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Phase estimation in driven discrete-time quantum walks
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Quantum walks have been shown to be important for quantum metrological tasks, in particular for the
estimation of the evolution parameters of the walk. In this work, we address the enhancement of this parameter
estimation using the driven discrete-time quantum walk (DDTQW), which is a variant of the discrete-time quan-
tum walk with multiple walkers. DDTQW has two regimes based on the interference between the walker number,
i.e., phase matched and phase mismatched. We derive an expression for the quantum Fisher information (QFI)
in the phase-matched regime of DDTQW driven using the squeezing operator, demonstrating an exponential
increase in QFI. In the phase-mismatched regime, QFI varies as t2, consistent with previous studies. Our analysis
shows that parameter estimation can be improved by driving the walk using squeezing operators.
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I. INTRODUCTION

Quantum walks (QWs) are the subject of numerous studies
in the field of quantum information processing applications
[1–3]. Theoretically, QWs have been shown to be universal
for quantum computation [4–6] and have been used in vari-
ous search algorithms [7,8]. They are also a popular tool for
quantum simulations, e.g., photosynthesis [9], Anderson lo-
calization [10–12], Dirac cellular automata [13–15], neutrino
oscillation [16], topological phenomena [17–19], and many
more [20,21]. Experimentally, they have been implemented on
various physical systems such as nuclear magnetic resonance
(NMR) [22], photonics [23–25], trapped ions [26–28], and
waveguide arrays [29,30]. They are the quantum analog of
classical random walks (CRWs) [31–33], where the quantum
walker can be in a superposition of position states on the
defined spatial network of sites. One of the most common
features of QWs is that they can spread faster than CRWs in
space due to interference phenomena of the walker.

A QW has two main forms: continuous-time quantum walk
(CTQW) and discrete-time quantum walk (DTQW) [34–38].
CTQW is described on a position Hilbert space and by a
Hamiltonian that generally represents a graph topology (of
edges and vertices) that the walker can move on. DTQW is
defined on combined Hilbert spaces, i.e., the position and
coin space (internal degree of freedom) of the walker. The
latter variant usually evolves iteratively, first by applying a
unitary coin operator that “flips” the coin state, and then a
conditional shift operator that moves the walker in position
space, dependent upon its coin state. The dynamics of the
walk are generally controlled by the coin operation, which, for
a one-dimensional (1D) walk with two internal coin states, is
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represented by an SU(2) operator [39], with three independent
parameters.

The driven discrete-time quantum walk (DDTQW) [40,41]
is a variation of DTQW, motivated by the experimental
realizations of photonic QWs in waveguide arrays with a
nonlinear down-conversion process and optical delay loops
pumped with laser light [42–44]. In DDTQW, walkers can
be coherently created and destroyed at each time step of
the walk, possibly interfering with walkers already present
in the system. This is represented by the addition of extra
terms in the iterative evolution, which in previous studies
were either displacement or squeezing operators, representing
the pumping by coherent and squeezed light, respectively. It
was shown that DDTQW can have very different dynamics
than the original DTQW, primarily due to phase-matching
conditions between the pumped terms and eigenmodes of the
system.

Parameter estimation has applications in various fields
of modern science, e.g., gravitational wave detection, mi-
croscopy and imaging, Hamiltonian estimation, and general
sensing technologies [45–48]. The measurement uncertainty
can be characterized by the quantum Cramer-Rao bound,
which gives a bound over precision of the estimated parameter
in terms of quantum Fisher information (QFI) [49], which a
detection scheme would seek to maximize. Typically, interfer-
ometric methods are used to measure the parameter, which is
encoded in the path difference of the interferometer. Quantum
walks (QWs) can be considered as a multipath interferometer
[50], and their use for parameter estimation has been explored
in the past [51–53]. Here we are improving the parameter
estimation by maximizing the QFI using a variant of the QW
using squeezed state driving.

Quantum metrological schemes have been proposed in
the past and precision benchmarks have been obtained for
both CTQWs [51] and DTQWs [52,53], where in the lat-
ter they estimate the phase parameter of the SU(2) operator
representing the coin. There it was shown that the QFI for
the SU(2)-parameter estimation increases quadratically with
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the number of steps, t , i.e., as t2. In this work, we are propos-
ing a protocol to improve the precision of phase estimation in
the SU(2) operator using DDTQW.

The paper is organized as follows. Section II gives an
analytical introduction to DDTQW, which is driven using
squeezing operators. Section III presents our main results and
shows the analytical and numerical calculations of QFI for
the two different regimes of DDTQW, i.e., phase matched
and phase mismatched. We also compare our phase estimation
method with previous approaches. In Sec. IV, we present a
bound over the pump phase to achieve enhanced precision.
Section V concludes our results with a discussion.

II. DRIVEN DISCRETE-TIME QUANTUM WALK

The DDTQW is a variant of QWs where there is either
coherent or squeezed driving of the walker number at each
step of the walk. This can result in walkers being added
throughout the walk, instead of only at the beginning in the
initial state [41]. We start by describing the dynamics of the
original, passive DTQW in the physical basis and focus on
the graph structure of a cyclic graph with periodic boundary
conditions.

A. Dynamics of discrete-time quantum walk

A one-dimensional DTQW with a single walker in the
physical basis is defined on a Hilbert space H = Hp ⊗ Hc,
where Hc is the coin Hilbert space spanned by the internal
degree of freedom of the walker {|L〉, |R〉}, and Hp is the po-
sition Hilbert space spanned by {|x mod N〉, x ∈ N}, where
N is the number of sites on the underlying graph structure that
the walker can travel on.

The walker evolves by applying the coin operation C, fol-
lowed by a conditional shift operation S. The general form of
the coin operator is a SU(2) operator, given by

C(θ, ξ , ζ ) =
N∑

x=1

|x〉〈x| ⊗
(

eiξ cos θ eiζ sin θ

−e−iζ sin θ e−iξ cos θ

)
. (1)

The topology of the graph defines the shift operation and it is
defined by the sites which are coupled. On a cyclic graph of
N sites, the shift operator is

S =
N∑

x=1

(|x − 1 mod N〉〈x| ⊗ |L〉〈L|

+ |x + 1 mod N〉〈x| ⊗ |R〉〈R|). (2)

Thus the walker’s wave function |�(t + 1)〉 after (t + 1) steps
is described as

|�(t + 1)〉 = SC(θ, ξ , ζ )|�(t )〉
= U |�(t )〉. (3)

In general, |�(t + 1)〉 can also be represented as

|�(t + 1)〉 =
∑

x

|x〉[ψL(x, t + 1)|L〉 + ψR(x, t + 1)|R〉],
(4)

where ψL(x) is the probability amplitude associated with |L〉
and ψR(x) is the probability amplitude associated with |R〉,

such that it can be represented by a two-component vector
�̃(x) = [ψL(x), ψR(x)]T at position x, where

�̃(x, t + 1) =
(

eiξ cos θ eiζ sin θ

0 0

)
�̃(x + 1, t )

+
(

0 0
−e−iζ sin θ e−iξ cos θ

)
�̃(x − 1, t ).

(5)

The analytical analysis of the DDTQW is simplified by
transforming the dynamics from the physical basis to the
eigenbasis of the evolution operation, U . To obtain the eigen-
values and eigenbasis of this operator, we first transform the
state of the walker from the position basis |x〉 to the mo-
mentum basis |k〉 using the Fourier transformation. After the
Fourier transformation, the evolution operator is diagonal in
the position Hilbert space.

Basis transformation to the Fourier space. In Fourier
space, the probability amplitude �̃(x) transforms to �̃(k) =
[ψL(k), ψR(k)]T , a two-component wave function, and k are
the wave vectors. The transformation to Fourier space on the
cyclic graph of N sites is given by

�̃(k) = 1√
N

∑
x

ei2πk.x/N�̃(x). (6)

Substituting this in Eq. (5) will give the wave function in the
Fourier space such that

|�(k, t + 1)〉 = Uk|�(k, t )〉, (7)

where

Uk =
(

ei(ξ−2πk/N ) cos θ ei(ζ−2πk/N ) sin θ

−e−i(ζ−2πk/N ) sin θ e−i(ξ−2πk/N ) cos θ

)
, (8)

for each wave vector k ∈ [1, N]. The transformation matrix
Tf from the physical basis to the Fourier basis has the matrix
elements given by (Tf )k,x = ei2πk.x/N .

Basis transformation to the eigenspace of U . An analytical
expression for the eigenbasis and eigenvalues of the operator
U can be obtained by diagonalizing Uk , given by Eq. (8), for
each k, such that the evolution operator in the eigenbasis is

Ueig =
2N∑
j=1

Ej =
N⊕

k=1

(TEUkT †
E ), (9)

where {Ej} are the set of eigenoperators. TE is the transfor-
mation matrix that takes the state from the Fourier basis to
eigenbasis and is given by

TE =
N⊕

k=1

(
−ei(ζ− 2πk

N ) sin θ e−i(ξ− 2πk
N ) cos θ − ei�k

ei(ξ− 2πk
N ) cos θ − e−i�k e−i(ζ− 2πk

N ) sin θ

)
.

(10)

The evolution operator in the eigenbasis is

Ueig =
N⊕

k=1

(
e−i�k 0

0 ei�k

)

=
2N∑

m=1

e−i�mÂ†
mÂm , (11)
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where {ei�m} are the eigenvalues of Ueig and �m are termed
eigenfrequencies. The eigenfrequencies {�m} = {±�k} in
terms of wave vector k are determined by the dispersion
relation [55],

cos �k = cos

(
2πk

N
− ξ

)
cos θ. (12)

The bosonic operators in the eigenbasis are transformed as
Â†

l = ∑2N
j=1(Teig)l, j â

†
j , where Teig = TE · Tf is the transforma-

tion matrix from the physical basis to the eigenbasis.

B. Dynamics of driven discrete-time quantum walk

In this work, we assume the walkers to be indistinguishable
bosons, and thus our Hilbert space expands to include their
number space HDDT QW = HDT QW ⊗ Hn. To model the walk-
ers, we use bosonic annihilation and creation operators such
that â†

x,c(âx,c) are the creation (annihilation) operators for a
photon (walker) with coin state c at position x [also referred
to as the mode (x, c)]. Previous studies used squeezing and
displacement operators in DDTQW, which have Hamiltonian
terms â† 2 and â†, respectively, which in general do not con-
serve the walker number [40,41]. In this work, we focus on
using squeezing operators.

The general, multimode squeezing operator is

Sq(	) = exp

⎛
⎝1

2

∑
i, j

	i, j â
†
i â†

j − H.c.

⎞
⎠, (13)

where 	i, j is the pump amplitude for the ith and jth modes.
The single-mode squeezing operator is a special case of this,

Sq1(	) = exp

(
	

2
â† 2

m − 	∗

2
â2

m

)
, (14)

and the two-mode squeezing operator in the modes m and n is

Sq2(	) = exp(	â†
mâ†

n − 	∗âmân). (15)

The DDTQW evolves iteratively, as for the DTQW, but now
with the inclusion of the squeezing operator at each time step.
The evolution operator for the DDTQW using the squeezing
operator after t steps is

|�(t + 1)〉 = SC(θ, ξ , ζ )Sq(	t )|�(t )〉
= W |�(t )〉 = W (t+1)|�(0)〉, (16)

where SC(θ, ξ , ζ ) is the unitary operator given by the original
DTQW, given by Eq. (3), and the squeezing operator is de-
fined by a time-dependent pump shape 	t . The dynamics are
best solved in the eigenbasis, where the evolution operation
after t steps is given by

t∏
j=1

Weig|0〉 =
t∏

j=1

[UeigSq(	eig)]|0〉, (17)

where the pump shape of the squeezing operator is trans-
formed to 	eig = T −1

eig 	t Teig and Ueig is a simple phase
term, (11).

When the squeezing operators that are used are either the
single- or two-mode operators, we can reorder the above

equation using the simple relation [56]

Sq(	eig)e−iÂ†�Â = e−iÂ†�ÂSq( ¯ei�	eigei�), (18)

where ¯ei� is the transpose of the matrix ei�. This allows all
the squeezing operators to be moved to the right of the QW
operator, Ueig, which we will use in the next section. The
overall pump amplitude Sq(	F ) after t steps can be given by

Sq(	F ) = Sq( ¯ei(t−1)�	eigei(t−1)�)Sq( ¯ei(t−2)�	eigei(t−2)�)

× · · · × Sq( ¯ei�	eigei�)Sq(	eig), (19)

so that (17) can be written as

t∏
j=1

[UeigSq(	eig)]|0〉 = Ut
eigSq(	F )|0〉. (20)

If the time dependence of 	eig is such that it counteracts
the phase acquired from the reordering of Ueig through the
squeezing operator in Eq. (17), then all the Sq(·) in (19)
are identical and we have constructive interference between
the operators. This is termed the phase-matched regime, with
the alternative being the phase-mismatched regime. Here we
have analyzed the dynamics of DDTQW in the phase-matched
regimes, which is achieved when the pump frequency is equal
to either twice a single eigenfrequency (single-mode case)
or the sum of a pair of eigenfrequencies (two-mode case).
This will lead to the final, overall squeezing operation to be
well approximated by either a single-mode or a two-mode
squeezing operation, depending upon the pump frequency.

Analysis of DDTQW using single-mode squeezing operator
in eigenbasis. A simplified case for the analytical analysis of
the squeezed DDTQW is using the single-mode squeezing
operation, given by Eq. (14), in the eigenbasis and in the
phase-matched regime.

The squeezing operation is applied on the eigenmode m
and using the relation (18), for the single-mode operator,

Sq1(	eig)e−i�mÂ†
mÂm = e−i�mÂ†

mÂm Sq1(ei2�m	eig). (21)

In the phase-matched regime, the pump shape in the eigenba-
sis is given by 	eig = re−2iω(t−1), where ω = 2�m, and thus
the final squeezing operator, given by Eq. (19), is

Sq1(	F ) = Sq1(r)Sq1(r)Sq1(r) · · · Sq1(r)

= [Sq1(r)]t . (22)

The evolution operator in the eigenbasis of this case is

Weig|0〉 = Ut
eigSq1(	F )|0〉

= Ut
eig(Sq1(r))t |0〉, (23)

where Ueig is the evolution operator in the eigenbasis given
by Eq. (11). The covariance matrix for the vacuum state |0〉 is
1
2I, where I is the identity matrix.

The symplectic form of the squeezing operator Sq1(	F )
[57] when phase matched with the eigenmode m = 1 is

Sq1(	F ) =
(

cosh(rt ) − sinh(rt )
− sinh(rt ) cosh(rt )

)
⊕ I2N−1, (24)
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and the evolution operation Ueig is

Ueig =
(

e−i�1 0
0 ei�1

) 2N⊕
n 	=1

(
e−i�n 0

0 ei�n

)
. (25)

As the unitary evolution of the DDTQW is solely Gaussian
[40,41], the final state can be completely described by its
covariance matrix and displacement vector (the latter being
zero in this case, as there are no displacement operators). The
final covariance matrix after t steps of evolution is then

σt = 1

2
Ut

eigSq(	F )ISq(	F )†(Ut
eig)†

= 1

2

(
cosh(2tr) −e−2i�1t sinh(2tr)

−e2i�1t sinh(2tr) cosh(2tr)

)⊕
I2N−1.

(26)

The intensity in the mth mode of the squeezed DDTQW
is given by n = 〈Â†

mÂm〉 = sinh2(tr) ∼ 1
2 e2rt , in the long-time

t limit. Thus, in the phase-matched squeezed DDTQW, the
intensity increases exponentially with time in the eigenmode
m that is phase matched with the pump frequency ω.

Figure 1 shows the intensity distribution in the phase-
matched squeezed DDTQW in the eigen- and physical basis,
respectively, when the single-mode squeezing operator is
pumped into all the 2N modes with pump magnitude r = 0.1.
Pump phase ω is matched with the eigenfrequency of the first
mode �1. In the eigenbasis, shown in Fig. 1(a), the intensity in
the phase-matched mode m = 1 increases exponentially with
time, but in the physical basis, shown in Fig. 1(b), the intensity
distributes over all the sites. Figure 2 shows the intensity dis-
tribution in the phase-mismatched squeezed DDTQW in the
eigen- and physical basis, respectively, when the single-mode
squeezing operator is pumped into all the 2N modes with
pump magnitude r = 0.1 and the pump phase ω = π/4. In the
eigenbasis, shown in Fig. 2(a), the intensity oscillates between
different eigenmodes, as well as in the physical basis, shown
in Fig. 2(b).

Analysis of DDTQW using two-mode squeezing operator
in eigenbasis. The second simplified case for analysis is when
the two-mode squeezing operator in the eigenbasis is used to
drive the walk, using Eq. (15), in the phase-matched regime.

Applying the two-mode squeezing operator on the eigen-
modes m = 1 and n = 2 and using the relation (18) gives

Sq2(	eig)e−i(�1Â†
1Â1+�2Â†

2Â2 )

= e−i(�1Â†
1Â1+�2Â†

2Â2 )Sq2(ei(�1+�2 )	eig), (27)

and the final squeezing operation Sq2(	F ) in the eigenbasis
after t steps is

Sq2(	F ) = Sq2(ei(t−1)(�1+�2 )	eig)

× Sq2(ei(�1+�2 )	eig)Sq2(	eig). (28)

FIG. 1. Intensity distribution in phase-matched squeezed
DDTQW using a single-mode squeezing operation in all 2N modes
with respect to the number of steps, t , and phase matched with the
first eigenmode in the (a) eigenbasis and (b) physical basis when the
coin parameters are (θ, ξ, ζ ) = (π/4, π/4, 0) and the single-mode
squeezing operation Sq(re−iω(t−1) ) with r = 0.1 and ω = 2�1.

The time-dependent pump shape of the squeezing operation
is given by 	eig = re−iω(t−1) when pump phase ω is matched
with the combination of eigenfrequencies (�1 + �2), then,

Sq(	F ) = Sq(r) · · · Sq(r)Sq(r) = [Sq(r)]t , (29)

which is the phase-matched condition for the two-mode
squeezed DDTQW.

The symplectic form of two-mode squeezing operator
Sq2(	F ) is

Sq2(	F ) =

⎛
⎜⎜⎜⎜⎝

cosh(rt ) 0 0 − sinh(rt )

0 cosh(rt ) − sinh(rt ) 0

0 − sinh(rt ) cosh(rt ) 0

− sinh(rt ) 0 0 cosh(rt )

⎞
⎟⎟⎟⎟⎠

⊕
I2N−4. (30)
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After t steps, the final output covariance matrix is

σt = 1

2
Ut

eigSq(	F )ISq(	F )†(Ut
eig)†

= 1

2

⎛
⎜⎜⎜⎜⎝

cosh(2tr) 0 0 −ei(�1+�2 )t sinh(2tr)

0 cosh(2tr) −ei(�1+�2 )t sinh(2tr) 0

0 −e−i(�1+�2 )t sinh(2tr) cosh(2tr) 0

−e−i(�1+�2 )t sinh(2tr) 0 0 cosh(2tr)

⎞
⎟⎟⎟⎟⎠

⊕
I2N−4. (31)

The intensity in the eigenmode 1 and 2 for this case is n =
〈Â†

1Â1〉 = 〈Â†
2Â2〉 = 1

2 [cosh(2rt ) − 1] = sinh2(rt ).

III. PHASE ESTIMATION IN DDTQW

A. Quantum parameter estimation

Quantum parameter estimation is the task to quantify the
attainable measurement precision for the given quantum re-
sources. The variance of the estimated value of an unknown
parameter ξ provides a measure of this precision over all the
estimation procedures. By optimizing over all the unbiased
estimators and the measurements, Braunstein and Caves [58]
showed that the best achievable sensitivity for measuring a
small variation of the estimated parameter ξ is bounded by
the quantum Cramer-Rao bound,

δξ � 1√
MH (ξ )

, (32)

where δξ is the error in the estimation of the unknown param-
eter ξ based on M measurements and H (ξ ) is the quantum
Fisher information (QFI) for parameter ξ .

According to Refs. [59,60], the quantum Cramer-Rao
bound for pure Gaussian states with displacement vector d
and covariance matrix σ is

δξmin = 1√
M

[
tr[(∂ξσ · σ−1)2]

4
+ (∂ξ d†)σ−1(∂ξ d)

]−1/2

.

(33)

The expression in large brackets corresponds to the H (ξ ) for
a pure multimode Gaussian state. For DDTQW driven using
the squeezing operator d = 0 with covariance matrix after
evolving for t steps is σt (26); then the QFI H (ξ ) reduces to

H (ξ ) = tr
[(

∂ξσt · σ−1
t

)2]
4

. (34)

B. Analytical analysis of the phase estimation
in squeezed DDTQW

In Refs. [52,53], it was shown that a quantum walker can
be used for quantum metrology. In the eigenbasis, the DTQW
dynamics depends upon the evolution parameters (θ, ξ ), as
shown in dispersion relation (12). Thus the estimation of
(θ, ξ ) parameters is affected by the dynamics of the walker.
The QFI for the estimation of both the parameters θ and ξ

encoded in the SU(2) operator, given by Eq. (1), using DTQW
increases quadratically with time, i.e., as t2.

QFI in the eigenbasis. In the following, QFI for the
estimation of the phase ξ of the SU(2) operator is calcu-
lated analytically for DDTQW, using the single-mode and
two-mode squeezing operators in the eigenbasis, with the
phase-matched condition. The eigenbasis covariance matrix
σt of squeezed DDTQW using a single-mode squeezing op-
erator with the phase-matched condition in the eigenmode m
after t steps is given by Eq. (26). The QFI for this case is then

Hss(ξ ) = 1

4
tr

[(
∂ξσt .σ

−1
t

)2]
= 2t2(∂ξ�m)2 sinh2(2rt ). (35)

The mean photon number for the phase-matched DDTQW
using the single-mode squeezing operator is n = sinh2(rt ),
meaning Hss(ξ ) = 8t2(∂ξ�m)2n(n + 1).

The eigenbasis covariance matrix σt of squeezed DDTQW
using the two-mode squeezing operator in the m and n eigen-
modes with the phase-matched condition, after t steps, is
given by Eq. (31). Thus, the QFI Hts(ξ ) for this case is

Hts(ξ ) = 1

4
tr

[(
∂ξσt · σ−1

t

)2]
= (∂ξ�m + ∂ξ�n)2t2 sinh2(2rt ). (36)

In terms of the mean photon number, Hts = 4(∂ξ�m +
∂ξ�n)2t2n(n + 1). In both of the cases, QFI increases as
sinh2(2rt ) (exponentially in the long-time limit) with time t
and pump magnitude r. If either time t or pump magnitude
r is small, the QFI increases as r2t4. The QFI in the phase-
matched squeezed DDTQW also depends upon the derivative
of the eigenfrequencies of the phase-matched mode.

Figure 3 shows the QFI in DDTQW using the single-mode
squeezing operation in the eigenbasis. Figure 3(a) shows that
the QFI increases exponentially when the squeezed DDTQW
is evolved for sufficiently long time t , which is consistent
with the analysis in the phase-matched regime in Sec. II B.
Our analysis also shows that the QFI in the phase-matched
regime of the eigenbasis depends upon the derivative of the
eigenfrequency with respect to ξ , which we have plotted in
Fig. 3(b). This shows the dependence of QFI with respect
to (∂ξ�)2 and is maximum with respect to time when phase
matched with the eigenfrequency �m with the largest value of
(∂ξ�m)2.

Similarly, Fig. 4(a) shows the QFI in DDTQW using the
two-mode squeezing operation in the eigenbasis, and also
shows an exponential increase with time in the phase-matched
regime. This condition is achieved by matching the pump
frequency with the combination of eigenfrequencies of the
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FIG. 2. Intensity distribution in phase-mismatched squeezed
DDTQW using a single-mode squeezing operation in all the 2N
modes with respect to the number of steps, t , in the (a) eigenbasis
and (b) physical basis when the coin parameters are (θ, ξ, ζ ) =
(π/4, π/4, 0) and the single-mode squeezing operation Sq(re−iω(t−1)
with r = 0.1 and ω = π/4.

two modes on which the squeezing operation is performed,
i.e., if the two-mode squeezing operation is performed on the
nth and the mth mode, then for the phase-matched condition,
the pump frequency is ω = (�n + �m). Therefore, the QFI is
maximized for the combination of eigenfrequencies for which
the value of the square of ∂ξ (�n + �m) is highest. In Fig. 4(b),
one can see the relation between the QFI and ∂ξ (�1 + �m)
when the two-mode squeezing operator acts on the first and
the m eigenmode.

QFI in the physical basis. Since the estimation protocols
are performed in the physical basis, we will now examine
the evolution of the QFI in that basis with time when the
walk is driven using the single-mode squeezing operator in
the physical mode x = (0,↑), i.e., Sq1(re−iω(t−1)). As the
phase-matching dynamics are best analyzed in the eigenbasis,
the squeezing operator must be transformed to this basis, i.e.,
Sq(Re−iτ (t−1)). This is done by rotating the pump shape to

the eigenbasis, using R = T −1
eig rTeig, where R is a (2N × 2N )

matrix. The transformation of r from the physical basis to the
eigenbasis redistributes the pump shape over all 2N modes.
After the transformation of the pump shape from the physical
basis to eigenbasis, the pump frequency is matched with one
of the eigenfrequencies �m, i.e., ω = 2�m in Eq. (14). The
DDTQW now evolves using (16). Thus, in the phase-matched
regime, the QFI in the physical basis is given by

Hsp(ξ ) = t2 sinh2(2Rmt )(∂ξ�m)2, (37)

where Rm is the mth diagonal element of the pump shape R in
the eigenbasis. This will always be less than the pump shape r
in the physical basis, signifying that some pump power is lost
to phase-mismatched modes.

In Fig. 5(a), we have plotted the QFI with time and pump
frequency ω matched with the eigenfrequencies �m in the
physical basis when the single-mode squeezed state is pumped
in the first physical mode, i.e., x = (0,↑). In Fig. 5(b), we
have plotted �2 = [sinh(2Rmt )∂ξ�m]2 with respect to eigen-
frequencies �m for t = 50. Figure 5(a) shows QFI with
respect to time and pump-phase matched with the eigenfre-
quencies �m such that Hsp(ξ ) = t2�2 when evolved for 50
steps.

Due to the redistribution of r over all the 2N modes,
QFI in the physical basis is less than QFI in the eigenbasis,
which is a direct consequence of Rm � r in Fig. 5. Thus, to
achieve an equivalent improvement of QFI in the physical
basis, we have studied the next interesting case where we
pump the single-mode squeezed state in all the available 2N
modes with pump magnitude r. Each of the 2N physical
modes is pumped with the single-mode squeezing operator
Sq1(	m) = Sq1(re−iω(t−1)), such that the final squeezing op-
erator Sq(r′e−iω′(t−1)) is given by

Sq(r′e−iω′(t−1)) =
2N∏

m=1

Sq1(	m) = Sq(re−iω(t−1)I2N ), (38)

where r′ = rI2N and e−iω′(t−1) = e−iω(t−1)I2N are the pump
magnitude and pump phase, respectively, and I2N is the
identity matrix of size 2N . In this case, the pump magni-
tude R of the 2N-mode squeezing operation remains under
the basis transformation from physical basis to eigenba-
sis since Reiτ (t−1) = T −1

eig r′e−iω′(t−1)Teig ≡ re−iω(t−1)I2N . The
QFI, in both the physical basis and the eigenbasis, is equal
to [t sinh(2rt )∂ξ (�m)]2. Figure 6 shows comparable QFI in
both bases with respect to time and eigenfrequencies in the
phase-matched regime.

QFI in the phase-mismatched regime. In the phase-
mismatched regime of the squeezed DDTQW, numerical
simulations show that QFI is proportional to [t sinh(r)]2,
implying that the increase in QFI in the phase-mismatched
squeezed DDTQW is comparable to the QFI in DTQW as in
both the cases the QFI increases quadratically with time t .

In the physical basis, QFI is proportional to [t sinh(Rm)]2,
where Rm is the same as explained for Eq. (37). Figure 7
shows the QFI in this regime with respect to time and ξ in
the physical basis, and it is independent of the parameter ξ

to be estimated. Figure 8 shows QFI in the phase-mismatched
regime with respect to the number of steps, t , for different
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FIG. 3. QFI in squeezed DDTQW using the single-mode squeezing operation in the eigenbasis. (a) Hss(ξ ) in the eigenbasis with number
of steps, t , and pump phase ω, phase matched with twice the eigenfrequency �m. (b) Square of the derivative of eigenfrequencies �m. Here,
the pump magnitude is r = 0.1 and the evolution parameters are (θ, ξ, ζ ) = (π/4, π/4, 0), and the single-mode squeezed state is pumped in
the mode m ∈ [1, 10].

values of pump magnitude r, which shows that QFI increases
with the increase in pump magnitude r.

C. Comparison with previous approaches

According to the quantum Cramer-Rao bound, the variance
of an estimated parameter ξ is

(δξ )2 � 1

MH (ξ )
, (39)

where M is the number of measurements and H (ξ ) is the
QFI for the estimated parameter. Therefore, the variance in
DDTQW is bounded by the inverse of Eqs. (35) and (36),
which are the QFI for phase-matched DDTQW using single-
mode and two-mode squeezed states, respectively. Thus, the
minimum variance in DDTQW for both cases is proportional
to 1/[t2n(n + 1)]. We now compare our method of phase

estimation with two previous methods, i.e., the original
DTQW and the SU(1,1) interferometer.

First, for the standard DTQW, given by Eq. (3) in Ref. [53],
the QFI scales as O(t2), as this method uses a single particle
throughout the walk. It is therefore immediate to see that the
QFI is increased in the DDTQW by the extra photons that are
present. To compensate for this using the DTQW, there could
either be M = O(n2) repeated applications of the protocol or
more photons added in the initial state.

Another important comparison is with the SU(1,1) interfer-
ometer, which can be considered as a single time step of the
DDTQW. SU(1,1) interferometers are nonlinear devices that
use optical parametric amplifiers instead of beam splitters [61]
in a Mach-Zehnder-like configuration. Reference [54] shows
that the QFI in the SU(1,1) interferometer is 4n(n + 2), where
n is the average number of photons, which is lower than the
DDTQW by a factor of t2. However, as the dynamics of
the DDTQW involves t time steps with 2t modes, a better

1 10

0

0.2

0.6

1.0

1.4

[
(

1
 +

 
m

)]
2

(b)

FIG. 4. QFI in squeezed DDTQW using two-mode squeezing operation in the eigenbasis. (a) Hts(ξ ) in the eigenbasis with number of
steps, t , and the pump phase ω, phase matched with the combination of eigenfrequencies (�1 + �m ), where mode m ∈ [2, 10]. (b) Value of
the square of ∂ξ (�1 + �m ). Here, pump magnitude r = 0.1, the evolution parameters are (θ, ξ, ζ ) = (π/4, π/4, 0), and two-mode squeezed
state is pumped into modes 1 and m ∈ [2, 10].
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FIG. 5. QFI in squeezed DDTQW using the single-mode squeezing operation in the physical basis when pumped in the mode (x = 0, ↑).
(a) Hsp(ξ ) in the physical basis with number of steps, t , and pump frequency ω, matched with twice the eigenfrequency �m. (b) Value
of the square of � = (∂ξ�m ) sinh(2tRm ), where Rm is the diagonal element of the transformed magnitude r from the physical basis to
the eigenbasis. Here, pump magnitude in the physical basis is r = 0.1 for the single-mode squeezing operator and the evolution parameters are
(θ, ξ, ζ ) = (π/4, π/4, 0) when pumped in the modes 1 ≡ (x = 0,↑).

comparison is with t repeated applications of the SU(1,1)
interferometer. This would only result in a factor of 1/t in the
variance, not 1/t2 as in the DDTQW. This increase in the QFI
has been attributed to the presence of entanglement between
the different modes of the total system [62,63], something not
present in repeated uses of the SU(1,1) interferometer.

IV. EIGENFREQUENCY ANALYSIS
TO ACHIEVE MAXIMUM QFI

The eigenfrequency of the unitary evolution operator U
(11) plays a vital role in achieving the exponential increase
of the QFI in the squeezed-DDTQW dynamics. Therefore, an
analysis of the eigenfrequencies’ dependence upon the evolu-
tion parameter will give crucial information on the choice of
the pump frequency to achieve the phase-matched condition.

In general, it does not matter which eigenfrequency is
phase matched, as they all allow for exponential scaling when
evolved for a sufficiently long time. To be precise, the QFI
for ξ is proportional to the square of the derivative of the
eigenfrequency �m with respect to ξ ,

(∂ξ�m)2 = [cos2(θ ) − cos2(�m)]

sin2(�m)
. (40)

From the dispersion relation, given by Eq. (12), it can be
shown that �m is always greater than θ and thus always gives
a positive value of (∂ξ�m)2. The magnitude of smallest eigen-
frequency, |�min|, is lower bounded by the parameter θ . This
can be shown by a simple analysis of the dispersion relation,
given by Eq. (12), of the quantum walker in DTQW. The max-
imum value of the cos(ξ − 2πk0/N ) term in the dispersion
relation, given by Eq. (12), is 1, implying that corresponding

FIG. 6. QFI in squeezed DDTQW using the single-mode squeezing operation in all the available 2N modes in the physical basis. (a) Hsp in
the physical basis and (b) Hss in the eigenbasis, with respect to the number of steps, t , and the pump phase ω when phase matched with twice
the eigenfrequency �m. Here, all the available 2N modes are pumped with the squeezing operator with same pump magnitude r = 0.1 and the
evolution parameters are (θ, ξ, ζ ) = (π/4, π/4, 0).
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FIG. 7. QFI in phase-mismatched squeezed DDTQW using the
single-mode squeezing operation in all the available 2N modes
in the physical basis with respect to t steps and parameter ξ . Here,
all the 2N modes are pumped with the squeezing operator with mag-
nitude r = 0.1 and pump phase ω = π/4. The evolution parameters
are (θ, ζ ) = (π/4, 0) and evolved for t = 50 steps.

to k0,

cos(�k0 ) � cos(θ ),

�k0 � θ, (41)

i.e., the eigenfrequency �k0 is lower bounded by θ ∈ [0, π/2].
The pump frequency ω = 2�m for phase-matched DDTQW,
as shown in Eq. (22), gives a lower bound over the pump phase
in terms of the θ parameter as

ω � 2θ, (42)

for ω ∈ [0, π ]. Figure 9 shows QFI with respect to pump
phase ω and coin parameter θ . It can be seen from the plot
that enhanced QFI with respect to pump phase ω is bounded
by θ . The enhancement of the QFI is seen on the graph for
ω > 2θ .

0 10 20 30 40 50

No. of Steps

0

100

200

300

H
(

)

r = 0.02
r = 0.04
r = 0.06
r = 0.08
r = 0.1

FIG. 8. QFI in phase-mismatched squeezed DDTQW using the
physical-basis single-mode squeezing operation in all 2N modes,
with respect to the number of steps for different values of pump
magnitude r. The evolution parameters are (θ, ξ, ζ ) = (π/4, π/4, 0)
and pump phase ω = π/4.

FIG. 9. QFI in squeezed DDTQW using single-mode squeezing
operation in all the 2N modes in the physical basis with respect to
parameter θ and pump phase ω. Here, 2N modes are pumped with the
squeezing operator with pump magnitude r = 0.1 and pump phase
ω = π/4. The evolution parameters are (θ, ζ ) = (π/4, 0) evolved
for t = 50.

V. CONCLUSION

In this work, we have investigated a method for quan-
tum enhanced precision in the estimation of the phase ξ

encoded in the evolution operator of the quantum walker
using DDTQW, a different type of QW that includes
the effect of walker creation and destruction through-
out the walk. We have analytically calculated the QFI
in DDTQW using the squeezing operator on a cyclic
graph of N sites. Our numerical studies show that in the
phase-mismatched case, the QFI, H (ξ ) ∝ t2, which is com-
parable to the phase estimation in DTQW [53]. When
the DDTQW operates in the phase-matched regime, the
enhancement in the QFI can be r2t4 for small rt and
exponential for rt � 1, where the squeezing parameter
is r.

The reason for enhanced H (ξ ) in the phase-matched case
can be attributed to the constructive interference between the
walkers (photons) in the phase-matched eigenmode that lead
to an exponential increase in the intensity with time in that
eigenmode. We have compared the phase estimation using
DDTQW with the standard DTQW and the SU(1,1) interfer-
ometer. We also provide a bound over the pump frequency to
achieve phase-matched DDTQW in the estimation of ξ with
enhanced precision. In the phase-matched DDTQW, the pump
frequency ω is always greater than 2θ when θ ∈ [0, π/2].

In this work, we have introduced a way to enhance the
quantum precision of phase estimation in QW dynamics us-
ing a driving term. The work here using DDTQW can be
further developed for quantum metrological tasks by adding
measurements and feedforward, improving the sensitivity in
an estimation protocol with the help of the driving operator.
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