)
. (7)

The optimal quantum encoding-decoding strategies will be
those for which the functional in Eq. (7) attains its maximum
value, which we will denote by FQ to distinguish it from the
optimal value over the set of classical behaviors, which we
will denote from now on by F . The optimization problem

over both preparations ρx and measurements {Mxy
y } involved

in the determination of FQ is in general hard, but it can be
approached numerically by means of a see-saw algorithm, as
we will describe below. This method, which relies on the fact
that for fixed preparations optimal measurements can be found
efficiently and vice versa, is a known numerical technique
for obtaining lower bounds for the quantum value of Bell
inequalities [46,47].

In a nutshell, the see-saw algorithm consists in the repeated
implementation of a two-step optimization procedure, since
we need to optimize the b-RAC functional over preparations
and over measurements. We start with a set of randomly
chosen measurements, for which we can find the optimal
preparations by noting that the functional F can be written as1

F =
∑
x,y,b

αxybtr
(
ρxMb

y

) =
∑

x

tr

⎛
⎝ρx

∑
y,b

αxybMb
y

⎞
⎠, (8)

becoming thus apparent that the density matrix ρx maximizing
the trace is given by a state associated with the largest
eigenvalue of the positive semidefinite operator

∑
y,b αxybMb

y .
This means that if we are interested in computing the quantum
value we can without loss of generality assume ρx to be a pure
state. Once the preparations are determined the algorithm
proceeds to the second step, which is finding the ensuing
optimal measurements for these preparations. In order to do
so it is convenient to again rewrite the functional F as

F = tr

⎛
⎝∑

x,y,b

Mb
y αxybρx

⎞
⎠ = tr

⎛
⎝∑

y,b

Mb
y �y,b

⎞
⎠, (9)

where

�y,b :=
∑

x

αxybρx (10)

is a subnormalized density matrix. It is then easily seen that
the optimization over measurements takes the form of a
semidefinite program (SDP)

max
{My

b}
tr

(∑
b

Mb
y �y,b

)

s.t. Mb
y � 0, ∀ b

and
∑

b

Mb
y = 1,

(11)

the solution of which, for all n measurements, completes the
second step in the optimization procedure and one iteration in
the see-saw algorithm, with the newly found measurements
becoming the starting point of the next iteration. Note that the
problem in Eq. (11) is one of minimum-error discrimination
[48] of the states �y,b, i.e., the optimal measurements {Mb

y }m
b=1

are those minimizing the error in the discrimination of �y,b,
∀ b.

Before closing this section some remarks are in order. First,
it should be noted that while the iterative procedure described

1We relax here the RAC condition b = xy to highlight the fact that
the argument holds as it is for more general functionals.

042608-3

PEREIRA ALVES, GIGENA, AND KANIEWSKI PHYSICAL REVIEW A 108, 042608 (2023)

above will always converge in value to some maximum of
F , there is no guarantee this is a global maximum. This
will highly depend on the starting point, which is chosen at
random. Second, it is worth noting that the see-saw procedure
described above can be also implemented to find the opti-
mal performance over classical strategies: Since advantage of
quantum strategies is rooted in the possibility of performing
incompatible measurements, restricting all measurement op-
erators to be diagonal in the computational basis will reduce
the optimization procedure to a maximization over classical
strategies. This restriction is easily imposed by just initializing
the algorithm with random diagonal matrices as seeds for
measurements, which ensures that all the states and measure-
ments arising during the see-saw procedure will be diagonal
in the same basis. Note, however, that, unlike the exhaustive
search previously discussed, this is a completely heuristic
method.

As a final observation, note that in the first step of the
see-saw procedure, when the decoding strategy is fixed, the
optimal value is given by

max
{ρx}

F =
∑

x

λmax

⎛
⎝∑

y,b

αxybMb
y

⎞
⎠, (12)

where λmax(O) denotes the largest eigenvalue of operator O.
That is, finding the optimal preparations {ρx} for a fixed set
of measurements is an eigenvalue problem, which can be
solved analytically, and therefore the we are left to look only
for the optimal measurements. In spite of this simplification,
finding the quantum value remains a hard problem in general.
Nonetheless, as we will see later, there are cases in which it
can be approached analytically.

III. THE RAC-TOOLS PYTHON PACKAGE

In this section we introduce a Python package [49] that
implements the numerical methods described in the previous
section. Our goal was to construct a tool that allows the user
to easily determine basic properties of a b-RAC, such as its
classical and quantum value. This tool requires some standard
Python packages like numpy and scipy, as well as the cvxpy
package to solve SDPs. Among the different solvers that can
be used with cvxpy, we have found MOSEK [50,51] to be the
most reliable. It is also available at no cost for academic use.
Throughout this section, we provide a succinct description
of how the package works, which is further elaborated in
Appendix B.

The RAC-tools package is written to implement both
the exhaustive search and see-saw algorithms, which were
discussed in Sec. II. For the exhaustive search method,
users can invoke the perform_search function, while the
perform_seesaw function is employed for the see-saw op-
timization. Since our main focus is on biased RACs, an
essential part of the package deals with the specification of
the biasing tensor αxyb, as defined by the functional in Eq. (2).
Note that using this definition instead of the one in (3) allows
the user to define functionals in a class larger than that of RAC
functionals, which corresponds to the condition b = xy. The
desired biasing tensor can be written explicitly and passed to
both perform_search and perform_seesaw in the form of

a Python dictionary. Alternatively, the user can opt for any
of the built-in biasing tensors provided by the package via
the generate_bias function and input only a reduced set of
parameters.

Before entering into the more technical details of
perform_search and perform_seesaw, let us provide an
example to better illustrate how generate_bias works. Con-
sider a 22 �→ 1 RAC in which the Alice’s input x is uniformly
distributed, but Bob is asked to retrieve the first character of
x with probability w ∈ [0, 1]. The bias tensor defining this
b-RAC is given by

αxy =
{

1
4w if y = 0,
1
4 (1 − w) otherwise,

(13)

where the factor 1
4 results from x being uniformly distributed.

We can compute its classical and quantum value by passing
to perform_search and perform_seesaw, respectively, the
string bias=‘‘Y_ONE’’ and the float weight=w. While
the variable weight encodes the amount of bias desired, the
variable bias encodes the type of bias that the user wants
to compute. For example, if the user passes weight=0.75
as an argument, generate_bias builds a biasing tensor with
components

αxy =
{

3
16 if y = 0,
1

16 otherwise.
(14)

In a similar manner to that demonstrated in the above ex-
ample, we can also consider biases that exclusively affect
Alice’s input x, or alternatively affect both x and y simul-
taneously. RAC-tools includes several built-in bias families,
including the one shown above, which we describe in more
detail in Appendix B 1. Moving forward, we proceed now
to the description of the operational details of the functions
perform_search and perform_seesaw.

A. The perform_search function

The main use of the function perform_search is to com-
pute the optimal classical performance of an nm d�→1 b-RAC.
This function takes as argument the integers n, d , and m, en-
coded by the analogous Python parameters n, d, and m, as well
as the bias tensor αxyb. The latter can be entered via the Python
dictionary bias_tensor or as the aforementioned reduced
set of parameters bias and weight, for one of the built-in
bias families. While these parameters fix a particular b-RAC
scenario, the variable method defines the searching approach
that should be employed by perform_search. When setting
method=1 and method=2, the corresponding implementa-
tions correspond to the approaches described in statements
(a) and (b) of Lemma 1, respectively. On the other hand,
method=0 implements a purely exhaustive search, where nei-
ther the encoding nor decoding functions are fixed. It is worth
noting that the value of m is set by default to be the same as
that of d , and therefore there is no need to declare it when
studying nd �→ 1 b-RACs.

When perform_search finishes the execution, it gener-
ates a report like the one in Fig. 2, for the case of the 22 �→ 1
RAC. As can be seen in the figure, the report provides not
only the optimal value of the functional but also an encoding-

042608-4

BIASED RANDOM ACCESS CODES PHYSICAL REVIEW A 108, 042608 (2023)

FIG. 2. Report produced by the function perform_search for
the unbiased 22 �→ 1 RAC. In addition to the summary of the com-
putation, the user is provided with the first strategy found attaining
the optimal value and the number of such equivalent strategies.
For the encoding function E (x), the result is shown in a tuple
organized in ascending order of x, [E (00 . . . 0), E (00 . . . 1), . . . ,
E ((m − 1) . . . (m − 1))]. The decoding functions Dy(μ) follow a
similar pattern: each row corresponds to a distinct input y, and the
result is organized in ascending order of μ.

decoding pair attaining this value, along with information
about computing time and total number of encoding-decoding
functions. This report can be disabled by setting the vari-
able verbose=False, in which case perform_search still
returns the information displayed in the report, but in the
form of a dictionary, allowing the user to manipulate this
information. A more detailed description of this function is
given in Appendix B 2.

B. The perform_seesaw function

This function implements the see-saw algorithm as de-
scribed in Sec. II. As mentioned before, the algorithm always
converges to a maximum of the functional described in
Eq. (7). However, it is not guaranteed that this maximum rep-
resents the global maximum due to the random initialization
of the algorithm. Hence, in addition to providing the integers
n, d , and m, along with the tensor αxyb that specifies the
scenario, the user is required to enter the number of random
initializations through the parameter seeds when invoking
the function. It should be noted that since increasing the num-
ber of initializations increases the computation time, deciding
which is the best value for seeds is a problem on its own; In
Appendix B 3 we provide, as a guide, Table II, which contains
the number of seeds used for generating the numerical results
presented in this work.

In addition, as noted in the description of the see-saw
algorithm, it can also be used to compute the classical value

of a b-RAC by restricting the measurements and preparations
to be diagonal in the computational basis. This condition can
be passed to the perform_seesaw function via the extra vari-
able diagonal. If diagonal=True, the function initializes
the see-saw algorithm with random diagonal measurements
and the retrieved value corresponds to an estimation of the
classical value. The default value of this variable is False.

After finishing the computation, perform_seesaw prints a
report including a short analysis of the measurement operators
attaining the optimal value found, such as whether the opera-
tors are projective or if they are mutually unbiased. Moreover,
the report informs also about the computation time and the
number of random starting points used by the code. A detailed
description about this data can be found in Appendix B 3.
Figure 3 shows an example of the report printed by the func-
tion in the case of the 22 �→ 1 RAC. As before, this report can
be disabled by setting the variable verbose=False, in which
case the information displayed in it is returned in the form of
a Python dictionary.

IV. ANALYTICAL RESULTS FOR THE n2 �→ 1 RAC

As discussed in Sec. II, whether classical or quantum the
strategies maximizing the b-RAC functional are in general
hard to find analytically. An exception is provided by some
RACs whose output is a single bit since, as we will see below,
this greatly simplifies the solution of the corresponding opti-
mization problems. Since we are interested in the advantage
provided by quantum strategies, let us start by discussing the
optimal classical performance.

A. Classical

We are now interested in finding the optimal encoding-
decoding strategies for general biased n2 �→ 1 RAC. The case
of unbiased RACs has been already studied in Ref. [30], and
as we show below, the authors’ analysis can be extended to
the general case with slight modifications.

A salient feature of the optimal classical encoding-
decoding strategies for b-RACs is that in some cases they
ignore part of the input. Excluding part of the input in the
search for the optimal encoding and decoding strategies re-
duces the complexity of the problem, since it involves fewer
bits; thus the optimal value is easier to compute if the subset
of bits to be ignored is known beforehand. Unfortunately this
knowledge does not seem to be available in advance, and in
order to find the set of bits ignored by the best strategy we
need to compare the values for all possible options, which
makes the evaluation computationally hard. We will return to
this issue when discussing optimal quantum strategies.

The following lemma shows how to find the optimal clas-
sical strategies under the assumption that no bit is ignored. If
the actual optimal strategy for a given b-RAC does ignore part
of the input string x, the result applies to the set of bits taken
into account by the strategy.

Lemma 2. The optimal non-bit-ignoring strategies for the
n2 �→ 1 b-RAC comprise a weighted majority encoding func-
tion and identity map for decoding.

Proof. We already know from Lemma 1 how to find the
optimal decoding function for a given fixed encoding, and

042608-5

PEREIRA ALVES, GIGENA, AND KANIEWSKI PHYSICAL REVIEW A 108, 042608 (2023)

FIG. 3. Report produced by the function perform_seesaw for
the unbiased 22 �→ 1 RAC. In the first part of the report, the function
produces a small summary of the computation, displaying informa-
tion such as the number of random starting points, average time per
starting point, etc. The subsequent part presents the optimal value
found along with a short analysis of the measurements attaining this
value. The notation M[y] refers to the yth measurement, while M[y,
b] refers to the operator yielding output b. In this way the item
Measurement operator ranks presents the computed ranks for the
operators of the yth measurement, arranged in ascending order of
b. Similarly, the item Measurement operator projectiveness indicates
whether the identified operators can be considered projective or not.
The numerical value presented in the second column serves as a
measure for projectiveness, with a value approaching zero indicat-
ing that this operator is close of being projective. Last, the item
Mutual unbiasedness of measurements analyzes the possibility of
constructing each pair of measurements out of mutually unbiased
bases. Analogous to the previous item, the second column provides
a measure of proximity for a given pair. Further technical details re-
garding the perform_seesaw function can be found in Appendix B.

the optimal encoding function for a fixed decoding. In the
particular case of the n2 �→ 1 b-RAC, given a fixed encod-
ing E : {0, 1}×n �→ 0, 1 mapping input x into a bit μ, i.e.,
E (x) = μ, it implies that the optimal decoding function for
the yth must satisfy

Dy(μ) =
{

0 if
∑

x αx|yδxy0 �∑
x αx|yδxy1,

1 otherwise,
(15)

where αx|y = αxy/ry, with ry = ∑
x αxy, can be interpreted as

the probability of string x being Alice’s input given that the
yth bit is to be recovered by Bob.

Because both Dy(μ) and its argument μ are bits there are
only four possible decoding functions: two constant maps
Dy(μ) = 0, 1, the identity map Dy(μ) = μ, and a flip of the
input Dy(μ) = 1 − μ. Now suppose the optimal decoding in
Eq. (15) corresponds to one of the constant functions, e.g.,
Dy(μ) ≡ 0. This implies

∑
x αx|yδxy0 �∑

x αx|yδxy1 for both
μ = 0, 1. Because

∑
x αx|yδxy0 +∑

x αx|yδxy1 = 1, it follows
from the previous relation that

∑
x αx|yδxy1 � 1

2 , meaning that
xy = 0 is a more probable event in the inputs than xy = 1. We
can interpret this result as “ignoring the encoding” being the
best decoding strategy Bob can implement for that particular
bit, in which case it makes no sense for Alice to consider it
in the encoding to begin. On the other hand, it is not hard
to see that if an encoding strategy ignores the yth bit, the
ensuing optimal decoding is a constant function mapping the
input to a constant value, which is the most frequent for xy. By
identifying constant decoding functions with parts of the input
x that are ignored by the optimal strategy, we are left with only
two possible decoding maps for those bits that are taken into
account. This two maps are actually equivalent since it is easy
to check that if Dy(μ) = 1 − μ is optimal for the encoding
E , then Dy(μ) = μ is optimal for the encoding E ′ = E ◦ ¬y,
where ¬y : S �→ S is the function flipping the yth bit of a given
string in S. It follows then that the optimal decoding strategy
can always be chosen to be the identity map.

Now we can move on to discuss the optimal encoding func-
tion. We have seen that whenever Dy is a constant function
the optimal encoding ignores the yth bit, so we can focus here
on the case where the identity map is the optimal decoding
function. In that case, it follows from the second statement in
Lemma 1 that the optimal encoding strategy should satisfy

F =
∑

μ,y,x∈Sμ

αxyδxyμ =
∑

μ,x∈Sμ

αx

∑
y

ry|xδxyμ, (16)

where ry|x := αxy/αx, with αx := ∑
y αxy. We can think of this

condition as determining which value (0 or 1) has the greater
weight in the string x, that is, the optimal strategy corresponds
to a weighted majority encoding. �

Note that both Eqs. (15) and (16) are easily obtained by
application of statements (a) and (b) of Lemma 1, which
may raise the question of why this solution does not extend
straightforwardly to the general case, where Bob can output
more than two possible values. The key feature of the argu-
ment above is, as we have shown, that the reduced number of
possible decoding functions allows us to state that for every
bit there are only two options: either the bit is ignored by the
strategy, or it is decoded using the identity map. Whenever
d > 2 or m > 2 this is no longer true, as there exist decoding
functions which are neither constant nor permutations.

B. Quantum

Having found a procedure to determine the optimal clas-
sical strategies, we can now move on to explore the optimal
quantum strategies and the cases in which these can provide
an advantage. As explained at the end of Sec. II A, for a
fixed decoding strategy {Mb

y } the optimal encoding of input
x is determined by the largest eigenvalue of the operators∑

xy αxyM
xy
y . Although simplified, this problem is still hard,

042608-6

BIASED RANDOM ACCESS CODES PHYSICAL REVIEW A 108, 042608 (2023)

since search of the optimal measurements {Mb
y } is to be carried

over the set of all possible measurement operators. The fol-
lowing lemma, which applies to any RAC with two outcomes,
greatly simplifies this search, by restricting it to the subclass
of projective measurements.

Lemma 3. The value FQ of the n2 �→ 1 b-RAC can always
be reached by a decoding strategy consisting only of projec-
tive measurements.

Proof. Let {M0
k , M1

k } be the measurement operators over
the Hilbert space H describing Bob’s decoding map for the kth
bit. It follows from the completeness relation M0

k + M1
k = 1

that the objective function in SDP (11) can be written as

Fk = tr
[
�k,1 + (�k,0 − �k,1)M0

k

]
= tr

[
�k,0 − (�k,0 − �k,1)M1

k

]
= 1

2 + 1
2 tr(�k,0 − �k,1)Mk, (17)

where in the last line we have taken the average of the ex-
pressions in the first two and have written Mk = M0

k − M1
k .

Hermiticity of (�k,0 − �k,1) implies that we can find orthogo-
nal subspaces H+ and H−, such that H = H+ ⊕ H−, spanned
by its eigenvectors associated with non-negative and negative
eigenvalues, respectively. If X± denotes the projectors onto
these subspaces, it is then apparent that the optimal value for
Fk is attained for Mk = X+ − X−, from which it follows that
M0

k and M1
k can be chosen to be projectors. �

It is worth noting that either M0
k or M1

k in the proof above
could equal the identity operator. In such a case one of the
measurement operators would be a projector over the entire
Hilbert space H, which corresponds to a decoding strategy in
which Bob always guesses 0 (or 1) for the kth bit regardless
of Alice’s encoding, i.e., a constant decoding map. As already
seen in the discussion of optimal classical strategies, if a
constant decoding function is optimal for a given bit, we can
find an optimal encoding that ignores that bit. Indeed, assume
without loss of generality that the optimal kth decoding strat-
egy requires M0

k = 1. Because the optimal preparations ρx are
eigenstates associated with the largest eigenvalue of the oper-
ators

∑
y αxyM

xy
y , which we now can write as (1 − xk)αxk +

λmax(
∑

y �=k αxyM
xy
y), the quantum value of the b-RAC value

can be expressed as

FQ = fk +
∑

x

λmax

⎛
⎝∑

y �=k

αxyM
xy
y

⎞
⎠,

fk =
∑

x

(1 − xk)αxk, (18)

where fk is the contribution to the value of the trivial decoding
of the kth bit, and the second term in FQ is the quantum value
of b-RAC with input strings of n − 1 bits. It follows then
that the optimal preparations are eigenstates of the operators∑

y �=k αxyM
xy
y , meaning that the encoding strategy ignores the

kth bit as stated above.
The argument above is easily generalized to the case in

which the optimal strategy ignores any number of bits. It
should be noted here, as we did in discussing classical strate-
gies in Lemma 2, that the knowledge of the bits that should be
ignored by the optimal strategy makes easier the evaluation of

FQ. However, such information does not seem to be available
in advance and can be obtained only by comparing the values
of all possible bit-ignoring strategies, making the evaluation
of FQ computationally hard. If we denote by s a given subset
of In = {0, 1, . . . , n − 1}, we can write the value associated
with an encoding-decoding strategy ignoring the bits in s as

F s
Q =

∑
k∈s

fk + F s
Q, (19)

where fk is again given by Eq. (18) and

F s
Q = max

{Mxy
y }

∑
x

λmax

(∑
y/∈s

αxyM
xy
y

)
(20)

is the contribution from the bits that are not ignored by the
encoding-decoding strategy. With this notation we can for-
mally write the quantum value as

FQ = max
s

F s
Q. (21)

It follows from this discussion that finding the b-RAC op-
timal value over quantum strategies reduces to solving, for
all s ⊂ In, the optimization problem in the second term in
Eq. (19), i.e., finding the optimal strategies involving all bits of
the input strings. In what follows, we explore the cases where
an analytical solution to this problem is available.

1. Qubit strategies

Let us now consider d = m = 2 and focus on optimal
strategies involving all the bits in the input string x. The
decoding strategies in this scenario involve two-outcome mea-
surements on qubits, which we can always write as convex
combinations of rank-1 projective and trivial measurements,
i.e., M

xy
y ∈ {0,1}. Since trivial measurements are associated

with bit-dropping strategies, which are assumed here to be
suboptimal, it follows that the quantum value can be attained
only with rank-1 projective measurements. By restricting the
decoding strategies to rank-1 projective measurements we can
express the b-RAC value as

F =
∑

x

trρx

⎛
⎝∑

y

αxyM
xy
y

⎞
⎠

= 1

2
+
∑

x

trρx

⎛
⎝∑

y

αxy(−1)xy my · σ

⎞
⎠

� 1

2
+
∑

x

∣∣∣∣∣
∑

y

αxy(−1)xy my

∣∣∣∣∣, (22)

where in the second line we have expanded the projectors
M

xy
y in the Pauli basis, M

xy
y = 1

21 + (−1)xy my · σ, my ∈ R3,
|my| = 1

2 , and in the third line we used that the value of
the trace is upper bounded by the largest eigenvalue of the
traceless operator in the argument, an upper bound that is
attained when ρx is an eigenstate associated with this eigen-
value. It follows from this result that the quantum value of the

042608-7

PEREIRA ALVES, GIGENA, AND KANIEWSKI PHYSICAL REVIEW A 108, 042608 (2023)

n2 �→ 1 b-RAC is given by

FQ = 1

2
+ max

{my}

∑
x

αx

∣∣∣∣∣
∑

y

ry|x(−1)xy my

∣∣∣∣∣, (23)

with αx = ∑
y αxy and ry|x = αxy/αx. Note that, as suggested

in Ref. [30] for the case of unbiased RACs, the value FQ can
be thought of as the (weighted) average distance traveled by a
random walker in R3 (up to some scaling and shift). Moreover,
it can be checked by direct calculation that if the vectors my

are constrained to be parallel, FQ reduces to the optimal RAC
value over classical strategies.

While the optimization problem in Eq. (22) is in general
hard to solve for arbitrary bias tensors, it greatly simplifies
if we restrict ourselves to the subclass of factorizable bi-
ases. Consider a bias such that αxy = αxry, where

∑
y ry =∑

x αx = 1 because of normalization. This means that the
inputs x and y are independent random variables. It is easy to
see in this case that, in the sum over input strings in Eq. (23),
the term associated with the string x has the same value as that
associated with string x̃ if the latter can be obtained from x by
flipping all of its bits. Taking this into account we can rewrite
FQ as the sum over only half of the input strings

FQ = 1

2
+ max

{my}

∑
x

px

∣∣∣∣∣
∑

y

ry(−1)xy my

∣∣∣∣∣
= 1

2
+ max

{G}

∑
x

px

√
trG vxvT

x , (24)

with px = αx + αx̃, vx an n-dimensional tuple with com-
ponents (vx)y = (−1)xy ry and G the Gram matrix of the
measurement vectors my, i.e., Gi j = 〈mi, m j〉. We can now
think of the sum over x in Eq. (24) as a scalar product between
two 2n−1-dimensional tuples, one with components px and
the other with components

√
trG vxvT

x . Using the Cauchy-
Schwarz inequality we can upper bound FQ by

FQ � 1

2
+
√∑

x

p2
x max

G

√
trG

∑
x

vxvT
x

= 1

2
+

√
2n−3

√∑
x

p2
x

√∑
y

r2
y , (25)

where in the last line we used that (
∑

x vxvT
x)i j = 2n−1r2

i δi j ,
as can be checked by direct calculation. It is easy to check
that this expression reduces, for αxy = 1

n2n , to the upper bound
FQ � 1

2 + (2
√

n)−1 previously derived in Ref. [30]. It is also
worth remarking that the upper bound we just derived depends
on px rather than directly on αx, and this feature holds for the
value associated with any quantum or classical strategy, since
it is a consequence of the independence of inputs x and y.

The bound in Eq. (25) was obtained via the Cauchy-
Schwarz inequality between two tuples with components αx
and

√
trG vxvT

x , respectively, which are all real and non-
negative. Thus, in order to saturate the bound following 2n−1

conditions (one per input string) must be satisfied

px√
trGvxvT

x

= 1√
2n−3

√∑
x′ p2

x′∑
y r2

y

, (26)

where as before we have written px = αx + αx̃. Note that the
quantity on the right-hand side is a constant characterizing the
particular b-RAC under study. Since projectivity of measure-
ments implies the norms of the vectors my is maximal, |my| =
1
2 , we can use that trGvxvT

x = 1
4

∑
i j (−1)xi+x j rir j cos(θi j) to

rewrite Eq. (26) as a condition to be satisfied by the angles θi j

between vectors,

∑
i< j

(−1)xi+x j rir j cos(θi j) = 1

2

⎛
⎝∑

y

r2
y

⎞
⎠(2n−1 p2

x∑
x′ p2

x′
− 1

)
.

(27)

Now fix a pair of indices (i, j), with j �= i, and define Si j as
the subset of input strings satisfying xi = x j . Then summing
over the strings in Si j in Eq. (27) we arrive at

cos(θi j) = 1

2rir j

(∑
y r2

y∑
x′ p2

x′

)⎛⎝∑
x∈Si j

p2
x −

∑
x/∈Si j

p2
x

⎞
⎠. (28)

If instead of the vectors {my} we parametrize the set of opti-
mal measurements by the cosine of the angles between them,
then Eq. (28) shows how to construct the optimal decoding
strategy from the biasing parameters when the upper bound
(25) is attained. On the other hand, we can use the relation
to quickly discard the possibility of the bound being attained:
If for a given b-RAC the cosines generated by Eq. (28) are
inconsistent, then the upper bound cannot be attained. Consis-
tency here turns out to be equivalent to (1) cos(θi j) ∈ [−1, 1]
and (2) the matrix with elements

G̃i j =
{

1
4 if i = j
1
4 cos (θi j) if i �= j

(29)

being positive semidefinite.
It turns out that in the 22 �→ 1 scenario whenever quantum

strategies can provide some advantage over their classical
counterpart, this upper bound is actually attainable, as shown
in the following lemma.

Lemma 4. The quantum value of a 22 �→ 1 b-RAC with
biasing strategy αxy = αxry is

FQ = max

⎧⎨
⎩FC,

1

2
+ 1√

2

√∑
x

p2
x

√∑
y

r2
y

⎫⎬
⎭, (30)

where FC = 1
2 + max{ 1

2 p00 + 1
2 p01(r0 − r1), 1

2 p00(r0 − r1) +
1
2 p01}, with px = αx + αx̃, is the optimal performance over
classical strategies.

Proof. Since n = 2 the sum over y in Eq. (24) has only
two terms. This means, since vectors my have maximal norm,
that there is only one parameter to optimize over, which is the
angle θ between m0 and m1. Looking for critical values, we
find that the b-RAC functional can attain a maximal value only
for θ satisfying sin(θ) = 0 or

cos(θ) =
(

r2
0 + r2

1

2r0r1

)(
p2

00 − p2
01

p2
00 + p2

01

)
, (31)

which is just the condition in Eq. (28), implying that FQ is then
given by Eq. (25). On the other hand, if θ equals 0 or π , then
FQ reads 1

2 + 1
2 p00 + 1

2 p01(r0 − r1) and 1
2 + 1

2 p00(r0 − r1),

042608-8

BIASED RANDOM ACCESS CODES PHYSICAL REVIEW A 108, 042608 (2023)

respectively. These two quantities can be checked to corre-
spond to the two options present in the expression for the
classical value. �

Lemma 4 shows not only that the upper bound given in
Eq. (25) can be attained, but that it will be attained with any
bias for which quantum strategies provide any advantage over
classical strategies, thus providing a complete solution to the
22 �→ 1 b-RAC value problem. Moreover, it follows from the
proof that attaining the upper bound in Eq. (25) self-tests
the angle θ between the Bloch vectors defining the optimal
measurements. Unfortunately such a simple result does not
hold for a larger number of bits, with solutions becoming more
complex already in the case of 3-bit input strings. For this
particular case, nonetheless, the upper bound in Eq. (25) still
can be attained for many biasing tensors, as we show in the
following lemma, which extends the proof of Lemma 4.

Lemma 5. The quantum value FQ of a 32 �→ 1 b-RAC is
given by

FQ = 1

2
+
√∑

x

p2
x

√∑
y

r2
y , (32)

whenever there exists an optimal decoding strategy for which
the Bloch vectors {my} are linearly independent.

Proof. If the vectors are linearly independent, then the
ensuing Gram matrix G is full rank. As we did in Eq. (24), we
can write the optimal performance in terms of the elements
of Gi, j = 〈mi, m j〉 = 1

4 cos (θi j) and in doing so parametrize
FQ by the angles θi j , which are all independent. As a conse-
quence, a critical point will satisfy ∂θi j FQ = ∂Gi j FQ sin θi j = 0,
which implies ∂Gi j FQ = 0 because of the independence of the
measurement operators. A direct calculation shows then that
a critical point {θi j} should be such that the following relation
is satisfied ∀ i, j:∑

x

px√
trGvxvT

x

(−1)xi+x j = 0. (33)

This equation can be rewritten as a matrix equation A · b = 0
with

bx = px√
trGvxvT

x

, (34)

and A ∈ R3×4 a matrix with entries A(i, j),x = (−1)xi+x j . It is
straightforward to check that the null space of A is Null(A) =
span{(1, 1, 1, 1)}, implying that in a critical point the quotient

px√
trGvxvT

x

takes the same value for all strings x, and that this

value is

√ ∑
x p2

x
2n−3

∑
y r2

y
, thus proving that the only critical point in

FQ satisfies condition (26) and FQ is given by the upper bound
in Eq. (25). �

The above lemma shows that the cosines built up from
the biasing parameters via the condition in Eq. (28) will
indeed provide the optimal measurements if, in addition to
being consistent, the matrix G̃ of Eq. (29) is full rank. More-
over, it is clear that attaining the upper bound in Eq. (25)
self-tests the angles satisfying Eq. (28) since the optimal
performance is achieved only by satysfing these relations.
We can give a geometric interpretation to these conditions
by noting that positive semidefiniteness of G̃ is ensured if

its determinant is non-negative. We can write this last con-
dition as 1 −∑

i< j cos2(θi j) + 2
∏

i< j cos(θi j) � 0, which is
the equation of an “inflated tetrahedron” centered at the origin.
Note that this origin corresponds to cos(θi j) = 0 ∀i �= j, i.e.,
the angles associated with mutually unbiased measurements,
which are in turn the optimal decoding strategy for the case of
unbiased input strings x, as can be easily checked in Eq. (28).
Therefore, we have that the upper bound in Eq. (25) becomes
the quantum value whenever the optimal measurements, as
described by the three cosines {cos(θi j) = 4 〈mi, m j〉}, live
inside the inflated tetrahedron.

The geometrical picture introduced above turns out to be
very helpful in understanding how different measurements
become optimal as the bias tensor αxy departs from αxy = 1

323 ,
which is the unbiased case. In what follows we study the so-
lution when the bias tensor corresponds to one of the built-in
biasing functions described in Sec. III. A similar analysis for
other of these built-in biases can be found in Appendix C.

2. The X_ONE and Y_ALL bias family

We can have a better understanding about how different
decoding strategies become optimal for different biases by
analyzing a few examples. Consider the case of an input string
bias of the form

αx =
{
w if x = 000
1−w

7 otherwise
, 0 � w � 1 (35)

in combination with an arbitrary distribution {ry} for the
requested bit. A numerical analysis suggests that for all mem-
bers of the family the optimal quantum strategy involves all
three bits in the input string, in which case the optimal per-
formance is given by Eq. (23). In what follows then we will
restrict our attention to those strategies.

The optimal decoding strategy for w in the vicinity of 1
8 is

expected to be determined by Eq. (28). We find, for a bias of
this form, that the upper bound in Eq. (25) is attainable if the
biasing coefficients are such that the three cosines

cos[θi j (w)] =
∑

y r2
y

2rir j
h(w), (36)

where

h(w) = 32w2 + 20w − 3

48w2 − 12w + 13
(37)

is an increasing function for w ∈ [0, 1], and h(1
8) = 0, are

found to be consistent. Note that from Eq. (36) it fol-
lows that the optimal strategy (cos[θ01(w)], cos[θ02(w)],
cos[θ12(w)]) ∈ R3 continuously departs from the center of the
tetrahedron as w increases, in a direction that is specified by
both the sign of h(w) and the fixed but otherwise arbitrary
choice of the {ry} bias. In what follows we will focus on
the case of h(w) � 0, i.e., w ∈ [1/8, 1], since it is enough to
understand the behavior of the solutions in the entire interval.

For uniform {ry} we see that the cosines in Eq. (36) are the
same ∀i, j and consistent for 1

8 � w � 5/12, increasing from
0 to 1 as w ∈ [1/8, 1] increases. Within this region, quantum
strategies have an advantage over the classical ones except for
w = 5/12, in which case the two values coincide, FQ = FC .
The optimal decoding strategy moves from the center of the

042608-9

PEREIRA ALVES, GIGENA, AND KANIEWSKI PHYSICAL REVIEW A 108, 042608 (2023)

inflated tetrahedron described above to its (1, 1, 1) vertex as
w increases within [1

8 , 5
12]. For biasing parameter w > 5

12 the
cosines determined by Eq. (36) stop being consistent and
the optimal strategy is expected to remain in the vertex of
the tetrahedron, as follows from Lemma 5 and the symmetry
of the solution. The optimal performance resulting from this
analysis is shown in Fig. 4, in comparison with the numer-
ical value obtained with the see-saw procedure described in
Sec. II A.

Now let {ry} be biased such that r0 > r1 = r2. In this
situation the condition in Eq. (36) implies cos[θ01(w)] =
cos[θ02(w)] < cos[θ12(w)]. As in the previous case the point

in R3 representing the optimal strategy moves away from the
coordinate origin as w increases, but now towards a point
located on the edge of the tetrahedron connecting the (1, 1, 1)
and (−1,−1, 1) vertices, and reaching it for a given value

wc of the biasing parameter satisfying h(wc) = 2r2
1

r2
0 +2r2

1
. For

larger values of w, FQ is no longer given by Eq. (25), but
numerics suggest that the optimal solution remains on the
edge of the tetrahedron, i.e., cos[θ12(w)] = 1 for w > wc,
moving towards the (1, 1, 1) vertex as w increases. We can
find the ensuing value FQ by imposing m1 = m2 in the first
line of Eq. (24), which leads to

FQ(w > wc) = 1

2
+ r0

2
(p010 + p001) + max

{m0,m1}
{p000|r0m0 + 2r1m1| + p100|r0m0 − 2r1m1|}

� 1

2
+ r0

2
(p010 + p001) + 1√

2

√
r2

0 + 4r2
1

√
p2

000 + p2
100

(38)

with the upper bound in the second line being attained for cos[θ01] = cos[θ02] = copt, where

copt =
(

r2
0 + 4r2

1

4r0r1

)(
p2

000 − p2
100

p2
000 + p2

100

)
(39)

follows from Eq. (31). As already discussed, FQ coincides with this upper bound when the cosines produced by Eq. (39) as long
as −1 < copt < 1, becoming equal to the optimal classical value otherwise. The piecewise-defined optimal performance,

FQ =
⎧⎨
⎩

1
2 +√∑

x p2
x

√∑
y r2

y if w � wc

1
2 + r0

2 (p010 + p001) + 1√
2

√
r2

0 + 4r2
1

√
p2

000 + p2
100 if w � wc,

(40)

results from this analysis and is depicted in Fig. 5, together
with the results obtained from the numerical package and
the upper bound value in Eq. (25), for the case r0 = 1

2
and r1 = r2 = 1

4 .
For any other bias in {ry}, the solution will have a similar

behavior as a function of w, departing from the origin as the
parameter increases but reaching the boundary of the inflated
tetrahedron somewhere over one of the curved faces at a
given critical value wc of the biasing parameter. For w > wc

the optimal measurements are no longer independent and the
solution remains on the boundary, moving towards the vertex
as w approaches 1 (in the limit w �→ 1 only the contribution
from x = 000 string is relevant, and therefore all the angles
between measurements tend to zero). Finally, note that if we
choose an analogous bias in which the weight w in Eq. (35) is
assigned to a string different from 000, we will reach a similar
conclusion except that some of the cosines in Eq. (36) might
become negative, and for w �→ 1 the optimal solution might
converge to a different vertex of the tetrahedron.

V. ANALYTICAL RESULTS FOR THE 2d �→ 1 RAC

After analyzing the quantum value of different b-RACs in
the qubit setting, here we explore the strategies attaining the
quantum value of the 2d �→ 1 b-RAC. In this scenario, if we
consider a factorizable bias tensor αxy = αxry and a quantum
realization {ρx0x1 , Mx0

0 , Mx1
1 }, the b-RAC value is given by

F =
∑
x0x1

αx0x1 tr
[
ρx0x1

(
r0Mx0

0 + r1Mx1
1

)]
, (41)

with xi ∈ {0, . . . , d − 1}, and where ρx0x1 and M
xy
y are opera-

tors over a d-dimensional Hilbert space.
For the particular case of αx0x1 = 1

d2 and ry = 1
2 it is known

that the quantum value can be attained only with rank-1 pro-
jective measurement operators [34]. On the other hand, the
results produced by the RAC-tools package for 2d �→ 1 b-
RACs with d � 6 (see Appendix D) suggest that optimizing
over projective measurements might already be enough to find
the quantum value. In the following, we will then restrict
ourselves to finding the optimal quantum strategies using
projective measurements. As we will see in the following
lemma, it is possible in this scenario to derive an upper bound
analogous to Eq. (25) found for the n2 �→ 1 b-RAC.

Lemma 6. The optimal value over projective measure-
ments, FP, of the 2d �→ 1 b-RAC defined by the bias tensor
αxy = αxry satisfies

FP � 1

2
+ 1

2

√
d2 − 4d (d − 1)r0r1

√∑
x0x1

α2
x0x1

. (42)

Proof. We begin by noting that r0Mx0
0 + r1Mx1

1 is positive
semidefinite, and as a consequence the value of the functional
in Eq. (41) is upper bounded by

FP �
∑
x0x1

αx0x1λx0x1 , (43)

where λx0x1 denotes the largest eigenvalue of r0Mx0
0 + r1Mx1

1 .
Because the measurements are assumed to be projective, by
Jordan’s Lemma there is a basis in which the operators Mx0

0

042608-10

BIASED RANDOM ACCESS CODES PHYSICAL REVIEW A 108, 042608 (2023)

FIG. 4. Top: Optimal performance of the 32 �→ 1 RAC, with
X_ONE bias, over classical (red squares) and quantum (blue dots)
encoding-decoding strategies. For w ∈ [1/8, 5/12) the quantum
value is given by the upper bound in Eq. (25) (solid line) and is
strictly larger than its classical counterpart. For larger values of
the biasing parameter the two values coincide. Bottom: Angles θi j

between the Bloch vectors defining the measurement operators in
the optimal decoding strategy. As expected from the symmetry of
the bias tensor, the three angles coincide and have positive values
in the quantum advantage region w ∈ [1/8, 5/12), vanishing for
w � 5/12.

and Mx1
1 are jointly block-diagonal, with blocks of dimension

1 or 2. The restriction of these projectors to the kth Jordan
block, Pk and Qk , respectively, are rank-1 projectors regardless
of the block dimension. The angle between the pure states on
which they project, defined by cos2 (θk) = trPkQk , is one of
the principal angles between Mx0

0 and Mx1
1 . The principal angle

defines the coefficients of Pk and Qk when the block is two-
dimensional, which are given by

Pk = 1

2

[
1 + cos (θk) sin (θk)

sin (θk) 1 − cos (θk)

]
, (44a)

Qk = 1

2

[
1 + cos (θk) − sin (θk)
− sin (θk) 1 − cos (θk)

]
. (44b)

It follows then that we can write

r0Mx0
0 + r1Mx1

1 =
∑

k

r0Pk + r1Qk, (45)

FIG. 5. Top: Optimal performance of the 32 �→ 1 RAC with
X_ONE bias and r0 = 0.5, r1 = r2 = 0.25. As a result of the bias
in the requested bit, one of the conditions in Eq. (36) is saturated
before the other two, giving rise to a region in which the optimal
quantum performance (blue dots) is strictly larger than the optimal
classical value (red squares) but nonetheless strictly smaller than
the upper bound in Eq. (25) (solid line). This region is found to
be w > 1

12 (7
√

3 − 9). Bottom: Angles θi j parametrizing the optimal
decoding strategy. Because of the asymmetry in the bias, one of the
angles, θ12 (orange diamonds), is different from the other two (green
triangles) and decreases faster as a function of the biasing parameter
w, vanishing exactly at w = 1

12 (7
√

3 − 9).

implying that λx0x1 is the largest eigenvalues of one of
the blocks r0Pk + r1Qk . If the corresponding block is two-
dimensional, a direct calculation shows it is given by

λx0x1 = 1
2

[
1 + max

k

√
1 − 4r0r1 sin2(θk)

]
� 1

2

[
1 +

√
1 + 4r0r1

(
trMx0

0 Mx1
1 − 1

)]
(46)

where, in the last line, we used that cos2 (θk) = trPkQk and
that trPkQk � trMx0

0 Mx1
1 ∀ k. If the block is one-dimensional,

then it is easy to see that λx0x1 ∈ {0, r0, r1, 1}, in which case
the upper bound in Eq. (46) also holds. Combining this upper
bound with the Cauchy-Schwarz inequality we arrive at

FP � 1

2
+ 1

2

√
d2 − 4d (d − 1)r0r1

√∑
x0x1

α2
x0x1

, (47)

042608-11

PEREIRA ALVES, GIGENA, AND KANIEWSKI PHYSICAL REVIEW A 108, 042608 (2023)

where we have used the completeness relation satisfied by the
measurement operators to write

∑
x0x1

trMx0
0 Mx1

1 = d . �
As follows from the the proof given above, attaining the

upper bound of Lemma 6 is possible if there exist projectors
M

xy
y such that the upper bound in Eq. (46) is saturated and

condition √
1 + 4r0r1

(
trMx0

0 Mx1
1 − 1

) ∝ αx0x1 (48)

is satisfied, where the proportionality constant is easily found
to be

C =
√

d2 − 4r0r1d (d − 1)∑
x0x1

α2
x0x1

. (49)

Now note that the measurement operators satisfy trMxy
y =

rank(Mxy
y), since we are considering projective measurements.

Then, squaring equation Eq. (48) and summing over either x0

or x1 we arrive at

rank
(
M

xy
y
) = 1

4r0r1

⎡
⎣d (4r0r1 − 1) + C2

∑
x1−y

α2
x0x1

⎤
⎦. (50)

It is then easy to check that for αx0x1 = 1
d2 Eq. (50) implies that

the upper bound in Eq. (42) can be attained only with rank-
1 measurement operators. In fact, by virtue of Eq. (48) we
have that the optimal measurements are mutually unbiased,
thus recovering the solution reported in [34] for the case r0 =
r1 = 1

2 , and extending it to arbitrary biases on Bob’s input.
Figure 6 shows the agreement of the optimal value provided
by the numerical package and the upper bound in Lemma 6
for the cases d = 3, d = 4, and d = 5.

The upper bound in Eq. (42) can also be attained for more
general b-RACs. Indeed, since for any pair of rank-1 projec-
tive measurements it holds that trMx0

0 Mx1
1 = |Ux0x1 |2, with U a

d × d unitary matrix, it follows from the condition in Eq. (48)
that the upper bound in Eq. (42) will be attainable with rank-1
projectors if there exists a unistochastic matrix B satisfying

Bx0x1 = 1 + 1

4r0r1

(
C2α2

x0x1
− 1

)
. (51)

Last, it is worth remarking that for some particular biases the
optimal measurement operators may satisfy rank(Mxy

y) �= 1,
as suggested by Eq. (50). Actually, as follows from the discus-
sion above, for any pair of projective measurements saturating
inequality Eq. (46) we can find b-RAC such that its optimal
value is attained by these measurements. By summing over x0

and x1 in Eq. (48) we find that the entries of the bias tensor
specifying this b-RAC are given by

αx0x1 =
√

1 + 4r0r1
(
trMx0

0 Mx1
1 − 1

)
∑

x0x1

√
1 + 4r0r1

(
trMx0

0 Mx1
1 − 1

) . (52)

It should be noted that the b-RACs defined in this way are
not necessarily interesting from the perspective of studying
the advantages of quantum resources, since there is no guaran-
tee regarding the distance of the upper bound to the classical
value; e.g., if the measurements we have chosen commute,
then the upper bound will coincide with the classical value.

FIG. 6. Top: Optimal performance over quantum (blue dots) and
classical strategies (red squares) of the 25 �→ 1 b-RAC defined by
the bias tensor αxy = 1

d2 ry corresponding to the Y_ONE family, as
computed by the RAC-tools package. The numerical results for the
quantum value are compared with the upper bound in Eq. (42)
(solid line). Bottom: Numerical results for the quantum value of the
2d �→ 1 b-RAC for d = 3 (blue dots), d = 4 (purple squares), and
d = 5 (cyan diamonds).

This procedure can be used to build b-RACs tailored to spe-
cific pairs of projective measurements, in which the operators’
rank is not restricted to 1.

VI. CONCLUSIONS

In this work, we have presented b-RACS as a generaliza-
tion of the RAC protocol in which the distribution of inputs
to the parties is not necessarily uniform. Introducing a bias
on these distributions has a profound impact on both the
optimal value of the RAC functional and encoding-decoding
strategies achieving it, and also on the capacity of quantum
devices to provide an advantage in the protocol performance.
Understanding how to optimize the performance of a given
biased RAC is therefore a step in improving our understanding
of the advantages of quantum resources.

The problem of optimizing the performance of an arbitrary
b-RAC can be approached numerically with the aid of the al-
gorithms we have presented here, which can be implemented
by means of the RAC-tools Python package we produced for

042608-12

BIASED RANDOM ACCESS CODES PHYSICAL REVIEW A 108, 042608 (2023)

that purpose. The package allows the user to define arbitrary
biases in the input distribution, and compute the classical and
quantum value of the ensuing RAC functional, along with the
encoding and decoding strategies attaining these values. We
have used the package to study the b-RAC performance for
different biases in the n2 �→ 1 and 2d �→ 1 scenarios, focused
in the case of uncorrelated inputs. For these examples we
also provide analytical results for the quantum value and the
measurements attaining it, showing how these are determined
by the chosen input bias.

In the n2 �→ 1 scenario, we have found that both classical
and quantum optimal strategies may actually ignore part of the
input strings. For quantum strategies it is first observed that
optimal decoding can always be done with projective mea-
surements. This allows the derivation of a simple upper bound
which coincides with the quantum value for 22 �→ 1 b-RACS
and, in some cases, for 32 �→ 1 b-RACs. Moreover, it is shown
that attaining this upper bound self-tests the angles between
the optimal measurement operators and, in particular, for the
case of uniformly distributed input strings the optimal b-RAC
performance certifies that the measurements correspond to
MUBs. The argument in the derivation of this upper bound can
be extended to the 2d �→ 1 scenario, providing thus an upper
bound to the optimal performance achievable with projective
measurements. This bound is shown to be always attainable
using mutually unbiased measurements if the distribution of
input strings is unbiased, regardless of the bias on the distri-
bution of requested characters. For more general biases the
upper bound will in general not be attainable, but we have
shown that there are several instances in which this value
is achievable. It is still not clear at the time of writing if,
as suggested by our numerical results, the optimal b-RAC
performance in this scenario is attainable only with projective
measurements. In that case the upper bound we derived would
coincide with the quantum value, and it would be worth to
investigate the possibility of extending the self-testing results
previously derived for the unbiased RAC in this scenario.

We have focused the discussion of analytical results in this
work, almost completely, on the case of biased RACs in which
the inputs of both parties are uncorrelated, since introducing
correlations between them departs from the original spirit of
the RAC protocol. Nevertheless, investigating how correla-
tions in the inputs affect the performance of the protocol is
an interesting next step for which the numerical tools we have
developed are applicable.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with Máté Farkas.
The project “Fundamental aspects of the quantum set of cor-
relations” (Grant No. 2019/35/D/ST2/02014) is carried out
within the SONATA project of the National Science Centre,
Poland.

APPENDIX A: PROOF OF LEMMA 1

Proof. For statement (a), assume that a particular encoding
function E (x) = μ is fixed. If so, the performance of F in
Eq. (2) for an arbitrary set of decoding functions {Dy}n−1

y=0 is

given by

F =
∑
x,y

αx,y,Dy (E (x)) =
∑
x,y,μ

αx,y,Dy (μ) δμ,E (x), (A1)

where we used Eq. (4) to compute the statistics. Then the max-
imization of F over the set of decoding functions is equivalent
to the maximization of the image of Dy(μ):

max
{Dy}y

F =
∑
μ,y

max
Dy (μ)

{∑
x

αx,y,Dy (μ) δμ,E (x)

}
, (A2)

which yields, for some y and μ, D∗
y (μ) = b, where b is the

optimal image of Dy(μ).
Now, for statement (b), we proceed similarly by assuming

that the decoding functions Dy(μ) are fixed for all y. Then the
value assumed by F for an arbitrary encoding function E (x)
is written as

F =
∑
x,y

αx,y,Dy (E (x)). (A3)

Analogous to statement (a), the maximization of F over the
encoding function is equivalent to maximize the image of
E (x):

max
E

F =
∑

x

max
E (x)

{∑
y

αx,y,Dy (E (x))

}
, (A4)

which produces E∗(x) = μ, where μ is the optimal image for
E (x). �

As explained in the main text, this lemma is useful in re-
ducing the inherent complexity associated with the exhaustive
search algorithm. To provide further clarity, we can maximize
Eqs. (A2) and (A4) with respect to the encoding and decoding
functions, respectively. This additional maximization yields
the classical value of F for both case, as follows:

FC = max
E

{∑
x,y

αx,y,D∗
y (E (x))

}
, (A5a)

FC = max
{Dy}n−1

y=0

{∑
x,y

αx,y,Dy (E∗(x))

}
. (A5b)

That is, Eqs. (A5a) and (A5b) introduce a two-step maxi-
mization method that yields the precise classical value. For
Eq. (A5a), we first optimize over the decoding functions and
then over the encoding functions. Conversely, for Eq. (A5b),
we follow the reverse order. This simple modification avoids
the maximization over all combinations of E and {Dy}n−1

y=0.
Furthermore, since the RAC protocol is asymmetrical with
respect to Alice and Bob, the difference between Eqs. (A5a)
and (A5b) relies only on the computational complexity for
each case.

APPENDIX B: RAC-TOOLS USER GUIDE

In the main text, we introduced the functions that make up
the RAC-tools package. In this Appendix, we provide a more
detailed description of these functions and their features.

042608-13

PEREIRA ALVES, GIGENA, AND KANIEWSKI PHYSICAL REVIEW A 108, 042608 (2023)

1. The generate_bias function

Since our interest in this work is to study the quantum
and classical value of biased RACs, the main feature of the
RAC-tools package is that it allows the user to introduce bias
in the RAC functional, which will be optimized by either the
perform_search or perform_seesaw functions. One way
of doing this is by building a custom bias tensor and passing
it as an argument to either of these functions as a Python
dictionary. However, as constructing a bias tensor requires
some effort, we provide a functionality that allows the user
to choose from several simple and natural families of bias
tensors. Each of these families takes one or more parameters,
and it is particularly interesting to study the behavior of RACs
as we vary the parameter. An example of such a construction
was given at the beginning of Sec. III. In what follows we
describe in detail the built-in bias options that the user can
access via the generate_bias function.

The goal of generate_bias, in short, is to construct a
properly normalized bias tensor using only a few previously
specified parameters. This function is not intended to be called
by the user, who should in turn specify the parameters defin-
ing the desired bias tensor as arguments of the optimization
functions. In order to do so, the value of two variables, bias
and weight, must be specified. The variable bias is a string
determining the structure of the bias to be generated, whereas
the variable weight is a real-valued parameter (or a vector
of parameters) that determines the actual weights given to
different terms in the objective function.

As an example, we can consider a general version of the
Y_ONE bias family already introduced in the main text. This
is a family of bias tensors in which the input strings x are
distributed uniformly, but there is bias in Bob’s input, as one
of the characters of x, e.g., xk , is requested more (or less)
frequently than the others. If we call w the parameter defining
how often Bob is asked to recover xk , then the bias tensor takes
the form

αxy =
{

1
mn w if y = 0,

1
mn

(1−w)
n−1 otherwise.

(B1)

In order to build this bias tensor via the generate_bias
function, we need to pass as arguments of either
perform_search or perform_seesaw the following
string and float: bias=‘‘Y_ONE’’ and weight=w. By
symmetry, the Y_ONE family considers only biasing the
first character against the rest, as biasing other values of y
produces analogous results. It is possible, nevertheless, to
introduce a bias on the frequency with which any of the
characters xy is requested from Bob. This can be done by
setting bias=‘‘Y_ALL’’ and weight=List, where List is
a list (or a tuple) of floats of length n adding up to one. In this
case, the bias tensor obtained from generate_bias takes the
form

αxy = 1

mn
wy, (B2)

where wy is the weight corresponding to the yth character in
the input string x and the factor 1

mn results from the input
strings x being uniformly distributed.

For introducing biases in the distribution of input strings,
the package offers several one-parameter families, which we
enumerate below:

(1) X_ONE. Analogous to the Y_ONE family, it biases the
input x = 0×n against the mn − 1 remaining strings. The user
is allowed to define the weight w that will be given to this first
input, which will be used to generate a bias tensor of the form
αxy = αx

1
n , where

αx =
{
w if x = 0×n,
1−w
mn−1 otherwise. (B3)

(2) X_DIAG. This family of biases gives a special weight
to input strings of the form x = i×n, where i = 0, . . . , m − 1.
Since there are m of these strings, in terms of the parameter
w controlled by the user, the distribution of input strings takes
the form

αx =
{

w
m if x = i×n,
1−w

mn−m otherwise.
(B4)

(3) X_CHESS. In this case, the input strings are split into
two classes depending on whether

∑
j x j is odd or even. Since

the parity of the total number of strings is the same as that of
m, when the latter is even, half of the strings go into each of
the classes defined above. In that case, in terms of the weight
w chosen by the user, the ensuing distribution of input strings
is given by

αx =
{

2w
mn if

∑
j x j is even,

2(1−w)
mn otherwise.

(B5)

On the other hand, if m is odd, the number of strings satisfying∑
j x j odd is mn−1

2 . In that case, the distribution of input strings
reads

αx =
{

2w
mn−1 if

∑
j x j is odd,

2(1−w)
mn+1 otherwise.

(B6)

For n = 2, we can think of the elements of αx as the entries of
a matrix, in which case the biased elements are arranged in a
pattern that resembles a chess board.

(4) X_PLANE. As before, the idea of this type of bias is to
split the set of strings into two classes defined by the condition
x0 = 0. This corresponds to biasing just the first bit of the
input string. Since there are mn−1 strings satisfying x0 = 0,
in terms of the parameter w, the ensuing distribution of input
strings reads

αx =
{

w
mn−1 if x0 = 0,

1−w
mn−mn−1 otherwise.

(B7)

All the biases introduced so far depend only on x or only
on y. In the next step, we could take one bias of each kind
and combine them, which would lead to a product distribution
over x and y. However, as mentioned in the introduction,
there is no reason why we should restrict ourselves to product
distributions. If we go back to the linear functional given in
Eq. (2), it is natural to consider the case where the coeffi-
cients of the functional depend only on b, i.e., the answer
that Bob is expected to give. In Appendix C we discuss such
scenarios and refer to them as B_ONE and B_ALL biases. In
our usual language such cases correspond to nonfactorizable

042608-14

BIASED RANDOM ACCESS CODES PHYSICAL REVIEW A 108, 042608 (2023)

FIG. 7. Report produced by the perform_search function for
the unbiased 22 �→ 1 RAC. The first part of the report provides the
user with information about the computation, whereas the second
part provides the user with the RAC classical value and a realization
attaining it. In this example, the value is found through an exhaustive
search of the best value over both encoding and decoding maps.

distributions of inputs x and y. The first bias of this kind,
bias=‘‘B_ONE’’, corresponds to biasing the first outcome
of Bob, b = 0, against the remaining d − 1 outputs

αxy =
{

1
n

1
mn−1 w if xy = 0,

1
n

1
mn−1

(1−w)
m−1 otherwise,

(B8)

where 1
n

1
mn−1 is the normalization factor. If a more gen-

eral bias of the outputs is required, then the user can enter
bias=‘‘B_ALL’’ as an option, in which case they should
input as weight a Python list (or tuple). The generate_bias
function will then output a bias tensor of the form

αxy = 1

n

1

mn−1
wxy , (B9)

where wxy is the weight on the character xy – and consequently
on the bth output of Bob since b = xy.

2. The perform_search function

The goal of perform_search is to exactly compute the
best classical performance of a given nm d�→ 1 RAC. The
function can perform this computation either via a complete
exhaustive search or by means of the less expensive ap-
proach that follows from Eqs. (A5a) and (A5b). To operate
perform_search it is enough to specify in its argument the
three integers defining the scenario, n, d , and m, and the
search method. The latter can be introduced by declaring
either method=0 for a pure exhaustive search, method=1 for
a search over encoding maps as in Eq. (A5a), or method=2
for a search over decoding maps as in Eq. (A5b), which is the

default method. Furthermore, the value of m is set by default
to coincide with that of d , so that users are not expected to
declare it unless they require these numbers to be different.

An example of how this function operates can be seen
in Fig. 7, in which the user desires to estimate the classical
value of the 22 �→ 1 unbiased RAC. The function is called
passing as arguments n=2, d=2, and method=0, and once
the procedure is finished the report in Fig. 7 is printed. The
Summary of computation section of the report informs the
user the total time of computation as well as the total number
of encoding and decoding functions analyzed for the chosen
search method. For the case of method=0, this latter infor-
mation corresponds to the total number of combinations of
encoding and decoding functions, i.e., dmn × mdn. In addition,
the average time taken to iterate over each function (or combi-
nation of encoding and decoding functions, if method=0) is
displayed at Average time per function.

In the second part of the report, the user can see the
computed classical value and the number of functions that
achieve this value. Also, the report provides the user with a
particular pair of encoding and decoding strategies attaining
the optimal value. For the encoding function E (x), the result
is displayed in a tuple that is organized in ascending order of x,
i.e., [E (00 . . . 0), E (00 . . . 1), . . . , E ((m − 1) . . . (m − 1))].
For the decoding functions Dy(μ), each row corresponds to
a distinct input y and it is organized in ascending order of μ.
As it is expected from Lemma 2, the optimal strategy reported
in Fig. 7 consists of a majority encoding function and identity
map for decoding.

Before closing, we would like to recall that the exhaustive
search method will necessarily require more computation time
than that required by either of the two approaches following
from Lemma 1, since in the first case the search is performed
over both encoding and decoding maps. Table I presents a
comparison in terms of computation time for all of the three
methods. The table shows that the method in Eq. (A5b) is the
best in terms of computation time for most part of the cases,
except for a few cases in which d is the largest integer and
n = 2. In those cases, the method in Eq. (A5a) is equivalent
or better.

3. The perform_seesaw function

This function implements the see-saw algorithm described
in Sec. II A, and its goal is to provide lower bounds to the
quantum value of a given nm d�→ 1 b-RAC. As is the case
with perform_search, the perform_seesaw function takes
as argument the integers defining the scenario, n, d , and m
and the bias tensor, either as a dictionary or via one of the
aforementioned built-in options. The user is also asked to pass
as an argument the number of starting points for the algorithm
by means of the variable seeds. Moreover, it is possible to use
this function to compute a lower bound to the classical value,
by means of the variable diagonal. If diagonal=True, the
function initializes the see-saw algorithm with random diag-
onal measurements, and the optimization is then restricted to
operators which are diagonal in the computational basis. By
default, diagonal=False, and the algorithm optimizes the
functional value over POVM measurements.

042608-15

PEREIRA ALVES, GIGENA, AND KANIEWSKI PHYSICAL REVIEW A 108, 042608 (2023)

TABLE I. Cases which can be executed in less than one hour for method=0. Computation time comparison with method=1 and
method=2. For the construction of this table, an octa-core CPU was used (4×3.2 GHz and 4×2.064 GHz). The first column contains the
executable cases for a given nm d�→1 RAC. The second column contains the classical value computed for each unbiased case. The other columns
contain the time taken to execute each procedure. Cases are sorted in ascending order by computation time for method=0.

nm d�→ 1 Classical value Time (method=0) Time (method=1) Time (method=2)

22 2�→ 1 3/4 1.8 ms 0.32 ms 0.28 ms

22 3�→ 1 7/8 26 ms 2 ms 1.2 ms

32 2�→ 1 3/4 0.14 s 11 ms 2.4 ms

22 4�→ 1 1 0.18 s 7.8 ms 6.5 ms

23 2�→ 1 5/9 0.22 s 21 ms 2.6 ms

22 5�→ 1 1 1.4 s 19 ms 28 ms

22 6�→ 1 1 12 s 40 ms 82 ms

32 3�→ 1 19/24 21 s 0.16 s 23 ms

23 3�→ 1 2/3 1 min 4 s 0.42 s 27 ms

22 7�→ 1 1 1 min 29 s 61 ms 0.25 s

24 2�→ 1 7/16 2 min 20 s 2.2 s 12 ms

42 2�→ 1 11/16 5 min 18 s 2.4 s 21 ms

22 8�→ 1 1 11 min 6 s 0.1 s 1 s

32 4�→ 1 5/6 33 min 16 s 1.5 s 0.12 s

When called, perform_seesaw runs the see-saw algo-
rithm as many times as the number of seeds specified by
the user, generating a lower bound to the quantum value per
starting point. The best value is therefore the largest among all
these lower bounds, implying that the chances of the function
providing the actual quantum value of the b-RAC increase
with the number of seeds, as well as the computation time.
In Table II, we provide the number of seeds used to generate
the numerical results presented in the main text and later in
Appendix C.

TABLE II. Number of seeds used for the numerical results pre-
sented in the figures. The first column contains the executable cases
for a given nd �→ 1 RAC followed by the bias family in the second
column. The third column contains the number of seeds used fol-
lowed by a link to the respective figure. For the cases where the
realization varies smoothly according to the weight, only a few
seeds are needed. This is the case of all bias families explored in
this work expect for X_PLANE, in which there is a critical point for
weight in which the realization starts to ignore a bit.

nd �→ 1 Bias Seeds Figure

32 �→ 1 X_ONE 3 Fig. 4
32 �→ 1 X_ONE with r0 = 0.5 3 Fig. 5

and r1 = r2 = 0.25
23 �→ 1 Y_ONE 3 Fig. 6
24 �→ 1 Y_ONE 3 Fig. 6
25 �→ 1 Y_ONE 3 Fig. 6
42 �→ 1 Y_ONE 3 Fig. 9
22 �→ 1 X_CHESS 3 Fig. 10
22 �→ 1 X_PLANE 10 Fig. 11
32 �→ 1 X_PLANE 10 Fig. 12

Because the see-saw algorithm is iterative, convergence
criteria must be adopted to decide whether the optimal value
for a given seed has been attained after a particular number of
steps. In the perform_seesaw implementation of this algo-
rithm, we impose two convergence criteria, and the procedure
is finished whenever the two are satisfied. The first criterion
is related to the convergence of the F value. It is satisfied
whenever the difference between two consecutive evaluations
of F is smaller than a value that can be set by the user
via the variable prob_bound. The default value of this vari-
able is set to 10−9. The second stopping criterion considers
the convergence of the measurements, and it focuses on the
distance between the optimal measurement operators in two
consecutive iterations of the algorithm. More precisely, we
will say that the measurements converged if the condition

max
y,b

∣∣∣∣Mb
y − Nb

y

∣∣∣∣ < t (B10)

is satisfied, where || · || denotes the Frobenius norm, Nb
y and

Mb
y denote two consecutive measurement operators associated

with the same value of the yth character of the input x, and t is
a threshold that can be defined by the user via the variable
meas_bound, which as a default takes the value 10−7. For
the evaluation of the condition in Eq. (B10), we use the func-
tion norm, from numpy.linalg, to implement the Frobenius
norm.

The value of both prob_bound and meas_bound can be
passed as an argument to perform_seesaw. In addition to the
convergence criteria, we have imposed a limit to the number
of iterations to be executed by the algorithm, so that if after
200 iterations either the value or the measurements fail to
converge, the calculation stops. In this case, the message max-
imum number of iterations reached is displayed as a warning.

042608-16

BIASED RANDOM ACCESS CODES PHYSICAL REVIEW A 108, 042608 (2023)

FIG. 8. Report produced by the function perform_seesaw. In
the first part of the report, the function produces a summary of the
computation, displaying information such as the number of random
starting points, etc. In the second part, it displays the largest optimal
value found among all seeds and an analysis of the optimal measure-
ments obtained by this seed.

This limit can be modified by entering a different value to the
variable max_iterations in the argument of the function.

An example of the operation of perform_seesaw can
be seen in Fig. 8, in which the user wants to estimate the
quantum value of the 22 �→ 1 unbiased RAC. As in the case
of perform_search, the user passes as arguments n = 2 and
d = 2 to define the scenario, but now instead of choosing
a search method the user introduces the number of starting
points to be used by passing seeds=5. After finishing the
procedure the function prints a report divided into two parts.
In the Summary of the computation, it presents the number
of random starting points, the average processing time, and
the average number of iterations among all starting points.
In addition, it shows how many starting points produced an
optimal value that is close to the largest value obtained. The
interval to consider two values produced by different starting
points as close is the accuracy of the solver MOSEK, which
is set to 10−13. This informs the user how frequent it is to
obtain such an estimation; if this number is much smaller than
seeds, this indicates that the user should increase the number
of starting points in case of a new execution.

In the second part, the estimation of the optimal value
is reported, followed by information about the set of mea-
surements attaining such value. Note that the reported value
in Fig. 8 matches the one found by Ref. [30]. Next, the

report displays the rank of the optimal measurement opera-
tors, which is computed using the function matrix_rank of
numpy.linalg. In addition, the user can check whether the
measurement operators are projective. The number shown in
the second column of Measurement operator projectiveness
corresponds to the quantity∣∣∣∣(Mb

y

)2 − Mb
y

∣∣∣∣. (B11)

For both of these checks, rank and projectiveness, we preset a
tolerance of 10−7.

Last, in the case where at least two measurements are
rank-one and projective, the function also computes whether
each pair of measurements can be constructed out of mutually
unbiased bases (MUBs). For a pair of rank-one projective
measurements, let us say {Pa}m−1

a=0 and {Qb}m−1
b=0 , where a

and b denote the ath and the bth outcome, it is enough
[52, Appendix B] to check if

Pa = m PaQbPa and

Qb = m QbPaQb ∀a, b ∈ {0, 1, . . . , m − 1}. (B12)

In this case, the number displayed in the second column of
Mutual unbiasedness of measurements represents the quantity

max
a,b

{||m PaQbPa − Pa||, ||m QbPaQb − Qb||}. (B13)

For the cases in which the amount in Eq. (B13) is lower
than MUB_BOUND=5e-6, the function prints MUB. Otherwise,
it simply displays Not MUB.

APPENDIX C: ANALYSIS FOR OTHER BUILT-IN
FAMILIES OF BIAS

In the main text, we have used the analytical results derived
for the 2n �→ 1 scenario to study the quantum value of the b-
RACs determined by the X_ONE bias family introduced above.
Here, we offer a similar analysis for the b-RAC families
determined by others of these built-in biases in the 2n �→ 1
scenario.

1. The Y_ONE bias family

We start by looking at the case where the bias is only on
the requested bit y, i.e., αx = 1

2n , which leads to px = 1
2n−1 ∀x.

From px being constant follows, for n = 2 and n = 3, that
cos (θi j) = 0 ∀ i �= j in Eq. (28), i.e., the optimal measure-
ments are mutually unbiased. The quantum value is therefore
given by the upper bound in Eq. (25),

FQ = 1

2
+ 1

2

√∑
y

r2
y . (C1)

For n = 4, the upper bound is not attainable when ry = 1
4 ,

as it would require the four vectors {my} to be mutually
orthogonal. For weak biases (ry ≈ 1

4) satisfying the conditions
in Eq. (28), it would still require these vectors to be linearly
independent, and therefore the upper bound is still not attain-
able. However, if we consider a stronger bias such that the
weight on one of the bits becomes negligible, we would expect
the bound in Eq. (25) to be attainable again. We can realize

042608-17

PEREIRA ALVES, GIGENA, AND KANIEWSKI PHYSICAL REVIEW A 108, 042608 (2023)

FIG. 9. Optimal performance of the 42 �→ 1 b-RAC, with Y_ONE

bias, over classical (red squares) and quantum (blue dots) encoding-
decoding strategies.

such situation by defining

ry =
{
w if y = 0
1−w

3 otherwise
, 0 � w � 1. (C2)

Clearly in this case w = 0 ⇒ r0 = 0, and the value of the first
bit is never requested from Bob to be decoded. Thus, there are
only three Bloch vectors representing measurements that can
be chosen to be orthogonal to each other, so that the bound in
Eq. (25) is attained.

This is indeed the case, as is shown in Fig. 9, which depicts
the results provided by the numerical package for the optimal
performance of this 42 �→ 1 b-RAC over both, quantum and
classical encoding-decoding strategies. As can be seen in this
plot, the numerical quantum values (blue dots) lie very close
to upper bound (solid line), coinciding with it only at the
extremal values (w = 0, 1) and exhibiting the largest differ-
ence at w = 1

4 . An inspection of the optimal measurements
extracted from the numerical solutions shows that the angles
θi j parametrizing the measurements naturally divide into two
sets,
0 = {θ0i} and
0̄ = {θi j}, with i �= j = 1, 2, 3, and the
angles in one of them being all π

2 . As explained above, for
r0 = 0, the optimal solution involves only the vectors mi,
i = 1, 2, 3, which can be chosen to be mutually orthogonal.
For small values of r0, we would then expect these three
vectors to remain orthogonal (or close to orthogonal), since
they contribute the most to the functional value, and m0 to

be some linear combination of them. The solution provided
by the numerical search shows that this intuition is correct
since for w ∈ [0,w0], with w0 ≈ 0.27415, we find {mi} to be
an orthogonal set, with m0 being aligned with any of them,
meaning that the angles in
0̄ are all π

2 . This solution has also
been found by the authors of Ref. [30] in a numerical search
for the case of w = 1

4 .
On the other hand, if w = r0 = 1, only the first bit is to

be retrieved by Bob, which can be done with probability 1
with a classical strategy. For w ≈ 1 therefore we would expect
m0 to lie orthogonal to the subspace spanned by {mi}, which
is therefore bound to have dimension 2. This is indeed the
case, as shown by our numerical results: For w ∈ [w0, 1] the
optimal value is numerically attained with a decoding strategy
in which m0 is orthogonal to all the mi’s, which therefore span
a plane in R3, implying that the angles in
0 are all π

2 , while
the angles in
0̄ can be chosen to be
0̄ = {π

3 }. It follows then
that the mi are uniformly distributed in the plane orthogonal
to m0.

2. The X_CHESS bias family

Let us now consider a different distribution αx for the input
strings, given by

αx =
{

w
2n if

∑
i xi odd

1−w
2n otherwise

, 0 � w � 1 (C3)

and an arbitrary distribution {ry} for the requested bit. As we
will show now, this bias has no net effect on the b-RAC value
when the number of bits is odd. Indeed, note first that there
are 2n input bit strings, half of which are such that

∑
i xi is

even. Now if x̃ is the string obtained from x by flipping all
of its bits, then the sum of bits has the same parity in both
strings if n is even, whereas if n is odd this parity is different.
As a result, it follows from Eq. (C3) that for odd n we have
px = αx + αx̃ = 1

2n−1 and the functional value becomes

FQ = 1

2
+ 1

2n−1
max
{my}

∑
x

∣∣∣∣∣
∑

y

ry(−1)xy my

∣∣∣∣∣, (C4)

which is the same as that of the unbiased case. We can illus-
trate this feature by analyzing the n = 2 and n = 3 cases. A
direct calculation shows that for n = 2 the value is given by

FQ = 1

2
+ max

{m0,m1}
1 − w

2
|r0m0 + r1m1| + w

2
|r0m0 − r1m1|

� 1

2
+ max

{
1 − w

4
+ w

4
(r0 − r1),

w

4
+ 1 − w

4
(r0 − r1),

1

2
√

2

√
w2 + (1 − w2)

√
r2

0 + r2
1

}
, (C5)

where, in the second line, we used Lemma 4. In Fig. 10, we
show this value as a function of the biasing parameter w,
compared with the numerical results for the optimal value
over both quantum and classical strategies for the case of
r0 = r1 = 1

2 . As is easy to check from Eq. (C5), the optimal
performance for quantum strategies is better than that over

the classical ones for w ∈ (0, 1), becoming equal only for
w = 0 (1) in which case only the strings 00 and 11 (01 and
10) are given to Alice for encoding.

In the case n = 3, as explained above, the value of both
classical and quantum strategies becomes insensitive to vari-
ations of the biasing parameter w, coinciding with that of the

042608-18

BIASED RANDOM ACCESS CODES PHYSICAL REVIEW A 108, 042608 (2023)

FIG. 10. Top: Optimal performance of the 22 �→ 1 b-RAC with
X_CHESS bias, in combination with r0 = r1 = 1

2 , over quantum
strategies (blue dots) and their classical counterpart (red squares).
The numerical results for the quantum value are seen to agree with
the theoretical prediction (solid line) extracted from Lemma 4. Bot-
tom: Angle between the Bloch vectors defining the optimal decoding
strategy, as a function of the biasing parameter w. It is seen that
these vectors are aligned only for the extremal values of w, meaning
that the quantum value is strictly greater than the classical one for
w ∈ (0, 1).

unbiased RAC, which is given by

FQ = 1

2
+ 1

2

√∑
y

r2
y , (C6)

as follows from the previous discussion. It is perhaps surpris-
ing that even though in the extreme cases of w ∈ {0, 1} we are
left with only four out of the original eight strings, the RAC
task does not get any easier. This could serve as an indication
that some subsets of strings are as difficult to compress as
the set of all strings (regardless of whether the compression
is classical or quantum).

3. The X_PLANE bias family

So far, we have been introducing biases in the distribution
of input strings by setting αxy = αxry, where αx is interpreted
as the probability for input x to be encoded. As a result, when
considering the individual random variables corresponding
to the characters in the input strings, they will, in general,

exhibit correlations. We can consider the case in which the
input string characters are independently biased by defining
αx = ∏

i αxi , where αxi denotes the probability of the ith char-
acter in the string being xi. In particular, for the case of two-bit
input strings the bias tensor is given by αx0x1y = 1

2αx0αx1 .
Now let αx1=0 = αx1=1 = 1/2, and keep αx0 arbitrary.

It then follows that p00 = α00 + α11 = 1
2 , and p01 = α01 +

α10 = 1
2 , implying that the bias has no net effect on the

value of strategies that do not drop bits, as can be checked
directly from Eq. (24). Consequently, the optimal value of this
22 �→ 1 b-RAC among quantum, non-bit-dropping strategies,
is FQ = 1

2 (1 + 1√
2

). We should note, however, that for extreme
biases, the first character of the input string is either always 0
or always 1. In a situation as such there is no reason to include
the first bit in the strategy, since the best performance can
be obtained with a constant decoding function. Because this
bit dropping could become optimal as a strategy for biases
below the extremal value, in order to compute the quantum
value we should compare FQ with the best value attained by a
bit-dropping strategy, which is easily found to be

F1
Q =

{
1
2

(
1 + αx0=0

)
if αx0=0 > αx0=1,

1
2

(
1 + αx0=1

)
otherwise,

(C7)

where the symbol F1
Q, as defined in Eq. (19), denotes that the

strategy attaining this value does not encode one of the bits
of the input string. Note that F1

Q coincides with the classical
value for this RAC, since by ignoring a bit we are left with
only one to consider in the encoding strategy. It follows from
Eq. (C7) that dropping the first bit becomes optimal whenever
F1

Q > 1
2 (1 + 1√

2
), which occurs for αx0 > 1√

2
if αx0 > αx1 . In

that case, the quantum value is therefore given by

FQ =
{

1
2

(
1 + 1√

2

)
if αx0 � 1√

2
α,

1
2

(
1 + αx0

)
otherwise.

(C8)

Figure 11 depicts the numerical results provided by the RAC-
tools package, which agree with the analytical value provided
above.

A completely analogous analysis can be carried for the
n = 3 case for αx0x1x2 = 1

4αx0 . As was the case for n = 2, in
the vicinity of the uniform distribution we expect the optimal
strategy to include all three bits in the input string, in which
case a direct calculation shows that the bias has no effect on
the quantum value, which is given by FQ = 1

2 (1 + 1√
3

). As
before we expect the optimal strategy to ignore the first bit
when its value is strongly biased towards 0 or 1. If we take
αx0=0 � αx0=1, a direct calculation shows that the maximum
value attained by a strategy ignoring the first bit is given by

F1
Q = 1

3

[
αx0=0 + 1 + 1√

2

]
, (C9)

which becomes larger than FQ for αx0 > 1
2 (1 + √

3 − √
2).

The quantum value of this b-RAC is therefore given by the
following piecewise function

FQ =
{

1
2

(
1 + 1√

3

)
if αx0 � 1

2 (1 + √
3 − √

2),
1
3

[
αx0=0 + 1 + 1√

2

]
otherwise.

(C10)

042608-19

PEREIRA ALVES, GIGENA, AND KANIEWSKI PHYSICAL REVIEW A 108, 042608 (2023)

FIG. 11. Optimal performance of the 22 �→ 1 b-RAC defined
by the bias tensor αxy = 1

4 αx0 . For αx0 � 1√
2
, the optimal strategy

encodes both bits in the input string, and the quantum value (blue
dots) is FQ = FQ = 1

2 + (2
√

2)−1 since the bias has no effect on the
functional value. For αx0 > 1√

2
, the best strategy does not encode the

first bit, which reduces the value of the functional to the maximum
attainable with classical strategies (red squares). For the region in
which both bits are encoded, the angles representing the optimal
measurements, as obtained by the RAC-tools package, are all π

2 .

Figure 12 depicts the results on the quantum and classical
value of this b-RAC produced by the RAC-tools package, in
full agreement with the analytical results provided above.

FIG. 12. Optimal performance of the 32 �→ 1 b-RAC defined by
the bias tensor αx0x1x2 = 1

4 αx0 . As observed in the n = 2 case, there is
a threshold value, αx0 = 1

2 (1 + √
3 − √

2), above which the optimal
quantum strategy ignores the first bit. Below the threshold the quan-
tum value (blue dots) is FQ = FQ = 1

2 (1 + 1√
3

), which coincides
with the value of the unbiased RAC. For stronger biases, it becomes
convenient to ignore the first bit, in which case the quantum value
can be written as a shifted and rescaled version of the unbiased
22 �→ 1 RAC. As a result, unlike in the n = 2 case, the optimal value
above the threshold does not coincide with the classical value (red
squares). Similarly to the scenario illustrated in Fig. 11, in the region
where there are no ignored bits, the obtained optimal measurements
are mutually orthogonal. When x0 is ignored, measurement 0 be-
comes proportional to identity, while measurements 1 and 2 remain
orthogonal.

FIG. 13. Top: Numerical quantum value (blue dots) of the of
the biased RAC defined by αxy = wxy

4 , as a function of parameter
w0, compared to the corresponding classical value (red squares)
and the value in Eq. (C14) (solid line). Quantum strategies provide
an advantage for w0 � 1+√

5
4 . Bottom: Angle θ between the Bloch

vectors parametrizing the optimal measurements. For w0 within the
region of quantum advantage, θ is given by Eq. (C13), becoming 0
outside of it, where FQ = FC .

4. The B_ONE bias family

As described above, the elements of a bias tensor in this
family take the form αxy = 1

n
1

mn−1 wxy . In the particular case
of n = 2 and d = m = 2, which is addressed in Ref. [41], we
have

αxy = wxy

4
, (C11)

and a direct calculation using Eq. (23) shows that, for this bias
tensor, the b-RAC functional reads

F � 1

2
+ 1

4

⎡
⎣∣∣∣∣cos

(
θ

2

)∣∣∣∣+
√

1 − 4μ cos2

(
θ

2

)⎤⎦ (C12)

with μ = w0w1 and θ the angle between the Bloch vectors m0

and m1 characterizing the measurement operators. A search
for critical points in Eq. (C12) shows that there are only two,

042608-20

BIASED RANDOM ACCESS CODES PHYSICAL REVIEW A 108, 042608 (2023)

satisfying either sin(θ) = 0 or

cos

(
θ

2

)
= 1√

4μ + 16μ2
. (C13)

Whenever θ satisfies Eq. (C13) the ensuing value of the func-
tional reads

FQ = 1

2
+ 1

8
√

1 + 4μ2

(
1√
2

+ 4
√

μ

)
, (C14)

as previously reported in [41]. As observed in the previous
cases the condition sin(θ) = 0 corresponds to commuting
measurement operators, implying that in this case the value
coincides with the classical value. The region in which this
is the case is easily found to be w0 ∈ [0, 3−√

5
4] ∪ [1+√

5
4 , 1].

In Fig. 13, both the quantum and classical values found by
the RAC-tools package are depicted and compared with FQ

in Eq. (C14).

APPENDIX D: RANDOM BIASES FOR THE 2d �→ 1 RAC

In this Appendix, we provide numerical evidence to sup-
port the claim that optimizing over projective measurements
should be enough to find the quantum value of 2d �→ 1
b-RACs. Briefly, we tried to find counter-examples of such
b-RACs in which the optimal realization is achieved by non-
projective measurements. In order to do that, we exhaustively
evaluated the perform_search function for 2d �→ 1 b-RACs
with d � 6. We considered two kinds of biases: fully random
biases and random factorizable biases. For the first case, we
simply made up a bias tensor αxy the entries of which are
uniformly distributed within the region αxy � 0, for all x, y,
and

∑
xy αxy = 1. For the second case, we considered bias ten-

sors such that αxy = αxry, where both αx and ry are uniformly
distributed over the inputs x and y, respectively.

TABLE III. Samples with random biases for 2d �→ 1 RACs. This
table consists of a compilation of numerical results produced by
the RAC-tools package. The first column specify the integer d used
for a given 2d �→ 1 RAC. The second column specifies one of the
two kinds of biases used to generate this data set. The third column
specifies how many of such samples we considered for each case. In
the two last columns, we show how often we retrieve a realization the
measurements of which are all projective (fourth column) or not all
projective (fifth column). The number of seeds used for each sample
was 3.

d Bias No. samples No. P No. NP

2 Full random 10 000 10 000 0
2 Factorizable random 10 000 10 000 0
3 Full random 10 000 10 000 0
3 Factorizable random 10 000 9999 1
4 Full random 5000 5000 0
4 Factorizable random 5000 4996 4
5 Full random 2500 2500 0
5 Factorizable random 2500 2500 0
6 Full random 1000 1000 0
6 Factorizable random 1000 1000 0

The numerical results of this computation can be found in
Table III. Apart from some pathological examples, all of the
obtained realizations make use of projective measurements.
This was the case for the vast majority of the computed
samples except for five cases of random factorizable biases
(four cases for d = 4 and one case for d = 3) in which the
random draw of ry was almost deterministic. For these cases,
since the weight in one of the measurements is almost zero,
the classical and quantum values are numerically very close
and due to insufficient numerical precision the optimization
terminates with a nonprojective quantum strategy.

[1] D. Deutsch and R. Jozsa, Proc. R. Soc. London A 439, 553
(1992).

[2] L. K. Grover, in Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, STOC ’96 (ACM Press,
New York, 1996), pp. 212–219.

[3] E. Bernstein and U. Vazirani, SIAM J. Comput. 26, 1411
(1997).

[4] D. R. Simon, SIAM J. Comput. 26, 1474 (1997).
[5] A. Montanaro, npj Quantum Inf. 2, 15023 (2016).
[6] P. W. Shor, in Proceedings of the 35th Annual Symposium on

Foundations of Computer Science (IEEE Computer Society,
Washington, 1994), pp. 124–134.

[7] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).

[8] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Rev. Mod. Phys. 86, 419 (2014).

[9] R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne,
Rev. Mod. Phys. 92, 015001 (2020).

[10] C. Budroni, A. Cabello, O. Gühne, M. Kleinmann, and J.-A.
Larsson, Rev. Mod. Phys. 94, 045007 (2022).

[11] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[12] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter,
and A. Zeilinger, Nature (London) 390, 575 (1997).

[13] D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu,
Phys. Rev. Lett. 80, 1121 (1998).

[14] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L.
Braunstein, Nat. Photon. 9, 641 (2015).

[15] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881
(1992).

[16] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger,
Phys. Rev. Lett. 76, 4656 (1996).

[17] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cambridge
University Press, Cambridge, 2011).

[18] C. H. Bennett and G. Brassard, in Proceedings of the Interna-
tional Conference on Computers, Systems and Signal Processing
(Bangalore, 1984), pp. 175–179.

[19] K. Inoue, E. Waks, and Y. Yamamoto, Phys. Rev. Lett. 89,
037902 (2002).

[20] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf,
and P. Grangier, Nature (London) 421, 238 (2003).

[21] D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden,
Appl. Phys. Lett. 87, 194108 (2005).

042608-21

https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.92.015001
https://doi.org/10.1103/RevModPhys.94.045007
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1038/37539
https://doi.org/10.1103/PhysRevLett.80.1121
https://doi.org/10.1038/nphoton.2015.154
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.76.4656
https://doi.org/10.1103/PhysRevLett.89.037902
https://doi.org/10.1038/nature01289
https://doi.org/10.1063/1.2126792

PEREIRA ALVES, GIGENA, AND KANIEWSKI PHYSICAL REVIEW A 108, 042608 (2023)

[22] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, Rev. Mod.
Phys. 92, 025002 (2020).

[23] H.-W. Li, M. Pawłowski, Z.-Q. Yin, G.-C. Guo, and Z.-F. Han,
Phys. Rev. A 85, 052308 (2012).

[24] J. Bowles, M. T. Quintino, and N. Brunner, Phys. Rev. Lett. 112,
140407 (2014).

[25] E. Passaro, D. Cavalcanti, P. Skrzypczyk, and A. Acín, New J.
Phys. 17, 113010 (2015).

[26] A. Acín and L. Masanes, Nature (London) 540, 213 (2016).
[27] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani,

in Proceedings of the Thirty-First Annual ACM Symp.
on Theory of Computing (ACM Press, New York, 1999),
pp. 376–383.

[28] A. Nayak, in Proceedings of the 40th Annual Symp. on
Foundations of Computer Science (IEEE Computer Society,
Washington, 1999), pp. 369–376.

[29] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, J. ACM
49, 496 (2002).

[30] A. Ambainis, D. Leung, L. Mancinska, and M. Ozols,
arXiv:0810.2937 v3.

[31] M. Pawłowski and N. Brunner, Phys. Rev. A 84, 010302(R)
(2011).

[32] A. Chaturvedi, M. Ray, R. Veynar, and M. Pawłowski,
Quantun Inf. Proc. 17, 131 (2018).

[33] A. Tavakoli, J. Kaniewski, T. Vértesi, D. Rosset, and N.
Brunner, Phys. Rev. A 98, 062307 (2018).

[34] M. Farkas and J. Kaniewski, Phys. Rev. A 99, 032316
(2019).

[35] M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani,
A. Winter, and M. Żukowski, Nature (London) 461, 1101
(2009).

[36] H. Buhrman and R. de Wolf, in Proceedings of the 16th Annual
IEEE Conf. on Computational Complexity (IEEE, New York,
2001), pp. 120–130.

[37] D. Gavinsky, J. Kempe, O. Regev, and R. de Wolf, SIAM J.
Comput. 39, 1 (2009).

[38] A. Acín, S. Massar, and S. Pironio, Phys. Rev. Lett. 108, 100402
(2012).

[39] T. H. Yang and M. Navascués, Phys. Rev. A 87, 050102(R)
(2013).

[40] C. Bamps and S. Pironio, Phys. Rev. A 91, 052111 (2015).
[41] P. Kaczyńska, Bachelor’s thesis, Faculty of Physics, University

of Warsaw (2021).
[42] J. F. Doriguello and A. Montanaro, Quantum 5, 402 (2021).
[43] R. Gallego, N. Brunner, C. Hadley, and A. Acín, Phys. Rev.

Lett. 105, 230501 (2010).
[44] N. Gisin and R. Thew, Nat. Photon. 1, 165 (2007).
[45] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.

Phys. 74, 145 (2002).
[46] R. F. Werner and M. M. Wolf, Quantum Inf. Comput. 1, 1

(2001).
[47] T. Ito, H. Imai, and D. Avis, Phys. Rev. A 73, 042109 (2006).
[48] J. Bae and L.-C. Kwek, J. Phys. A: Math. Theor. 48, 083001

(2015).
[49] G. Pereira Alves, J. Kaniewski, and N. Gigena, https://github.

com/jedreky/QRAC-tools (2022).
[50] E. D. Andersen and K. D. Andersen, in High Performance

Optimization, edited by H. Frenk, K. Roos, T. Terlaky, and S.
Zhang (Springer US, Boston, 2000), pp. 197–232.

[51] MOSEK-ApS, https://www.mosek.com/ (2022).
[52] A. Tavakoli, M. Farkas, D. Rosset, J.-D. Bancal, and J.

Kaniewski, Sci. Adv. 7, eabc3847 (2021).

042608-22

https://doi.org/10.1103/RevModPhys.92.025002
https://doi.org/10.1103/PhysRevA.85.052308
https://doi.org/10.1103/PhysRevLett.112.140407
https://doi.org/10.1088/1367-2630/17/11/113010
https://doi.org/10.1038/nature20119
https://doi.org/10.1145/581771.581773
http://arxiv.org/abs/arXiv:0810.2937
https://doi.org/10.1103/PhysRevA.84.010302
https://doi.org/10.1007/s11128-018-1892-z
https://doi.org/10.1103/PhysRevA.98.062307
https://doi.org/10.1103/PhysRevA.99.032316
https://doi.org/10.1038/nature08400
https://doi.org/10.1137/060665798
https://doi.org/10.1103/PhysRevLett.108.100402
https://doi.org/10.1103/PhysRevA.87.050102
https://doi.org/10.1103/PhysRevA.91.052111
https://doi.org/10.22331/q-2021-03-07-402
https://doi.org/10.1103/PhysRevLett.105.230501
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.26421/QIC1.3-1
https://doi.org/10.1103/PhysRevA.73.042109
https://doi.org/10.1088/1751-8113/48/8/083001
https://github.com/jedreky/QRAC-tools
https://www.mosek.com/
https://doi.org/10.1126/sciadv.abc3847

