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This paper explores an approach to fault-tolerant quantum computing (FTQC), relying on quantum polar
codes. We consider quantum polar codes of Calderbank-Shor-Steane type, encoding one logical qubit, which
we refer to as Q1 codes. First, we show that a subfamily of Q1 codes is equivalent to the well-known family
of Shor codes. Moreover, we show that Q1 codes significantly outperform Shor codes, of the same length and
minimum distance. Second, we consider the fault-tolerant preparation of Q1 code states. We give a recursive
procedure to prepare a Q1 code state, based on two-qubit Pauli measurements only. The procedure is not by
itself fault-tolerant; however, the measurement operations therein provide redundant classical bits, which can be
advantageously used for error detection. Fault tolerance is then achieved by combining the proposed recursive
procedure with an error detection method. Finally, we consider the fault-tolerant error correction of Q1 codes. We
use Steane error correction, which incorporates the proposed fault-tolerant code state preparation procedure. We
provide numerical estimates of the logical error rates for Q1 and Shor codes of length 16 and 64 qubits, assuming
a circuit-level depolarizing noise model. Remarkably, the Q1 code of length 64 qubits achieves a logical error
rate very close to 10−6 for the physical error rate p = 10−3, therefore demonstrating the potential of the proposed
polar-codes-based approach to FTQC.
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I. INTRODUCTION

Large-scale quantum computers are expected to use quan-
tum error correcting (QEC) codes to provide resilience against
noise [1]. A QEC code encodes one or more logical qubits into
many noisy physical qubits, so that the logical qubits are more
robust against noise than the physical qubits. However, a QEC
code alone does not provide the ability to do fault-tolerant
quantum computation (FTQC). To avoid the uncontrolled
propagation of errors, it must be complemented with several
fault-tolerant procedures [2], aimed at (1) preparing logical
code states, (2) operating on the logical subspace, and (3)
performing error correction.

In this paper, we explore an approach to FTQC, relying
on quantum polar codes. Introduced first in 2009 for classical
systems [3], and then generalized to the quantum case [4–7],
polar codes arguably represent one of the most important ad-
vances of the past decade in the coding theory. In the classical
setting, polar codes are the first family of explicit codes that
provably achieve the capacity of any symmetric, binary-input,
discrete, memoryless classical channel, and come equipped
with an efficient decoding algorithm, known as successive
cancellation (SC), whose complexity scales log-linearly with
the code length [3]. In the quantum setting, they achieve
the coherent information (one-shot capacity) of any quan-
tum channel [4,6,7], and further, the efficient classical polar
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decoder can be adapted for Pauli channels by considering a
syndrome decoding approach [4,7]. Quantum polar codes are
thus of both theoretical and practical importance, due to their
theoretically proven optimal error correction capacity and
their practical, low-complexity successive-cancellation-based
decoding.

It is important to note that a fast decoder is key to
performing fault-tolerant error correction. Indeed, the QEC
decoder needs to be fast enough to fight against the qubit
decoherence, energy efficient to meet possibly stringent
power-consumption requirements, and highly scalable to meet
the needs of fault tolerance [8]. Moreover, as noticed in [8],
the decoding must be faster than the syndrome extraction
rate, since otherwise the latency overhead becomes expo-
nential in the number of non-Clifford gates, hindering any
quantum advantage. Achieving all these constraints is ex-
tremely challenging, and might not be possible by existing
solutions.

Hence, it is worth investigating polar codes in the con-
text of FTQC, where they may potentially provide a viable
alternative to present solutions based on topological [9–11],
or more generally quantum low-density parity-check (LDPC)
codes [12–15].

Yet, despite their excellent error correction properties, po-
lar codes have been hardly explored for quantum computing,
except the work in [16] on magic state distillation. Here we
focus on two closely related ingredients of FTQC, namely,
fault-tolerant code state preparation and fault-tolerant error
correction. Note that, unlike quantum LDPC codes, quantum
polar codes have high-weight stabilizer generators, which pre-
vent fault-tolerant state preparation and error correction from
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being implemented by repeated syndrome measurements. In-
deed, quantum LDPC code states can be prepared and error
corrected by repeated syndrome measurements, where sta-
bilizer generators are measured by using the standard phase
kickback trick [2]. Errors are detected by the difference be-
tween syndromes, and since the syndrome values can also
contain errors, several measurement rounds have to be de-
coded simultaneously to achieve fault tolerance [17]. Since
this approach is no longer fault-tolerant for codes with high-
weight stabilizer generators, alternative solutions have to be
devised for quantum polar codes. The main contributions of
this paper are as follows.

We consider quantum polar codes of Calderbank-Shor-
Steane (CSS) type that encode one logical qubit, which we
refer to as Q1 codes. We show that Q1 codes are a natural
generalization of the well-known family of Shor codes, pro-
viding improved error correction performance.

We then consider the fault-tolerant preparation of Q1 code
states. By taking advantage of the quantum polar code struc-
ture, we propose a procedure to prepare Q1 code states, by
recursively performing Pauli Z ⊗ Z or Pauli X ⊗ X measure-
ments. This procedure is not by itself fault-tolerant; however,
the measurement operations therein provide redundant classi-
cal bits, which can be advantageously used for error detection.
Hence, to achieve fault tolerance, the proposed procedure is
complemented by an error detection method [18].

Indeed, unlike the LDPC case, where the syndrome ex-
traction can be repeated to deal with errors in generator
measurements, in our case, the measurements cannot be
repeated, as they may correspond to anticommuting Pauli
operators. Therefore, to ensure the fault tolerance, we have
introduced an error detection gadget, which takes advantage
of the redundancy in the measurement outcome.

Finally, we consider the fault-tolerant error correction of
Q1 codes, using Steane error correction [19,20]. We provide
numerical estimates of the logical error rate (LER), assuming
a circuit-level depolarizing noise model, for Q1 and Shor-Q1

codes of length N = 16 and N = 64. Remarkably, the Q1

code of length 64 qubits achieves an LER very close to 10−6

for the physical error rate p = 10−3, therefore, demonstrating
the potential of the proposed polar-codes-based approach to
FTQC.

II. CSS QUANTUM POLAR CODES

We refer to Appendix A and Appendix B for the relevant
background on classical and quantum polar codes. Here we
introduce the notation and summarize the definitions needed
to understand the main results of the paper.

The quantum polar transform QN , where N = 2n, with
n > 0, is the unitary operation on N qubits that operates
in the computational basis as the classical polar transform
PN . Precisely, for any u = (u1, . . . , uN ) ∈ {0, 1}N , we de-
fine QN |u〉 = |PN u〉, where PN = (0 1

1 1)
⊗n

. Hence, QN can
be realized by recursively applying the quantum CNOT gate,
transversely, on subblocks of 2k qubits, for k = 0, . . . , n − 1
(see Fig. 1).

Let S = {1, . . . , N} denote an N-qubit quantum system.
For a CSS quantum polar code [4], the system S is partitioned

FIG. 1. The quantum polar code, with N = 23, frozen sets Z =
{1, 2, 3}, X = {6, 7, 8} (chosen only for the simplicity of illustra-
tion), and frozen states |u〉Z = |0, 0, 0〉, and |v〉X = |+, +, +〉.

into S = Z ∪ I ∪ X , and the input quantum state of the polar
transform is taken as follows.

For Z ⊆ S , the quantum state is frozen to a known Pauli
Z basis state |u〉Z , where u := (u1, . . . , un) ∈ {0, 1}|Z|. For
X ⊆ S , with Z ∩ X = ∅, it is frozen to a known Pauli X basis
state |v〉X , where v ∈ {0, 1}|X | and we use the notation |0̄〉 :=
|+〉, and |1̄〉 := |−〉. The remaining subset I := S \ (X ∪ Z )
is used to encode quantum information |φ〉I .

Therefore, the logical code state, denoted by |φ̃〉S , is given
by |φ̃〉S = QN (|u〉Z ⊗ |φ〉I ⊗ |v〉X ).

III. Q1 CODES: QUANTUM POLAR CODES
WITH ONE LOGICAL QUBIT

As Q1 codes encode only one qubit, the information set
I = {i}, for some i ∈ S = {1, . . . , N}. Given the index i, the
frozen sets Z consists of the set of indices preceding i, i.e.,
Z:={1, . . . , i − 1}, and the frozen set X consists of the set of
indices succeeding i, i.e., X :={i + 1, . . . , N}.

The choice of the frozen sets Z and X , given the infor-
mation qubit position i, is simply explained by the sequential
nature of the SC decoding, and the fact that only errors on
the information position i need to be decoded. To correct X
errors, virtual channels [21] are decoded in order, from 1 to
N . Freezing a virtual channel j > i in Z basis would be of no
help in decoding the virtual channel i, while freezing it in X
basis amounts to ignoring X errors that happen on it. A similar
observation holds for Z errors, by noticing that in this case
virtual channels are decoded in reversed (decreasing) order,
from N to 1 (see also Appendix B 2, Fig. 6).

In case the information position is a power of two, i.e.,
i = 2k, 0 � k � n, the corresponding Q1 code is a Shor code
[22,23]. This follows from Theorem 1 below, which is proven
in Appendix C 1. We refer to these codes as Shor-Q1 codes,
or simply Shor codes, when no confusion is possible.

Theorem 1. For a given i = 2k, 0 � k � n, the logical
states |̃0〉S and |̃1〉S of the Q1(N, i) code are as follows (up
to a normalization factor),

|̃0〉S = ⊗2k

r=1

(⊗2n−k

c=1 |+〉r,c + ⊗2n−k

c=1 |−〉r,c

)
, (1)

|̃1〉S = ⊗2k

r=1

(⊗2n−k

c=1 |+〉r,c − ⊗2n−k

c=1 |−〉r,c

)
, (2)
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FIG. 2. LER of Q1 and Shor codes, for the depolarizing channel.

where r and c are row and column indexes, with S being
reshaped as a 2k×2n−k matrix of qubits.

The construction of a Q1 code refers to the choice of the
information position i, which determines how well the code
protects the encoded quantum information. Hence, the po-
sition i ∈ S should be chosen in a way to optimize the
LER performance, depending on the specific noisy quantum
channel. For the subfamily of Shor-Q1 codes, the choice
is restricted to positions i = 2k, 0 � k � n. (We refer to
Appendix B 2 for the construction of CSS quantum polar
codes, and to Appendix C 2 for more details on the construc-
tion of Q1 and Shor-Q1 codes.)

For depolarizing quantum channels, we use the density
evolution technique [3,24] to numerically estimate the LER
of Q1 and Shor-Q1 codes. The numerical results are shown in
Fig. 2 for both Q1 and Shor codes, for even recursion levels
n = 4 to 12, where the corresponding best index i is given
in Table II (discussed in Appendix C). It can be observed
that the Q1 code in general outperforms the Shor code, for a
given n. From the corresponding values of i given in Table II,
one may further note that the Q1 and Shor codes have the
same quantum minimum distance, for a given n. The superior
performance of Q1 codes owes to the SC decoding, which
is able to decode beyond the minimum distance of the code,
by effectively exploiting the channel polarization property of
polar codes.

For the odd recursion levels, our numerical results indicate
performance gains, depending on n and the physical error
rate value. (Further numerical results for the depolarizing and
the quantum erasure channels, as well as the details of the
numerical methods, are provided in Appendix C 3.)

IV. MEASUREMENT-BASED PREPARATION
OF Q1 CODE STATES

The conventional encoding of quantum polar codes in
Fig. 1 is not fault-tolerant, as errors propagate through the
CNOT gates. Further, measuring the stabilizer generators using
the standard “phase kickback trick” [2], similar to the case of
quantum LDPC codes [13], is also not fault-tolerant, due to
the high weights of generators.

Hence, we propose a procedure to prepare Q1 code states,
based on two-qubit Pauli measurements only. We describe our
procedure in two steps. First, we assume that all the operations
are error-free, and show that the proposed procedure does in-
deed prepare a Q1 code state. Then we consider our procedure
under the effect of errors (i.e., noisy gates and measurements)
and show that it can be made fault-tolerant by incorporating
an error detection gadget, exploiting the redundancy in the
measurement outcomes.

We consider the preparation of logical |0〉 and |+〉 states,
for which all the input qubits are frozen in either Z or X
basis. Consequently, we consider the preparation of general
Q1 code states, with frozen sets Z = {1, . . . , i} and X =
{i + 1, . . . , N}, for some arbitrary 1 � i � N , where N = 2n,
n � 1. Further, since our preparation procedure is recursive,
to clearly indicate the length of the prepared Q1 state, we will
use the notation i(n):=i, Z (n):=Z , and X (n):=X . Therefore,
we want to prepare the following N-qubit Q1 state on the
system S = {1, . . . , N},

|qN 〉S := QN (|u, v〉S ) = QN (|u〉Z (n) ⊗ |v〉X (n) ), (3)

where u ∈ {0, 1}i(n) and v ∈ {0, 1}N−i(n). When no confusion
is possible, we may simply write |qN 〉 instead of |qN 〉S . Here
we consider Q1 states defined by the same value of i(n) as
equivalent, regardless of the corresponding frozen values u, v.
Put differently, equivalent Q1 states are defined by the same
stabilizer generators, up to sign factors.

To prepare |qN 〉S from (3), we will use the following
measurement-based procedure.

Procedure 1 (measurement-based Preparation). Given a
n-bit sequence b1 · · · bn ∈ {0, 1}, our measurement-based
procedure on N = 2n qubit system S = {1, . . . , N} is as
follows.

(1) First, S is initialized in a Pauli Z basis state |u〉S , u ∈
{0, 1}N .

(2) Then two-qubit Pauli measurements are recursively
applied for n levels. The recursion is the same as the recursion
of the quantum polar transform (see Fig. 1), except the CNOT

gate is replaced by either Pauli X ⊗ X or Z ⊗ Z measurement.
Precisely, if bk = 0 (or, bk = 1), we apply Pauli X ⊗ X (or,
Z ⊗ Z) measurements at the kth, k = 1, . . . , n recursion level.

Theorem 2. Consider the Q1 state |qN 〉S from (3), with
1 � i(n) � N . Let b1 · · · bn be the binary representation of
i(n) − 1, with bn being the most significant bit, i.e., i(n) −
1 = ∑n

k=1 bk2k−1. Then |qN 〉S can be prepared, using the
measurement-based procedure in Procedure 1, corresponding
to the n bit sequence b1 · · · bn.

The measurement-based preparation for N = 8, i(n) = 3 is
illustrated in Fig. 3.

We first show in Lemma 1 that given two equivalent Q1

states of length K/2, K = 2k , we can prepare a Q1 state
of length K by performing Z ⊗ Z or X ⊗ X measurements
transversely on them. Further, when we apply Pauli Z ⊗ Z
measurements, we have i(k) = i(k − 1) + K/2 > K/2 and
when we apply Pauli X ⊗ X measurements, we have i(k) =
i(k − 1) � K/2. The proof of Theorem 2 then simply follows
from Lemma 1, by noting that bk = 1 ⇔ i(k) > K/2 (hence,
bk = 0 ⇔ i(k) � K/2).

042605-3



GOSWAMI, MHALLA, AND SAVIN PHYSICAL REVIEW A 108, 042605 (2023)

FIG. 3. Measurement-based preparation of |qN 〉S in (3), with
N = 8, i(n) = 3, where slightly flattened circles connected by a ver-
tical wire denote either a X ⊗ X or a Z ⊗ Z measurement on the
corresponding qubits, and |q2k 〉 are equivalent Q1 states of length 2k

(|q20 〉 is a Pauli Z basis state).

Lemma 1. Consider two equivalent Q1 states on K/2-qubit
systems S1 := {1, . . . , K/2} and S2 := {K/2 + 1, . . . , K} as
follows, |q1

K
2
〉
S1

:=Q K
2
|u1, v1〉S1

and |q2
K
2
〉
S2

:=Q K
2
|u2, v2〉S2

,

where u1, u2 ∈ {0, 1}i(k−1) and v1, v2 ∈ {0, 1} K
2 −i(k−1), with

1 � i(k − 1) � K/2. Let S := S1 ∪ S2 be the joint system,
then we have the following two cases.

Case 1: If we apply transversal Pauli Z ⊗ Z measurements
on the corresponding qubits of S1 and S2, we get the K/2 bit
measurement outcome as follows:

m = PK
2

(u′, x) ∈ {0, 1} K
2 , (4)

where u′ = u1 ⊕ u2 ∈ {0, 1}i(k−1) and x ∈ {0, 1} K
2 −i(k−1) is

a random vector, and PK
2

is the classical polar trans-
form. After measurements, the state of S is a Q1 state,
|qK〉S = QK |(u′, x, u2), v1 ⊕ v2〉S , with i(k) = i(k − 1) +
K/2 > K/2, and where x is determined from the measurement
outcome m in (4) by, x = PK

2
(m)|X (k−1), i.e., the subvec-

tor of PK
2

(m) ∈ {0, 1}K/2 corresponding to indices in the set
X (k − 1).

Case 2: If we apply transversal Pauli X ⊗ X measurements
on the corresponding qubits of S1 and S2, we get the K/2 bit
measurement outcome as follows:

m = P�
K
2

(z, v′) ∈ {0, 1} K
2 , (5)

where z ∈ {0, 1}i(k−1) is a random vector, and v′ = v1 ⊕
v2 ∈ {0, 1} K

2 −i(k−1). After measurements, the state on S is
a Q1 state |qK〉S = QK |u1 ⊕ u2, (v1, z, v′)〉S , with i(k) =
i(k − 1) � K/2 and from (5), z = P�

K
2

(m)|Z (k−1).

The proof of Lemma 1 is given in Appendix D 1. Cases 1
and 2 from Lemma 1 are also illustrated in Figs. 11 and 12,
respectively, in Appendix D 1.

V. FAULT-TOLERANT MEASUREMENT-BASED
PROCEDURE

We now consider our measurement-based procedure un-
der the effect of Pauli noise. We assume the standard

implementation of Pauli Z ⊗ Z and X ⊗ X measurements,
where a bare ancilla qubit is initialized in either Pauli Z
or Pauli X basis state, then two CNOT gates are applied be-
tween data and ancilla qubits, and finally the ancilla qubit
is measured in Pauli Z or X basis. Therefore, any two-qubit
Pauli measurement decomposes into four basic components,
namely, one single-qubit initialization, two CNOT gates, and
one single-qubit measurement (see Fig. 10 in Appendix D 1).

As the preparation of |qN 〉S consists of N single-qubit
initializations, followed by N/2 log N two-qubit Pauli mea-
surements, the total number of components in the preparation
is equal to N (1 + 2 log N ).

We assume that each component fails independently with
some probability p, according to a circuit-level Pauli noise
model as follows.

A failure in a CNOT gate corresponds to applying the perfect
CNOT gate, followed by a two-qubit Pauli error on the output
qubits of the CNOT gate. A failure in initialization in Pauli Z
(or X ) basis corresponds to the perfect initialization, followed
by an X (or Z) error on the initialized qubit. A failure in Pauli
Z (or X ) measurement corresponds to first applying a Pauli X
(or Z) error on the qubit to be measured, and then doing the
perfect Pauli Z (or X ) measurement.

We note that the preparation in Procedure 1 is not
fault-tolerant by itself. Due to failures in the components,
the measurement outcomes of transversal Pauli Z ⊗ Z or
X ⊗ X measurements are noisy. Precisely, we have m =
PK

2
(u′, x) ⊕ eX instead of (4), and m = P�

K
2

(z, v′) ⊕ eZ in-

stead of (5), where eX , eZ ∈ {0, 1}K/2 are unknown error
terms. Recall from Lemma 1 that vectors x and z are
determined from m, and they are necessary to know the
prepared state |qK〉S after Pauli Z ⊗ Z and X ⊗ X measure-
ments, respectively. However, due to unknown error terms,
the methods in Lemma 1 may not correctly determine x
and z. Accepting a wrong estimate x̂ �= x and ẑ �= z amounts
to extra X and Z errors on the respective prepared states,
given by the vectors PK (0, x̂ ⊕ x, 0, 0), and P�

K (0, 0, ẑ ⊕ z, 0),
respectively.

To make the measurement-based preparation fault-tolerant,
we consider the following error detection procedure.

Procedure 2 (Measurement-Based Preparation with Error
Detection). Consider the preparation of a Q1 state of length N
from Procedure 1. We further incorporate an error detection
gadget within each level of recursion, k = 1, . . . , n, consisting
of the following two steps.

(1) For all 2n−k instances of prepared |qK〉 states at the kth
level of recursion, we first determine the syndrome of the error
in the measurement outcome m as follows. When Pauli Z ⊗ Z
measurements are performed (i.e., Case 1 of Lemma 1), we
determine the syndrome of the error term eX in the measure-
ment outcome m as, PK

2
(eX )|Z (k−1) = PK

2
(m)|Z (k−1) ⊕ u′.

Similarly, when Pauli X ⊗ X measurements are performed
(i.e., Case 2 of Lemma 1), we determine the syndrome of the
error term eZ as, P�

K
2

(eZ )|X (k−1) = P�
K
2

(m)|X (k−1) ⊕ v′.

(2) If the syndrome is the zero vector for all the 2n−k

instances of |qK〉, we determine the value of x or z for
all prepared states as in Lemma 1, and proceed to the
next level of recursion. Otherwise, we declare a preparation
failure.
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TABLE I. Comparison of Q1 codes with surface and color codes.

Code length (N), Logical error rate

Codes Min. distance (d) Pseudothreshold p = 5×10−3 p = 10−3 p = 10−4

Surface codesa [10, Fig. 4(a)] N = 49, d = 7 3.5×10−3 9×10−3 9×10−6 9×10−10 (extrapolated)
N = 81, d = 9 4.2×10−3 7×10−3 8×10−7 (extrapolated) 2×10−12 (extrapolated)

Hexagonal color codesa N = 61, d = 9 3×10−4 5×10−1 3×10−2 10−6

[27, Fig. 3]
Q1 codes N = 64, d = 8 10−2 8×10−4 2×10−6 3×10−10

aFor a fair comparison with Q1 codes, reported logical error rates for surface and color codes should be multiplied by two, since they account
for only one type of errors. Moreover, following [27], the corresponding pseudothresholds are defined as the physical error rate p in which
the logical error rate curve PL (p) intersects with the line PL = 2p/3. We also note that the surface codes in [10] are actually of length
N = 2d2 − 2d + 1; the code length reported here N = d2 corresponds to the rotated surface code variant (minimizing the number of qubits
for a given minimum distance).

In case Procedure 2 fails, we may restart the procedure
from the beginning, by initializing N qubits in a Pauli Z basis
state.

The fault tolerance of the successfully prepared state (i.e.,
when errors are not detected at any recursion level k = 1 to n),
follows from Theorem 3, which is proven in Appendix D 2.

Theorem 3. Consider the measurement-based preparation
with error detection from Procedure 2. Suppose a successful
preparation of |qN 〉, where Tn component failures occur during
the preparation. Let e f

X , e f
Z ∈ {0, 1}N be the final Pauli X and

Z errors in the noisy prepared state |q′
N 〉, due to the compo-

nent failures. Then there exist equivalent errors e′ f
X ≡ e f

X and
e′ f

Z ≡ e f
Z , so that wt(e′ f

X ) � Tn and wt(e′ f
Z ) � Tn, where wt(u)

denotes the Hamming weight of u.
Theorem 3 implies that the weight of X and Z errors

on a successfully prepared state remains small given a suf-
ficiently low component failure probability p. In particular,
it upper bounds the average weight of the final error by
N (1 + 2 log N )p. Our numerical simulation suggests that the
average error weight is much lower than N (1 + 2 log N )p,
which is expected as we discard the preparations where errors
are detected.

VI. FAULT-TOLERANT ERROR CORRECTION

For fault-tolerant error correction of Q1 codes, we consider
Steane error correction (see Appendix B 3 for the details of
Steane error correction applied to CSS quantum polar codes).
The Q1 states, needed in the Steane error correction, are pre-
pared using Procedure 2, assuming a circuit-level depolarizing
noise model. Further, as Procedure 2 consists of error detec-
tion, we consider Q1 code states of small lengths N = 16, 64.

Let pprep = limR→∞ t
R be the preparation rate, where t is

the number of successful preparations out of R preparation
attempts. For a component failure probability p = 10−3, our
numerical simulation gives pprep ≈ 0.88 and pprep ≈ 0.47, re-
spectively, for Q1(N = 16, i = 7) and Q1(N = 64, i = 23)
codes (see Fig. 16 in Appendix E 2).

The numerical estimate of the LER for Q1 and Shor codes
of length N = 16 and N = 64 qubits are given in Fig. 4. The
LER has been estimated by Monte Carlo (MC) simulation of
the Steane error correction procedure, until a number of f
logical errors are reported, where f is taken to be between

50 and 200. We also provide a theoretical upper bound of
the LER based on density evolution (DE), providing a trust-
worthy extrapolation of the LER for smaller values of p.
It can be also observed that the pseudothreshold (crossing
point between the LER curve and the diagonal line [25,26])
of the Q1(N = 16, i = 7) code is pth ≈ 0.001, while for the
Q1(N = 64, i = 23) code, we get pth ≈ 0.01.

We have provided more details about the numerical simu-
lation of fault-tolerant error correction in Appendix E.

In Table I we compare the error correction performance of
the Q1 code of length N = 64, with previous simulations on
surface and color codes of similar lengths from the literature,
under circuit-level depolarizing noise [10,27]. We can see
that the Q1 code has a better pseudothreshold value than the
considered surface and color codes. In terms of logical error
rates, the performance of the Q1 code is between that of the
two surface codes, while being significantly better than that
of the color code. This establishes that polar codes are of
independent interest and may provide a potential alternative
for FTQC.

However, we emphasize that the above comparison must
be interpreted carefully. For example, even though we have

FIG. 4. Monte Carlo (MC) and density-evolution (DE)-based
evaluation of the LER, for Q1 and Shor codes of length N = 16 and
N = 64.
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considered similar code lengths, the overhead in terms of
qubits may be quite different for each scheme. As we use
Steane error correction, we need two code states for each
round of correction. Hence, the number of ancilla qubits per
round of error correction is twice the code length. Offline
preparation of these ancilla qubits may further incur qubit
overheads due to error detection, especially at high physical
error rates. Surface and color codes are based on error syn-
drome extraction by measuring stabilizer generators. For sur-
face code, each generator measurement requires one ancilla,
hence, requiring approximately the same number of ancilla
qubits as the code length. For color codes, the number of an-
cilla qubits depends, whether the syndrome extraction is done
using Shor’s extraction technique or using flag qubits [27,28].

Further, time overheads required or the gates applied dur-
ing each error correction step may also be quite different.
For example, Q1 codes corrects errors after each round of
syndrome extraction. However, surface and color codes re-
quire d (minimum distance) rounds of syndrome extraction to
account for the errors in syndrome, hence incurring an extra
time-overhead and requiring more CNOT gates [10,26,27].

VII. DISCUSSION

Polar-encoded quantum computation may be seen as an
error correction centric approach to FTQC. It exploits a family
of codes that have met with remarkable success, fueled by
their excellent error correction performance, under practical,
low-complexity decoding. In this paper, we focused on two
closely related ingredients of FTQC, namely, fault-tolerant
code state preparation and fault-tolerant error correction. We
considered polar codes encoding one logical qubit, referred to
as Q1 codes, constituting a case of practical interest to FTQC
(they support transversal logical CNOT gate), and which we
showed to be a meaningful generalization of the well-known
Shor codes. We may also notice that the preparation proce-
dure presented here naturally extends to the case of quantum
polar codes encoding several logical qubits, provided they are
encoded in consecutive information positions.

Our numerical results suggest that for a circuit-level de-
polarizing noise model, there exists a pseudothreshold below
which the logical error rate is smaller than physical error rate.
In particular, the pseudothresholds for Q1 codes of length N =
16, 64 are around 10−3 and 10−2, respectively. Moreover, for
N = 64, the logical error rate is around 10−6 for a practically
interesting physical error rate 10−3, showing the promise of
the proposed fault tolerant error correction.

One can prepare asymptotically large states, by incorpo-
rating concatenation [29,30] in our preparation. Precisely, we
replace each physical qubit by a logical qubit and then do
recursive logical Pauli Z ⊗ Z and Pauli X ⊗ X measurements.
As failure probabilities of the logical measurements is smaller
than the physical measurements, we will have a better prepa-
ration rate after each level of concatenation. The concatenated
codes, however, are not Q1 codes themselves and would re-
quire a greater qubit overhead with respect to the family of
Q1 codes, hence may not be an ideal choice in practice. As
explained below, one might avoid using concatenation in prac-
tice, with the help of some improvement on our preparation
procedure.

First, let us note that the current estimates of the logical
error rate needed to run large scale quantum algorithms are
around 10−15 [10,31], which could be achieved by preparing
Q1 code states of length 256 and 1024, for physical error
rates in the range 10−3–10−4. We discuss below two possible
improvements, which may allow to prepare larger Q1 code
states, with reasonably high probability, therefore avoiding
concatenation in a practical scenario.

The first such improvement would be to consider a factory
preparation, where several code states are prepared in parallel.
In this scenario, due to the recursive nature of the preparation,
one may not have to disregard completely a preparation, every
time an error is detected. Therefore, a factory preparation
might improve the preparation rate (similar to the magic state
distillation case [32,33]).

The second improvement would be to consider error cor-
rection in place of error detection. This may work for specific
Q1 codes only, as the classical code defined by the mea-
surement outcomes needs to be a good code, with large
enough minimum distance (to ensure good error correction
capabilities).

The detailed analysis of the above proposals is left for
future works.

Finally, we note that our preparation procedure requires
distant interactions between qubits, which may be possible on
some quantum technologies only such as ion traps [34,35].
Yet, for quantum systems with local interaction constraints, it
may be possible to reduce the number of distant operations re-
quired to prepare small Q1 codes, by arranging the qubits in an
appropriate manner (taking advantage of the polar code struc-
ture). Distant operations may then be implemented through
the use of swap gates [36,37], or by physically moving the
qubits around [38–40]. For longer codes, solutions have to
be sought that may heavily depend on the specific quantum
technology.
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APPENDIX A: CLASSICAL POLAR CODES

1. Encoding

The encoding of classical polar codes is done by apply-
ing the reversible XOR gate recursively on an N bit input
u = (u1, . . . , uN ) ∈ {0, 1}N , where N = 2n, with n > 0 (see
Fig. 5). For a set of positions F ⊆ {1, . . . , N}, the correspond-
ing component u|F ∈ {0, 1}|F | of the input vector u is frozen.
We may take u|F to be any vector in {0, 1}|F |, but it should be
known to both the encoder and the decoder. The set F is called
the frozen set. The remaining positions I:={1, . . . , N} \ F
are used to encode information bits. The set I is called the
information set.

In the following, we denote by P (N,F , u|F ), the classical
polar code of length N , frozen positions F , and frozen vector
u|F ∈ {0, 1}|F |.
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FIG. 5. (a) Polar transform recursion: PN in terms of PN/2. (b) Ex-
ample of a classical polar code encoding |I| = 5 bits into N = 23

bits, with frozen set F = {1, 2, 3}, and frozen vector uF = (0, 0, 0).
The set F (thus, I) is chosen only for the purpose and the simplicity
of the illustration. In general, it need not consist of consecutive
positions.

The action of the XOR2→1 gate on input u = (u1, u2) ∈
{0, 1}2 gives x = (u1 ⊕ u2, u2). In matrix form, we may write
x = P2u, where

P2 =
[

1 1
0 1

]
. (A1)

The classical polar transform, i.e., the recursive application
of XOR2→1 on N = 2n qubits, is thus given by the matrix

PN = P⊗n
2 . (A2)

For any value of the information bits uI ∈ {0, 1}|I|, x =
PN (u|F , u|I ) ∈ {0, 1}N is a codeword of the polar code
P (N, F, u|F ). If u|F is the all zero vector, the polar code
P (N,F , u|F ) is generated by the columns of PN correspond-
ing to the information set I.

2. Construction

The construction of a classical polar code refers to the
choice of the information set I (or, equivalently, the frozen
set F). This is done in a channel-specific way as follows.

Consider a discrete, memoryless, classical channel W (y |
x), with binary input x ∈ {0, 1}, and output y ∈ Y . For u ∈
{0, 1}N , let x = PN (u) ∈ {0, 1}N (note that here F and I
need not be defined) and y ∈ YN be the output correspond-
ing to N uses of the W channel, with inputs x1, . . . , xN . For
i = 1, . . . , N , let W (i)(y, u1:i−1 | ui ) denote the so-called vir-
tual channel, with input ui ∈ {0, 1} and output (y, u1:i−1) ∈
Y×{0, 1}i−1, where u1:i−1 := (u1, . . . , ui−1).

Informally, the channel polarization theorem [3] states that,
for sufficiently large N , almost all the virtual channels become
arbitrarily close to either the noiseless (perfect) channel or to
the completely noisy (useless) channel. The closeness to the
either perfect or useless channel can be expressed in terms of
different parameters, such as the mutual information I (W (i) ),
the Bhattacharyya parameter Z (W (i) ), or the error probability
Pe(W (i) ), which can be computed analytically for some chan-
nels (e.g., binary erasure channels), or estimated numerically
through density evolution, for more general channels [24].
Once one of these parameters is computed for all the virtual
channels, they are sorted from the most reliable (closest to
the perfect channel) to the least reliable (closest to the useless
channel) one.

For a polar code encoding K information bits, the infor-
mation set I consists of the indexes corresponding to the K
most reliable virtual channels (equivalently, the N − K least
reliable virtual channels are frozen). The usefulness of this
construction will become apparent in relation to the successive
cancellation decoding, discussed in the next section.

3. Decoding

Classical polar codes come equipped with an efficient suc-
cessive cancellation (SC) decoding algorithm. SC decoding
takes advantage of the polar code construction, by estimating
inputs u1, . . . , uN sequentially. For i = 1, . . . , N , SC decod-
ing outputs the maximum a posteriori estimate ûi of ui,
conditional on the observed output y and previous estimates
û1:i−1 = (û1, . . . , ûi−1). Precisely, we have

ûi :=
{

ui, if i ∈ F
arg maxu∈{0,1}W

(i)(y, û1:i−1 | u), if i ∈ I . (A3)

If the information set contains indexes of good virtual chan-
nels (close to the perfect channel), the maximum a posteriori
estimate ûi is equal to the input ui with high probability. This
does not happen for bad virtual channels (close to the useless
channel), which must then be frozen, so that the corresponding
inputs are known to both the encoder and decoder. It is worth
noticing that the maximum a posteriori decoding of the virtual
channels can be performed in an efficient way, by using a mes-
sage passing algorithm that takes advantage of the recursive
structure of the polar code [3]. Overall, the complexity of the
SC decoding scales as O(N log(N )).

Finally, we note that polar codes under SC decoding are
known to achieve the channel capacity [3]. This means that
for sufficiently large N , it is possible to choose an informa-
tion set of size |I| arbitrary close of NI (W ), where I (W ) is
the channel’s mutual information, while ensuring an arbitrary
small error probability under SC decoding.

APPENDIX B: QUANTUM POLAR CODES

1. Encoding

The encoding of quantum information for CSS quantum
polar codes is briefly given in Sec. II. In this section, we
provide more details.

Recall from Sec. II that the quantum polar transform QN

corresponds to the recursive action of the quantum CNOT gate
on an N-qubit quantum state. The quantum CNOT gate induces
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FIG. 6. Classical polar codes in (a) Z basis and (b) X basis,
induced by the CSS quantum polar code Q(N,Z,X , |u〉Z , |v〉X ).
The permutation π in (b) is the reverse order permutation. (Note that
in this example the two codes are actually the same.)

the reversible XOR gate in the Pauli Z and Pauli X bases.
Precisely, CNOT2→1 acts as XOR2→1 in the Pauli Z basis,
while it acts as XOR1→2 in the Pauli X basis. Hence, it follows
that QN acts as the classical polar transform PN in the Pauli Z
basis, while it acts as the reverse classical polar transform (i.e.,
with inverted target and control bits) in the Pauli X basis.

It can be seen that the reversed classical polar transform
is described by P�

N , where P�
N is the transpose of PN [4].

Therefore, we have the following, for u ∈ {0, 1}N :

QN |u〉 = |PN u〉, (B1)

QN |u〉 = |P�
N u〉. (B2)

In the following, we denote by Q(N,Z,X , |u〉Z , |v〉X ),
the quantum polar code on N qubits, with frozen sets Z and X ,
corresponding to the Pauli Z and Pauli X bases, respectively,
and with corresponding frozen quantum states |u〉Z and |v〉X .
It induces two classical polar codes, one in Z basis, with
frozen set Z , and one in X basis, with frozen set X , where the
latter is defined by a reversed polar transform, as illustrated in
Fig. 6.

Let π denote the reverse order permutation of S =
{1, . . . , N}, defined by π (i) = N + 1 − i. Then the clas-
sical polar code induced in the Z basis is P (N,Z, u),
while the classical polar code induced in the X basis is
P (N, π (X ), π (v)), where the vector π (v) is defined by per-
muting the entries of v according to π , i.e., π (v)i := vπ (i),
∀i ∈ X .

The X and Z type stabilizer generators of
Q(N,Z,X , |u〉Z , |v〉X ) are given by the lemma below.

Lemma 2. Let ei ∈ {0, 1}N be the binary vector, with 0 ev-
erywhere except 1 at the ith position. Then the stabilizer group
of Q(N,Z,X , |u〉Z , |v〉X ) is generated by the following X
and Z type operators:

(−1)vi X PN ei , ∀i ∈ X , (B3)

(−1)ui ZP�
N ei , ∀i ∈ Z. (B4)

Proof. Note that the input of the polar transform, i.e., the
quantum state |u〉Z ⊗ |φ〉I ⊗ |v〉X , is stabilized by the fol-
lowing Pauli operators:

(−1)vi X ei , ∀i ∈ X , (B5)

(−1)ui Z ei , ∀i ∈ Z. (B6)

Therefore, the encoded quantum state |φ̃〉S = QN (|u〉Z ⊗
|φ〉I ⊗ |v〉X ) is stabilized by the following Pauli operators:

(−1)vi QN X ei QN , ∀i ∈ X , (B7)

(−1)ui QN Z ei QN , ∀i ∈ Z. (B8)

The operators in (B7) and (B8) are a generating set of the
stabilizer group of Q(N,Z,X , |u〉Z , |v〉X ). These generators
can be written in terms of classical polar transforms PN and
P�

N as follows.
We first consider the case of two qubits, and observe that

the sandwiching actions of the CNOT gate on Pauli operators
gives, for u ∈ {0, 1}2,

CNOT2→1X uCNOT2→1 = X P2u, (B9)

CNOT2→1ZuCNOT2→1 = ZP�
2 u. (B10)

Using (B9) and (B10) and (A2), the sandwiching action of
QN is described by the classical polar transforms PN and P�

N ,
respectively, on X - and Z-type operators. Hence, the stabilizer
generators from (B7) and (B8) can be written as given in (B3)
and (B4). �

Note, from (B3), that the indicator vector of X -type gen-
erators are given by the columns of PN , corresponding to the
set X . Further, from (B4), the indicator vectors of the Z-type
generators are given by the columns of P�

N (i.e., the rows of
PN ), corresponding to the set Z .

Similarly to Lemma 2, logical Pauli operators can be de-
termined by passing X and Z operators through the polar
transform, as shown in the lemma below.

Lemma 3. Let X̃i and Z̃i be the logical X and Z operators,
corresponding to the encoded qubit at the position i ∈ I. Then

X̃i = X PN ei , (B11)

Z̃i = ZP�
N ei . (B12)

2. Construction

The construction of a CSS quantum polar code refers to
determining the frozen sets Z and X (thus, the information
set I), which exploits the classical polarization in Z and X
bases, respectively [4]. We shall assume a Pauli channel W ,
with qubit input, given by

W (ρ) = pIρ + pX XρX + pY Y ρY + pZZρZ, (B13)
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where ρ denotes the density matrix of the qubit (mixed) state,
and pI , pX , pY , pZ ∈ [0, 1] are probability values, summing
to 1.

In Z basis, only X errors matter. Thus, the Z-basis-induced
channel, denoted WZ , captures the effect of X -type errors on
the quantum state and is given by

WZ (|u〉〈u|) = (pI + pZ )|u〉〈u| + (pX + pY )X |u〉〈u|X, (B14)

where u ∈ {0, 1}. Hence, WZ is a classical binary symmetric
channel (BSC), with error probability pX + pY . Similarly, the
X -basis-induced channel, denoted WX , captures the effect of
Z-type errors on the quantum state and is given by

WX (|u〉〈u|) = (pI + pX )|u〉〈u| + (pZ + pY )Z|u〉〈u|Z, (B15)

where u ∈ {0, 1}. Hence, WX is a classical BSC, with error
probability pX + pY .

To construct the CSS quantum polar code, we exploit the
classical polarization of WZ and WX channels (see Sec. 3).
Note that this construction ignores the correlations between X
and Z (we will explain how these correlations can be captured
a little later, below). The frozen set Z is determined by the
classical polarization of the WZ channel, under the classical
polar transform PN , while the frozen set X is determined
by the classical polarization of the WX , under the reversed
classical polar transform P�

N . The remaining information set
I corresponds to virtual channels that are good in both Z and
X bases. The frozen set Z corresponds to virtual channels
that are bad in Z basis. These channels may be either bad or
good in X basis, it does not matter, since we need not decode
Z errors on corresponding inputs (such errors correspond to
Z-type generators, thus they act trivially on the code space).
Similarly, the frozen set X corresponds to virtual channels
that are bad in X basis, and which may be either bad or good
in Z basis. Precisely, positions in X that do not impact the
decoding of subsequent positions in I (if any) may correspond
to bad virtual channels in Z basis. For instance, this may
be the case for some positions in X that come after the last
position in I, i.e., some j ∈ X , such that i < j, ∀i ∈ I [see
also Fig. 6(a)].

To capture the correlations between X and Z errors, one
of the two channels, e.g., WX , has to be extended [4]. The
extended channel, denoted by WX ′ , is thus defined by the con-
ditional probability of a Z error, given the X error. Precisely,

WX ′ (|u〉〈u|) = (pI + pZ )|0〉〈0|X
⊗

(
pI

pI + pZ
|u〉〈u| + pZ

pI + pZ
Z|u〉〈u|Z

)

+ (pX + pY )|1〉〈1|X ⊗
(

pX

pX + pY
|u〉〈u|

+ pY

pX + pY
Z|u〉〈u|Z

)
, (B16)

where {|0〉X , |1〉X } is an orthogonal basis of an
auxiliary system, indicating whether an X error
happened or not. Put differently, WX ′ is a classical mixture of
two BSCs, the first with error probability pZ/(pI + pZ ) (when
no X error happened), and the second with error probability
pY /(pX + pY ) (when an X error happened).

The construction of the CSS quantum polar code, taking
into account the correlations between X and Z errors, is done
in the same way as above, while replacing the WX channel by
its extended version WX ′ .

3. Steane error correction

We describe here the Steane error correction procedure
[19,20] (see also [2, Sec. 4.4]), applied to CSS quantum polar
codes. Throughout this section, we consider an encoded state
|φ̃〉S = QN (|u〉Z ⊗ |φ〉I ⊗ |v〉X ) of the quantum polar code
Q(N,Z,X , |u〉Z , |v〉X ), that we want to protect against Pauli
errors.

Steane’s error correction procedure consists of the follow-
ing steps:

(1) An ancilla system S ′ is prepared in either the
logical all-|+〉 state or the logical all-|0〉 state of
Q(N,Z,X , |u〉Z , |v〉X ). The former state is prepared for
X -error correction, while the latter of Z-error correction.

(2) A transverse CNOT gate is applied between S (original)
and S ′ (ancilla) systems, in such a way that either the X or the
Z errors on S are copied to S ′, while the two systems remain
separated.

(3) The ancilla system is measured, outputting a random
codeword of a classical polar code (in either Z or X basis),
corrupted by the error that has been copied to S ′.

(4) A classical SC decoding is applied to determine the
error (possibly, the corresponding corrective operation is ap-
plied on the S system).

It is easily seen that steps (2) and (3) are fault-tolerant, as
they consist only of transverse gates and single-qubit measure-
ments.

By a slight abuse of language, we shall refer to steps
(1)–(3) above as syndrome extraction [41]. In case of ideal
syndrome extraction, steps (1)–(3) are assumed to be error-
free, and the error corrected at step (4) is the one preexisting
on system S , before the syndrome is extracted. In case of noisy
syndrome extraction, steps (1)–(3) may generate additional
errors on systems S and S ′. We will analyze the impact of
these errors, together with providing the details of Steane’s
error correction applied to either X or Z errors, on the two
subsections below.

We will consider an ancilla system S ′ = {1′, . . . , N ′} and
subsets Z ′, I ′,X ′ ⊆ S ′. They are the counterparts of the
subsets Z, I,X ⊆ S , in the sense that i′ ∈ Z ′ ⇔ i ∈ Z , and
similarly for I ′ and X ′.

a. X -error correction. To extract the syndrome for X er-
rors, the ancilla system S ′ = Z ′ ∪ I ′ ∪ X ′ must be prepared
in a logical X basis state. Usually, the ancilla state is taken to
be the logical all-|+〉 state, obtained by encoding the all-|+〉
state on system I ′. Here we consider a slightly more general
logical X basis state, as follows:

|w̃′〉S ′ = QN (|u′〉Z ′ ⊗ |w′〉I ′ ⊗ |v′〉X ′ ), (B17)

where u′,w′, v′ are known. Note that frozen values u′ and v′
may be different from frozen values u and v. The reason we
consider the above logical state is that our preparation proce-
dure for logical polar code states is measurement based, for
which u′,w′, v′ are determined based on random outcomes of
measurements therein.
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FIG. 7. Steane’s error correction procedure.

Steane’s X -error syndrome extraction procedure is de-

picted in Fig. 7(a). After preparing the state |w̃′〉S ′ on system
S ′, the transversal CNOTS→S ′ gate is applied on corresponding
qubits of systems S and S ′. Then each qubit in the ancilla
system S ′ is measured in the Pauli Z basis. We denote by m =
(m1, . . . , mN ) the classical outputs of these measurements.

The following lemma gives the state of the S system, as
well as the measurement result m, after the syndrome ex-
traction procedure. We consider errors eX and e′

X that have
happened on systems S and S ′, respectively. We assume
that errors eX and e′

X have happened before the transversal
CNOTS→S ′ gate is applied, while the transversal CNOTS→S ′

gate, as well as the measurement operations, are error-free. We
refer to these errors as preparation errors. This assumption
is made for simplicity only. Indeed, it is not too difficult
to see that errors generated on the S ′ system, by either the
transversal CNOTS→S ′ gate or the measurement operations,
can actually be incorporated to the error e′

X . Errors generated
by the transversal CNOTS→S ′ gate on the S system go unde-
tected, but they may be corrected during the next round of
error correction.

Lemma 4. Let eX and e′
X be preparation errors that have

happened on systems S and S ′, respectively. Then, after the
Steane’s X -error syndrome extraction, the state of the system
S is given by

X eX |˜Zw′
φ〉S = X eX QN (|u〉Z ⊗ Zw′ |φ〉I ⊗ |v ⊕ v′〉X ). (B18)

Further, the measurement outcome is a noisy codeword of the
classical polar code P (N,Z, u ⊕ u′), with frozen set Z and
frozen vector u ⊕ u′, as follows:

m = PN (u ⊕ u′, a′, x′) ⊕ eX ⊕ e′
X ∈ {0, 1}N , (B19)

where a′ ∈ {0, 1}|I| and x′ ∈ {0, 1}|X | are random vectors.
Proof. Let |φ〉I = ∑

a∈{0,1}|I| φa|a〉I . Note also that
|v〉X = ∑

x∈{0,1}|X | (−1)v·x|x〉X (up to a normalization factor,
which will be omitted in the sequel). Then the noisy logical

state X eX |φ̃〉S can be written as

X eX |φ̃〉S = X eX QN (|u〉Z ⊗ |φ〉I ⊗ |v〉X ) (B20)

=
∑
a,x

φa(−1)v·x|PN (u, a, x) ⊕ eX 〉. (B21)

Similarly, the noisy ancilla state can be written as

X e′
X |w̃′〉S ′ = X e′

X QN (|u′〉Z ′ ⊗ |w′〉I ′ ⊗ |v′〉X ′ )

=
∑
a′,x′

(−1)w
′·a′+v′·x′ |PN (u′, a′, x′) ⊕ e′

X 〉. (B22)

After the transverse CNOTS→S ′ gate is applied, we get the
following state on the bipartite SS ′ system:

|θ〉SS ′ := CNOTS→S ′ (X eX |φ̃〉S ⊗ X e′
X |w̃′〉S ′ )

=
∑
a,x

φa(−1)v·x|PN (u, a, x) ⊕ eX 〉

⊗
∑
a′,x′

(−1)w
′·a′+v′·x′

|PN (u ⊕ u′, a ⊕ a′, x ⊕ x′) ⊕ eX ⊕ e′
X 〉

=
∑
a,x

φa(−1)w
′·a+(v⊕v′ )·x|PN (u, a, x) ⊕ ex〉

⊗
∑
a′,x′

(−1)w
′·a′+v′·x′ |PN (u ⊕ u′, a′, x′)

⊕eX ⊕ e′
X 〉, (B23)

where for the last equality, we use variable changes a′ ← a′ ⊕
a, and x′ ← x′ ⊕ x. It can be seen that the error on the system
S has propagated to the system S ′, and |θ〉SS ′ is a product
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state that can be rewritten as

|θ〉SS ′ = X eX QN (|u〉Z ⊗ Zw′ |φ〉I ⊗ |v ⊕ v′〉X )

⊗ X eX ⊕e′
X QN (|u′ ⊕ u〉Z ′ ⊗ |w′〉I ′ ⊗ |v′〉X ′ ).

(B24)

Hence, the partial state of the system S is the same as in (B18).
Further, measuring the qubits of the ancilla system in the Pauli
Z basis, we get m = PN (u ⊕ u′, a′, x′) ⊕ eX ⊕ e′

X ∈ {0, 1}N ,
for some random vectors a′ ∈ {0, 1}|I| and x′ ∈ {0, 1}|X |.

Two observations are in place here.
First, from (B18), it follows that the frozen vector corre-

sponding to X ⊂ S (original system) has changed to v ⊕ v′,
after the Steane’s procedure. Further, the logical Z operator
corresponding to Zw′

gets applied on S . However, since we
know w′, we can reverse this logical operation using (B12).
Hence, the logical information encoded in S has not been
altered, due to the syndrome extraction.

The second observation concerns the SC decoding,
which takes as input the measurement outcome m = PN (u ⊕
u′, a′, x′) ⊕ eX ⊕ e′

X , and the frozen vector u ⊕ u′. It pro-
duces an estimate of the information vector (a′, x′), from
which we can produce an estimate of the total error eX ⊕
e′

X . The vector a′ may be correctly estimated, owning to
the fact that it corresponds to good virtual channels. Some
of the x′ positions may be incorrectly estimated, but this
does not matter, as the induced logical error corresponds to
an X -type stabilizer operator, acting trivially on the code
space.

Hence, assuming the vector a′ is decoded correctly, we
also get the correct value of the total error eX ⊕ e′

X (up to
an X -type stabilizer operator). We then correct the S system
by applying X eX ⊕e′

X , which will leave the error X e′
X (origi-

nal error on S ′) on S after correction. This leftover error,
may hopefully be corrected in the next round of correction,
where we may similarly add another error from the ancilla
system. However, note that the advantage of error correction
is that it does not allow errors to accumulate and the only
left error on the encoded state is due to the last round of
error correction (which may be corrected, when the encoded
logical state is eventually measured). Hence, we may stabi-
lize logical qubits against noise, by doing error correction
repeatedly.

It is worth noticing that for topological (or some families
of quantum LDPC codes), fault tolerant error correction needs
the decoding operation to be applied on a time window, com-
posed of several consecutive syndrome extractions, e.g., [10].
For Steane’s fault tolerant error correction, decoding is simply
applied on each extracted “syndrome” (recall the “syndrome”
in this case is actually a noisy codeword).

b. Z-error correction. The decoding of Z errors can be
done similarly to the case of X errors as follows. To extract
the syndrome for Z errors [see Fig. 7(b)], one needs an ancilla
system S ′ prepared in a logical Z basis state,

|w̃′〉S ′ = QN (|u′〉Z ′ ⊗ |w′〉I ′ ⊗ |v′〉X ′ ). (B25)

After preparing the state |w̃′〉S ′ on ancilla system S ′, the
transversal CNOTS ′→S gate is applied on corresponding qubits
of systems S and S ′. Then each qubit in the ancilla sys-
tem S ′ is measured in the Pauli X basis. The measurement

FIG. 8. Quantum polar transform decomposition, using Q2n =
(I2k ⊗ Q2n−k )(Q2k ⊗ I2n−k ). Bent wires go under the blocks they cross.
In the case input qubits are prepared as shown on the left, the encoded
state is the logical |0〉 state of a Shor code.

output m is a noisy codeword of the classical polar code
P (N, π (X ), π (v)), induced in X basis [Fig. 6(b)].

Lemma 5. Let eZ and e′
Z be preparation errors that has

happened on systems S and S ′, respectively. Then, after the
Steane’s Z-error syndrome extraction, the state of the system
S is given by

ZeZ |˜X w′
φ〉S = ZeZ QN (|u ⊕ u′〉Z ⊗ X w′ |φ〉I ⊗ |v〉X ). (B26)

Further, the measurement outcome is a noisy codeword of the
classical polar code P (N, π (X ), π (v)), with frozen set X and
frozen vector π (v ⊕ v′), as follows:

m = P�
N (z′, a′, v ⊕ v′) ⊕ eZ ⊕ e′

Z , (B27)

where a′ ∈ {0, 1}|I| and x′ ∈ {0, 1}|X | are random vectors.
The proof of Lemma 5 is similar to that of Lemma 4, by

expanding quantum states of systems S and S ′ in the Pauli X
basis. Finally, based on the frozen vector v ⊕ v′ and the noisy
codeword m in (B27), the SC decoder generates an estimate of
a′, and in turn we can obtain an estimate of the error eZ ⊕ e′

Z
(up to a Z-type stabilizer operator).

APPENDIX C: Q1 CODES: QUANTUM POLAR CODES
ENCODING ONE QUBIT

1. Shor Q1 codes (Proof of Theorem 1)

To prove Theorem 1, we will use the decomposition QN =
(I2k ⊗ Q2n−k )(Q2k ⊗ I2n−k ), for 0 � k � n. This decomposition
is illustrated in Fig. 8, where we have 2n−k parallel Q2k blocks,
followed by 2k parallel Q2n−k blocks. If one considers the
quantum system S as a vector of N qubits, the decomposition
illustrated in Fig. 8 is equivalent to reshaping S as a 2k×2n−k

matrix of qubits, with columns filled in by consecutive qubits
from the original vector, then applying Q2k on each column,
and Q2n−k on each row.

For the logical state |̃0〉S , the first i = 2k inputs of the quan-
tum polar transform QN are equal to |0〉, while the remaining
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(a) (b)

(c) (d)

FIG. 9. Logical error rate of Q1 and Shor codes, for the depolarizing channel. (a), (b) Using correlations between X and Z errors. (a) n
odd (for n = 3, 5, 7, Q1, and Shor curves virtually coincide). (b) n even. (c), (d) Ignoring correlations between X and Z errors. (c) n odd (for
n = 3, 5, 7, Q1, and Shor curves virtually coincide). (d) n even (for n = 4, Q1, and Shor curves virtually coincide).

2n − 2k inputs are equal to |+〉 (see Fig. 8). Hence, each of
the 2n−k parallel Q2k unitaries in Fig. 8 acts trivially on its
input state. Therefore, the input of the rth Q2n−k unitary, where
1 � r � 2k , is the quantum state |0〉r,1 ⊗2n−k

c=2 |+〉r,c. It follows
that (omitting normalization factors)

|̃0〉S = ⊗2k

r=1Q2n−k

(
|0〉r,1 ⊗2n−k

c=2 |+〉r,c

)
= ⊗2k

r=1Q2n−k

(
(|+〉r,1 + |−〉r,1) ⊗2n−k

c=2 |+〉r,c

)
= ⊗2k

r=1

[
Q2n−k

(
⊗2n−k

c=1 |+〉r,c

)
+ Q2n−k

(
|−〉r,1 ⊗2n−k

c=2 |+〉r,c

)]
= ⊗2k

r=1

(
⊗2n−k

c=1 |+〉r,c + ⊗2n−k

c=1 |−〉r,c

)
. (C1)

For the logical state |̃1〉S , the inputs of QN is (|1〉r,1 ⊗2n−k

c=2|+〉r,c). Hence, using |1〉r,1 = |+〉r,1 − |−〉r,1, it follows sim-
ilarly that |̃1〉S = ⊗2k

r=1(⊗2n−k

c=1 |+〉r,c − ⊗2n−k

c=1 |−〉r,c).

2. Construction of general Q1 codes

In this section we provide more details about the con-
struction of Q1 codes, and further numerically estimate its
performance on Pauli and erasure channels.

For Q1 codes, SC decoder only needs to decode the virtual
channels corresponding to the information position i for both
X and Z error channels WZ and WX , respectively. Let Pe(W (i)

Z )
and Pe(W (π (i))

X ) denote the error probability of the respective
virtual channels, corresponding to the information position
i. Recall that the error probability of a classical channel, is
the probability of the maximum a posteriori estimate of the
channel input, conditional on the observed channel output, not
being equal to the actual input. Hence, the logical error rate
of the Q1 code, with respect to the information position i, is
given by

PL
e (i) = 1 − [

1 − Pe
(
W (i)

Z

)][
1 − Pe

(
W (π (i))

X

)]
. (C2)

The information position i should be chosen so as to minimize
the corresponding logical error rate in (C2). Precisely, we have

i = arg min
j=1,...,N

PL
e ( j), for Q1 codes, (C3)

i = arg min
j=20,...,2n

PL
e ( j), for Shor-Q1 codes. (C4)
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3. Numerical results

Here we provide numerical results for the construction of
Q1 and Shor-Q1 codes, for the quantum depolarizing and
quantum erasure channels.

The quantum depolarizing channel with physical error
probability p, is a Pauli channel as in (B13), with PI = 1 − p,
and pX = pY = pZ = p/3. We use density evolution [24] to
estimate the error probability of virtual channels, i.e., Pe(W ( j)

Z )
and Pe(W (π ( j))

X ), j = 1, . . . , N . The information positions for
the Q1 and Shor-Q1 codes are then determined according to
(C3) and (C4). Moreover, we consider the two constructions
(or decoding strategies) given in Sec. 2, i.e., either using or
ignoring the correlations between X and Z errors. Here ignor-
ing correlations between X and Z errors may seem unfounded.
We will later provide the rationale for this in Sec. 2, under the
paragraph “Prepared Codes.”

The quantum erasure channel erases the input qubit, with
some probability ε, or transmits it perfectly, with probability
1 − ε. When a qubit is erased, it is replaced by a totally mixed
state. Further, the channel also outputs a classical flag, which
indicates whether the qubit has been erased (|1〉E ) or not
(|0〉E ). Hence, it can be represented as a quantum operation
as follows:

WE (ρ) = (1 − ε)|0〉〈0|E ⊗ ρ + ε|1〉〈1|E ⊗ 1
2 . (C5)

It is easily seen that WE acts as a classical erasure channel
with erasure probability ε in both Pauli Z and Pauli X basis.
Hence, the induced channels WX and WZ are classical erasure
channels, with erasure probability ε. The erasure probability
of virtual channels (Pe(W ( j)

Z ) and Pe(W (π ( j))
X ), j = 1, . . . , N)

can be computed analytically [3]. The information positions
for the Q1 and Shor-Q1 codes are then determined accord-
ing to (C3) and (C4). For this channel, the two construction
strategies (using or ignoring correlations) are easily seen to be
equivalent.

Considering the quantum depolarizing channel, Fig. 9
shows the logical error rate PL

e (i) vs the physical error prob-
ability p, for the Q1 and Shor-Q1 codes, with information
position determined according to to (C3) and (C4). Note
that for fixed code length N = 2n, the information position
may vary depending on the physical error probability value.
We consider the two decoding strategies mentioned above,
namely, either using or ignoring the correlations between X
and Z errors. It can be observed that using correlations yield
(slightly) better decoding performance. Moreover, in both
cases, we observe that the logical error rate of the Q1 code
is in general lower than that of the Shor code, and the gap is
increasing with increasing code length (i.e., number of polar-
ization steps n). We emphasize that the gap in the decoding
performance is due to the channel polarization phenomenon
and not to the minimum distance (Q1 and Shor-Q1 codes have
actually the same minimum distance, see below).

As just mentioned, the information position i may vary,
depending on the physical error probability p. However, nu-
merical results suggests that as p goes to zero, the information
position i reaches a stable (constant) value. These values are
reported in Table II for both decoding strategies (either using
or ignoring correlations), and different values of n. We also re-
port in Table II similar results for the quantum erasure channel

FIG. 10. Two-qubit Pauli measurements: shorthand notation and
quantum circuits implementing the measurements.

(we omit the logical error rate curves for the quantum erasure
channel, since they are of the same nature as the logical error
rate curves in Fig. 9). It can be observed that for Q1 codes, the
information position values reported in Table II depend on the
noise model (depolarizing or erasure channel), as well as
the decoding strategy (using or ignoring correlations).

Finally, we note that for a given n value, all Q1 and Shor
codes with information positions given in Table II have the
same minimum distance, which is reported on the last column
of the table. The reported minimum distance is the minimum
weight of logical X and Z operators, and can be computed by
using (B11) and (B12).

APPENDIX D: MEASUREMENT-BASED PREPARATION
OF LOGICAL Q1 CODE STATES

1. Measurement-based preparation without noise
(Proof of Lemma 1)

We consider the standard “phase kickback trick” imple-
mentation of Pauli X ⊗ X and Z ⊗ Z measurements, using
ancilla qubits as in Fig. 10.

Case 1: Preparation using Pauli Z ⊗ Z measurements

In this case, our procedure consists of performing transver-
sal Pauli Z ⊗ Z measurements on corresponding qubits
of systems S1 = {1, . . . , K/2}, and S2 = {K/2 + 1, . . . , K},
prepared in Q1 code states |q1

K
2
〉
S1

:= Q K
2
|u1, v1〉S1

and

|q2
K
2
〉
S2

:= Q K
2
|u2, v2〉S2

, respectively, as illustrated in Fig. 11.

Expanding the quantum state |v1〉X (n−1) in the Pauli Z
basis, and using (B1), we get, up to a normalization factor,∣∣q1

K
2

〉
S1

=
∑

x1∈{0,1} K
2 −i(k−1)

(−1)v1·x1 |PK
2

(u1, x1)〉
S1

. (D1)

Similarly, we may also expand the quantum state |q2
K/2〉S2

in the Pauli Z basis. Further, we consider the circuit in
Fig. 10(a) to perform transversal Pauli Z ⊗ Z measurements,
which are done in the following two steps [below, we denote
by S3 the ancilla system A from Fig. 10(a)].
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TABLE II. Best information positions for low error probabilities.a

Depolarizing channel Depolarizing channel Erasure channel
Levels of using correlations ignoring correlations

recursion (n) Information position i for best Q1 and Shor-Q1 codes Min

Q1 Shor Q1 Shor Q1 Shor dist.

3 4 4 4 4 2 2 2
(6.8×10−2) (2.0×10−1) (1.0×10−3) (1.0×10−3) (5.0×10−1) (5.0×10−1)

4 13 4 7 4 7 4 4
(2.0×10−1) (2.0×10−1) (9.0×10−4) (2.0×10−1) (5.0×10−1) (5.0×10−1)

5 8 8 8 8 4 4 4
(2.0×10−1) (2.0×10−1) (2.0×10−1) (2.0×10−1) (2.0×10−1) (5.0×10−1)

6 50 8 23 8 23 8 8
(1.6×10−1) (1.8×10−2 ) (1.4×10−1) (8.8×10−2 ) (5.0×10−1) (4.0×10−2 )

7 16 16 16 16 8 8 8
(8.0×10−3) (2.0×10−1) (1.8×10−2) (2.0×10−1) (2.6×10−2 ) (1.9×10−1)

8 199 16 91 16 87 16 16
(1.4×10−2) (2.0×10−3) (6.2×10−2 ) (4.0×10−3) (2.6×10−1) (6.0×10−3)

9 32 32 32 32 16 16 16
(1.0×10−3) (1.6×10−2 ) (2.0×10−3) (2.4×10−2 ) (5.0×10−3) (4.4×10−2 )

10 806 32 363 32 343 32 32
(6.0×10−5) (3.0×10−4) (6.2×10−2 ) (6.0×10−4) (9.0×10−2) (1.0×10−3)

11 96 64 96 64 32 32 32
(3.0×10−4) (4.0×10−3) (6.4×10−4) (6.3×10−3) (1.0×10−3) (1.4×10−2 )

12 3222 64 1451 64 1367 64 64
(6.0×10−5) (6.0×10−5) (6.6×10−2) (1.0×10−4) (4.4×10−2) (2.4×10−4)

aFor the depolarizing channel, we consider physical error rates p ∈ [10−5, 2×10−1] (note that the coherent information of the channel vanishes
for p ≈ 0.1893). Reported information position values are constant for physical error rates p ∈ [10−5, p0]. The value of p0 is reported in
parentheses, under the value of i (small font). Similarly, for the quantum erasure channel, we consider channel erasure probability values
ε ∈ [10−5, 5×10−1]. Reported information position values are constant for channel erasure probabilities ε ∈ [10−5, ε0], where the value of ε0

is reported in parentheses, under the value of i.

(1) We first take an (K/2)-qubit ancilla state |0〉S3
,

and then apply transversal CNOT gates, CNOTS1→S3 and
CNOTS2→S3 . This gives the following joint quantum state on
S1 ∪ S2 ∪ S3:

|η〉S1S2S3
=

∑
x1,x2

(−1)v1·x1+v2·x2 |PK
2

(u1, x1)〉
S1

|PK
2

(u2, x2)〉
S2

× |PK
2

(u1 ⊕ u2, x1 ⊕ x2)〉
S3

. (D2)

FIG. 11. Preparation using Pauli Z ⊗ Z measurements (i(k) =
i(k − 1) + K

2 ∈ { K
2 + 1, . . . , K}).

(2) Then we measure each qubit in the ancilla system S3 in
the Pauli Z basis. From (D2), the measurement outcome gives
a binary vector of length K/2 as follows:

m = PK
2

(u′, x) ∈ {0, 1} K
2 , (D3)

where u′ = u1 ⊕ u2 ∈ {0, 1}i(k), and x ∈ {0, 1} K
2 −i(k) is a ran-

dom vector. Further, from (D2) and (D3), the state of the joint
system S1 ∪ S2 after the measurements is as follows:

|η′〉S1S2
=

∑
x1,x2

x1⊕x2=x

(−1)v1·x1+v2·x2 |PK
2

(u1, x1)〉
S1

|PK
2

(u2, x2)〉
S2

.

(D4)

It can be seen as follows that the quantum state |η′〉S1S2
is

the Q1 code state |qK〉S1S2
as in Case 1 of Lemma 1:

|η′〉S1S2
=

∑
x1,x2

x1⊕x2=x

(−1)v1·x1+v2·x2 |PK
2

(u1, x1)〉
S1

|PK
2

(u2, x2)〉
S2

=
∑

x2

(−1)v1·(x+x2 )+v2·x2 |PK
2

(u′ ⊕ u2, x ⊕ x2)〉
S1

× |PK
2

(u2, x2)〉
S2

= (−1)v1·x
∑

x2

(−1)(v1+v2 )·x2 |PK (u′, x, u2, x2)〉S1S2

= QK |u′, x, u2, v1 ⊕ v2〉S1S2
,
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FIG. 12. Preparation using Pauli X ⊗ X measurements (i(k) =
i(k − 1) ∈ {1, . . . , K

2 }).

where in the second equality, we have used u1 = u′ ⊕ u2
and x1 = x ⊕ x2, and in the third equality, we have used
PK (a, b) = (PK

2
(a ⊕ b), PK

2
(b)), a, b ∈ {0, 1} K

2 , using the re-
cursion of the classical polar transform given in Fig. 5(a).

Hence, after the Pauli Z ⊗ Z measurements, we have pre-
pared the Q1 code state on the joint system S = S1 ∪ S2,

|qK〉S = QK |u′, x, u2, v1 ⊕ v2〉S . (D5)

Finally, from (D3), we have that PK
2

(m) = (u′, x) ∈ {0, 1} K
2

(using P2
K = I). Hence, x is determined by, x = PK

2
(m)|X (n−1),

as desired.

Case 2: Preparation using Pauli X ⊗ X measurements

In this case, our procedure consists in performing
transversal Pauli X ⊗ X measurements on corresponding
qubits of systems S1 and S2, prepared in Q1 code states
|q1

K
2
〉
S1

:=Q K
2
|u1, v1〉S1

and |q2
K
2
〉
S2

:=Q K
2
|u2, v2〉S2

, as illus-

trated in Fig. 12.
We skip the proof here as it is similar to Case 1. By

expanding |q1
K
2
〉
S1

and |q2
K
2
〉
S2

, in the Pauli X basis instead and

using (B2) it can be seen that the measurement outcome of
Pauli X ⊗ X measurements is given by

m = P�
K
2

(z, v′) ∈ {0, 1} K
2 , (D6)

where z ∈ {0, 1}i(k−1) is a random vector, and v′ = v1 ⊕ v2 ∈
{0, 1} K

2 −i(k−1). Further, after measurements, the state on S =
S1 ∪ S2 is a Q1 state is given by

|qK〉S = |u1 ⊕ u2, (v1, z, v′)〉, (D7)

where z can be determined from (D6) as, z = P�
K
2

(m)|Z (k−1).

2. Fault-tolerant measurement-based preparation with noise

In this section, supposing a circuit-level noise model with
Pauli errors, we detail the measurement-based preparation
with the error detection from Procedure 2, for both Cases 1
and 2. Then, we provide a proof of fault tolerance according
to Theorem 3.

FIG. 13. Representation of errors during the preparation with
Pauli Z ⊗ Z measurements. The crossed wires represent K/2-qubit
systems S1, S2 and S3, respectively. The CNOT gate between two sys-
tems represents the transversal CNOT gates between the systems. The
errors are represented where they happen. For example, in Fig. 13(a),
e1

X , e2
X , and eI

X represent the initial errors on systems S1, S2, and S3,
respectively. Further, eC1(1)

X and eC1(3)
X represent the errors caused by

the first CNOT, applied between S1 and S3, respectively. Similarly, the
errors due to the second CNOT are represented on systems S2 and S3.
Finally, eM

X represents the X error due to the measurement on system
S3.

We suppose that we are given noisy versions of Q1 code
states of length K/2 on S1 = {1, . . . , K/2}, and S2 = {K/2 +
1, . . . , K}, as follows:

∣∣q1
K
2

〉
S1

= X e1
X Ze1

Z Q K
2
|u1, v1〉S1

, (D8)∣∣q2
K
2

〉
S2

= X e2
X Ze2

Z Q K
2
|u2, v2〉S2

, (D9)

where u1, u2 ∈ {0, 1}i(k−1), v1, v2 ∈ {0, 1} K
2 −i(k−1), and the

errors e1
X , e1

Z , e2
X , e2

Z ∈ {0, 1} K
2 are unknown.

Case 1: Preparation using noisy Pauli Z ⊗ Z measurements

We suppose that the following errors happen due to the
component failures during transversal Pauli Z ⊗ Z measure-
ments [see also Fig. 13, where all errors are given; also recall
from the previous section, that S3 denotes the ancilla sys-
tem needed for the “phase kickback trick” implementation of
Z ⊗ Z measurements, i.e., system A in Fig. 10(a)].

(1) Suppose failures during the intialization of S3 in the
Pauli Z basis cause an X error eI

X ∈ {0, 1}K/2 on S3.
(2) Suppose CNOT failures in CNOTS1→S3 cause X, Z type

errors eC1(1)
X , eC1(1)

Z ∈ {0, 1}K/2, respectively, on S1, and X, Z
type errors eC1(3)

X , eC1(3)
Z ∈ {0, 1}K/2, respectively, on S3.
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TABLE III. Total errors on systems S1, S2, and S3.

System Total X error Total Z error

S1 e1
X ⊕ eC1(1)

X e1
Z ⊕ eC1(1)

Z

S2 e2
X ⊕ eC2 (2)

X e2
Z ⊕ eC1(3)

Z ⊕ eC2 (2)
Z

S3 eI
X ⊕ e1

X ⊕ eC1(3)
X ⊕ e2

X ⊕ eC2 (3)
X ⊕ eM

X eC1(3)
Z ⊕ eC2 (3)

Z

(3) Suppose CNOT failures in CNOTS2→S3 cause X, Z type
errors eC2(2)

X , eC2(2)
Z ∈ {0, 1}K/2, respectively, on S2, and X, Z

type errors eC2(3)
X , eC2(3)

Z ∈ {0, 1}K/2, respectively, on S3.
(4) Suppose failures during the measurement of S3 in the

Pauli Z basis cause an X error eM
X ∈ {0, 1}K/2 on S3.

The measurement outcome of the transversal Pauli Z ⊗ Z
measurements and the state of the joint system S = S1 ∪ S2

after measurements is given in Lemma 6.
Lemma 6. The measurement outcome of noisy transversal

Pauli Z ⊗ Z measurements on systems S1 and S2, respectively
in (D8) and (D9), is equal to

m′ = m ⊕ eX ∈ {0, 1} K
2 , (D10)

where m is the measurement outcome corresponding to the
preparation without noise from (D3) and eX = eI

X ⊕ e1
X ⊕

eC1(3)
X ⊕ e2

X ⊕ eC2(3)
X ⊕ eM

X . Further, after the measurement, we
get

|q′
K 〉S = X ẽX Z ẽZ |qK〉S , (D11)

where |qK 〉S is the prepared state without noise from (D5) and
the errors are as follows:

ẽX = (
e1

X ⊕ eC1(1)
X , e2

X ⊕ eC2(2)
X

) ∈ {0, 1}K , (D12)

ẽZ = (
e1

Z ⊕ eC1(1)
Z , e2

Z ⊕ eC1(3)
Z ⊕ eC2(2)

Z

) ∈ {0, 1}K . (D13)

Proof. Note that X errors in Fig. 13(a), and Z errors in
Fig. 13(b) can be propagated from the l.h.s. to r.h.s., using
the following rules.

(1) An X error simply passes through the target of a CNOT

gate, and it propagates from the control of the CNOT gate to its
target.

(2) An Z error simply passes through the control of a CNOT

gate, and it propagates from the target of the CNOT gate to its
control.

The X and Z errors on the r.h.s. for S1,S2, and S3 are given
in Table III.

It follows that the noisy measurement outcome m′ is equal
to the binary sum of the measurement outcome m in the
noiseless case and the X error on system S3, therefore, from
Table III, we get (D10). Further, the prepared state |q′

K〉S is
equal to the noiseless state |qK〉S , with some X and Z errors
on it. The X (or Z) error on S is simply the concatenation
of the total X (or Z) errors on systems S1 and S2. Therefore,
from Table III we get (D12), and (D13), for X and Z errors in
|q′

K〉S , respectively. �
We now combine the noisy preparation in Lemma 6 with

the error detection gadget according to Procedure 2. We re-
call here how the error detection gadget works. Consider the
error eX in the measurement outcome m′ in (D10) so that its

syndrome is a zero vector:

PK
2

(eX )|Z (k−1) = 0. (D14)

Then the prepared state is accepted and the random vector x
in (D11) is estimated as

x̂ = PK
2

(m′)|X (k−1). (D15)

The total error in the prepared state, with respect to the esti-
mate x̂, is given in Lemma 7.

Lemma 7. Consider the error eX in the measurement out-
come m from (D10), so that it satisfies (D14), and let x̂ be
defined according to (D15). Then, the state of the joint system
S in (D11) can be written as follows, with respect to x̂:

|q′
K〉S = X e f

X Ze f
Z QK |(u′, x̂, u2, v1 ⊕ v2)〉S , (D16)

where e f
X = ẽX + (eX , 0) and e f

Z = ẽZ , so that ẽX and ẽZ are
according to (D12) and (D13), respectively.

Proof. From (D3), (D10), and (D15), we have that

x̂ = x ⊕ PK
2

(eX )|X (n−1). (D17)

We may write |q′
K 〉S in (D11), with respect to x̂ as follows:

|q′
K〉S = X ẽX Z ẽZ QK |(u′, x, u2, v1 ⊕ v2)〉

= X ẽX Z ẽZ
∑

x2

(−1)(v1⊕v2 )·x2

|PK (u′, x̂ ⊕ PK
2

(eX )|X (n−1), u2, x2)〉
= X ẽX Z ẽZ

∑
x2

(−1)(v1⊕v2 )·x2 X (eX ,0)|PK (u′, x̂, u2, x2)〉

= X ẽX ⊕(eX ,0)Z ẽZ QK |(u′, x̂, u2, v1 ⊕ v2)〉, (D18)

where in the second equality, we have expanded the
quantum state in the Pauli Z basis and used (D17),
and the third equality follows from the second equality,
by using eX = PK

2
(PK

2
(eX )|Z (n−1), PK

2
(eX )|X (n−1)) =

PK
2

(0, PK
2

(eX )|X (n−1)). �

Case 2: Preparation using noisy Pauli X ⊗ X measurements

The errors during the preparation with Pauli X ⊗ X mea-
surements are given in Fig. 14. Note that we have Z type
initialization and measurement errors on the ancilla system
S3, which are denoted by eI

Z , eM
Z ∈ {0, 1}K/2, respectively.

For the errors caused by the CNOT gates, CNOTS3→S1 and
CNOTS3→S2 , we have used the same notation as in the case
of Pauli Z ⊗ Z measurements.

Here we provide Lemmas 8 and 9, which are analogous to
Lemmas 6 and 7, respectively, and thus their proofs have been
omitted.

Lemma 8. The measurement outcome of transversal Pauli
X ⊗ X measurements on systems S1 and S2, respectively in
(D8) and (D9), is equal to

m′ = m ⊕ eZ ∈ {0, 1} K
2 , (D19)

where m is the measurement outcome corresponding to the
preparation without noise, as in (D6), and eZ = eI

Z ⊕ e1
Z ⊕

eC1(3)
Z ⊕ e2

Z ⊕ eC2(3)
Z ⊕ eM

Z . Further, after the measurement, we
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FIG. 14. Errors during preparation with Pauli X ⊗ X
measurements.

get

|q′
K 〉S = X ẽX Z ẽZ |qK〉S , (D20)

where |qK〉S is the prepared state without noise, as in (D7),
and the errors are as follows:

ẽX = (
e1

X ⊕ eC1(1)
X , e2

X ⊕ eC1(3)
X ⊕ eC2(2)

X

) ∈ {0, 1}K , (D21)

ẽZ = (
e1

Z ⊕ eC1(1)
Z , e2

Z ⊕ eC2(2)
Z

) ∈ {0, 1}K . (D22)

We now combine the noisy preparation in Lemma 8 with
the error detection gadget according to Procedure 2. Recall
that when no error is detected, the prepared state is accepted
and the z in (D20) is estimated as

ẑ = P�
K
2

(m′)|Z (k−1). (D23)

Lemma 9. Consider the error eZ in the measurement out-
come m from (D19), so that its syndrome is a zero vector, i.e.,
P�

N
2

(eZ )|X (n−1) = 0, and let ẑ be defined as in (D23). Then, the

state of the joint system S in (D20) can be written as follows,
with respect to ẑ:

|q′
K〉S = X e f

X Ze f
Z QK |u1 ⊕ u2, v1, ẑ, v′〉S , (D24)

where e f
X = ẽX and e f

Z = ẽZ ⊕ (0, eZ ), so that ẽX and ẽZ are
according to (D21) and (D22), respectively, and eZ is the
measurement error in (D19).

Proof of Theorem 3

We provide a proof of Theorem 3, using the mathematical
induction. The base case, i.e., the zeroth level of recursion,
corresponds to the initialization of N qubits in a Pauli Z basis
state. Let T0 be the number of failures in initialization. As a

failure in initialization produces only a single-qubit X error,
therefore, we have that wt(e f

X ) = T0, for the error e f
X ∈ {0, 1}N

after the zeroth level of recursion. Hence, Theorem 3 holds for
the zeroth level of recursion.

We show in Lemma 11 below that if Theorem 3 is true for
the (k − 1)th, 1 � k � n, level of recursion, it remains true for
the kth level of recursion, therefore, implying that Theorem 3
holds for any 1 � k � n.

Recall that at the kth level of recursion, we prepare 2n−k

copies of |qK〉, where each copy is prepared by applying
transversal two-qubit Pauli measurements on two copies of
|qK/2〉. It is enough to show that Theorem 3 holds for a given
preparation instance of |qK〉. Hence, we consider |qK/2〉S1

and
|qK/2〉S2

from (D8) and (D9), and for the sake of brevity, we
suppose that Pauli Z ⊗ Z measurements are applied at the
kth level of recursion. Similar results to the ones that will
be proven here can be obtained for the case of Pauli X ⊗ X
measurements.

We suppose that tk component failures happen during the
implementation of transversal Pauli Z ⊗ Z measurements on
S1 and S2, using an ancilla system S3 (see also Fig. 13). We
decompose tk as follows:

tk = t I
k + tC1

k + tC2
k + tM

k , (D25)

where t I
k is the number of failures during the initializa-

tion of S3 in the Pauli Z basis, tCi
k for i ∈ {1, 2} is the

number of CNOT failures in CNOTSi→S3 , and tM
k is the num-

ber of failures during the Pauli Z measurement on S3. To
relate with Fig. 13, note that the errors eI

X and eM
X are pro-

duced by t I
k and tM

k faults, respectively. Further, the errors
eC1(1)

X , eC1(3)
X , eC1(1)

Z , eC1(3)
Z are produced by tC1

k faults, and fi-
nally the errors eC2(2)

X , eC2(3)
X , eC2(2)

Z , eC2(3)
Z are produced by tC2

k
faults.

We will also need the following notation:
(i) For i ∈ {1, 2}, let tCi

k (X ) be the number of CNOT failures
in CNOTSi→S3 that produce a single-qubit X error on the cor-
responding outputs, i.e., the number of CNOT failures, where
one of the following errors X ⊗ I, X ⊗ Z, I ⊗ X, Z ⊗ X,

Y ⊗ I,Y ⊗ Z, I ⊗ Y, Z ⊗ Y is produced. Similarly, let tCi
k (Z )

be the number of CNOT failures in CNOTSi→S3 that produce a
single-qubit Z error.

(ii) For i ∈ {1, 2}, let tCi
k (XX ) be the number of CNOT

failures in CNOTSi→S3 that produce a two-qubit X error, i.e.,
the number of CNOT failures, where one of the errors X ⊗
X, X ⊗ Y,Y ⊗ X,Y ⊗ Y is produced. Similarly, let tCi

k (ZZ )
be the number of CNOT failures in CNOTSi→S3 that produce
a two-qubit Z error.

Note that the following inequalities hold trivially for i ∈
{1, 2}:

tCi
k (X ) + tCi

k (XX ) � tCi
k , (D26)

tCi
k (Z ) + tCi

k (ZZ ) � tCi
k . (D27)

In Lemma 10, we provide several inequalities, connecting
the number of faults with the weight of the produced errors
(see Fig. 13). We will use these equalities later in the proof of
Lemma 11.

042605-17



GOSWAMI, MHALLA, AND SAVIN PHYSICAL REVIEW A 108, 042605 (2023)

Lemma 10. The following inequalities hold at the kth level
of recursion:

wt
(
eI

X

) = t I
k , (D28)

wt
(
eM

X

) = tM
k , (D29)

wt
(
eCi (i)

X ⊕ eCi (3)
X

) = tCi
k (X ), i ∈ {1, 2}, (D30)

wt
(
eCi (i)

X

) + wt
(
eCi (3)

X

) = tCi
k (X ) + 2tCi

k (XX ), i ∈ {1, 2},
(D31)

wt
(
eCi (i)

Z ⊕ eCi (3)
Z

) = tCi
k (Z ), i ∈ {1, 2}, (D32)

wt
(
eCi (i)

Z

) + wt
(
eCi (3)

Z

) = tCi
k (Z ) + 2tCi

k (ZZ ), i ∈ {1, 2}.
(D33)

Proof. The equalities in (D28) and (D29) simply follow
from the fact a failure in Pauli Z basis initialization or mea-
surement produces a single-qubit X error on the output.

Suppose the jth, j ∈ {1, . . . , K/2}-CNOT gate in
CNOTSi→S3 failed. If it produces a single-qubit X error
on the output, the jth component of either eCi (i)

X or eCi (3)
X is

equal to 1. If it produces a two-qubit X error on the output,
the jth component of both eCi (i)

X and eCi (3)
X is equal to 1. This

observation directly implies (D30) and (D31). Similarly, it
can be seen that (D32) and (D33) hold. �

Lemma 11. Suppose that T 1
k−1 faults occur during the

(successful) preparation of |qK/2〉S1
in (D8) and T 2

k−2 faults
occur during the preparation of |qK/2〉S2

in (D9), using the
measurement-based procedure incorporated with the error
detection. Further, suppose that the following holds for i ∈
{1, 2}:

wt
(
ei

X

)
� T i

k−1, (D34)

wt
(
ei

Z

)
� T i

k−1. (D35)

Consider the prepared state |q′
K〉 according to (D16). Then

there exist equivalent errors e′ f
X ≡ e f

X , e′ f
Z ≡ e f

Z , satisfying

wt
(
e′ f

X

)
� Tk, (D36)

wt
(
e′ f

Z

)
� Tk, (D37)

where Tk = T 1
k−1 + T 2

k−1 + tk , where tk is from (D25), is the
total number of failures after the kth level of recursion.

Proof. We first prove (D36). Let eX be the measurement
error in (D10), so that its syndrome is zero according to
(D14). Then the syndrome of (eX , eX ) is also zero, i.e.,
PN (eX , eX )|Z (k) = 0. It can be seen as follows. We have that

(eX , eX ) = (PK/2(0, PK
2

(eX )|X (n−1)), PK/2(0, PK
2

(eX )|X (n−1)))

= PK (0, 0, 0, PK
2

(eX )|X (n−1)). (D38)

Using |X (n − 1)| = |X (n)| and (D38), it follows that
PN (eX , eX )|Z (k) = 0. Therefore, (eX , eX ) gives a stabilizer (up
to a sign factor) of the quantum state |q′

K〉 in (D16), im-
plying that e′ f

X :=̃eX + (0, eX ) is an equivalent error to e f
X =

ẽX + (eX , 0) in (D16).
We now provide upper bounds on wt(e f

X ) and wt(e′ f
X ).

From (D10) and (D12), we have that

e f
X = (

e2
X ⊕ eI

X ⊕ eC1(1)
X ⊕ eC1(3)

X ⊕ eC2(3)
X ⊕ eM

X , e2
X ⊕ eC2(2)

X

)
.

(D39)

Further,

wt
(
e f

X

)
� 2wt

(
e2

X

) + wt
(
eI

X

) + wt
(
eC1(1)

X ⊕ eC1(3)
X

)
+ wt

(
eC2(2)

X

) ⊕ wt
(
eC2(3)

X

) + wt
(
eM

X

)
� 2

(
wt

(
e2

X

) + tC2
k (XX )

) + t I
k + tC1

k (X )

+ tC2
k (X ) + tM

k , (D40)

where the first inequality follows from (D39) and using
wt(

∑
i ui ) �

∑
i wt(u)i, and the second inequality follows

from (D28)–(D31). Similarly, it can be shown that

wt
(
e′ f

X

)
� 2

(
wt

(
e1

X

) + tC1
k (XX )

)
+ t I

k + tC1
k (X ) + tC2

k (X ) + tM
k . (D41)

Without loss of generality, we may assume that wt(e1
X ) +

tC1
k (XX ) � wt(e2

X ) + tC2
k (XX ). Therefore, we have that

wt
(
e′ f

X

)
� wt

(
e1

X

) + tC1
k (XX ) + wt

(
e2

X

) + tC2
k (XX )

+ t I
k + tC1

k (X ) + tC2
k (X ) + tM

k

� wt
(
e1

X

) + wt
(
e2

X

) + t I
k + (

tC1
k (X ) + tC1

k (XX )
)

+ (
tC2
k (X ) + tC2

k (XX )
) + tM

k

� T 1
k−1 + T 2

k−1 + t I
k + tC1

k + tC2
k + tM

k

� T 1
k−1 + T 2

k−1 + tk, (D42)

where the third inequality follows from (D34) and (D26), and
the fourth inequality follows from (D25).

We now prove (D37). Using (D13), we get for e f
Z in (D16),

e f
Z = (

e1
Z ⊕ eC1(1)

Z , e2
Z ⊕ eC1(3)

Z ⊕ eC2(2)
Z

)
. (D43)

As Z ⊗ Z on the corresponding qubits of S1 and S2 is a stabi-
lizer generator, it follows that the following error is equivalent
to e f

Z in (D43):

e′ f
Z = e f

Z ⊕ (
eC1(3)

Z , eC1(3)
Z

)
= (

e1
Z ⊕ eC1(1)

Z ⊕ eC1(3)
Z , e2

Z ⊕ eC2(2)
Z

)
. (D44)

We have

wt
(
e′ f

Z

)
� wt

(
e1

Z

) + wt
(
e2

Z

) + wt
(
eC1(1)

Z ⊕ eC1(3)
Z

) + wt
(
eC2(2)

Z

)
� T 1

k−1 + T 2
k−1 + tC1

k (Z ) + tC2
k (Z ) + 2tC2

k (ZZ )

� T 1
k−1 + T 2

k−1 + tC1
k + tC2

k

� T 1
k−1 + T 2

k−1 + tk, (D45)

where the first inequality follows from (D44) and us-
ing wt(

∑
i ui ) �

∑
i wt(u)i, the second inequality follows

from (D35) and (D32) and (D33), the third inequality fol-
lows from (D27), and finally the fourth inequality follows
from (D25). �
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APPENDIX E: NUMERICAL RESULTS ON FAULT
TOLERANT ERROR CORRECTION

In this section we provide details about the methods used
to generate numerical results regarding the logical error rates
of Q1 codes, under Steane error correction in conjunction
with the proposed measurement-based preparation with error
detection. In this context, we also provide simulation results
on the rate of successful preparation of Q1 code states, for the
measurement-based preparation with error detection.

We start by presenting first the noise model used to pro-
duce errors during the simulation of the measurement-based
preparation procedure and the Steane error-correction scheme.
Note that we consider the implementation of Pauli Z ⊗ Z and
Pauli X ⊗ X measurements according to circuits in Fig. 10(a)
and Fig. 10(b), respectively. However, for the Pauli X ⊗ X
measurement in Fig. 10(b), we consider the initialization in
Pauli Z basis followed by the Hadamard gate as one opera-
tion, corresponding to the initialization in Pauli X basis, and
similarly, we consider the last Hadamard gate followed by the
Pauli X measurement as one operation, corresponding to a
Pauli X measurement.

1. Noise model

We need noise models only for the basic components of
the procedure, i.e., initialization operations and single-qubit
measurements, in either Z or X basis and CNOT gates. We
consider the following types of errors, corresponding to the
circuit-based depolarizing noise model from [10]. The prob-
ability parameter p below, is referred to as the physical error
rate.

(1) The noisy initialization in Pauli Z basis is equal to
perfectly initializing a qubit in a Pauli Z basis state, then
applying a Pauli X error on the qubit, with probability p.
Similarly, the noisy initialization in Pauli X basis is equal
to perfectly initializing a qubit in a Pauli X basis state, then
applying a Pauli Z error on the qubit, with probability p.

(2) The noisy Pauli Z measurement is equal to first apply-
ing a Pauli X error, with probability p, on the qubit we want to
measure, and then applying the perfect Pauli Z measurement.
Similarly, the noisy Pauli X measurement is equal to first
applying a Pauli Z error, with probability p, and then applying
the perfect Pauli X measurement.

(3) The noisy CNOT gate is equal to the perfect CNOT

followed by a two-qubit depolarizing channel, with error
probability p. Precisely, after the perfect CNOT, any one
of the 15 two-qubit Pauli errors I ⊗ X, I ⊗ Y, I ⊗ Z, X ⊗ I,
X ⊗ X, X ⊗ Y, X ⊗ Z,Y ⊗ I,Y ⊗ X,Y ⊗ Y,Y ⊗ Z, Z ⊗ I,
Z ⊗ X, Z ⊗ Y, Z ⊗ Z , may occur with probability p

15 .

2. Simulation of the preparation procedure

Consider the Q1 code state |qN 〉S on the N = 2n qubit
system S = {1, . . . , N}. To prepare |qN 〉S , we first initialize
the N qubits in a Pauli Z basis state (using the noisy initializa-
tion defined above), and then follow the recursive preparation
procedure based on two-qubit Pauli measurements. During the
recursive procedure, initialization operations, CNOT gates, and
single-qubit measurements are replaced by their noisy ver-
sions, and errors generated at some point by noisy operations
are propagated throughout the rest of the procedure. If an error

FIG. 15. Measurement-based preparation for the Q1[N = 8,

i(n) = 3], with Pauli Z ⊗ Z and Pauli X ⊗ X measurements imple-
mented according to Figs. 10(a) and 10(b). Initialization operations
are shown as ket states. For single-qubit measurement operations, the
Pauli basis is also indicated. Initialization operations, measurements,
and CNOT gates are noisy, according to the assumed circuit-level
depolarizing noise model. Note that errors are generated only by
the above noisy operations (we do not consider errors that might
occur while the qubits are idle). Error detection is performed after
each recursion level (one round of measurements of the four ancilla
qubits), and the procedure is restarted from the beginning if an error
is detected. Error detection after the first level of recursion is useless,
hence it is not performed.

is detected at any recursion level (according to the error de-
tection method from Procedure 2), then we discard the whole
procedure and restart from the beginning, by initializing the N
qubits in a Pauli Z basis state. See also the example in Fig. 15.

As qubits are initialized in Pauli Z basis, we may ignore
the first k, 1 � k � n levels of recursion in case Pauli Z ⊗ Z
measurements are needed to be applied consecutively for the
first k levels of recursion correspond to applying Pauli Z ⊗ Z
measurements. This reduces the number of component in the
preparation circuit, hence improving the probability that the
preparation succeeds.

At the end of recursion, we have the knowledge of the
|u〉Z (n) and |v〉X (n), hence the knowledge of prepared Q1 code
state. Further, we also know the total X and Z type errors on
the prepared state, which we will use for simulating Steane’s
error correction in the next sections.

Further, we determine the preparation rate of the
measurement-based procedure as follows. We run the prepa-
ration procedure R > 0 times, and denote by t the number
of times the preparation completed (i.e., no error has been
detected during the preparation procedure). Then, the prepa-
ration rate, denoted by pprep, is defined as follows:

pprep = lim
R→∞

t

R
. (E1)

Prepared codes. We consider Q1 codes of length N = 16
and N = 64 qubits. We choose the information position i
according to the results in Table II (best positions of the
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FIG. 16. Preparation rate for the logical X and logical Z code
states of Q1 codes (N = 16, i = 7) and (N = 64, i = 23).

corresponding lengths, for sufficiently low error rate), as-
suming a depolarizing noise model and ignoring correlations
between X and Z errors. Thus, for N = 16, we take the infor-
mation position i = 7, and for N = 64, we take i = 23.

The fact that the Q1 code construction ignores correlations
between between X and Z errors is due to the Steane error cor-
rection. Indeed, X and Z errors are corrected independently,
considering ancilla states prepared in either a logical X basis

state |w̃′〉S ′ , or a logical Z basis state |w̃′〉S ′ , respectively.
During the X -error correction step [Fig. 7(a)], Z errors that

happened on the ancilla system S ′ while preparing |w̃′〉S ′ ,
are copied to the original system S . Similarly, during the
Z-error correction step [Fig. 7(b)], X errors that happened on
the ancilla system S ′ while preparing |w̃′〉S ′ , are copied to
S . Clearly, these X and Z errors are decorrelated, since they
happened during the preparation of different logical states.

Figure 16 shows the preparation rate pprep, for the logical
Z and logical X code states of Q1 and Shor codes of length
N = 16, 64, with respect to the physical error rate p. Here
the total number of runs is R = 105. We observe that pprep is
nonzero for sufficiently low p and it approaches to 1 as p goes
to zero, for all the Q1 code states. Further, for p close to zero,
pprep is symmetric, in the sense that it is virtually the same for
all code states for a given N . For bigger values of p, the dif-
ference in pprep for different code states of the same length is

explained by the fact that for some code states, we have Pauli
Z ⊗ Z measurements at the first levels of recursion, which
may be ignored, hence, reducing the number of components
in the preparation circuit, as explained before. For example,
for Z logical states of Shor codes N = 16, i = 4 and N = 64,

i = 23, we may ignore the first two and three levels of re-
cursions, respectively, explaining their higher pprep compared
to other code states of the same length. Furthermore, pprep is
much lower for codes states of length N = 64, compared to
that of length N = 16, especially at higher values of p. This
is also explained by the fact that the preparation circuit, in
general, consists of much larger number of components for
N = 64 than N = 16.

3. Monte Carlo-based estimates of the logical error rates

In this section, we provide a practical method to estimate
logical error rates of Q1 codes (given in Fig. 4 and see also
Fig. 17), under the Steane’s error correction. We consider a
Q1 code of length N , with information position i, and consider
the following notation I = {i}, Z = {1, . . . , i − 1}, X = {i +
1, . . . , N}, and S = Z ∪ I ∪ X .

Logical X error rate. To determine the logical X error
rate, we prepare a logical Pauli Z basis code state |w̃〉S =
QN (|u〉Z ⊗ |w〉I ⊗ |v〉X ), w ∈ {0, 1}, that we want to pro-
tect against X errors. Further, we prepare a logical Pauli X

basis code state |w̃′〉S ′ = QN (|u′〉Z ′ ⊗ |w′〉I ′ ⊗ |v′〉X ′ ), w′ ∈
{0, 1}, to be used as the ancilla system for syndrome extraction
[see Fig. 7(a)].

The logical X error rate is determined as follows.
(1) Preparing Q1 code states: We first simulate the

measurement-based preparation of |w̃〉S and |w̃′〉S ′ states, as
described before (in case of error detection, we restart the
preparation procedure until it completes). After the prepara-
tion completes, we know the frozen vectors u, u′ ∈ {0, 1}i−1,
corresponding to the frozen sets Z and Z ′, and the frozen
vectors v, v′ ∈ {0, 1}N−i corresponding to the frozen sets X
and X ′. Further, for |w̃〉S , we know the logical Z value w,

and for |w̃′〉S ′ we know the logical X value w′. Moreover,
we also have the final errors eX and e′

X on systems S and S ′,
respectively.

(2) Generating the syndrome We generate the syndrome
according to Steane’s procedure [Fig. 7(a)]. According to
Lemma 4, the syndrome m consists of a noisy version of a
random codeword of the classical polar code P(N,Z, u ⊕ u′).
We generate m as the sum of the random codeword from (2.1)
and the three error terms from (2.2), below.

(2.1) First, we generate a random codeword PN (u ⊕
u′, a′, x′), by taking random values a′ ∈ {0, 1} and x′ ∈
{0, 1}N−i.

(2.2) We then add to the generated codeword, the fol-
lowing:

The first error term is eX ⊕ e′
X , where eX and e′

X are
given in step (1) [see also (B19)].

The second term corresponds to the X error gener-
ated on the system S ′ during the implementation of the
qubitwise CNOTS→S ′ .

The third error term is due to Pauli Z measurements
on the system S ′.
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(a)

(b)

FIG. 17. Numerical results for Q1 and Shor codes of length N = 16 and N = 64. (a) Monte-Carlo (MC) and Density-evolution (DE) based
estimates of the X/Z logical error rates of Q1 and Shor codes of length N = 16 and N = 64. (b) Monte-Carlo (MC) and Density-evolution (DE)
based estimates of the logical error rate of Q1 and Shor codes of length N = 16 and N = 64 (here, the logical error rate PL

e = PL
X + PL

Z − PL
X PL

Z ,
where PL

X and PL
Z are given in (a) above).

Let eC
X and eC′

X be the error produced by CNOTS→S ′

on S and S ′, respectively. Further, let eM ′
X is the error

produced by Pauli Z measurements on S ′. Then we have
that

m = PN (u ⊕ u′, a′, x′) ⊕ etot
X , (E2)

where etot
X := eX ⊕ e′

X ⊕ eC′
X ⊕ eM ′

X is the total X error
that happened on the system S ′.

Further, we also update the error on system S , by
adding eC

X to eX , i.e., adding the X error that happened
on system S during the implementation of the qubitwise
CNOTS→S ′ .

(3) Error correction Given the frozen value u ⊕ u′ from
step (1), and the extracted syndrome m from step (2), we use

SC decoding [42] to get an estimate â′ ∈ {0, 1} of a′, and then
generate an estimate of the total error etot

X in (E2), as follows:

êtot
X = m ⊕ PN (u ⊕ u′, â′, 0). (E3)

Note that we do not need to estimate x′ here, since the induced
logical error corresponds to an X -type stabilizer operator,
acting trivially on the code space (see also the discussion after
Lemma 4).

We then perform error correction on the state of the system
S , and update the X error on S , by adding the estimated total
error êtot

X . Let ecorc
X be the the error on system S after correc-

tion. From (E2) and (E3), it follows that ecorc
X is equivalent to

the following error:

ecorc
X ≡ e′

X ⊕ eC
X ⊕ eC′

X ⊕ eM ′
X ⊕ PN (0, a′ ⊕ â′, 0, 0). (E4)
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(4) Guessing the logical value The error correction is suc-
cessful if we can successfully recover the logical Z value from
the state of the system S , after error correction.

To get the logical Z value, we need to perform single-qubit
Pauli Z measurements on system S , and then estimate the
logical value from the measurement outcome.

It can be seen that the measurement outcome of Pauli Z
measurements gives a noisy version of a random codeword of
the classical polar code P(N,Z, u ⊕ u′), as follows:

m = PN (u ⊕ u′,w, x) ⊕ ecorc
X ⊕ eM

X , (E5)

where w is the logical Z value corresponding to the initial
state on the system S , x is a random vector, ecorc

X is the X error
on the system S after the error correction from (E4), and eM

X
is the error caused by the single-qubit Pauli Z measurements
on system S .

From the frozen vector u ⊕ u′ and the noisy codeword
m in (E5), we generate an estimate ŵ of w, using the SC
decoding. If ŵ �= w, we report a decoding failure, otherwise
the decoding succeeds.

We run the above steps (1)–(4), until we report f > 0
decoding failures. Let R be the number of runs for f decod-
ing failures, then the logical X error rate, denoted by PL

X , is
computed as follows:

PL
X = f

R
. (E6)

For our numerical simulations, the value of f varies between
50 to 200, depending on the physical error rate p of our noise
model.

Logical Z error rate. To determine the logical Z error
rate, we consider a logical Pauli X basis code state |w̃〉S =
QN (|u〉Z ⊗ |w〉I ⊗ |v〉X ), w ∈ {0, 1}, that we want to pro-
tect against Z errors. Further, we consider a logical Pauli Z
basis code state |w̃′〉S ′ = QN (|u′〉Z ′ ⊗ |w′〉I ′ ⊗ |v′〉X ′ ), w′ ∈
{0, 1}, to be used as the ancilla system for syndrome extrac-
tion [Fig. 7(a)]. The logical Z error rate is then determined
similarly to the above description for logical X error rate,
while inverting X and Z bases, and using Lemma 5 instead
of Lemma 4. The logical Z error rate is denoted by PL

Z .
Finally, the logical error rate (accounting for both X and Z

errors), denoted by PL
e , is given as follows:

PL
e = PL

X + PL
Z − PL

X PL
Z . (E7)

4. Density-evolution-based estimates of the logical error rates

To reliably estimate the logical error rate value, the Monte
Carlo method described in Sec. 3 requires an increasingly
large number of simulations as the logical error rate de-
creases. Hence, as p decreases, this requires increasingly more
computational time (or resources) and becomes practically
unfeasible for small values of p. In this section we provide
a theoretical method to estimate the logical error rate, based
on density evolution [24] (see also Fig. 17).

Consider the Steane’s error correction for X errors from
Sec. 3. Note that it involves two steps of decoding; the first
during Step 3 for error correction and the second during Step 4
for guessing the logical value. Each failure in decoding intro-
duces a logical X error, hence, the logical value is incorrectly
determined if and only if one of the two decoders fail.

For a given realization of errors [i.e., etot
X in (E2), or ecorc

X ⊕
eM

X in (E5)], the SC decoding works by propagating the cor-
responding log-likelihood ratio (LLR) values throughout the
polar encoding graph (from the right-hand side of the graph,
corresponding to the encoded information, to the left-hand
side of the graph, corresponding to the uncoded information;
see also footnote [42]). Rather than propagating LLR values
for a given sample (realization of errors), the density evolution
method propagates their probability density functions, thus
averaging over all the sample space. To determine the prob-
ability distribution of the input LLRs, one needs to estimate
the input error probability of the decoder [i.e., P(etot

X (i) = 1]
for the SC decoding in Step 3, or P(ecorc

X (i) ⊕ eM
X (i) = 1) for

the SC decoding in Step 4.
Accordingly, we determine the logical X error rate in the

following two steps:
(1) Input error probabilities of decoders To determine the

input error probabilities of the decoders in Steps 3 and 4,
we need to generate statistics for the error terms etot

X in (E2)
and ecorc

X ⊕ eM
X in (E5). In particular, we need to estimate the

output X error probabilities of the Z and X logical states, by
numerical simulation. This is done as follows.

For a given physical error rate p, we run the measurement-
based preparation with the error detection for logical Z and X
states until we have R successful preparations for each one of
them [43]. Let er

X , e′ r
X ∈ {0, 1}N , 1 � r � R, be the X errors

corresponding to the rth successful preparation of the logical
Z and X states, respectively. Then, the average output X error
rate for Z and X logical states are estimated as follows:

pprep
X = 1

RN

R∑
r=1

wt
(
er

X

)
, (E8)

p′ prep
X = 1

RN

R∑
r=1

wt
(
e′ r

X

)
. (E9)

Let pin1
X and pin2

X be the input error rate of the first and
second decoders, respectively. From (E2), we have that

pin1
X = 1 − (

1 − pprep
X

)(
1 − p′ prep

X

)(
1 − 8p

15

)
(1 − p). (E10)

Further, for the sake of simplicity, we compute the input error
rate of the second decoder, assuming that the first decoder has
succeeded. Then, from (E4) and (E5), we have that

pin2
X = 1 − (

1 − p′ prep
X

)(
1 − 8p

15

)
(1 − p)2. (E11)

Note that as long as the first decoder succeeds with a probabil-
ity close to one, (E11) approximates well the input error rate
of the second decoder.

(2) X logical error rate After obtaining the input error
probabilities pin1

X and pin2
X , we compute output error rates of the

decoders [44], using density evolution. Let Pout1
X and Pout2

X be
the output error probabilities of the first and second decoders,
respectively. Then, we determine the X logical error rate of
the Steane’s error correction as follows:

PL
X = 1 − ((

1 − pout1
X

)(
1 − pout2

X

) + pout1
X pout2

X

)
. (E12)

We may similarly determine the Z input error proba-
bilites for the first and second decoder, estimate their output
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probabilities using density evolution, and then determine PL
Z ,

i.e., the Z logical error rate of the Steane’s error correction.
Finally, using PL

X and PL
Z , we may determine the logical error

rate PL
e as in (E7).

Numerical results for the logical error rates of Q1(N =
16, i = 7) and Q1(N = 64, i = 23) codes, based on either
Monte Carlo simulation or density evolution, are provided in
Fig. 17.
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