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High-quality parallel entangling gates in long mixed-species ion chains
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A universal quantum computer is an ultimate pursuit, which should possess the ability to perform entangling
gate operations in parallel with high quality in a scalable fashion. However, for a long trapped-ion chain, the
simultaneous implementation of two-qubit quantum gates is a challenging task due to the drastic increase of the
crosstalk resulting from the collective motional modes. In this paper, by utilizing the structure of the localized
motional modes in the long mixed-species ion chain, we propose a highly efficient linear iterative scheme to
eliminate the crosstalk within the neighboring pairs. We show that this scheme allows the realization of high-
fidelity, low-crosstalk, scalable, parallel two-qubit gates with only a few pulse segments for the long chain. In
addition, by considering the practical experimental feasibility, we optimize the laser power and improve the
robustness against the random static drifts of the motional frequencies.
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I. INTRODUCTION

In gate-based quantum computing, quantum algorithms
can be decomposed into quantum circuits consisting of a
series of single-qubit rotations and two-qubit entangling
gates. The realization of quantum algorithms (e.g., the Shor’s
algorithm [1]) requires numerous quantum gates and physi-
cal qubits. Parallel entangling gates can provide significant
improvement in the execution time of the entire circuits.
Additionally, in the fault-tolerant quantum computation, ex-
ecuting parallel two-qubit gates is especially advantageous to
quantum error-correction (QEC) codes [2,3], which demand
multiple physical qubits to encode a logical qubit and to
protect against errors at the physical qubit level.

The ability to perform entangling operations in parallel
with low errors in a scalable fashion is a central element of
quantum information processing and is an exciting frontier.
In recent years, researchers have made significant progress
toward building a practical quantum computer with high-
quality parallel gates by utilizing various physical platforms
such as trapped ions [4,5], superconducting qubits [6], neutral
atoms [7,8], and others. The trapped-ion system is one of the
most promising platforms for large-scale, fault-tolerant quan-
tum computing due to many beneficial characteristics [9,10],
such as the longest coherence time [11], and the high-fidelity
single-qubit [12], two-qubit [13–15] or multiqubit entangling
gates [4,5,16,17]. Several schemes of parallel quantum gates
with a few qubits have been demonstrated [4,5].

However, the scalability and, particularly, the parallel gate
operations in a long chain are extremely challenging due to
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the progressively dense motional modes and complex experi-
mental implementation conditions. The single-mode approach
[18] becomes slow for spectrally resolving a certain mode
and significant errors will be caused due to unwanted inter-
actions among different modes. An alternative approach was
proposed [19,20] in which a high fidelity can be achieved,
since the optical forces simultaneously couple to all modes
and then the suppression of unwanted interaction can be re-
alized without slowing down the gate. In previous studies,
amplitude-modulated (AM) gates [19–22], phase-modulated
(PM) gates [16,23–25], frequency-modulated (FM) gates
[26–28], and their combinations [29–31] have been developed
and demonstrated in a discrete or continuous way. Unfor-
tunately, this multiple-mode approach is a highly nonlinear
optimization problem and demands complex experimental
implementation conditions [22], which is also difficult for
scaling up.

When multiple gates are simultaneously executed, the un-
wanted interactions (i.e., the crosstalk) among different qubits
will degrade the performance of gates and significantly impair
the reliability of the whole algorithm. The crosstalk results
from the collective motional modes and the corresponding
all-to-all interactions, in contrast to the advantage of the full
connectivity in the construction of global quantum gates [16].
Additionally, to find a high-fidelity and low-crosstalk gate
solution in a long chain is extremely difficult by either the
analytic methods or the numerical optimization techniques
because of the increase of the nonlinear constraints [4,17].

Therefore, it is a great concern to simultaneously imple-
ment two-qubit gates with the least amount of experimental
resources in a long chain. Some preliminary theoretical at-
tempts have been recently made for a small number of the
same-species ions [5,17]. In Ref. [5], an exact protocol has
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FIG. 1. The implementation of high-fidelity and low-crosstalk parallel two-qubit quantum gates. (a) The periodic 171Yb+ / 138Ba+ mixed-
species ion chain where 171Yb+ acts as computational qubits and 138Ba+ as ancillary qubits. (b) The localized transverse motional modes
(top) and the gapped mode frequencies (bottom) of the shadowed subset in the chain. The oscillation amplitude and direction of ions are
represented by the color of the squares. (c) The optimized results for the shadowed subset in the chain. The purple and red double-headed
arrows, respectively, represent the crosstalk within the three pairs and the degree of entanglement for each pair. The optimal pulses of the three
different pairs are plotted in the bottom. (d) One of the possible applications for the logical CNOT gate with the Steane code in QEC.

been devised, which implements simultaneously entangling
gates demanding enough pulse segments of the equally seg-
mented AM method. In Ref. [17], the authors used numerical
optimization to obtain the solution of high-fidelity, parallel,
robust gates only up to 20 ions with amplitude and phase
modulation.

In this paper, we utilize the localized motional modes of
the mixed-species ion chain [32,33] to improve the scalabil-
ity and greatly reduce the number of constraints of quantum
gates and the pulse complexity. More importantly, we propose
a linear iterative scheme to implement high-quality paral-
lel quantum gates which demands only a small amount of
pulse segments. Note that our iterative approach is scalable,
which is even valid for infinite long uniform ion chains.
As shown in Fig. 1(a), we consider a mixed-species ion
chain of 171Yb+ / 138Ba+ with a periodic-node configuration,
which can considerably suppress the overall heating [34]. The
computational 171Yb+ ion pairs are evenly distributed and
separated by P ancillary 138Ba+ ions with several buffer ions
at each edge. This ion configuration can be experimentally
realized by the ion reordering technique [32].

The mixed-species chain is a powerful platform and yields
several advantages suitable for particular tasks [35–37]. In our
scheme, the ancillary 138Ba+ ions have many applications,
such as sympathetically cooling the computational ions to
effectively suppress the axial motional heating effect [38],
performing the independently optimized gates simultaneously
on different species ion pairs to realize a maximally dense
quantum circuit, keeping memory qubits undisturbed while
manipulating other qubits to undergo logic operations [35,36],
low addressing errors of qubits with different energy split-
tings, etc.

Our goal is to perform high-quality two-qubit gates on all
pairs of computational ions in parallel by only a few pulse
segments, substantially reducing with the pulse complexity.
Note that the present ion configuration ensures a successful
implementation of parallel entangling gates, thanks to the
localized motional modes and the gapped mode frequencies
due to the mass difference of two-species ions, as shown in
Fig. 1(b) for shadowed ions in Fig. 1(a). The analogous modes
can be generated in linear Paul traps with optical tweezer
arrays [39].

Here, we propose a linear iterative approach to eliminate
the crosstalk within the neighboring pairs in the subset shad-
owed in Fig. 1(a). This is valid to mitigate the total crosstalk
due to the fact that the crosstalk with two simultaneous gates
falls off as the inverse cube of the distance between the two
pairs in a long chain [30]. As illustrated in Fig. 1(c), the
crosstalk between pairs in the subset can be effectively elimi-
nated to 0, with an arbitrary degree of entanglement (e.g., π

4 )
specified to every ion pair. For the realization in experiments,
we optimize the laser power and assume the same sequence of
Rabi frequencies for the two ions in the same pairs, as plotted
in the bottom part of Fig. 1(c).

Before presenting the details of our proposal and demon-
strating its powerfulness, we want to emphasize that the
present parallel entangling gates will have many potential
applications. One example is the Steane code [3], which uses
seven physical qubits to encode one logical qubit. The logical
CNOT gate appears everywhere in quantum algorithms that
can be realized transversally, as shown in Fig. 1(d). Compared
with serial gates, the parallelism of seven physical CNOT
gates can greatly speed up the computation and reduce the
error in the QEC circuits.
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The rest of this paper is organized as follows: In Sec. II, we
will give a brief introduction of the parallel two-qubit entan-
gling gates in a long ion chain. In Sec. III, we will present in
detail the localized modes and the corresponding frequencies
of the mixed-species finite ion chain and the infinite long uni-
form ion chain. In Sec. IV, we will propose a linear iterative
optimization scheme to achieve the efficient parallel quantum
gates with high fidelity and low crosstalk. And in Sec. V, we
will discuss the optimized results and compare the crosstalk
of different iterative period to show the effectiveness. We also
present the results of the uniform ion chain to show that our
iterative scheme is scalable and can be generalized to an ion
chain of an arbitrary length. Finally, we will summarize our
main results and give an outlook in Sec. VI.

II. THEORETICAL MODEL OF PARALLEL GATES

To realize parallel entangling gates, we adopt the Mølmer-
Sørensen gates, which are mediated by the collective motional
modes through spin-dependent optical forces [19,21]. The
time-evolution operator of the system at gate duration τ is
given by [22]

Û (τ ) = exp

{∑
j,m

(
αm

j (τ )â†
m − αm

j
∗(τ )âm

)
σ̂ j

x

+ i
∑
j< j′

θ j, j′ (τ )σ̂ j
x σ̂ j′

x

}
, (1)

where σ̂
j

x is the Pauli spin-flip operator, â†
m and âm are, respec-

tively, the creation and the annihilation operator acting on the
mth mode, and αm

j (τ ) is the residual coupling between the
internal qubit state of the jth ion and the mth motional mode,

αm
j (τ ) = −iηm

j

∫ τ

0
� j (t )sin(μt )eiωmt dt, (2)

with μ being the laser detuning and � j (t ) the two-photon
Rabi frequency of the jth ion. The coupling strength θ j, j′ (τ )
between the jth and the j′th qubit is given by

θ j, j′ (τ ) = 2
∑

m

ηm
j ηm

j′

∫ τ

0
dt2

∫ t2

0
dt1� j (t2)� j′ (t1)

× sin(μt1) sin(μt2) sin[ωm(t1 − t2)], (3)

where the Lamb-Dicke parameter ηm
j = bm

j 
k j

√
h̄

2m j
ionωm

cou-

ples the jth ion with the mth transverse mode where bm
j is the

mode eigenvector for mode frequency ωm, m j
ion is the mass of

the jth ion, and 
k j is the difference of two wave vectors.
For the qubit transitions of 171Yb+ (138Ba+), the lasers have
a wavelength around λ = 355 nm (532 nm), which can keep
one species of ions undisturbed while manipulating the other.
In Eq. (3), the summation over m is limited to the transverse
x modes, which is preferable for entangling operations due to
less susceptibility to the heating [21].

To perform ideal-fidelity and no-crosstalk parallel entan-
gling operations involving N1 independent pairs of qubits in a
chain of N ions (N � 2N1), we require

αm
j (τ ) = 0, ∀ j, m, (4)

θ j, j′ (τ ) =
{±π/4, [ j, j′] ∈ J

0, [ j, j′] ∈ J ′, (5)

where J is the set of N1 pairs of neighboring ions on which
parallel gates are to be performed and the set J ′ contains all
ordered pairs that are not included in J , whose interactions
represent the crosstalk.

Hence, there are a total number of 4N1 × N + 2N1(2N1 −
1)/2 constraints to be satisfied. It is almost impossible to
find analytical solutions to this nonconvex quadratically con-
strained problem, which is NP hard in general [4,16]. One may
attempt to find optimal solutions by numerical optimization
techniques for a small number of ions [4,16,17]. However,
these methods soon become inefficient and impractical with
the nonlinear increase of the constraints for a long ion chain,
due to the demanding computation resources, the loss of fi-
delity, and the increase of crosstalk, and the pulse complexity.

To overcome these difficulties, we propose a linear itera-
tive method to design high-quality parallel entangling gates
for a long mixed-species ion chain. For this, we adopt the
discrete AM method [19,22] and define a real column vector
� = (�1,�2, ..., �Nseg )T , where τ is equally divided into Nseg

segments and the amplitude in each segment is independently
modulated to fulfill the above mentioned constraints. The
matrix form of the constraints in Eqs. (4) and (5) can be given
as follows:

M j� j = 0, j = 1, ..., 2N1, (6)

θ j, j′ (τ ) = (� j )T D[ j, j′]� j′ , (7)

where M j is the 2N × Nseg coefficient matrix, D[ j, j′] is the
Nseg × Nseg matrix, and � j is the amplitude vector of length
Nseg of the jth qubit. The explicit expressions of M j and D[ j, j′]

are given in Appendix A. As can be seen, the spin-motion
decoupling constraints are linear with respect to the control
laser parameters, while the coupling strength constraints are
quadratic.

We use three types of gate imperfections to measure the
gate performance [39], i.e., the average infidelity per gate δF
which is related to the residual spin-motion coupling, the over-
or underaccumulated phase errors per gate δχ , and the average
crosstalk per gate C for pairs contained in J ′,

δF = 4

5N1

∑
[ j, j′]∈J

∑
m

(∣∣αm
j

∣∣2 + ∣∣αm
j′
∣∣2)

[2nm + 1], (8)

δχ = 2

N1

∑
[ j, j′]∈J

∣∣∣|θ j, j′ | − π

4

∣∣∣, (9)

C = 2

N1

∑
[ j, j′]∈J ′

|θ j, j′ |, (10)

where we take the averaged phonon number of the mth mode
n̄m ≈ 0.5.

III. MOTIONAL MODES OF THE MIXED-SPECIES
ION CHAIN

A mixed-species chain of ions is crucial for scaling
trapped-ion quantum computers and communication net-
works. In this section, we present the motional modes bm

j
and mode frequencies ωm for the mixed-species ion chain
of 171Yb+ / 138Ba+, which play an important role in the de-
sign of parallel quantum gates. In this paper, we consider a
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FIG. 2. The transverse motional modes bm
j ( j, m = 1, . . . , 60) for

a chain of 60 ions with P = 4. The mode frequency spectrum ωm/ωx

is shown on the right side, respectively, corresponding to the higher
(for the purple box) and lower frequencies (for the green box).

chain of 60 ions with five buffer ions at each edge trapped
in a hybrid potential with γ4 = 0.461 and choose the ion
period distance P = 4 to implement nine entangling pairs
in total. To achieve an average spacing of d = 10 µm, we
choose the trapping frequency ωx = ωy = 2π × 2.28 MHz
and ωz = 2π × 8.47 kHz. The transverse motional modes and
the corresponding frequencies can be precisely calculated; see
Appendix B for details.

As shown in Fig. 2, the transverse motional modes and the
corresponding frequencies drastically differ from those for the
same-species chain [32]. One of the important features is that
the motion of 171Yb+ is almost completely decoupled from
that of 138Ba+ so the motional modes of the two-species ions
are localized and independent. Thus, the crosstalk between
these two species of ions is naturally suppressed. Additionally,
for symmetric computational pairs with respect to the center
of the trap, their localized modes are hybridized due to the
long-range residual Coulomb interaction and the reflection
symmetry. In addition, the motion of each asymmetric ion
pair is mutually independent, which only consists of several
localized center-of-mass and stretch modes. Finally, the mode
frequencies of the mixed-species chain are gapped and split up
into several subsets. Note that the frequencies are degenerate
for two symmetric pairs which dominate the corresponding
motional modes. The features of motional modes for the infi-
nite long uniform ion chain are similar to the finite ion chain,
whose details can be found in Appendix B.

These different features are not only related to the mass
difference, but also to the relative contributions of the pon-
deromotive and the static potential of the confinement to
the ions [32]. Our linear iterative method to implement
parallel gates is performed on a long periodic chain of
171Yb+ / 138Ba+. However, our scheme is readily generalized
to other mixed species with different masses, such as
9Be+ / 25Mg+, 40Ca+ / 88Sr+, 9Be+ / 40Ca+, etc. Therefore,
the difference between the two species can be a powerful tool

and makes it possible for a multispecies trapped ion system
to deal with some tasks that are difficult for a single species
trapped ion system. We list some important applications of the
mixed-species ion chain in our scheme in Appendix C.

IV. THE LINEAR ITERATIVE APPROACH

To suppress the crosstalk within the same-species ion pairs
and improve the gate fidelity, we propose a linear iterative
approach to design scalable high-quality parallel gates. Our
scheme can be divided into two steps. The first step is the
construction of the approximated null space (ANS) which
guarantees the high gate fidelity. Second, we eliminate the
crosstalk within the neighboring ion pairs by constructing
a subspace of ANS orthogonal to the interactions between
the considered pair and the preceding ion pairs whose pulse
shapes are already determined.

A. The high fidelity

First, for each entangled ion pair [ jn, j′n] ∈ J (n =
1, ..., N1), we construct an ANS �

[ jn, j′n]
ans with dimension Njn as

the solution space at the cost of a negligible amount of fidelity.
We relax the spin-motion decoupling constraints Eq. (6) into
M j� j ≈ 0, which means that we do not require an exact so-
lution of ideal fidelity but rather just ensure that the infidelity
induced by the imperfect pulse shape is much smaller than the
other error sources [40]. There are several reasons for con-
structing ANS at a cost of a negligible amount of fidelity. First,
the fidelity of two-qubit gates in current experiments is around
99.9% due to the laser intensity fluctuations, the motional-
mode heating, and other noises [26,31,41]. Meanwhile, we
notice that some eigenvalues of the spin-motion matrix are
particularly small in the magnitude and the corresponding
eigenvectors (with a suitable normalization) are experimen-
tally favorable solutions, such as an obvious decrease of the
laser power or the smoothing of the pulse shape.

In our scheme, we assume the pulse shapes to be the
same for two neighboring ions in the same computational
ion pair, which can be more easily achieved in experiments,
i.e., � jn = � j′n = �[ jn, j′n]. Therefore, the calculation of ANS
is based on the spin-motion decoupling matrix of two ions in
the same pair in J . The �

[ jn, j′n]
ans can be obtained by including

the eigenvectors of matrix M[ jn, j′n],

M[ jn, j′n] = (M jn )†(M jn ) + (M j′n )†(M j′n ), (11)

where [ jn, j′n] ∈ J is the ion number in the same computa-
tional ion pairs.

For ion pair [ jn, j′n], through the eigenvalue decomposition
of M[ jn, j′n], we obtain its eigenvalues λ1, λ2, . . . , λNseg , ordered
according to their absolute values, together with their cor-
responding eigenvectors �1,�2, . . . ,�Nseg . The eigenvector
�i which is scaled by the corresponding degree of entangle-

ment, i.e., �i →
√

π
4|C|�i will then yield an infidelity with

�T
i D[ jn, j′n]�i = C (i = 1, ..., Nseg). The scaled eigenvectors

whose infidelity is below the infidelity threshold δFt form an
orthogonal basis of the ANS �

[ jn, j′n]
ans . In this paper, we set

δFt = 10−4, which is acceptable in current experiments.
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We define the ANS �
[ jn, j′n]
ans as an Nseg × Njn matrix, whose

columns (�[ jn, j′n]
ans )n j form an orthogonal basis of the space

where n j = 1, ..., Njn and Njn is the number of the scaled
eigenvectors whose infidelity is below the δFt . Using the Njn
degrees of freedom, we can reduce the total crosstalk within
the ion pairs and obtain experimentally favorable solutions,
such as the decreasing of the laser power or the smoothing of
the pulse shape. Note that the ANS of every pair is different
due to the localized modes.

Before discussing the second step, we would like to point
out one of the advantages of the current scheme. For a mixed-
species long chain, the ANS of every pair can be easily
constructed using much fewer pulse segments Nseg, compared
with that for the same-species chain. We can achieve the
two-qubit gate for every pair at a low infidelity around 10−5

with Nseg slightly greater than 4 and achieve gates with an
ideal fidelity 1 with Nseg far less than 2N that is required for
the same-species ion chain [5] due to the degeneracy and the
localization of the motion modes. The dominant contribution
to the infidelity is caused by the unclosed phase-space trajec-
tories of modes for the motion of other asymmetric ion pairs.
The motional modes of the ancillary ions scarcely have any ef-
fects on the fidelity since the gapped higher mode frequencies
are far detuned with μ.

B. The low crosstalk

Second, on the basis of the first step, we choose a crosstalk
iterative period which includes G neighboring pairs and divide
the N1 pairs into several subsets, i.e., {l + 1, l + 2, ..., l + G},
where l = 0, 1, ..., N1 − G. We apply an iterative method to
eliminate the crosstalk within the pairs in the same subset. We
construct a subspace of ANS for the considered pair, which
is orthogonal to the interactions between this pair and the
preceding ion pairs whose pulse shape are already determined.
The pulse shape of this pair is then determined by the power-
optimal method with the approximated null subspace �anss.

The approximated null subspace �
[ jn, j′n]
anss is spanned by∑

n j
(�[ jn, j′n]

ν )n j (�
[ jn, j′n]
ans )n j , where n j = 1, ..., Njn and ν =

1, ...,Vjn , where Vjn is the dimension of �
[ jn, j′n]
anss . For instance,

if we would like to eliminate the crosstalk between two pairs
[ jm, j′m], [ jn, j′n], where the pulse shape �[ jm, j′m] of [ jm, j′m] is
determined, it requires

θ [ jm, jn] = θ [ jm, j′n] = θ [ j′m, jn] = θ [ j′m, j′n] = 0, (12)

where θ [ jm, jn] = K[ jm, jn]�[ jn, j′n], K[ jm, jn] = (�[ jm, j′m] )T

D[ jm, jn]�
[ jn, j′n]
ans is an Njn -dimension row vector.

Therefore, for the gth pair in the lth subset for which the
pulse shapes of the preceding (g − 1) ion pairs are already
determined, there exists 4 × (g − 1) crosstalk constraints. To
eliminate the crosstalk, one requires

K�[ jg,l , j′g,l ] = 0, (13)

where K is (4 × (L − 1)) × Njg,l matrix. We label the ion pair
of the gth pair in the lth subset as (g, l ) for g = 1, ..., G and
l = 0, ..., N1 − G.

The important issue is the degree of freedom. We have Njg,l
variables and 4 × (g − 1) constraints according to Eq. (13), so

Njg,l for the gth pair in the lth subset has a lower limit, Njg,l >

4 × (g − 1). The dimension of �[ jg,l , j′g,l ] is Vjg,l = Njg,l − (4 ×
(g − 1)). When g reaches the maximum value G in the lth
subset, the segments of pulse need to be enough to guarantee
the NjG,l > (4 × (G − 1)). Please note that Eq. (13) can be
readily solved by Gaussian elimination, the lower upper (LU)
decomposition, etc. We then define the approximated null

subspace �
[ jG,l , j′G,l ]
anss as an Nseg × VjG,l matrix, whose columns

(�
[ jG,l , j′G,l ]
anss )ν = ∑

n j
(�

[ jG,l , j′G,l ]
ν )n j (�

[ jG,l , j′G,l ]
ans )n j form an orthog-

onal basis of the space for ν = 1, ...,VjG,l .
Then we can apply the power-optimal method to obtain

the optimal linear combination of �anss for the currently con-
sidered pair. The details of the power-optimal method [40] is
elaborated in Appendix D. The optimal solution �[ jG,l , j′G,l ] =
� jG,l = � j′G,l can be written down explicitly with coefficients
�ν :

�[ jG,l , j′G,l ] =
VjG,l∑
ν=1

�ν

(
�

[ jG,l , j′G,l ]
anss

)
ν
. (14)

The pulse shapes of the (G − 1) ion pairs have already been
determined in the same subset except for the first subset. More
details of the first subset are necessary to be explained. For
the first pair, the pulse shape is directly determined by the
power-optimal method with the ANS without considering the
crosstalk constraints. For the subsequent pairs, we construct
the subspace of ANS to eliminate the crosstalk between it and
the previous pairs. Once the pulse shapes for the first subset
are determined, we can continue to the next subset which is
more simple due to the previous determined G − 1 pairs.

Except to the power optimization, we can also reduce the
pulse gradient which is the amplitude change between any
two adjacent segments of the pulse in the AM method [40].
As the laser amplitudes are equally segmented in discrete
time intervals and abrupt changes in laser amplitudes are hard
to be physically realized, especially when one performs the
fast gates. Therefore, the optimization of the pulse gradient is
important in experiments.

It should be noted that our iterative scheme is highly scal-
able, which is even valid for an infinite long uniform long
chain. The iterative approach for the infinite long uniform ion
chain can still be divided into two steps, as has been done for
the finite ion chain. First, for each entangled computational
ion pair, we construct an ANS �ans as the solution space in
which we draw pulse shapes yielding an infidelity below a cer-
tain threshold value δFt . Because of the discrete translational
invariance under the transformation of the mixed-species ion
chain, the ANS of every pair is the same, which can simplify
the calculation. Second, for the iterative approach of the finite
ion chain, we determine the pulse shape of every subset from
the left end of the chain to the right on the basis of the
preceding determined pairs of the last subset. However, the
periodicity of the infinite long uniform chain is an advantage.
Therefore, we can calculate the pulse shape of one of the sub-
sets and the resulting Rabi sequences are applied periodically
in space. We can also construct a subspace of ANS which
eliminates the crosstalk within the neighboring pairs in the
subsets.
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FIG. 3. (a) The crosstalk C as a function of the pulse segments
Nseg for different iterative periods G. (b) The coupling strength θ

within ions in the first subset, as indicated in (d). (c) The coupling
strength θ within ions for each computational pairs for the case
Nseg = 5 and G = 1, highlighted by blue star in (a). Both axes repre-
sent the numbering of the nine computational pairs. (d) The coupling
strength θ for Nseg = 14 and G = 3, indicated by the green star in (a).

V. NUMERICAL RESULTS

In this section, we demonstrate the effectiveness of our
scheme by an example with the detuning μ = 0.802 ωx and
the gate duration τ = 100 µs. As seen in Fig. 3(a), the total
crosstalk decreases quickly as one increases the iterative pe-
riod G, which confirms that the crosstalk with neighboring
pairs is fully eliminated, as can be observed in Fig. 3(b). As
mentioned previously, since the lower limit of the dimension
of ANS increases with G, there exist different minimal num-
bers of pulse segments for every G, as seen in Fig. 3(a). In
addition, once the required number of Nseg is satisfied, a fur-
ther increase of Nseg has little effect on the average crosstalk
per gate.

To show how our iterative approach reduces the total
crosstalk, we can compare the results for G = 1 and 3, for
which we obtain an infidelity of 2.4 × 10−6 and 1.2 × 10−6,
respectively, well below the threshold δFt . The specified en-
tanglement of every two-qubit gate is exactly achieved. In
addition, the crosstalk for G = 3 is CG=3 = 1.5 × 10−4, much
smaller than CG=1 = 1.1 × 10−2.

The advantages can also be seen by comparing the cou-
pling strength θ within ions for each of computational pairs.
For the case of G = 1 without the crosstalk elimination, as
shown in Fig. 3(c), the crosstalk within the neighboring pairs
of ions is the dominant source. On the contrary, for G = 3,
the crosstalk between pairs in the subset has been fully elim-
inated, as shown in Fig. 3(d) and enlarged in Fig. 3(b). The
remaining small crosstalk comes from the interaction between
ion pairs whose distance is larger than the maximum distance
in the iterative period.

As G increases, more crosstalk constraints are added and
then the vectors of the solution space that can lower the laser
power will be reduced, which will lead to an increase of the

FIG. 4. (a) The crosstalk C as a function of G and the corre-
spondingly required RMS power for the minimal pulse segments
Nseg = 5, 9, 14, 20, 22, 31. (b) The crosstalk C for G = 1 and 3 as
the function of P for the robust and the nonrobust pulse, respectively.
The color of markers represents the average infidelity when the
motional-mode frequencies randomly drift with different signs of
δωc. Note that we change the total number of ions to keep the number
of two-qubit gates at nine. For each P, the number of pulse segments
is the same, i.e., for G = 1, 3, we take Nseg = 5, 14 for the nonrobust
pulse and Nseg = 7, 20 for the robust pulse, respectively.

laser amplitude. However, in our scheme, we determine each
pulse shape using the power-optimal method. As observed in
Fig. 4(a), the increase of the iterative method can significantly
reduce the average crosstalk, but only at the cost of a reason-
able increase of the laser power. Additionally, the crosstalk
can also be suppressed by increasing the period distance P, as
shown in Fig. 4(b).

In addition, it is also a critical issue to construct gates
being stabilized against control parameter fluctuations [31].
Our approach is scalable and admits the linear construction
of the robust constraints, which is related to the spin-motion
decoupling at the cost of additional degrees of freedom. Here,
we show the infidelity for the robust and nonrobust gates
against the random static drifts of the mode frequencies with
uncertainty δωc = 2π × 2000 Hz. As seen from the color
of the markers in Fig. 4(b), we find that the robust pulse
significantly improves the fidelity and can tolerate errors dra-
matically more than the nonrobust case. The infidelity of the
robust pulse for G = 1 and P = 4 is 2.67 × 10−4 while the
infidelity of nonrobust pulse is 2.98 × 10−2. The details of the
random static drifts of frequencies and other linear robustness
constraints can be found in Appendix E.

To show the scalability of our approach, we present the
crosstalk within each pair of computational ions in an infinite
long uniform ion chain of the G = 1 with the corresponding
minimal pulse segments Nseg = 10 and G = 3 with Nseg = 19
in Figs. 5(a) and 5(b). For convenience, the squares represent
the crosstalk with two pairs, θpair. In both cases, we obtain
an average infidelity of δFG=1 = 4.29 × 10−6 and δFG=3 =
5.54 × 10−6, respectively, where the infidelity of each ion
pair is below δFt , which guarantees the average infidelity
δF < δFt . The over- and underaccumulated phase errors are
δχG=1 = δχG=3 = 0, which means that every two-qubit gate
achieve the specified entanglement in our approach. The
crosstalk per gate is CG=1 = 3.20 × 10−2 and CG=3 = 1.40 ×
10−3, respectively. As shown in Fig. 5(a) without the crosstalk
elimination (G = 1), the squares near the diagonal are very
dark, which means that the crosstalk within the neighboring
pairs of ions is the dominant source of the total crosstalk.
This is why we chose our optimization scheme to eliminate
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FIG. 5. (a) The coupling strength θpair within computational ion
pairs in one of the subsets with Nseg = 10, the detuning μ = 2ω2 −
ω1, and the gate duration τ = 2π/(ω1 − ω2) for G = 1. The label
represents the number of 48 ion pairs. (b) The coupling strength θpair

within computational ion pairs in one of the subsets with Nseg = 19,
the detuning μ = 2ω2 − ω1, and the gate duration τ = 2π/(ω1 −
ω2) for G = 3.

the crosstalk within neighboring pairs. For the period G = 3,
the crosstalk between each pair of ions in the subsets is fully
eliminated. Additionally, the crosstalk with different pairs in
Fig. 5(b) reflects the periodicity of the infinite uniform long
ion chain.

VI. CONCLUSIONS

There are several advantages in the current scheme. In
terms of the solution algorithm, our linear iterative scheme
can obtain the optimal solution efficiently and have a good
stability compared with numerical optimization techniques.
Compared with the linear protocol adopted in Ref. [5], we
propose an effective iterative scheme to eliminate the crosstalk
within the neighboring pairs. Our scheme considers the con-
struction of an approximated null subspace and the robustness
constraints. The pulse complexity is substantially decreased.
The pulse shape is preferable in experiments which demand
a few pulse segments. More importantly, our iterative ap-
proach is scalable, which is even valid on infinite long uniform
chains.

Nevertheless, there do remain some experimental chal-
lenges, such as the ion reordering of mixed-species ions, the
ability to reconfigure and interlace the ion chain and arrange
qubits into desired pairs, the low efficiency of the sympa-
thetic cooling of transverse modes [32], etc. Compared to the
same-species ion chain, the mixed-species ion chain needs a
more exquisite control of ion positions and complex electrode
design, which presents substantial platform-specific scientific
and engineering challenges. The gate fidelity can be limited
to extra technical complications, the photon scattering, and
the imperfect stray field compensation, etc. However, these
experimental challenges would be attempted with the fast
advances of relevant technologies [35–37].

In conclusion, we utilize the localized motional modes
and the gapped mode frequencies of the mixed-species ion
chain to greatly simplify the constraints of gate and lower

the crosstalk. More importantly, we have proposed a highly
efficient iterative scheme to eliminate the crosstalk within
the neighboring pairs of 171Yb+ and demonstrated its imple-
mentation for high-fidelity, low-crosstalk, scalable, and robust
parallel two-qubit quantum gates in a long mixed-species
chain. In the future, a combination of the present parallel
gates with trapping and rearrangement of individual ions in
a mixed-species chain may serve as an efficient scheme for
error-corrected and fault-tolerant operations to eventually en-
able a large-scale trapped-ion quantum processor.

ACKNOWLEDGMENTS

We thank Y.-C. Shen and L. Geng for insightful comments
and helpful discussions. This work is supported by National
Natural Science Foundation of China Grants No. 12234002
and No. 92250303.

APPENDIX A: MATRIX EXPRESSIONS

In this Appendix, we give the explicit expressions for the
constraints.

The spin-motion decoupling constraints Eq. (4) of the jth
qubit can be written in matrix form as follows:

M j� j = 0. (A1)

The elements of matrix M j are given by

M j (m, n) = ηm
j

∫ tn

tn−1

sin(μt )sin (ωmt )dt

M j (m + N, n) = ηm
j

∫ tn

tn−1

sin(μt )cos (ωmt )dt, (A2)

where M j is the 2N × Nseg coefficient matrix, j is the label
of the ion, and tn = nτ/Nseg. M j (m, n) and M j (m + N, n)
are, respectively, the real and imaginary parts of the residual
coupling of the mth motional mode.

The coupling strength constraints Eq. (5) between ion pair
[ j, j′] can be written in matrix form:

(� j )T S[ j, j′]� j′ = θ j, j′ (τ ) =
{
θideal, [ j, j′] ∈ J
0, [ j, j′] ∈ J ′, (A3)

where S[ j, j′] is the Nseg × Nseg matrix. Since θ j, j′ (τ ) is a
scalar, we can further construct a symmetric matrix D[ j, j′] =
(S[ j, j′] + (S[ j, j′] )T )/2 such that θ j, j′ (τ ) = (� j )T S[ j, j′]� j′ =
(� j )T D[ j, j′]� j′ . In this paper, we consider maximally entan-
gling gates with θideal = ±π/4 as a benchmark case, which is
important in quantum circuits. However, different and inde-
pendent values of θideal can be simply achieved by scaling the
Rabi frequencies.

The entanglement matrix S[ j, j′] is a real Nseg × Nseg matrix
whose (p, q) element is given by

S[ j, j′](p, q) =

⎧⎪⎪⎨
⎪⎪⎩

2
∑

m ηm
j ηm

j′
∫ tp

tp−1
dt1

∫ tq
tq−1

dt2 sin(μt1) sin(μt2) sin[ωm(t1 − t2)], (p > q)

2
∑

m ηm
j ηm

j′
∫ tp

tp−1
dt1

∫ t1
tp−1

dt2 sin(μt1) sin(μt2) sin[ωm(t1 − t2)], (p = q)

0, (p < q).

(A4)
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APPENDIX B: MOTIONAL MODES AND FREQUENCIES

1. The finite ion chain

In a typical linear Paul trap, the ion confinement is realized
by using a combination of direct current and radiofrequency
fields with the angular frequency �T . In the pseudopoten-
tial approximation, we introduce ε = ωp/ωz and ωx = ωy =√

ω2
p − 1

2ω2
z . When the potential traps two different species of

ions with mass mBa, mYb, the relation of trap frequencies can
be expressed,

ωYb
z =

√
1

μm
ωBa

z , (B1)

ωYb
(x,y) =

√
1

μm

√√√√ 1
μm

ε2 − 1
2

ε2 − 1
2

ωBa
(x,y), (B2)

where the mass ratio μm = mYb/mBa. It should be noted that
the axial trap frequencies ωz simply scale with the square
root of the mass ratio and the radial trap frequencies ωx,y

additionally depend on ε. The transverse potential depends on
the ion’s mass and then different species ions feel different
trap potentials.

For ions in a linear Paul trap along the axial direction, a
suitable hybrid potential consisting of a quadratic and quartic
potential with a dimensionless ratio γ4 = α4l2

0 /α2 can be ap-
plied in the axial direction to achieve a uniform configuration,

U =
N∑

i=1

(
−1

2
α2z2

i + 1

4
α4z4

i

)
+

∑
i< j

(
q2

4πε0|zi − z j |
)

,

(B3)

where q is the charge of an ion, zi is the axial position of
the ith ion, N is the number of ions, ε0 is the permittivity in

the free space, and α2, α4 are the coefficients of the quadratic
and quartic term (α2, α4 > 0). For convenience, we rescale
the positions zi using a length scale l0

3 = q2/4πε0α2 and then
define ui = zi/l0.

In our scheme, we consider a chain of 60 ions, five of which
on each end of the chain are used as buffer ions. We adjust
γ4 to minimize the relative standard deviation (RSD) for the
spacing of the 50 ions. γ4 = 0.461 is found to give a minimal
RSD of only 2.3%. We can get the equilibrium position ui of
the ions by minimize the axial potential energy. The solution
is independent of the mass, as the potential of the electrodes
interacts only with the ionic charges.

Specifically, the motional modes and their corresponding
mode frequencies can be obtained through the diagonalization
of the symmetric Hessian matrix of the total potential energy
in a Taylor expansion of the potential around the equilibrium
positions. The dynamics of the system is described by the
Lagrangian

L = mYb

2

2N1∑
i=1

q̇i
2 + mBa

2

N2∑
i=1

q̇i
2 − 1

2

N∑
i, j=1

Ai jqiq j, (B4)

where qi is the displacement of the ith ion from the equi-
librium position, 2 × N1 is the number of 171Yb+, and N2 =
N − 2 × N1 is the number of 138Ba+ in our calculations.

Ai j = ∂2V
∂qi∂q j

is the symmetric Hessian matrix of the potential
energy V . At this point, it is convenient to switch to mass-
weighted coordinates, QmBa = √

mBaqmBa , QmYb = √
mYbqmYb ,

which allows the kinetic energy to be written in a form that is
independent of mass. The Lagrangian can then be expressed
as

L = 1

2

N∑
i=1

Q̇i
2 − 1

2

N∑
i, j=1

A′
i jQiQj, (B5)

where A′
i j = Ai j√

mi
ionm j

ion

, whose elements are given by

A′
i j = (

ωBa
z

)2

⎛
⎝ε2 − 1

2
−

N∑
k=1,k 	=i

1

|ui − uk|3

⎞
⎠, m(i, j)

ion = mBa, i = j, (B6)

A′
i j =

(
ωBa

z

)2

μm

⎛
⎝ ε2

μm
− 1

2
−

N∑
k=1,k 	=i

1

|ui − uk|3

⎞
⎠, m(i, j)

ion = mYb, i = j, (B7)

A′
i j =

√
1

μm

(
ωBa

z

)2
(

1

|ui − u j |3
)

, mi
ion 	= m j

ion. (B8)

The motional modes bm
j and their corresponding mode

frequencies ωm should satisfy the following equation:

N∑
i=1

A′
i jb

m
i = ω2

mbm
j , (B9)

where ωm is the transverse motional mode frequency and bm
j

is the motional mode with m = 1, . . . , N being the motional
mode index. Going back to the original set of coordinates qj

for the jth ion, they have the following quantized form:

q̂ j (t ) = 1√
m j

ion

N∑
m=1

bm
j Q̂m(t )

= i

√
h̄

2m j
ionωm

N∑
m=1

bm
j (âme−iωmt − â†

me−iωmt ). (B10)
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Note that the wavelength in the Lamb-Dicke parameter ηm
j =

bm
j 
k j

√
h̄

2m j
ionωm

is different for two species.

2. The infinite long uniform ion chain

As explained in the main text, our scheme is a linear iter-
ative method, which can be easily applied to an infinite long
uniform ion chain. Let us consider an infinite long ion chain
along the z axis with uniform spacing d , in the limit N → ∞
and ωz → 0, the periodic mixed-species exist discrete transla-
tional invariance under the transformation j �→ j + P′, where
P′ is the size of the unit cell. Thus, we label the positions
of ions as (l, j) where unit-cell index l ∈ Z and position
j ∈ 1, ..., P′ within a unit cell. In our calculations, within each

unit cell, the first two ions are 171Yb+ ions and the remaining
P′ − 2 ions are 138Ba+ ions.

To account for the translational invariance of the Hamil-
tonian in the unit-cell index l , we interpret the coordinates
δql, j as coefficients of a Fourier series, ck, j = ∑

l∈Z e−iklδql, j ,
where k is analogous to the quasimomentum of an electron
in a solid. In terms of the new complex coordinates ck, j , the
potential energy can be expressed

V =
∫ π

−π

dk

2π

P′∑
j, j′=1

υk
j, j′c

∗
k, jck, j′ , (B11)

with

υk
j, j′ = (

ωBa
x

)2

⎛
⎝1 − 2ζ (3)ς2 −

∑
l∈Z,l 	=0

ς2

|pl|3 e−ikl

⎞
⎠, m j

ion = m j′
ion = mBa, (B12)

υk
j, j′ =

(
ωBa

x

)2

μm

⎛
⎝ 1

μm
− 2ζ (3)ς2 −

∑
l∈Z,l 	=0

ς2

|pl|3 e−ikl

⎞
⎠, m j

ion = m j′
ion = mYb, (B13)

υk
j, j′ =

√
1

μm

(
ωBa

x

)2

⎛
⎝∑

l∈Z

ς2

|pl + j − j′|3 e−ikl

⎞
⎠, m j

ion 	= m j′
ion, (B14)

where ς2 = q2

4πε0d3mBa (ωBa
x )2 , q is the charge of an ion, and ε0

is the permittivity of free space, ζ (3) = ∑ j=∞
j=1 ≈ 1.202 is the

Riemann zeta function.
Next, we introduce new coordinates bk,n = ∑p

j=1 Bk,n∗
j ck, j ,

where Bk,n
j and their eigenvalues ωk,n can be obtained by

the diagonalization of υk
j, j′ . The motional modes can be

represented as plane waves proportional to eikl with quasimo-
mentum k. Because they are complex and not independent, the
quasimomentum can be restricted to the interval k ∈ [0, π ],
which can guarantee that the motional mode vectors are real.
We can decompose bk,n and Bk,n

j into real and imaginary parts,

bk,n = 1/
√

2(ξk,n,1 + iξk,n,2) and Bk,n
j = �k,n,1

j + i�k,n,2
j , to

obtain

δql, j =
∫ π

0

dk

2π

p∑
n=1

2∑
λ=1

�k,n,λ
l, j ξk,n,λ. (B15)

ξk,n,λ are the desired real and independent mode coordinates,
and the motional mode transformation matrices are given by

�k,n,1
l, j =

√
2
[
cos(kl )�k,n,1

j − sin kl�k,n,2
j

]
, (B16)

�k,n,2
l, j = −

√
2
[
cos(kl )�k,n,2

j − sin kl�k,n,1
j

]
. (B17)

The motional modes and the corresponding mode frequen-
cies for an infinite long uniform ion chain is illustrated in
terms of the mode matrix �k,n,λ

l, j in Figs. 6(a) and 6(b) for
l = 1, k = π

3 , λ = 1, 2. The localization is similar to that
of the finite periodic mixed-species ion chain, shown in the
main text. Additionally, the calculation of motional modes
in infinite long uniform mixed-species chain is similar to the

tweezer arrays [39]. The modes of the two species are almost
independent which means that, modes of n = 5 and n = 6,
which correspond, respectively, to COM and stretch motions
of the computational ions is separated with the other modes,
which involve the ancillary ions within a unit cell. In particu-
lar, the localized COM and stretch modes of the computational
ion pairs in different unit cells hybridize uniformly. The bands
of mode frequency split up into p = 6 bands due to the mass
ratio where the lowest two bands correspond to COM and
stretch modes of computational ion pairs. In our calculations,
we define the mean frequencies of COM band as ω1 and the
mean frequencies of stretch band as ω2.

APPENDIX C: THE APPLICATIONS
OF THE MIXED-SPECIES ION CHAIN

In this Appendix, we list some important applications of
the mixed-species ion chain in our scheme. The main thing is

FIG. 6. (a) The transverse motional modes of a uniform mixed-
species ion chain with P′ = 6 within a unit cell where l = 1, k = π

3 ,
and λ = 1. (b) The transverse motional modes for l = 1, k = π

3 , and
λ = 2. (c) The corresponding mode frequency spectrum ωk,n/ωx is
shown in middle inset.
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FIG. 7. (a) The periodic 171Yb+/138Ba+ mixed-species ion chain
where 171Yb+ act as computational and 138Ba+ as ancillary qubits.
(b) The crosstalk within each pair of ions of the G = 1 with the
corresponding pulse segments Nseg = 7 with μYb = 0.8ωx , μBa =
0.984ωx , τYb = 100 µs, τBa = 100 µs. (c) The crosstalk within each
pair of ions of the G = 3 with the corresponding pulse segments
Nseg = 20.

the motional mode structure. We utilize the localized motional
modes and the gapped mode frequencies of the mixed-species
ion chain to greatly reduce the number of constraints of the
quantum gates and lower the crosstalk between the different
species ions, such as 171Yb+ and 138Ba+.

In our scheme, another advantage is that the 138Ba+ ions
can also be applied the corresponding lasers to perform two-
qubit gates. In other words, we can perform independently
optimized gates simultaneously on both sets of ions to re-
alize a maximally dense quantum circuit. Crosstalk between
these two species of ions is naturally suppressed due to the
small spatial overlap of the respective modes. For example,
we consider a chain of 60 ions with five buffer ions at each
edge and choose the ion period distance P = 2 to implement
25 entangling pairs in total, which contains 13 entangling
171Yb+ pairs and 12 entangling 138Ba+ pairs. We present the
crosstalk within each pair of computational ions of the G = 1
with the corresponding pulse segments Nseg = 7 and G = 3
with Nseg = 20, μYb = 0.8ωx, μBa = 0.984ωx, τYb = 100 µs,
τBa = 100 µs. As we can see in Fig. 7, the crosstalk between
these two species of ions is naturally suppressed when inde-
pendently optimized gates simultaneously on both sets of ions.

In addition, cotrapping ancillary ions for sympathetically
cooling the computational ions can effectively suppress the
axial motional heating effect, which is even more severe for a
long chain due to the weak axial confinement. The long ion
chain requires highly anisotropic trapping potentials which
are typically achieved by lowering the axial confinement, re-
sulting in high motional occupation numbers after the Doppler
cooling and a high heating rate of the center-of-mass (COM)
axial motion. The fidelity of quantum gate operations can then
be limited by the weak axial confinement and the heating
effects. Since the direct cooling will destroy the qubit state,
and this problem will be more serious when the ion chain
is longer. The sympathetic cooling in mixed-species trapped
ion systems can solve this problem efficiently which has been
discussed in Ref. [38]. The axial heating of the ion chain can
be suppressed by interspersing the operations with periodic
sympathetic cooling of axial modes via ancillary ions that

are distributed throughout the ion chain through the Coulomb
interaction. Cooling one species of ion will not disturb the
other ion’s state due to the fact that the cooling lasers for
different species of ions are different.

APPENDIX D: POWER-OPTIMAL METHOD

By using the ANS, the spin-motion decoupling constraints
are roughly satisfied which means that we can achieve in-
fidelity of the two-qubit gate below the infidelity threshold
δFt . Additionally, the approximated null subspace guarantees
that the crosstalk within the neighboring pairs is eliminated to
0. Therefore, we wish to minimize the laser power, in other
words, the RMS Rabi frequency, by carefully considering
the experimental feasibility in realizing the effective Rabi
frequency.

The power-optimal method [40] in our approach is based
on finding the smallest sum of squares of � under the accumu-
lated phase constraint for every computational ion pair using
the V degrees of freedom of the approximated null subspace
�

[ j, j′]
anss , where [ j, j′] ∈ J is the label of the entangled pairs.

Our goal now is to linearly combine the orthonormal solution
space vectors with real expansion amplitudes � to find the
power-optimal solution,

�
[ j, j′]
opt =

V∑
ν=1

�ν (�s)ν, (D1)

where �s represents the subspace of ANS �
[ j, j′]
anss .

The root-mean-square (RMS) Rabi frequency power Pr can
be expressed as

Pr
2 = 1

Nseg

Nseg∑
n=1

�2
n = 1

Nseg
�T I�, (D2)

where I is the Nseg × Nseg identity matrix.
Now, we can formulate the constrained optimization prob-

lem as

f (�) = min((�[ j, j′] )T H�[ j, j′] )

s.t.|(�[ j, j′] )T R[ j, j′]�[ j, j′]| = π

4
, (D3)

where

H = �T
s I�s, (D4)

R[ j, j′] = �T
s D[ j, j′]�s. (D5)

Geometrically, the coupling strength constraint in Eq. (D3)
is a V -dimensional hypersurface and the minimum of laser
power in Eq. (D3) is a V -dimensional hypersphere. The min-
imum objective function is that the hypersphere is inscribed
in the hypersurface and just touches the hypersurface along
the principal axis with the smallest length. In other words,
the eigenvector corresponding to the largest eigenvalue vmax

will be the optimal solution �. In this way, our optimization
problem is solved:

�
[ j, j′]
opt = �

j
opt = �

j′
opt =

∣∣∣∣ π

4vmax

∣∣∣∣
1
2

V∑
ν=1

�ν (�s)ν . (D6)
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APPENDIX E: ROBUSTNESS CONSTRAINTS

In addition to ensuring that all excited modes are roughly
decoupled, i.e., a high fidelity under ideal operating condi-
tions, it is also critical to ensure the entangling gate operation
is robust against various types of external parameters er-
rors. Here we give a detailed introduction of the robustness
constraint against random drifts of motional frequencies, con-
sidered in the main text. In experiments, the motional mode
frequencies ωm can drift due to some uncontrollable effects,
such as stray electromagnetic fields. Thus, one requires that

∂kαm
j

∂ωk
m

= 0, m = 1, . . . , N, (E1)

or, in matrix notation,

Q(k)
m � = 0, (E2)

where Q(k)
m is the 2N × Nseg coefficient matrix including the

stabilization of the mth motional mode and the jth ion against
drifts to an arbitrary stabilization order k = 1, . . . , Kω.

Since the robust constraints which are related to the spin-
motion residual coupling are linear in the Rabi frequency
�, we can expand the matrix M to include these constraints

under the consideration of robustness in the calculation of
the ANS, at the cost of additional degrees of freedom. More
importantly, since the calculation of every motional mode
is independent, one can achieve stabilization against random
static fluctuations (i.e., individual mode drifts) independently
with different signs of direction.

In the case of the random static drifts, which is more
close to the experimental drifts, we choose N random num-
bers Nrandom from a Gaussian distribution with zero mean
and standard deviation 1. Thus, all mode frequencies drift
randomly according to ω to ω + δωcNrandom, where δωc is a
scaling factor and ω is all motional mode frequencies. For a
fair comparison, we repeat the random process six times and
then average the infidelity.

Similarly, to stabilize against gate duration errors and laser
detuning errors, one requires

∂ lαm
j

∂τ l
= ∂ pαm

j

∂μp
= 0, m = 1, . . . , N. (E3)

Finally, one can also improve the robustness against the mixed
drifts by including the corresponding constraints simultane-
ously.
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