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Equivalent noise properties of scalable continuous-variable cluster states
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Optical continuous-variable cluster states (CVCSs) in combination with Gottesman-Kitaev-Preskill (GKP)
qubits enable fault-tolerant quantum computation so long as these resources are of high enough quality. Previous
studies concluded that a particular CVCS, the quad rail lattice (QRL), exhibits a lower GKP gate-error rate than
others do. We show in this work that many other experimentally accessible CVCSs also achieve this level of
performance by identifying operational equivalences to the QRL. Under this equivalence, the GKP Clifford gate
set for each CVCS maps straightforwardly from that of the QRL, inheriting its noise properties. Furthermore,
each cluster state has at its heart a balanced four-splitter—the four-mode extension to a balanced beam splitter.
We classify all four-splitters, show they form a single equivalence class under SWAP and parity operators,
and give a construction of any four-splitter with linear optics, thus extending the toolbox for theoretical and
experimental cluster-state design and analysis.
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I. INTRODUCTION

Measurement-based quantum computing (QC) with
continuous-variable (CV) systems relies on preparing large-
scale entangled resource states, called CV cluster states [1,2]
on which adaptive measurements are sufficient for universal
QC. Optics has shown itself to be an excellent platform for
demonstrating these states on a large scale using squeezed
vacuum and passive linear optical components [3–9]. These
cluster states are accessible with current technology and
highly scalable. Indeed, experiments have demonstrated large
cluster states [10–12] including two-dimensional (2D) CV
cluster states whose connectivity makes them resources for
universal quantum computing [13,14].

In measurement-based quantum computing (MBQC) pro-
tocols using CV cluster states, performing homodyne detec-
tion on local modes teleports quantum information throughout
the cluster and applies deterministic Gaussian operations that
depend on the measurement bases [15–17]. Hindering quan-
tum computation is inherent noise from the fact that physical
states can only be finitely squeezed [18,19]. As measure-
ments are performed, this noise accumulates and eventually
overwhelms the intended calculation [20]. As a countermea-
sure, digital quantum information can be encoded into a
Gottesman-Kitaev-Preskill (GKP) error-correcting code [21],
a class of bosonic code that interfaces seamlessly with CVCSs
[22] because GKP codes admit all-Gaussian Clifford-gate
operations and magic-state production [23]. Moreover, GKP
codes are resistant to various types of CV errors, including
errors from noisy teleportation [21,24,25]. Thus, combining
CV cluster states with GKP codes provides a pathway to fault
tolerance [26–30].

*blayneyw@gmail.com

In order to use the GKP code with a CV cluster state,
a specific set of Gaussian operations is required—those that
realize GKP Clifford gates. Bespoke methods have been pro-
posed for some CV cluster states [31,32], each involving a
set of homodyne measurement angles tailored for each gate
and for each cluster state. For some CV cluster states, this
includes position-quadrature measurements to delete certain
modes [7,31], effectively wasting them while injecting their
noise into the remaining modes. Furthermore, some propos-
als require optical switches to inject GKP states when error
correction is needed [13,31].

A detailed study [32] of a specific CV cluster state—the
quad-rail lattice (QRL) [4,33]—showed that it serves as an
efficient resource for computing with the square-lattice GKP
code: the full set of GKP Cliffords can be performed in
a single teleportation step without requiring deletions, thus
minimizing inherent noise from the squeezed states in the
cluster. Further, replacing the squeezed states with a particular
type of GKP state called a qunaught state [32,34] (also called
GKP sensor states [35]) obviates the need for optical switches
and automatically performs GKP error correction during gate
execution [34]. Together, these properties give the QRL the
lowest logical GKP-Clifford gate noise of any known 2D CV
cluster state [32]. Lower gate noise places lower demands on
the quality of the GKP resources, making the QRL appear to
stand out as the CV cluster state of choice in the quest for fault
tolerance. But this is not the whole story.

In this work, we show that several other 2D CV cluster
states can achieve the same performance as the QRL. Previous
analysis indicated that the bilayer square lattice (BSL) [7], the
double bilayer square lattice (DBSL) [14], and the modified
bilayer square lattice (MBSL) [13] CV cluster states perform
worse than than the QRL [31]. We analyze these cluster states
along with another one—a three-dimensional (3D) extension
to the DBSL [28]—and show that each, when modified with
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an additional beam splitter, is operationally equivalent to the
QRL. Moreover, for the BSL and DBSL, the additional beam
splitter is not even necessary—it can be added virtually by
correlating certain specific homodyne measurement angles
and postprocessing the outcomes. This equivalence provides
two benefits. First, it gives a recipe to map the measurement
angles for GKP Clifford gates from the QRL to the other clus-
ter states. Second, every equivalent CV cluster state inherits
the QRL’s low GKP-logical gate noise. Together, these make
the BSL, DBSL, and MBSL in principle as useful as the QRL
for achieving fault tolerance with the GKP code.

We further show that the CV cluster states above are mem-
bers of a large class of scalable CV cluster states whose
internal coupling uses balanced four-splitters [33]—a gen-
eralization of a balanced beam splitter to four modes. We
characterize all balanced four-splitters and show that they fall
into an equivalence class defined by a small set of operations.
We provide a procedure to engineer any four-splitter using
only linear-optical components—a network of four balanced
beam splitters along with SWAP gates and parity operators.

Section II gives properties of beam-splitter networks and
introduces quantum optical conventions used throughout this
work. Section III shows the equivalence of the BSL, DBSL,
MBSL, and extension of the DBSL to the QRL cluster state.
Section IV analyzes this equivalence when the CV cluster
states are used in conjunction with the GKP code. Finally,
Sec. V classifies the equivalence class of four-splitters and
shows how to construct them from linear optical components.

II. BEAM-SPLITTER NETWORKS

A balanced beam splitter mixing modes j and k is de-
scribed by the unitary operator

B̂ jk :=e
π
4 (â j â

†
k−â†

j âk ) = e−i π
4 (q̂ j p̂k−p̂ j q̂k ), (1)

where â j and â†
k are mode annihilation and creation op-

erators satisfying [â j, â†
k] = δ j,k , and q̂ j = 1√

2
(â j + â†

j ) and

p̂ j = −i√
2
(â j − â†

j ) are the position and momentum quadrature
operators. The beam splitter above is depicted in a right-to-left
circuit diagram as

(2)

with the arrow pointing from mode j to mode k.
A beam splitter generates a linear transformation of the

mode operators â j and âk that can be described by a unitary,
2 × 2 matrix. For the beam splitter in Eq. (1), this matrix is
real and thus orthogonal, and we denote this relationship as

B̂ jk → R jk = 1√
2

[
1 −1
1 1

]
, (3)

where the arrow (→) is to be interpreted as

(Û → U) �⇒ (Û †âÛ = Uâ), (4)

where Û is a unitary operator representing passive linear-
optical elements, â = (â1, . . . , âN )T is a column vector of
N annihilation operators, and U ∈ U(N ) is the unitary ma-
trix acting to linearly combine the annihilation operators,

representing this Heisenberg action. (This relation is one-
directional because the converse is only true up to an overall
phase.) Note that R jk may be a submatrix within a larger
matrix over more modes.

The complex conjugate of the beam-splitter unitary swaps
the indices and results in a transpose of its associated matrix:
(B̂†

jk = B̂k j ) → (RT
jk = Rk j ). In a circuit diagram, Eq. (2), the

complex conjugate changes the direction of the arrow between
the wires.

We refer to a series of beam splitters as a beam-splitter
network. This term is general and allows any beam splitters
and any number of modes. In this work, however, we will be
concerned with four-mode beam-splitter networks consisting
of identical, balanced beam splitters as defined in Eq. (1).
For example, consider a beam-splitter network given by the
unitary operator

B̂network = B̂24B̂13B̂34B̂12, (5)

which is described by the circuit1

(6)

Note that we use right-to-left circuits in this work, which
benefits from a direct mapping to operator notation; compare
the circuit to Eq. (5). This beam-splitter network produces a
unitary transformation of the mode operators â j described by
an orthogonal matrix Rnetwork,

B̂network → Rnetwork = R24R13R34R12, (7)

where each beam-splitter matrix R jk from Eq. (3) has been ex-
panded into the appropriate 4 × 4 matrix over all four modes.
Note that nonidentical beam splitters that share a mode do not
commute, e.g., [B̂ jk, B̂k�] �= 0, which is reflected in the fact
that their expanded rotation matrices also do not commute,
[R jk, Rk�] �= 0.

A. CV SWAP gates and parity operators

Modes can be exchanged using a CV SWAP gate [36]

(8)

These satisfy several useful gate identities; see Eq. (F4). The
action of SWAP gates on a beam-splitter network can also
be represented by matrix multiplication of network matrices
Rnetwork,

SWAP jkB̂network → P jkRnetwork, (9)

where P jk is a permutation matrix between indices j and k.
Left multiplication by P jk swaps rows j and k. Similarly,

1The fact that the beam splitters in Eqs. (5) and (6) are ordered in
the same way is a feature of our right-to-left circuit notation. When
using left-to-right circuits, the ordering in the circuit description is
opposite that in the equation. See Ref. [32] for further motivation for
choosing this convention.
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the right action of a SWAP gate is represented as matrix
multiplication from the right by P jk , which swaps columns
j and k.

The single-mode parity operator is defined as

F̂ 2 := eiπ â†â, (10)

expressed here as two applications of the Fourier transform F̂ .
Parity transformations flip the sign of a quadrature operator,
i.e., F̂ 2q̂F̂ 2 = −q̂. The left action of a parity operator on a
beam splitter gives

F̂ 2
j B̂network → M jRnetwork, (11)

where M j is a diagonal matrix with elements equal to 1 except
entry ( j, j), which is −1. This flips the sign of the jth row in
Rnetwork. Similarly, the right action of a parity operator gives
matrix multiplication from the right by M j , which flips the
sign of the jth column.

Both SWAP gates and parity operators can reverse the
direction of a beam splitter; see Eq. (F2).

B. Quadrature measurements

In CV cluster-state quantum computing, modes are usually
measured via homodyne detection. Adjusting the phase of the
local oscillator allows measurements of any quadrature,

p̂θ := R̂†(θ ) p̂R̂(θ ) = p̂ cos θ + q̂ sin θ, (12)

where

R̂(θ ) := eiθ â†â (13)

is the phase-delay operator (also called the rotation operator).
The eigenstates |t〉pθ

= R̂†(θ ) |t〉p satisfy p̂θ |t〉pθ
= t |t〉pθ

. In
a right-to-left circuit, measurement of a quadrature p̂θ with
outcome m is indicated via a projection onto the bra pθ

〈m| =
p〈m|R̂(θ ), or in circuit form

(14)

Momentum measurements are given by θ = 0, and position
measurements by θ = π

2 . Also, a parity operator F̂ 2 = R̂(π )
in Eq. (10) serves only to change the sign of the measurement
outcome:

pθ
〈m|F̂ 2 = pθ+π

〈m| = −pθ
〈m| = pθ

〈−m|, (15)

where the subscript “−pθ ” represents a measurement of the
operator −p̂θ .

C. Adding and removing beam splitters virtually
by restricting homodyne angles

The CV cluster states in Sec. III have at their heart
beam-splitter networks over four modes. However, only the
QRL uses four beam splitters; the others use only three.
The equivalences to the QRL involve inserting the missing
fourth beam splitter into the other cluster state’s beam-splitter
network.

We show here that in some cases, the missing beam splitter
can be inserted virtually simply by correlating homodyne
measurement angles. Moreover, by the same process, an ex-
isting beam splitter can be effectively deleted. The action of a
beam splitter on two eigenstates of the same quadrature is

B̂21|t〉pθ
⊗ |s〉pθ

=
∣∣∣∣ 1√

2
(s + t )

〉
pθ

⊗
∣∣∣∣ 1√

2
(s − t )

〉
pθ

. (16)

Taking the Hermitian conjugate of this expression (recall
B̂†

21 = B̂12) gives

pθ
〈t | ⊗ pθ

〈s|B̂12 =
pθ

〈
1√
2

(s + t )

∣∣∣∣ ⊗
pθ

〈
1√
2

(s − t )

∣∣∣∣. (17)

We can interpret this expression in terms of quadrature mea-
surements, as described in Sec. II B, on both modes. This
allows us to account for the effects of a beam splitter before
measurements of the same quadrature by classically using
the proper linear combinations of the measurement outcomes.
Doing so effectively deletes the beam splitter from the cir-
cuit. Similarly, given measurements of two modes in the
same quadrature with no beam splitter preceding them, a
“virtual beam splitter” can be added to a circuit if the out-
comes are processed similarly. Note that inserting or deleting
beam splitters does not depend on the measurement out-
comes, only on the fact that the measured quadratures are the
same.

The circuit to remove a beam splitter before identical
quadrature measurements is

(18)

and to add a virtual beam splitter is

(19)

In both cases above, the physical operation is on the left of the
equal sign, and the circuit to which it is equivalent is on the
right.

Note that the insertion and deletion of a beam splitter is
accompanied by an orthogonal transformation on the mea-
surement outcomes. Collecting the outcomes into a vector
m = (m1, m2)T, removing a beam splitter is accompanied by
the transformation m �→ RTm and inserting one by m �→ Rm.

III. EQUIVALENCE OF BEAM-SPLITTER CONSTRUCTED
CLUSTER STATES

The quad-rail lattice (QRL) cluster state, introduced in
Ref. [4], is a resource for universal, fault-tolerant quantum
computing. In this section we briefly describe the construction
of several types of scalable CV cluster states and show that
they are equivalent to the QRL given certain restrictions. We
consider the bilayer square lattice (BSL) [7], the double bi-
layer square lattice (DBSL) [14], a 3D extension to the DBSL
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[28], and the modified bilayer square lattice (MBSL) [13]. The
work by Larsen et al. [31] provides further details for each of
the cluster states discussed here. The equivalences we show
below are the link that let us apply the detailed analysis of the
QRL in previous work [32] to the other cluster states under
consideration.

The construction the cluster states considered in this work
begins with the preparation of two-mode squeezed states
(TMSSs), generated by sending pairs of squeezed vacuum
states through beam splitters. Differences arise from different
ways of stitching the TMSSs together with additional beam
splitters. Stitching involves four-mode entangling operations,
in which one half of four TMSSs are coupled together with
beam splitters. For each cluster state, equivalence to the QRL
involves inserting an additional beam splitter in this process;
doing so effectively gives a new, distinct cluster state with
more connectivity between modes: we call these the com-
pleted version of the original cluster state, i.e., the completed
BSL (cBSL). When used for CV quantum computing, all
of the modes in the cluster state are measured via homo-
dyne detection. We use this fact and show that the needed
beam splitter can be inserted virtually by restricting specific
measurement angles, which allows the unmodified cluster
states to be used as if they were a different cluster state with
more connectivity. Under this restriction, we refer to a cluster
state as virtually completed, i.e., the virtually completed BSL
(vcBSL). The exception in the cluster states considered here
is the MSBL, for which the missing beam splitter cannot be
inserted virtually.

A. Representations of CV cluster states

Large-scale CV cluster states have a complicated entangle-
ment structure spanning many modes, so representing them
is a challenge in itself. The graphical calculus for Gaussian
pure states [37] offers a visual representation of these states
as graphs that faithfully encode their precise wave functions.
A simplified version of this graphical calculus is developed
in Ref. [4] that is applicable for a large class of scalable CV
cluster states, which includes all of the ones examined in this
work. It streamlines the original formalism while maintaining
the faithful representation of the full state. It also introduces
the notation of an arrow between nodes for a beam splitter
between the corresponding modes, as well as the simultaneous
use of both graphs and arrows to illustrate the steps in the
construction of a cluster state.

The macronode wire [18] is the primitive unit we start with
when representing each of these cluster states. It is the ba-
sic highway down which quantum information is channeled,
and our work within this paper builds upon the details of
teleportation that we established in Ref. [34] and extended
to two modes for the QRL in Ref. [32]. Figure 1 shows
several representations of the macronode wire: Figs. 1(a)
and 1(b) show a series of modes coupled by beam splitters
(black beam splitters apply before the red ones), Fig. 1(c)
shows a hybrid representation where two-mode squeezed
states are coupled by beam splitters, and Fig. 1(d) a simplified
graph.

FIG. 1. Four representations of the same macronode wire. Black
and red beam splitters, represented by arrows, couple modes pre-
pared in squeezed states. The black beam splitters are applied first
to generate TMSSs, then the red beam splitters couple one half
of neighboring TMSSs into a macronode wire. (a) Representation
showing the modes coupled by beam splitters. (b) Folding the
macronode wire to emphasize two-mode macronode groupings, indi-
cated in blue. (c) Black beam splitters, acting first, generate TMSSs
between modes, each represented as two modes with a blue edge
between them. Pairs of TMSSs are coupled by red beam splitters.
(d) The action of both black and red beam splitters in graphical form,
revealing the entanglement structure of the macronode wire [4].

For the mathematical details of this representation, the
reader may consult Ref. [4], but many readers may be satisfied
thinking of the graphs (in blue and yellow) as representing
the entanglement structure of a multimode Gaussian state,
upon which beam splitters act in the locations and order
prescribed. If the node being acted upon is isolated (not a
graph, just a node), one may think of this node as repre-
senting a squeezed state. Thus, the macronode wire above
is a collection of squeezed states, upon which the black
beam splitters act to create a collection of TMSSs, followed
by another set of beam splitters (the red ones) that link
these TMSSs into a macronode wire whose full graph is
shown in d).

Figure 2 employs the three representations in Figs. 1(b)–
1(d) to describe the cluster states of interest in this work.
The figure caption provides additional information about the
different representations and their uses. In each type of clus-
ter state, adjacent macronode wires are coupled together by
dashed black beam splitters, enabling two-mode gates.

With this perspective, we introduce a unifying description
that treats the core of each cluster state as a four-mode beam-
splitter network B̂network, with each one described in its own
subsection below.

B. The teleportation gadget

As the modes in the cluster states are measured via ho-
modyne detection, states are teleported down the macronode
wires that comprise them and across couplings. Each of
the cluster-state constructions we consider has at its core a
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teleportation gadget:2

(20)

where the four-mode beam-splitter network is specific to the
cluster state at hand. The Arabic-numbered modes are mea-
sured, while the Roman-numbered modes remain afterward.

For each cluster state in Fig. 2, this six-mode gadget is
indicated inside a dashed box, with matching mode labels
between Fig. 2 and Circuit (20). For all cluster states, the two
input modes are teleported to the two output modes with a
two-mode Gaussian unitary

V̂ (2)
network(θ) (21)

applied that depends on which quadratures are measured
[Eq. (12)], as specified by the measurement angles θ =
{θ1, θ2, θ3, θ4}. (The displacements on the two modes that
arise from the measurement outcomes will be ignored, which
is possible because the gate to be implemented is Gaussian.) In
addition, this circuit applies a potentially nonunitary operation
depending on the states stitched together by the beam-splitter
network [34], as indicated by |ψ〉 and |φ〉 in the circuit
above. In standard cluster-state constructions, these states are
position- and momentum-squeezed states that become TMSSs
after a beam splitter. In Sec. IV A, we replace them with GKP
qunaught states in order to perform GKP error correction. For
the moment, though, we leave these states unspecified in order
to focus on the beam-splitter network itself and the Gaussian
gates implemented by the measurements.

C. Quad-rail lattice (QRL)

The quad-rail lattice (QRL) cluster state [4] has been
studied as a platform for quantum computing [4,31–33]. We
compile and summarize important details relevant to compar-
ison to the other cluster states considered in this work.

The QRL, Fig. 2(a), begins with a collection of TMSSs.
Groups of four modes (each belonging to a different TMSS)
are then combined using additional beam splitters (red and
dashed black in the figure). A useful perspective considers the
QRL as coupled four-mode beam-splitter networks, each of

2Be mindful that this circuit uses the right-to-left convention dis-
cussed in Sec. II, with input states on the right and homodyne
measurements and output states on the left.

the form

(22)

contained within the first four modes of the two-mode
macronode gadget in column 1 of Fig. 2(a), with correspond-
ing orthogonal matrix

RQRL = R24R13R34R12 = 1

2

⎡
⎢⎢⎣

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎤
⎥⎥⎦. (23)

This matrix shows that the QRL beam-splitter network pro-
duces equal superpositions of quadrature operators on all
output modes, with only the phases differing. This is an ex-
ample of an object we refer to as a balanced four-splitter, and
it drives the equivalence between each of these cluster states.
We discuss more about four-splitters in Sec. V.

Aside from the internal structure of the QRL’s two-mode
macronode gadget, it is worth appreciating the brickwork
structure of the QRL cluster state when viewed in terms of
these macronode wires. The coupling with neighboring wires
happens at alternating four-mode sites in the cluster state.
This feature is useful because there are no physical operations
interfering with the two-mode gate at each site. In contrast,
other cluster states in column 1 of Fig. 2 have columns of
beam splitters coupling the macronode wires together, and
these have to be accounted for in the measurement outcomes.
This fact does not, however, influence the noise equivalence
that we are presenting in this paper.

An important insight is that the description of the QRL in
terms of local modes and beam-splitter networks does not rely
on the input states being squeezed momentum states at all.
We previously found [32,34] that preparing some or all of the
modes in GKP qunaught states can be used to implement GKP
error correction, a fact that we will return to later.

Measuring the four modes coupled by the beam-splitter
network in the context of the teleportation gadget, Circuit
(20), teleports the inputs (modes 1 and 3) in Fig. 2 to the
outputs (modes i and ii) and applies a two-mode Gaussian
unitary gate V̂ (2)

QRL(θ), Eq. (21) to them. This gate, calculated in
Ref. [32], can be decomposed into two single-mode Gaussian
unitaries, V̂ (θ, θ ′), surrounded by beam splitters:

V̂ (2)
QRL(θ) = B̂21[V̂1(θ1, θ2) ⊗ V̂2(θ3, θ4)]B̂12, (24)

or in circuit form

(25)

Explicit forms for V̂ (θ, θ ′) can be found in various
places [32]. We present two new forms, derived in
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Modified bilayer square lattice (MBSL)
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FIG. 2. Representations of the CV cluster states of interest in this work. Column 1 represents each cluster state as coupled macronode
wires—a representation introduced in Ref. [32] for the QRL. Dashed black beam splitters provide the interwire coupling. The box highlights
a six-mode teleportation gadget that provides the computing power for each cluster state. The QRL, BSL, and DBSL all comprise macronode
wires that are coupled together in different ways. The macronode wires in the MBSL, however, are periodically missing beam splitters (missing
horizontal red arrows compared to the others). Column 2 highlights the two-mode squeezed states that are generated initially (two nodes
connected by a blue line) and how these states are coupled together at regular intervals by a four-splitter that is either complete (QRL) or
incomplete (others); see Sec. V B. This representation shows groupings of four modes (different to the grouping in the first column), where
each mode is half of an entangled pair (a TMSS). The QRL representation here differs slightly from that presented in Ref. [31]. We do not
address this specifically here because the four-splitter structure (the internal structure of the macronodes) is the same in that work as it is here,
so the argument we make here about the gate noise holds regardless. Column 3 shows a representation that employs the simplified graphical
calculus [4] along with additional beam splitters (see main text). Similar representations for some of these states can be found in other works
[4,7,31,33]. This column highlights the different types of construction: For the QRL and DBSL, macronode wires are constructed first and then
connected to one another, and for the BSL and MBSL, nonlocal modes are coupled in groups of four, and then these groupings are connected.
(Comparison with the other columns shows that the BSL can also be represented as coupled macronode wires; we choose here to follow the
description in Ref [7].) Some works show the full graph-state structure [7,31,33] by implementing the graph rules of the final beam splitter
[4,37], but we omit this description as it is graphically unwieldy and does not aid our attempts to compare them.

Appendix A,

V̂ (θ, θ ′) = R̂

(
θ − π

2

)
P̂[2 cot(θ − θ ′)]R̂

(
θ − π

2

)
(26)

= R̂(θ − π )P̂p[2 cot(θ − θ ′)]R̂(θ ), (27)

where the position- and momentum-shear gates are

P̂(σ ) := ei σ
2 q̂2

and P̂p(σ ) := ei σ
2 p̂2

. (28)
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D. Bilayer square lattice (BSL)

The bilayer square lattice (BSL) cluster state, introduced in
Ref. [33] and studied elsewhere [7,31], is depicted in Fig. 2(b).
The BSL begins with a collection of TMSSs. Groups of two
modes, one from each TMSS, are chained together with beam
splitters (red). These chains are periodically connected using
a final set of beam splitters (dashed black). In some works
[7,31,33], this procedure is represented in terms of the four-
mode groupings created by the first two sets of beam splitters
(black and red) [4],

(29)

The final set of beam splitters (dashed black) stitches together
each group of four modes,

(30)

where we have included blue shading to identify the connec-
tion to the macronode wire, Fig. 1. With the macronode wire
stretched out straight, we can identify the beam splitters that
couple two macronode wires together; see column 1 of Fig. 2.
In circuit form they are

(31)

corresponding to the orthogonal matrix

RBSL = R23R34R12 = 1

2

⎡
⎢⎢⎣

√
2 −√

2 0 0
1 1 −1 1
1 1 1 −1
0 0

√
2

√
2

⎤
⎥⎥⎦. (32)

Note that these are not the same four modes as in Eqs. (29) and
(30), which is evident from the beam-splitter styles. Rather,
this four-mode grouping is best seen in Fig. 2(b).

1. Completing the BSL and connecting to the QRL

The BSL’s beam-splitter network, Eq. (31), is incomplete
because it contains three beam splitters, not four, as described
in Sec. II C. The incompleteness is reflected in the fact that the
BSL’s matrix, Eq. (32), contains elements other than ± 1

2 , indi-
cating that it does not create equal superpositions of position
and momentum operators across all modes.

The BSL can be completed by inserting a beam splitter
B̂14 between modes 1 and 4 to create new CV cluster state
that we call the completed BSL (cBSL)3 whose beam-splitter

3The choice B̂41 also works. That choice would give a different
orthogonal matrix, connection to the QRL, and two-mode gate.

network, B̂cBSL := B̂14B̂BSL, is given in circuit form by

(33)

with associated orthogonal matrix,

RcBSL = R14R23R34R12 = 1

2

⎡
⎢⎢⎣

1 −1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1

⎤
⎥⎥⎦. (34)

The cBSL’s beam-splitter network can be written in terms
of the QRL’s under a single SWAP on the left and a parity
operator, Eq. (10), on the right,

B̂cBSL = SWAP34B̂QRLF̂ 2
4 . (35)

which has a circuit

(36)

This can be verified using the circuit identity in Eq. (F4).
Now consider the cBSL beam-splitter network in the two-
mode teleportation gadget, Circuit (20). Replacing B̂network

with Eq. (35), pushing the SWAP into the measurements, and
bouncing [34] the F̂ 2 to the second output mode, we get the
two-mode gate, Eq. (21), for the cBSL,

V̂ (2)
cBSL(θ) = F̂ 2

2 B̂21[V̂1(θ1, θ2) ⊗ V̂2(θ4, θ3)]B̂12, (37)

where the vector θ specifies the measurement angles in the
initial gadget, Circuit (20). In circuit form, the two-mode gate
is

(38)

Up to the parity operator, this gate is nearly the same as
that for the QRL, Circuit (25), except that the measurement
angles θ3 and θ4 have swapped positions. The equivalence has
revealed that the cBSL can implement any teleported gate that
the QRL can by properly choosing the measurement angles.

2. Virtually completing the BSL

In the teleportation gadget, Eq. (20), a beam splitter net-
work is followed by homodyne detection. This gives us the
freedom to insert beam splitters into the measurement side
of the circuit virtually by restricting measurement angles;
see Sec. II C. Thus, we do not need to generate the cBSL
physically—instead, we can complete the BSL virtually, al-
lowing it to behave as if it were the cBSL. To do so, restrict
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12

34

i

ii

mode with restricted measurement

1

2

3

4

i

ii

Virtually completed bilayer square lattice (vcBSL)

FIG. 3. The BSL with chosen restricted measurement angles,
allowing it to behave as the cBSL. Local modes in orange are
measured in the same basis (same measurement angle), allowing
insertion of virtual beam splitters or virtual deletion of existing ones
(see Sec. II C). The virtual beam splitters are those between orange
modes. Compare with the unrestricted BSL in Fig. 2. The choice
here provides isolated two-mode teleportation gadgets in a sparse
brickwork structure.

the measurement bases on modes 1 and 4 to be the same
(indicated by the orange-shaded modes in Fig. 3) to insert a
virtual beam splitter between those modes,

pθ ,1〈m1| ⊗ pθ ,4〈m4|B̂BSL =
pθ ,1

〈
m1 − m4√

2

∣∣∣∣ ⊗
pθ ,4

〈
m1 + m4√

2

∣∣∣∣B̂cBSL.

(39)

In the teleportation gadget, this gives the circuit for the
virtually completed BSL (vcBSL),

(40)

with the virtual beam splitter indicated as the dashed arrow.
As long as this measurement angle restriction is respected,

the vcBSL can be used in the teleportation gadget as if it were
the cBSL. (Feed-forward operations should also respect the
linear transformations on the outcomes.) Thus, the vcBSL has
the same two-mode gate as the cBSL under that restriction:

V̂ (2)
vcBSL(θ) = V̂ (2)

cBSL(θ)|θ1=θ4 (41)

given in circuit form as

(42)

Although any teleported gate that the QRL can implement is
also available to the cMBSL via the relation in Eq. (68), this
is not the case for the vcBSL—the measurement restrictions
required to insert the missing beam splitter constrain the avail-
able gates.

In the larger structure of the cluster state, freedom to re-
strict measurement angles in order to virtually add or remove
beam splitters allows different connections between modes
and between two-mode teleportation gadgets. In practice, re-
stricted measurement angles can be made on the fly to tailor
the connectivity to the problem at hand. Figure 3 illustrates
a choice that produces a brickwork-like structure, similar to
that of the QRL, although here the brickwork structure is more
sparse, and this choice allows for two-mode gates followed by
single-mode gates.

E. Double bilayer square lattice (DBSL)

The DBSL, introduced in Ref. [14], is a modification of
the BSL with a construction that does not begin with the unit
described in Eq. (29). Rather, constructing the DBSL begins
by producing a macronode wire, Eq. (1), which is then wound
up into a cylinder by introducing nonlocal beam-splitter con-
nections [31]. Position measurements can then be used to cut
out 2D cluster-state sheets with the structure of the DBSL.
(Further position measurements can reduce this DBSL to a
BSL [14]).

Larsen et al. [14] experimentally generated a DBSL cluster
state and in a follow-up work [17] used the state to implement
a variety of measurement-based Gaussian operations on one
and two modes. To do so, they used an alternate perspective
on the DBSL cluster state that identifies macronode wires
running perpendicular to those in column 3 of Fig. 2(c), again
using position measurements to pare the DBSL down to a
simpler cluster state. That subfigure depicts a portion of one
of these 2D sheets, revealing that the DBSL can be locally
viewed as separate macronode wires connected periodically
by beam splitters.

Column 1 of Fig. 2(c) depicts four of these coupled
macronode wires stretched out into the rows of a two-mode
cluster state. We will use this representation to propose a
method of using the DBSL that doesn’t require any such
deletions.

The box indicates the teleportation gadget containing the
four-mode beam-splitter network B̂DBSL,

(43)
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which has unitary matrix

RDBSL = R32R34R12 = 1

2

⎡
⎢⎢⎣

√
2 −√

2 0 0
1 1 1 −1

−1 −1 1 −1
0 0

√
2

√
2

⎤
⎥⎥⎦.

(44)

While the beam-splitter networks for the BSL and DBSL
differ only in the direction of a single beam splitter [compare
Eqs. (31) to (43)], the cluster states at large have a more
significant difference—the DBSL has double the connectivity
between macronode wires; compare the DBSL and BSL in
column 1 of Fig. 2. More connectivity provides more access to
two-mode gates, as they can only be done between connected
wires.

1. Completing the DBSL and connecting to the QRL

The DBSL’s beam-splitter network, Eq. (43), is incomplete
in the same way the BSL’s is. In the same way, inserting
a beam splitter between modes 1 and 4 gives the com-
pleted DBSL (cDBSL) with beam-splitter network B̂cDBSL :=
B̂14B̂DBSL. In circuit form,

(45)

and with associated unitary matrix

RcDBSL = R14R32R34R12 = 1

2

⎡
⎢⎢⎣

1 −1 −1 −1
1 1 1 −1

−1 −1 1 −1
1 −1 1 1

⎤
⎥⎥⎦.

(46)

The completed DBSL (cDBSL) beam-splitter network can
be written in terms of the QRL under a parity operation and
two SWAPs on the left and a parity operation on the right:

B̂cDBSL = F̂ 2
3 SWAP23SWAP34B̂QRLF̂ 2

4 , (47)

which has a circuit

(48)

Using the cBSL beam-splitter network in the two-mode tele-
portation gadget, Circuit (20), gives a two-mode gate

V̂ (2)
cDBSL(θ) = F̂ 2

2 B̂21[V̂1(θ1, θ4) ⊗ V̂2(θ2, θ3)]B̂12, (49)

where the vector θ specifies the measurement angles in the
initial gadget, Circuit (20). In circuit form, the two-mode

gate is

(50)

Up to the parity operator, this gate is nearly the same as
that for the QRL, Circuit (25), except that some measurement
angles have swapped positions.

2. Virtually completing the DBSL

Now consider the DBSL in the two-mode teleportation
gadget, Circuit (20). We complete the DBSL’s beam-splitter
network in the same way as we did for the BSL’s, Eq. (39):
restricting the measurement bases on modes 1 and 4 and
inserting a beam splitter between these modes. Doing so gives
the circuit for the virtually completed DBSL (vcDBSL),

(51)

with the virtual beam splitter indicated as the dashed arrow.
The vcDBSL functions like the cDBSL in the teleportation

gadget, with the same two-mode gate under the measurement
restrictions above,

V̂ (2)
vcDBSL(θ) = V̂ (2)

cDBSL(θ)|θ1=θ4 (52)

represented in circuit form as

(53)

In the larger structure of the cluster state, Fig. 4 illustrates
a choice of restricted measurement angles that gives a highly
connected brickwork structure just like that of the QRL (and
more densely connected than the BSL; Fig. 3).

F. 3D DBSL Mikkel-splitter gadget (MSG)

After their work with the DBSL, Larsen et al. [28] extended
the DBSL into a 3D cluster state that utilizes variable beam
splitters to choose the location of their two mode gate. In
doing so, they identified a teleportation gadget of the same
form as Circuit (20), which we dub the Mikkel-splitter gadget
(MSG) after the given name of the first author. The MSG’s
beam-splitter network B̂MSG is

(54)
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Virtually completed double bilayer square lattice (vcDBSL)

FIG. 4. The DBSL with restricted measurement angles, allowing
it to function as the cDBSL. Local modes in orange are measured
in the same basis to virtually insert or delete beam splitters; see
Sec. II C. Compare with the unrestricted BSL in Fig. 2. The virtual
beam splitters are those between orange modes. The choice here
provides isolated teleportation gadgets in a dense brickwork structure
like that of the QRL.

with the unitary matrix

RMSG = R14R34R12 = 1

2

⎡
⎢⎢⎣

1 −1 −1 −1√
2

√
2 0 0

0 0
√

2 −√
2

1 −1 1 1

⎤
⎥⎥⎦. (55)

1. Completing the MSG and connecting to the QRL

The MSG’s beam-splitter network can be completed in
a similar way to that of the BSL and the DBSL, with the
virtual beam splitter instead being inserted between modes 2
and 3. Restricting these measurement bases leads to the same
completed beam-splitter network and associated orthogonal
matrix as the BSL, i.e., B̂cMSG := B̂23B̂MSG = B̂cBSL,

(56)

with associated orthogonal matrix,

RcMSG = R23R14R34R12 = 1

2

⎡
⎢⎢⎣

1 −1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1

⎤
⎥⎥⎦. (57)

Consequently, the connection to the QRL is also identical,
Eq. (35), and the two-mode gate in the teleportation gadget

12

34

i

ii

1

2

3

4

i

ii

Completed modified bilayer square lattice (cMBSL)

FIG. 5. Adding an additional beam splitter to the MBSL pro-
duces the completed MBSL (cMBSL). The MBSL cannot be
completed virtually by restricting measurement angles. The telepor-
tation gadgets form a dense brickwork structure like that of the QRL.

is the same as the BSL, (37),

V̂ (2)
cMSG(θ) = V̂ (2)

cBSL(θ), (58)

with circuit form given in Circuit (38).
The 3D cluster state of Ref. [28] reduces down to a form

of the DBSL when the second variable beam splitter therein
is removed. This connection is clear from their identical com-
pleted four-splitter. However, this connection also identifies
the useful fact that these four-splitters extend beyond 2D lat-
tices and can be used to define two-mode gates wherever four
modes meet together at a lattice site—regardless of dimension
of the greater lattice. This will become more important as we
generalize these four-splitters in Sec. V.

2. Virtually completing the MSG

Now consider the MSG in the two-mode teleportation
gadget, Circuit (20). We complete the MSG’s beam-splitter
network by restricting the measurement bases on modes 2 and
3 and to insert a virtual beam splitter between these modes.
Doing so gives the circuit for the virtually completed MSG
(vcMSG),

(59)

with the virtual beam splitter indicated as the dashed arrow.
In the teleportation gadget, the vcMSG functions like the

cMSG with the same two-mode gate under the measurement-
angle restrictions,

V̂ (2)
vcMSG(θ) = V̂ (2)

cMSG

∣∣
θ2=θ3

(60)
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in circuit form

(61)

G. Modified bilayer square lattice (MBSL)

Asavanant et al. [13] introduced and experimentally cre-
ated the modified bilayer-square-lattice (MBSL) cluster state.
It is constructed by first coupling TMSSs into basic four-mode
groupings

(62)

and then stitching these groupings together using additional
beam splitters; this is shown in column 3 of Fig. 2. When
viewed from the perspective of coupled macronode wires, the
MBSL has a different structure than the others considered in
this work. That is because, in addition to the beam-splitter
network being incomplete—a trait shared by the other cluster
states—the macronode wires in the MBSL themselves are
also incomplete, which can be seen in column 1 of Fig. 2 as
missing horizontal red beam splitters.

The beam-splitter network for the MBSL is

(63)

with the corresponding orthogonal matrix

RMBSL = 1

2

⎡
⎢⎢⎢⎣

√
2 0 1 −1

0
√

2 1 1
0 −√

2 1 1√
2 0 −1 1

⎤
⎥⎥⎥⎦. (64)

The larger MBSL cluster-state construction has a
brickwork-like structure, but as mentioned, it is missing
critical beam splitters that complete the macronode wires
themselves.

Completing the MBSL and connecting to the QRL

Physically inserting the fourth beam splitter gives a new
CV cluster state (depicted in Fig. 5)—the completed MBSL
(cMBSL). The cMBSL’s beam-splitter network is B̂cMBSL :=
B̂MBSLB̂12, given in circuit form as

(65)

with associated unitary matrix

RcMBSL = R14R32R43R12 = 1

2

⎡
⎢⎢⎣

1 −1 1 −1
1 1 1 1

−1 −1 1 1
1 −1 −1 1

⎤
⎥⎥⎦.

(66)

The connection to the QRL is given by

B̂cMBSL = F̂ 2
3 SWAP14SWAP23SWAP34B̂QRL (67)

with the circuit

(68)

Since the fourth beam splitter was physically inserted into the
circuit, the completed MBSL has no measurement restrictions
in its teleported two-mode gate:

V̂ (2)
cMBSL(θ) = F̂ 2

2 B̂21[V̂1(θ4, θ3) ⊗ V̂2(θ1, θ2)]B̂12 (69)

and can perform any gate that the QRL can via Eq. (68). The
larger cluster state structure of the cMBSL is the same as that
for the cDBSL shown in Fig. 4. This is the same brickwork
structure as the QRL, albeit with a different beam-splitter
network. Thus, the cMBSL is as versatile as the QRL is for
cluster-state computing as the QRL is—it can implement the
same gates and can do it as often as the QRL can.

Unlike the other CV cluster states above, the MBSL cannot
be completed by restricting measurement bases, because its
missing fourth beam splitter is not on the measurement side of
the circuit. Rather, it is on the state side of the circuit, meaning
that a beam splitter must be physically included in the circuit;
see Sec. V B for more details.

IV. CLUSTER-STATE COMPUTING WITH THE GKP CODE

Recent work [32] showed that the QRL is compatible with
the Gottesman-Kitaev-Preskill (GKP) encoding of a qubit into
a mode [21]. This compatibility rests on two key features
[32]. First, the ability to perform GKP error correction can
be built into the QRL cluster state itself by replacing the usual
TMSSs with GKP Bell pairs made from GKP qunaught states
[see Eq. (70) below] and beam splitters. As the modes of the
cluster state are measured, the potentially noisy input states to
each teleportation gadget are automatically projected into the
GKP code space, which is followed by an outcome-dependent
correction. Second, choosing appropriate measurement angles
in the QRL teleportation gadget gives a complete generating
set of GKP Clifford gates. These gates are executed in a
single teleportation step and require only four modes in the
beam-splitter network.

Using GKP Bell pairs in the cluster state allows GKP
error correction to be performed at the same time as each
Clifford gate. Walshe et al. [32] calculated the logical gate
noise from simultaneous implementation of a GKP Clifford
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and GKP error correction and found that, given GKP qunaught
states of high enough quality, fault tolerance is achievable by
concatenation with a larger qubit code.

The above features are not exclusive to the QRL. Using
the equivalence of the other cluster states to the QRL, estab-
lished in Sec. III, we show here that (a) each cluster state
can implement a full generating set of GKP Cliffords while
at the same time implementing GKP error correction, and (b)
the associated GKP Clifford-gate noise is identical to that of
the QRL, thus making any of the cluster states suitable for
fault-tolerant quantum computation.

A. Constructing cluster states with GKP Bell pairs

GKP Bell pairs are created by mixing two GKP qunaught
states on a beam splitter [34]. We consider (unnormal-
ized) energy-constrained qunaught states, also called noisy
qunaught states, which are defined as

|∅̄〉 = N̂ (β ) |∅〉 = N̂ (β )
∫

ds Ш√
2π (s)|s〉q, (70)

with energy damping operator N̂ (β ) := e−βâ†â, and ШT (x) is
a Dirac comb with period T . The position (and momentum)
noisy qunaught wave function is a comb of Gaussians with
broad Gaussian envelope that damps peaks far from the origin.
Two noisy GKP qunaughts on a beam splitter produce a noisy
GKP Bell pair, which itself is equivalent to a noisy GKP
projector acting on one half of an EPR pair [34],

B̂12 |∅̄〉 ⊗ |∅̄〉 = N̂1(β ) ⊗ N̂2(β ) |
GKP〉 (71)

= N̂2(β )�̂GKP,2N̂2(β ) |EPR〉 , (72)

where |
〉 := 1√
2
(|00〉 + |11〉) is a two-qubit Bell state,

|EPR〉 := ∫
ds |s〉q ⊗ |s〉q is a two-mode EPR state, and the

noisy GKP projector is

ˆ̄�GKP := N̂ (β )�̂GKPN̂ (β ), (73)

with �̂GKP being the ideal GKP projector.
Replacing the ancilla states |ψ〉 and |φ〉 in Circuit (20) with

noisy qunaught states |∅̄〉 teleports the two inputs through two
GKP Bell pairs during the implementation of Gaussian gate
V̂ (2)

network(θ). Using the identity in Eq. (72), the circuit becomes

(74)

with the noisy GKP projectors appearing only on the output
modes. Applying the circuit transformation rules presented in

Ref. [34] gives the simplified circuit

(75)

showing that the implemented gate, V̂ (2)
network(θ), depends only

on the details of the beam-splitter network and measurement
angles there; the noisy GKP projectors act afterwards. Thus,
using GKP Bell pairs in the construction of any of the cluster
states enables teleportation-based GKP error correction. An
alternative method is to insert GKP Bell pairs into a CVCS
after the fact; a method to do so is given in Appendix E.

B. Implementing GKP Clifford gates

For the square-lattice GKP code, a set of CV unitaries that
enables a complete generating set GKP Clifford gates is [32]{

Î, F̂ , P̂(±1), ĈZ (±1)
}

︸ ︷︷ ︸
CV unitaries

�−→ {
Ī, H̄ , P̄, CZ

}
︸ ︷︷ ︸

GKP Cliffords

. (76)

where F̂ = R̂( π
2 ), P̂(σ ) is given in Eq. (28), and ĈZ (g) :=

eigq̂⊗q̂. The single-qubit GKP Cliffords are implemented in
a single teleportation step of a macronode wire [32,34] and
are thus accessible to any of the cluster states above since we
have expressed them as coupled macronode wires. Whether a
two-qubit gate required to complete the set of GKP Clifford
gates is accessible depends on the beam-splitter network in
the teleportation gadget. Walshe et al. [32] found that, in a
single teleportation step, the QRL can implement ĈZ (1), the
SWAP gate, and a suite of simultaneous single-mode gates.
The measurement angles that do so are given in the first
column of Table I.

The completed cluster states—cBSL, cDBSL, cMSG, and
cMBSL—each have access to all of the QRL’s gates using
the correspondences in the previous section. But what about
the virtually completed versions, which are completed by
restricting measurement angles? In Table I, we leverage the
connections between the cluster states above and the QRL to
find the measurement angles that implement the same gates on
the virtually completed cluster states, up to parity operations
(which do not affect GKP codes).4 We find that the vcBSL,
vcDBSL, and vcMSG can natively implement almost all of the
Clifford gates that the QRL can—the SWAP is the only one
for which we could not find a set of angles. In the last column,
we give the measurement angles from Ref. [28] that generate
ĈZ (1) (up to local Fourier transforms) for the MSG. This gate
was found natively for that cluster state [28] and does not
result from the QRL connection in this work—highlighting
the fact that this list is not exhaustive. Additional measure-
ment angles implementing the same logical-GKP gates may
exist for any of the cluster states, including the noncompleted
versions.

4Single-mode GKP codes on any lattice centered at the origin are
even parity [38].
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TABLE I. Dictionary of two-mode GKP Clifford gates. The mapping takes specific sets of measurement angles {θQ
1 , θ

Q
2 , θ

Q
3 , θ

Q
4 } that

implement gates for the quad-rail lattice (QRL) given in Ref. [32] and shows the reordering of and restrictions on those angles that perform
the same gates on the bilayer square lattice (BSL), the double bilayer square lattice (DBSL), and the Mikkel-splitter gadget (MSG) through
their virtually completed counterparts vcBSL, vcDBSL, and vcMSG. The constant angle is defined χ = arctan 2 [32]. Each mapping indicates
a measurement-angle restriction required to complete the beam-splitter network; see Sec. III.

Architecture QRL vcBSLa vcDBSLa vcMSGa

mapping {θQ
1 , θ

Q
2 , θ

Q
3 , θ

Q
4 } {θQ

1 , θ
Q
2 , θ

Q
4 , θ

Q
3 }|

θ
Q
1 =θ

Q
3

{θQ
1 , θ

Q
4 , θ

Q
2 , θ

Q
3 }|

θ
Q
1 =θ

Q
3

{θQ
1 , θ

Q
2 , θ

Q
4 , θ

Q
3 }|

θ
Q
2 =θ

Q
4

ĈZ (1) { π

2 , π

2 ± χ, π

2 , π

2 ∓ χ} { π

2 , π

2 ± χ, π

2 ∓ χ, π

2 } { π

2 , π

2 ∓ χ, π

2 ± χ, π

2 } {−χ, 0, 0, χ}b

SWAP {0, π

2 , π

2 , 0} —– c —– c —– c

Î ⊗ Î { π

2 , 0, π

2 , 0} { π

2 , 0, 0, π

2 } { π

2 , 0, 0, π

2 } { π

2 , 0, 0, π

2 }
F̂ ⊗ F̂ { 3π

4 , π

4 , 3π

4 , π

4 } { 3π

4 , π

4 , π

4 , 3π

4 } { 3π

4 , π

4 , π

4 , 3π

4 } { 3π

4 , π

4 , π

4 , 3π

4 }
P̂(1) ⊗ P̂(1) { π

2 , π

2 ∓ χ, π

2 , π

2 ∓ χ} { π

2 , π

2 ∓ χ, π

2 ∓ χ, π

2 } { π

2 , π

2 ∓ χ, π

2 ∓ χ, π

2 } { π

2 , π

2 ∓ χ, π

2 ∓ χ, π

2 }
aEach gate is accompanied by a parity operator F̂ 2 on the second mode. This has no effect of the noise properties of the gate operation.
bThese measurement angles, given in Ref. [28], implement [F̂ † ⊗ F̂ ]ĈZ (1) and are not mapped from the QRL. Incidentally, our results show
that this gate is available to the QRL by the inverse mapping.
cWe found no mappings between SWAP gates for the QRL (isolated or combined with single-mode gates) compatible with the angle restrictions
on the vcBSL, vcDBSL, and vcMSG.

Logical gate noise

As a cluster state is measured, unavoidable noise accumu-
lates due to the fact that the cluster states are built from finitely
squeezed resources—TMSSs or GKP Bell pairs. The CV
noise translates to logical qubit errors when the cluster state
is combined with encoded GKP qubits. For high-quality GKP
input states, Walshe et al. [32] calculated the logical noise
accompanying each GKP Clifford gate in Eq. (76) and found
that a 1% gate error rate is achievable with GKP resources and
a CV cluster state both having squeezing of at least 11.9 dB.
This minimum value is set by the the two-mode ĈZ (1) gate,
which is the poorest performing gate in the set.

The origin of this noise lies in the fact that all states used
in the protocol have finite squeezing; none is ideal. This is
quantified for the GKP Bell pairs using the damping oper-
ator N̂ (β ), Eq. (70). Inspecting Circuit (75) reveals that the
damping operators are entirely contained in the noisy GKP
projectors, Eq. (73), and are independent of the details of the
beam-splitter network and measurements that enact the gate
V̂ (2)

network(θ). This means that if an identical V̂ (2)
network(θ) is found

for two different cluster state constructions, the associated
logical-gate noise will be the same.

All of the completed cluster states—the cBSL, cDBSL,
cMSG, and cMBSL—can implement any gate that the QRL
can, including the entangling GKP Clifford gate ĈZ (1) (up
to single-mode Fourier transforms and parity operators). Ta-
ble I shows that the vcBSL, vcDBSL, and vcMSG can also
implement ĈZ (1) natively as well as any subset of the QRL’s
gates that respect the angle restrictions; SWAP is a notable
exception. This means that the gate noise on ĈZ (1) is the same
as the QRL’s, and each cluster state inherits the logical-gate
noise (as a function of squeezing) calculated in Ref. [32] for
the gates native to the architecture—all gates for physically
completed four-splitters and a subset of the gates for virtually
completed ones.

Our conclusion appears to conflict with a prior study of
gate noise for the BSL and DBSL [31], which concluded
that higher-quality GKP resources were needed there than for

the QRL. In that study, deleting certain modes from the BSL
and DBSL (using position measurements) was required before
computation in order to isolate macronode wires. Each deleted
mode introduces noise into the remaining ones, increasing the
requirements on the GKP resources. In contrast, the equiva-
lence of the BSL and DBSL with the QRL in the present work
arises from utilizing each cluster state efficiently by selecting
macronode wires—distinct from those in Ref. [17]—that re-
quire no deletions before use.

We note that although the GKP logical Clifford gate noise
is identical across the different cluster states, they may have
different uses due to inherently different connectivity. For
example, the DBSL has a denser set of teleportation gadgets
than the BSL, permitting two-mode gates more often; com-
pare Figs. 3 and 4. The effects of these differences on explicit
calculations of fault-tolerance thresholds are left to future
work. Our purpose here is to show that many cluster states
perform just as well as the QRL in terms of gate noise and
thus inherit the favorable performance reported in Ref. [32].

V. BALANCED FOUR-SPLITTERS

In the above section, we compared a small set of cluster
state constructions that have been introduced in the litera-
ture. The QRL is unique among these constructions in that
it stitches together one half of four TMSSs (or GKP Bell pairs
[32]) using four beam splitters; all the other constructions use
three. The key to connecting the cluster states above to the
QRL is completing them by inserting a fourth beam splitter—
either physically (in the case of the MBSL) or virtually using
restricted measurements (all others). Here we show that these
completed are members of a class of four-mode transforma-
tions generated by balanced four-splitters, a term coined in
Ref. [33].5 This extends the gate-noise results—and others

5In that reference, the term referred specifically to B̂QRL, Eq. (6).
Here we expand this term to include a larger class of unitary gates,
of which B̂QRL is one example.
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that may follow from this work—to apply not only to the
small set of cluster states discussed here but to every cluster
state that might be conceived of that shares the four-splitter
properties described herein. For generality, we extend this
definition to n modes.

Definition 1 (Balanced n-splitter). Let Û be an n-mode
linear-optical unitary operator with Û → U ∈ U(n) [see
Eq. (4) for notation]. Û is called a balanced n-splitter if all
elements of U have the same magnitude. The matrix U is
called the n-splitter matrix corresponding to Û .

Definition 2 (Real balanced n-splitter). Let Û be a bal-
anced n-splitter. Û is called a real balanced n-splitter if its
n-splitter matrix U ∈ O(n) or, equivalently, if all elements of
U are real.

Four-splitters over n modes map every mode operator â j to
an equal-magnitude (i.e., balanced) linear combination of all n
mode operators, namely, Û †â jÛ = ∑n

k=1 Ujkâk with |Ujk| =
1√
n
. Given a balanced n-splitter Û → U, then U is n−1/2 times

an order-n, complex Hadamard matrix [39,40], by definition
of the latter. When Û is a real balanced n-splitter, then the
associated Hadamard matrix is real rather than complex.

Our work will largely focus on real balanced n-splitters.
We need the following important definition:

Definition 3 (Equivalence of real balanced n-splitters).
Two real balanced n-splitters Û1 → R1 and Û2 → R2 are
called equivalent if

√
nR1 and

√
nR2 are equivalent as order-n

real Hadamard matrices [41], i.e., if one can be transformed
into the other by a sequence of row permutations, column
permutations, row negations, and column negations.

For real balanced n-splitters with n ∈ {2, 4, 8, 12}, all be-
long to a single equivalence class for the given n [41], but for
larger n, multiple equivalence classes exist. We will focus on
the cases of n = 2 and n = 4 below.

Immediately from the definition above, we see that the
beam splitter B̂ jk → R jk defined in Eq. (3) is a real bal-
anced two-splitter. But it is not the only one. For two modes,
there are exactly eight possible real balanced two-splitters,
corresponding to four cases of exactly one negative sign in
R jk and four cases of exactly three negative signs in R jk .
This is a property of the set of order-2 (real) Hadamard
matrices [41].

One can straightforwardly verify that for this small set
of Hadamard matrices, swapping the rows is equivalent to
negating one column, and swapping the columns is equivalent
to negating one row. Also, if negation of each row is allowed,
then negation need only be allowed on one fixed column (say,
the second column) to generate all possible real two-splitters
from a given one. Thus, the full set of equivalence operations
can be reduced to simply row negation and negation of the
second column. This is an example of a smallest generating
set, as well, by a simple counting argument: since there are
8 = 23 real balanced two-splitters, a minimum of three binary
operations is necessary to generate all of them from a single
one.

The set of real balanced four-splitters displays similar be-
havior. While the QRL four-splitter B̂QRL [Eq. (22)] defines
one particular example of a real balanced four-splitter, many
other examples exist. In fact, there are 768 real balanced four-
splitters, one for each order-4 real Hadamard matrix [41]. We
are interested in treating this set of matrices as an equivalence

class under a minimal set of matrix operations because each
of these corresponds to a linear-optical unitary gate: permu-
tations are SWAP gates, and negating a row or column is a
F̂ 2 gate before or after the four-splitter, respectively. We will
use this below to demonstrate the functional equivalence of all
real balanced four-splitters in the CV cluster-state setting.

Theorem 1, proven next, shows that the equivalence class
of order-4 Hadamard matrices can be generated with a smaller
set of matrix operations than is generally needed—row nega-
tions, row permutations, and a single column negation are
sufficient. This is indeed the minimal set of operations.

Theorem 1. Let Û1 → R1 and Û2 → R2 be real balanced
four-splitters. Then R1 can be transformed into R2 by some
sequence of row permutations, row negations, and negation of
any single column.

Proof. Since every R1,2 = 1
2 H1,2, where H1 and H2 are

order-4 real Hadamard matrices. Our strategy will be to show
that the set of all order-4 real Hadamard matrices, H4, is a
single equivalence class according to the conditions of equiv-
alence in the theorem. Since |H4| = 768 [41], we will use the
available operations to construct 768 unique matrices, each of
which is a member of H4.

Let

H0 =

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦ ∈ H4. (77)

Notice that the row parity (number of minus signs in a given
row) of each row of H0 is even. Orthogonality ensures that the
4! possible row permutations and 24 possible row negations
generate distinct matrices (since no row can equal any other
row, nor can it equal any row’s negation). This accounts for
4! × 24 = 384 of the elements of H4 (including H0). All of
these have all-even row parity. To access the other half of
H4, we negate the last column of each of the matrices already
generated. Each of these new matrices is distinct from any of
the others already obtained because row permutations and row
negations preserve row parity, but a single column negation
flips the parity of all rows. Thus, we have produced another
384 members of H4 (with odd row parity) that are all distinct
from each other and from the other half (with even row parity).
This exhausts the 768 members of H4. The above procedure
can be repeated using any of the other columns in place of the
last one, showing the choice of column to be arbitrary. The
result equally applies after multiplying each of these matrices
by 1

2 . This proves the theorem. �
Note: This subsection has used the precise term real bal-

anced four-splitter in order to distinguish it from (more
general) balanced four-splitters. In the rest of this work, where
the context is clear, the term four-splitter is used to mean a real
balanced four-splitter, which is the focus of our work.

A. Physical constructions of four-splitters

First, we prove the following theorem about beam-splitter
networks:

Theorem 2. Let B̂network be a beam splitter network com-
prising four real balanced beam splitters [Eq. (2)]. Then
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B̂network is a real balanced four-splitter if and only if all of the
following conditions are satisfied:

(1) Each mode interacts with exactly two beam splitters.
(2) All modes interact with a first beam splitter before any

mode interacts with a second.
(3) No pair of beam splitters interacts with the same two

modes.
Proof. Let B̂network → R. We proved the result by exhaus-

tive search. Each beam splitter can start at any of the four
modes and end at any of the three other modes (4 × 3), and
there are four of these choices to be made independently,
giving a total of (4 × 3)4 = 20 736 possible versions of R.
We constructed each of these matrices and checked if it was a
real balanced four-splitter matrix. Independently, we checked
whether each beam-splitter network satisfied each of the three
conditions individually and in combination. We found, by
comparing these lists, that satisfaction of all three conditions
is both necessary and sufficient for R to be a real balanced
four-splitter matrix. �

A bit more intuition into this result is possible. Given
conditions 2 and 3, without loss of generality, we can
choose to partition the four modes, labeled ( j, k, �, m), as
{{ j, k}, {�, m}}, such that the first two beam splitters act on
modes within the same partition. Condition 1 now guaran-
tees that the last two beam splitters act across the partition
{{ j, �}, {k, m}}. (If this partitioning is not respected, just swap
mode labels � and m in the first step.) This means that R has
the form

R = 1

2

⎡
⎢⎢⎣

± 0 ± 0
0 ± 0 ±
± 0 ± 0
0 ± 0 ±

⎤
⎥⎥⎦

⎡
⎢⎢⎣

± ± 0 0
± ± 0 0
0 0 ± ±
0 0 ± ±

⎤
⎥⎥⎦, (78)

where each ± independently represents either +1 or −1 (fixed
by the beam splitters in question), and the row and column
ordering are ( j, k, �, m). This block form guarantees that R
has entries with equal magnitude. The fact that it represents
a product of real beam-splitter matrices guarantees that R ∈
O(4), which proves sufficiency of the conditions. We did
not find an elegant way to rigorously prove necessity of the
conditions, but the exhaustive search guarantees that

R = R(T)
km R(T)

j� R(T)
�m R(T)

jk =: R4-split (79)

is a real balanced four-splitter matrix, where (T) indicates that
the matrix shown may be transposed or not. This means the
form above allows each beam splitter to point in either direc-
tion between the modes in the subscript. Note that the first
two matrices commute, [R(T)

jk , R(T)
�m ] = 0, and so do the last

two, [R(T)
j� , R(T)

km ] = 0—the corresponding beam-splitter pairs
exhibit the same commutations.

Next, we note that not all four-splitters can be decomposed
into four real beam splitters alone, each of the form in Eq. (2).
This can be seen with a simple counting argument. Consider
four beam splitters over four modes arranged according to
Eq. (79). There are 4! ways to freely assign mode labels and 24

ways to choose to transpose or not each beam-splitter matrix.
This gives 4! × 24 = 384 beam-splitter networks. Noting the
commutativity within the beam-splitter pairs, as described
below Eq. (79), we can reduce this total by a factor of 22 to ac-

count for this possible reordering of the beam splitters within
each pair. Accounting for this operational equivalence (since
the beam splitters can act simultaneously) gives 384/4 = 96
physically distinct beam-splitter networks.

By explicit computation, we found that these 96 physical
beam-splitter networks generate only 40 unique four-splitters
out of the 768 total. This is due to collisions, where more than
one beam-splitter network produces the same four-splitter
matrix. Indeed, it was observed previously that pairs of beam-
splitters in the QRL commute [4,5,33],

(80)

giving a two-to-one correspondence with a four-splitter ma-
trix.6 We find that 48 of the 96 beam-splitter networks exhibit
the same behavior: one pair of beam splitters commutes
with the other pair. Consequently, this set generates 24 four-
splitters. The remaining 48 physical beam-splitter networks
have a different property that gives three-to-one correspon-
dences with four-splitters. Each beam-splitter network of this
type is equivalent to two other beam-splitter networks. An
example is the cBSL,

(81)

The 48 physical beam-splitter networks of this type produce
the remaining 16 four-splitters and complete the set of 40 that
are possible using beam-splitter networks alone.

The above reveals that we must go beyond beam-splitter
networks alone in order to construct the full set of 768 four-
splitters. However, starting from any of these 40, Theorem
1 guarantees that we can generate the full equivalence class
given three types of matrix operation: row swaps, row nega-
tion, and a column negation. These matrix operations are
implemented physically with SWAP gates and parity opera-
tors, as described in Eqs. (9) and (11), respectively. Following
Theorem 1, we include a single F̂ 2 before the beam-splitter
network, up to four F̂ 2 after it (one for each mode), and final
SWAP gates that may permute the modes in any way.

Starting from the 96 physical beam-splitter networks con-
structed above, two choices of parity operator beforehand,
24 afterwards, and 4! mode swaps gives 96 × 2 × 24 × 4! =
73 728 total linear optical networks. In fact, this is exactly
96 times 768, the number of unique four-splitters. Theorem 1
guarantees that each four-splitter is represented. The question

6Unlike the commutation within beam-splitter pairs, this commuta-
tion relation still requires a definite ordering of the pairs to be chosen
in the experiment. It just so happens that either ordering gives the
same result.
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is how many times each one appears. We numerically com-
puted every network’s orthogonal matrix and found that each
unique four-splitter is realized by 96 different linear-optical
networks.7

B. Incomplete four-splitters and how to complete them

Most of the cluster states we analyzed in Sec. III have
at their heart beam-splitter networks comprising three beam
splitters (rather than four). In each case, we went through
a procedure to complete them with a fourth beam splitter
added either virtually by restricting measurement angles or,
in the case of the MBSL, by inserting the fourth beam splitter
physically. These illustrate the two types of incomplete beam-
splitter network we consider: either the missing fourth beam
splitter is (a) on the measurement side of the circuit or (b) on
the state side of the circuit.

The two types of incomplete four-splitter correspond to
respectively dropping (a) R(T)

km or (b) R(T)
jk in Eq. (79). For

type (a), this gives orthogonal matrices where two of the rows
have two 0 entries and two ±√

2 entries, such as for the BSL
in Eq. (32). For type (b), the orthogonal matrices have two
columns with two 0 entries and two ±√

2 entries, such as
for the MBSL in Eq. (64). Importantly, the operations that
define the equivalence class in Theorem 1 do not couple the
two types of incomplete four-splitter; doing so would require
a transpose-type operation, which is not available.

Restated in terms of physical operations: beam-splitter net-
works of type (b) cannot be transformed to type (a) using
the left action of SWAPs and parity operators, i.e., on the
measurement side. If this were possible, it would allow type
(b) to be completed by restricting measurement angles in a
teleportation gadget.

One last situation must be addressed. Is it possible to
complete a type (b) beam-splitter network by restricting mea-
surements and postprocessing the outcomes in a more general
way? We show in Appendix D that the answer is “no,” which
ultimately means that incomplete four-splitters of type (b)
cannot be completed by restricting measurements—the fourth
beam splitter must be included in another way.8

VI. CONCLUSION

By demonstrating an equivalence to the well-studied QRL
architecture, we have shown that the BSL, DBSL, MSG, and
MBSL architectures are all compatible with the streamlined
quantum computing techniques introduced in Ref. [32], which
provide a complete Clifford gate set for the GKP code within
a single teleportation gadget, minimizing gate noise arising
from noise in the ancillae.

7Note: This is 96 linear-optical networks that construct a single
unique balanced four-splitter, as opposed to the 96 physical beam-
splitter networks, referred to earlier, which can generate 40 different
balanced four-splitters between them.

8Of course, any real beam-splitter network can be generated virtu-
ally by choosing all measurement angles to be the same. This does
nothing of value, however, since it also trivially undoes any other
beam splitters on the associated modes.

To show this equivalence, we identify macronode wires
that periodically couple to one another throughout each cluster
state. This identification allows the cluster states to be used
without introducing additional noise that arises from deleting
modes.

The equivalence to the QRL requires completing the four-
splitter within each type of cluster state. For the BSL, DBSL,
and MSG, correlating specific measurement angles produces
virtual beam splitters that complete the four-splitters, such that
the couplings behave just like the ones in the QRL do, up
to SWAP gates and single-mode parity operators. Once com-
pleted, each cluster state has access natively to a generating set
of GKP Clifford gates (inherited from the QRL but limited to
those that satisfy the angle restrictions), which have the same
intrinsic gate noise as the QRL [32]. These are sufficient to
implement any Clifford gate.9

Physically completing the four-splitter (required for the
MBSL, optional for the others) eliminates these angle restric-
tions, allowing all QRL gates to be implemented natively on
the new cluster state. This shows that all architectures based
on complete four-splitters are entirely equivalent in terms of
their available gates and noise properties due to finite squeez-
ing.

The specific cluster states in Sec. III are a small subset
of those available to experimentalists with passive optical
components. The analysis in Sec. V of all balanced four-
splitters that are equivalent under trivial passive operations
(SWAP and parity gates) provides new pathways to designing
scalable cluster states. In practice, the class of four-splitters
(and the cluster states they comprise) that can be completed
by correlating measurement angles may be more useful than
the QRL-type cluster states due to fewer optical components
(one fewer beam splitter). That is because fewer optical com-
ponents can allow for simpler experimental set ups.

Further, the noise equivalence we show here applies only
to gate noise introduced by imperfect GKP states throughout
the cluster. Optical components themselves introduce losses
and other noise due to imperfections and alignment errors;
reducing their number could improve gate noise under more
realistic models. On the other hand, the connectivity in the
context of each cluster state at large may favor a true four-
splitter in the teleportation gadget in order to leverage more
flexibility for routing quantum information [33] and imple-
menting simultaneous gates. For a given computation, there
may be advantages to choosing a specific cluster state to
reduce logical gate depth and consequently logical noise.

In this work we focus on Clifford gates for the square-
lattice GKP code. It is not known whether cluster states can
implement a full set of Clifford gates for GKP codes on
other lattices in a single teleportation step, and, if so, which
cluster states do. Our general analysis of four-splitters should
be useful in this study: once a particular four-splitter and
measurement angles are found that provide the full gate set,

9Some work remains to discern the effects of these measurement
restrictions on any specific architecture, and we leave that to those
doing the practical implementations. We have shown, nevertheless,
that a generating set of Clifford gates is available natively for each
architecture.
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equivalent four-splitters (and measurement angles) are imme-
diately accessible via the SWAP and parity operations that
define the equivalence class. Also, the fact that we have an an-
alytic form for the QRL’s teleported gate, Eq. (24), simplified
the search for square-lattice GKP Cliffords. Ideally, a similar
expression for incomplete four-splitters would help expedite
the search for other gates; at the moment, none is known.

ACKNOWLEDGMENTS

We thank Nicholas Funai and Yui Kuramochi for useful
discussion. This work is supported by the Australian Research
Council Centre of Excellence for Quantum Computation
and Communication Technology (Project No. CE170100012).
B.Q.B is additionally supported by the Japan Science and
Technology Agency through the Ministry of Education,
Culture, Sports, Science, and Technology Quantum Leap
Flagship Program (MEXT Q-LEAP). T.M. is supported by
JSPS Overseas Research Fellowships.

APPENDIX A: DERIVATION OF THE SINGLE-MODE
TELEPORTED GATE V̂ (θ, θ′ )

We present an alternate derivation of V̂ (θ, θ ′) gate, simpler
than that found in Ref. [34]. We will make use of the LDU
decomposition of a rotation matrix to decompose the phase-
delay operator into shear and squeeze operators,

R̂(θ ) = P̂†
p (tan θ )Ŝ(sec θ )P̂(tan θ ) (A1)

= P̂(tan θ )Ŝ(cos θ )P̂†
p (tan θ ), (A2)

where the position- and momentum-shear gates are given in
Eq. (28), and we use the squeezing operator Ŝ(ζ ) defined
in Refs. [33,34], for which |ζ | > 1 squeezes momentum and
|ζ | < 1 squeezes position. Using Eq. (A1) in Eq. (14) gives
a useful identity for the rotated homodyne measurement out-
come,10

pθ
〈m| = p〈m|R̂(θ ) =

√
sec θ p〈m sec θ |P̂(tan θ ). (A3)

The fact that the outcome inside the bra is modified means that
when using this identity, the modified measurement outcomes
should be used when considering measurement statistics or
potential feed-forward operations based on the outcome (as in
CV teleportation). Note that these involve classical postpro-
cessing of the actual measurement outcome m obtained in the
laboratory.

Begin with a Bell-type measurement in a CV teleportation
circuit with measurement angles θ1 and θ2. Using Eq. (14),
extract phase-delay operators such that the measurement bases
are position and momentum, respectively,

(A4)

Decompose the phase delay on the second mode into two, and
then commute the common rotation on both modes through

10The factor at the front maintains the norm of the state:
|a|p〈am|am′〉p = |a|δ(am − am′) = δ(m − m′).

the beam splitter,

(A5)

where θ− := θ1 − θ2. Now, use Eq. (A3) to rewrite the rotated-
basis measurement on the second mode as a position shear by
tan( π

2 − θ−) = cot θ− with modified measurement outcome
m′

2 = m2 csc θ−.
Next, decompose the beam splitter using the circuit identity

in Eq. (F1),

(A6)

The left-most controlled-shift gate, Ĉ12
X = e−iq̂1⊗p̂2 , takes the

q̂1 eigenvalue m1 to become a shift on mode 2, X̂ (m1), [see
Eq. (A3)],

(A7)

Commuting X̂ (m1) and Ŝ(
√

2) with P̂(cot θ−) and ab-
sorbing them into the measurement outcome gives m′′

2 =√
2(m2 csc θ− − m1 cot θ−). The remaining position shear

commutes with the controlled gate, Ĉ21
X (−1) = [Ĉ21

X ]† =
eip̂1⊗q̂2 , yielding the circuit

(A8)

The controlled gate, [Ĉ21
X ]† acting on the two

quadrature eigenstates is equivalent to (the dual
of) a displaced position-correlated EPR pair [34],
q1
〈s| ⊗ p2

〈t |eip̂1⊗q̂2 = 〈EPR| D̂†
1( s−it√

2
), where the displacement

operator describes a shift in both position and momentum:
D̂(α) = eiαI αR X̂ (

√
2αR)Ẑ (

√
2αI ). With this, the circuit

becomes

(A9)

where μ′
1,2 = m1 + i(m2 csc θ− − m1 cot θ−). Finally, bounce

each operator on mode two to mode one through the EPR state
[34] and push the displacement to the left to get the final form
of the circuit

(A10)

042602-17



BLAYNEY W. WALSHE et al. PHYSICAL REVIEW A 108, 042602 (2023)

where V̂ (θ1, θ2) = R̂(θ1 − π
2 )P̂(2 cot θ−)R̂(θ1 − π

2 ), and the
displacement amplitude is

μ1,2 = −m1eiθ2 + m2eiθ1

sin(θ1 − θ2)
. (A11)

For θ1 − θ2 = nπ , with integer n, these expressions are not
defined. This corresponds to the case where the two modes in
Eq. (A4) are measured in the same basis (up to parity). This
effectively removes the beam splitter, uncoupling the modes
and precluding teleportation.

APPENDIX B: DISPLACEMENTS FOR TWO-MODE GATES

As presented in the main text, the teleported gate in
Eq. (75) lacks a two-mode displacement operator originating
from the four measurement outcomes in the teleportation gad-
get. We give its form here since knowing the displacement
is necessary in practice to perform corrections during the
teleportation procedure.

Up to a local parity operator but including the single-mode
outcome-dependent displacements, the two-mode gate real-
ized by the completed teleportation gadgets in Sec. III take
the form

V̂ (2)(θ, m) = B̂1,2

(
± π

4

)⎡
⎣D̂1(μ1,2)V̂1(θ1, θ2)

⊗
D̂2(μ3,4)V̂2(θ3, θ4)

⎤
⎦B̂1,2

(
±̃π

4

)
,

(B1)

where m stands in for the four outcomes, and we use vertical
tensor product notation to shorten the expression. The ± and
±̃ are independent signs (indicating the different possible
directions of each 50:50 beam splitter ), and each single-mode
displacement amplitude is given by Eq. (A11). Pushing the
displacement operators to the left through the beam splitter
gives the more general form of Eq. (75),

(B2)

The amplitudes are mixed by the beam splitter to give

m1 = 1√
2

(μ1,2 ± μ3,4), (B3)

m2 = 1√
2

(μ3,4 ∓ μ1,2), (B4)

with the sign ± determined by the sign in the leftmost beam
splitter.

APPENDIX C: CIRCUIT IDENTITY FOR BEAM
SPLITTERS OVER THREE MODES

Consider beam splitters that contain a transmission param-
eter θ ,

(C1)

with θ ∈ {−π, π}, described by orthogonal matrices

R jk (θ ) =
[

cos θ − sin θ

sin θ cos θ

]
, (C2)

which are identical in form to 2D rotation matrices.
When a third mode is included, labeled by �, the matrix in

Eq. (C2) expands into the 3D matrix

R jk (θ ) =
⎡
⎣cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦, (C3)

which can be interpreted as a rotation in three dimensions
around principle z axis by angle θ , R jk (θ ) = Rz(θ ). Beam
splitters between other pairs of modes describe rotations
around the other principle axes: Rk�(θ ) = Rx(θ ) for x rota-
tions, and R� j (θ ) = Ry(θ ) for y rotations. Note that swapping
the subscripts on any matrix takes θ → −θ , which reverses
the direction of the arrow in the circuit diagram on the right-
hand side of Eq. (C1).

This association leads to several important consequences.
Any beam-splitter network over three modes containing any
number of real beam splitters can be described by a 3D ro-
tation matrix. Decomposing this matrix using Euler angles
or Tait-Bryan angles gives its description in terms of three
principle-axis rotation matrices, each corresponding to a sin-
gle beam splitter. Thus, any three-mode beam-splitter network
(with real beam splitters) can be reduced to three beam split-
ters or fewer.

As an example, consider reordering a beam-splitter
network of two beam splitters that share one mode,
B̂k�(θ2)B̂ jk (θ1). Suppose we seek the specific Tait-Bryan de-
composition into fundamental-axis rotations in the order z −
y − x (right-to-left). The associated rotation matrices satisfy11

Rx(θ2)Rz(θ1) = Rz(γ )Ry(β )Rx(α) (C4)

corresponding to the circuit equivalence,

(C5)

where α, β, and γ are functions of θ1 and θ2. For the case of
two balanced beam splitters,

(C6)

where θ = arctan 1√
2

and θ ′ = arctan −
√

3
3 .

11Note that the corresponding rotation is already in an Eu-
ler form, Rz(0)Rx (θ2)Rz(θ1), and a different Tait-Bryan form,
Ry(0)Rx (θ2)Rz(θ1).
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APPENDIX D: TYPE (b) INCOMPLETE
FOUR-SPLITTERS CANNOT BE COMPLETED

BY RESTRICTING MEASUREMENTS

Here we show that type (b) incomplete four-splitters, which
lack a fourth beam splitter on the state side of the beam-
splitter network, cannot be completed by choosing specific
measurement angles and postprocessing of the measurement
outcomes. Consider a beam-splitter network of this type, B̂(3),
that, when completed, gives a four-splitter B̂4-split. B̂(3) is
equivalent to the desired four-splitter B̂4-split with a residual
operator on the measurement side,

B̂(3) = B̂resB̂4-split (D1)

where the residual operator B̂res := B̂(3)B̂†
4-split is itself another

network of real beam splitters. B̂res → Rres has an associated
orthogonal matrix Rres composed from the individual beam-
splitter matrices in the network.

The question is whether there exist measurement angles
θ := {θ1, θ2, θ3, θ4} and some linear transformation of the
measurement outcomes that, together, virtually delete the
residual beam-splitter network B̂res, i.e.,

pθ
〈m|B̂res =

√
|det L−1| pθ′

〈
L−1

res m
∣∣. (D2)

We consider a Heisenberg-picture linear transformation de-
scribed by Lres more general than that of the orthogonal matrix
Rres in order to allow for the possibility that postprocess-
ing beyond orthogonal transformation may be required. For
example, scaling the outcome on a single mode can insert
a squeezing operator: q〈m| = √

ζ q〈ζm|Ŝ(ζ ) [34]. Note that
doing so introduces a change in measure, which is the origin
of the determinant in Eq. (D2). Additionally, Lres can only lin-
early transform outcomes in the chosen measurement bases;
we further include the possibility that deletion also requires a
new set of angles θ′.

Theorem 3, proved below, shows that B̂res cannot be deleted
unless all the modes are measured in the same basis, θ j = θk

for all j, k, which trivially disentangles them. For Theorem 3
to apply here, a further property of Rres is required: it must
be neither block diagonal nor row permutations away from
block diagonal. This can be shown using its decomposition
into constituent matrices, Eq. (79). Without loss of generality,
we choose an incomplete four-splitter missing a beam splitter
between modes j and k in Eq. (79), i.e., R(3) = RkmR jl Rlm.12

Then we have

Rres = R(3)RT
4-split = RkmR j�RT

jkRT
j�RT

km. (D3)

Every type (b) residual beam-splitter network has this form—
a pair of commuting beam splitters on the left, a pair of
commuting beam splitters on the right, and a fifth beam split-
ter that commutes with neither of the pairs.

We observe that the matrix in Eq. (D3) has no zero en-
tries. To show this, let us consider the following permutation

12For clarity of presentation, we assume no transposes on the ma-
trices in Eq. (79). The result still holds with them restored, however;
the notation just becomes cluttered.

{m, k, j, �} → {1, 2, 3, 4} and define the matrix Q that real-
izes this permutation for any {m, k, j, �}. Then we have13

QRresQ−1 = R12R34R23R43R21 (D4)

= 1

2
√

2

⎛
⎜⎜⎜⎝

1 + √
2 1 − √

2 −1 −1
1 − √

2 1 + √
2 −1 −1

1 1 1 + √
2 1 − √

2
1 1 1 − √

2 1 + √
2

⎞
⎟⎟⎟⎠,

(D5)

which has no zero entries.14 Since permutation does not
change the values of entries, Rres itself has no zero entries. The
next theorem essentially states that the beam-splitter network
that corresponds to such a matrix cannot be canceled as in
Eq. (D2) for any nontrivial choices of the measurement angles
θ. (That is, the only choice that works is all angles equal,
which virtually deletes the entire beam-splitter network.)

Theorem 3. Let m denote a vector of N homodyne mea-
surement outcomes and θ denote a vector of N choices of
homodyne-measurement angles with θ j ∈ (−π

2 , π
2 ] for all j ∈

{1, . . . , N}. Let B̂(N ) → R be a real beam-splitter network,
where R ∈ O(N ) is an N-dimensional real orthogonal matrix
that is neither block diagonal nor row permutations away
from block diagonal. Let θ′ be another vector of N choices
of homodyne-measurement angles, with θ ′

i ∈ (−π
2 , π

2 ] for all
i ∈ {1, . . . , N}. Finally, let L ∈ RN×N be an N-dimensional
real matrix such that there exists a corresponding Gaussian
unitary ÛG that satisfies the following:15

√
|det L−1| p〈L−1m| = p〈m|ÛG. (D6)

Then, given θ and B̂(N ), there does not exist a pair (θ′, L) that
satisfies

∀m ∈ RN , pθ
〈m|B̂(N ) =

√
|det L−1| pθ′ 〈L−1m|, (D7)

unless θ = θ1N , where 1N = (1, 1, . . . , 1)T.
Proof. Let R̂(N )(θ) be the N-mode local phase rotation with

the rotation angles given by θ. Then the condition (D7) is
equivalent to

∀m ∈ RN , p〈m|R̂(N )(θ)B̂(N ) = p〈m|ÛGR̂(N )(θ′). (D8)

Since this holds for all m ∈ RN , we have

R̂(N )(θ)B̂(N ) = ÛG(L)R̂(N )(θ′). (D9)

Now the left-hand side, as well as R̂(N )(θ′), is a linear-optical
unitary and thus does not contain squeezing. Therefore, in or-
der for the above to be equal, ÛG must also be a linear-optical
unitary: ÛG → U ∈ U(N ). From Eq. (D6), ÛG does not mix p̂s
and q̂s, and L is the (real) matrix by which the p̂ evolve. This
restricts U such that U = L ∈ O(N ), i.e., it is real orthogonal.

13With the transposes restored in Eq. (79), the signs may change in
Eq. (D5), but the matrix still has no zeros.

14Note that this is the residual matrix associated with the MBSL in
Sec. III G.

15The determinant is required because of the following identity:
Î = ∫

dm Û †
G(L)|m〉p p〈m|ÛG(L) = ∫

dm |det L−1| |L−1m〉p p〈L−1m|.
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This means that ÛG is a real beam-splitter network denoted by
B̂′(N ) → R′ ∈ O(N ), with R′ = L.

Equation (D9) can now be rewritten as

R̂(N )(θ)B̂(N ) = B̂′(N )R̂(N )(θ′). (D10)

Since they are linear-optical unitaries, we consider their
representations as unitary matrices acting on the vector of
annihilation operators. It is known that for a beam-splitter
network and a local phase rotation, B̂(N ) → R and R̂(N )(θ) →
diag(eiθ ), where diag(eiθ ) is a diagonal matrix of phases. With
these in mind, one can see that Eq. (D10) is equivalent to

diag(eiθ )R = R′diag(eiθ′
). (D11)

Taking the transpose of the both sides leads to

RTdiag(eiθ ) = diag(eiθ′
)R′T. (D12)

Combining Eqs. (D12) and (D11) gives

RTdiag(e2iθ )R = diag(e2iθ′
). (D13)

The above implies that the left-hand side is the diagonalization
of the right-hand side, which is itself diagonal. Since the
spectrum of a normal matrix is unique up to a permutation
of the eigenvalues, we obtain

(PR)Tdiag(e2iθ′
)(PR) = diag(e2iθ′

), (D14)

where P is a permutation matrix that satisfies Pdiag(e2iθ )PT =
diag(e2iθ′

). Equation (D14) means that PR and diag(e2iθ′
)

commute. However, it is known that any matrix that com-
mutes with a diagonal matrix has a block-diagonal form that
acts nontrivially only within the eigenspaces of degenerate
eigenvalues. Given that 2θ ′

j ∈ (−π, π ] for all j ∈ {1, . . . , N},
Eq. (D14) contradicts the initial assumption that R is nei-
ther block diagonal nor a row permutation away from block
diagonal unless all the elements of θ′ are the same. In this ex-
ceptional case, we are restricted to choosing16 θ = θ′ = θ1N

by Eq. (D14), which completes the proof. �
Note that the restriction θ j ∈ [−π

2 , π
2 ) for any j ∈

{1, . . . , N} does not imply the loss of generality because
other measurement angles can be simulated by putting neg-
ative signs on the measurement outcomes with appropriate
measurement angles in this range. As we see in Eq. (D5)
the matrix Rres has no zero entries and thus is neither block
diagonal nor row permutation away from block diagonal. This
fact combined with the above theorem means that, putting
aside the trivial case θ = θ1N , it is impossible to absorb the
residual beam splitter B̂res by the change of the measurement
angles as well as the linear postprocessing of the measurement
outcomes. Combining this with Eq. (D1) implies that this
(equivalence class of) incomplete four-splitter B̂(3) [i.e., type
(b)] cannot be made equivalent to a four-splitter (followed by
homodyne measurement and reinterpretation of its outcomes)
with nontrivial choices of measurement angles.

16Technically, they can differ by integer multiples of π , which is
what the 2 in diag(e2iθ′

) allows. Since these are physically identical
(just negate the outcome of the measurement), this freedom of defi-
nition provides no benefit, and we do not dwell on it.

FIG. 6. GKP Bell pair insertion using a balanced four-splitter.
Empty circles are local modes in unspecified states, circles filled
with ∅ are local modes prepared in pure GKP qunaught states (noisy
versions also work). This process inserts two ∅ states in-line in a
single-mode macronode wire (either isolated or embedded in a two-
dimensional cluster state). Described from left to right, two inputs,
|∅〉, are introduced alongside an existing macronode wire, and a
canonical balanced four-splitter is used to interact the two states with
a two-mode macronode. The two beam splitters contained within the
macronode cancel out. We then regroup the modes into two new
macronodes, each one containing a single ∅ state. Each of these
macronodes, when teleported through, performs error correction on
either the position or momentum quadratures [34]. Together, full
GKP error correction is possible between these two macronodes.
Note that one is not required to use qunaught states. This circuit is,
more generally, a way to insert a Kraus state B̂12 |ψ〉 ⊗ |φ〉 into a
macronode wire.

APPENDIX E: GKP BELL PAIR INSERTION

The noise analysis in Ref. [32] for the QRL assumes
that the CV cluster state is entirely constructed from GKP
qunaught states. In practice, a deterministic source of GKP
qunaughts may not be available, and the cluster state may have
locations where squeezed momentum states were swapped in
to fill in the gaps [26,29,30,32]. Here we give a procedure
to insert a GKP Bell pair—or any other state made from
two single-mode states coupled on a beam splitter—into a
macronode wire (which may be a part of a larger cluster state)
after it has been created.

By undoing one of the wire’s original beam splitters, an
additional pair of modes containing a GKP Bell pair can be
inserted into a macronode wire; see Fig. 6. This procedure is
implemented by the circuit17

(E1)

17This circuit starts from the red beam splitters in Fig. 6. The black
ones are omitted because they link the top and bottom wires to other
wires not shown.
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where modes 1 and 2, originally coupled by the red beam
splitter on the right-hand side, are those from the macronode
wire. Modes a and b are the new modes containing GKP Bell
qunaught states. The dashed beam splitter from the mode 2 to
1 eliminates the red one, leaving

(E2)

This circuit is simplified with application of Eq. (A10) [34] to
give

(E3)

and μ (μ′) is a function of m1 and ma (mb and m2). This
adds two further measurement degrees of freedom, enabling
an additional V̂ gate, but only offers GKP error correction
after the first one. Inserting GKP Bell pairs throughout the
macronode wires is effectively the same as including GKP
states at the beginning of cluster state generation on half of
the ancillas.

APPENDIX F: CV CIRCUIT IDENTITIES

Here we list a collection of useful decompositions and
identities for CV circuit elements.

Beam splitter decomposition:

(F1a)

(F1b)

where Ĉ jk
X (g) := e−igq̂ j⊗ p̂k describes the controlled-shift gates

in the circuit, with the control being mode j and target
mode k.

Reversing a beam splitter:

(F2)

ĈZ decomposition:

(F3)

where Ĉ jk
Z (g) := eigq̂ j⊗q̂k describes the controlled-shift gates

on the left-hand side.
SWAP decompositions:

(F4a)

(F4b)

Interestingly, this implies that beam splitters as defined in
Eq. (1) act on CV systems in analogy to the way

√
SWAP

gates act on qubits or qudits.
EPR state:

(F5)

The teleported gate:

(F6)

where Â(ψ, φ) = ∫∫
d2α ψ̃ (αI )φ(αR)D̂(α).

Basic bounce:

(F7)

with the transpose defined in the position basis.
Beam-splitter double bounce:

(F8)

ĈX reordering:

(F9)
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