
PHYSICAL REVIEW A 108, 042601 (2023)

Experimental measurement for the expectation value of the product of two noncommuting
observables via weak measurement in a trapped-ion system

Wenbo Su, Manchao Zhang, Chunwang Wu , Yi Xie, Han Hu, Ting Chen, Tianxiang Zhan , Baoquan Ou, Wei Wu,
Jie Zhang ,* and Pingxing Chen†

Institute for Quantum Science and Techonology, College of Science,
National University of Defense Technology, Changsha 410073, Hunan, China;

Hefei National Laboratory, Hefei 230088, China;
and Hunan Key Laboratory of Mechanism and Technology of Quantum Information, Changsha 410073, Hunan, China

(Received 16 March 2023; revised 14 June 2023; accepted 11 September 2023; published 2 October 2023)

The expectation value of the product of two noncommuting observables (POTNO) can be used to test the
commutation relation and dig out the correlation between two observables. However, since a POTNO is generally
a non-Hermitian operator, its average cannot be measured directly according to standard quantum mechanics.
Recently, a theoretical scheme has been proposed to obtain POTNOs, but the observables are limited to projection
operators. In this paper, we present a scheme that employs weak measurement to directly measure the expectation
value of the POTNO, where the observables are arbitrary operators. Our scheme transforms the measurement
of this expectation value into the measurements of several single observable weak values. Experimentally we
demonstrate our scheme by measuring the expectation value of the product of two Pauli operators and verify
their commutation and anticommutation relations in a trapped-ion system. Moreover, our scheme is applicable
to the cases with more than two observables.
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I. INTRODUCTION

Compared with classical physics, quantum physics has
many mysterious phenomena. One of the important phenom-
ena is that we cannot accurately measure the information of
two arbitrary noncommuting observables Â and B̂ simultane-
ously [1,2]. This progress can be described mathematically
as �Â�B̂ � 1

2 |〈[Â, B̂]〉|. In the last two decades, some un-
certainty relations have been verified by measuring the
value of �Â�B̂ [3–7] and some commutation relations were
demonstrated in different experimental systems [8–12]. How-
ever, direct measurement of the expectation value of the
product of two variables, 〈ÂB̂〉, which is known as the
correlation function in statistical mechanics and used for
analyzing their correlations [13,14], is quite elusive due to
fact that the product of two arbitrary noncommuting observ-
ables is non-Hermitian. In quantum projective measurement,
quantum-mechanical observables are limited to Hermitian op-
erators [15], while non-Hermitian operators commonly exist
in open physical systems, such as a broken parity-time sym-
metric Hamiltonian [16–18]. The average of a non-Hermitian
operator is usually a complex number, which is beyond the
scope of projective measurement [19,20].

To measure the expectation value of a product of two
noncommuting observables (POTNO), the weak measurement
proposed by Aharonov et al. [21] is a suitable tool [22–26].
In 2015, Pati et al. proposed a theoretical scheme to measure
the expectation value of any non-Hermitian operator via weak

*zj1589233@126.com
†pxchen@nudt.edu.cn

measurement [27]. However, in their scheme, only the aver-
age of the product of two special operators, i.e., projection
operators, is measured. Recently, Wagner et al. presented a
work that directly measures the expectation value of commu-
tation relation for Pauli operators by using weak measurement
[28]. They ingeniously transform the expectation value of the
commutation relation for Pauli operators into the product of a
single weak value of projector and the probability of postse-
lection. In this case, the dilemma of direct measurement of the
expectation value of the product of Pauli operators is avoided.

In this paper, we present a direct scheme to measure the ex-
pectation value of the product of two arbitrary qubit operators.
Our scheme inserts identity operator into the expectation value
of the product of two arbitrary adjacent qubit observables.
Then this expectation value can be calculated by multiplying
the single observable weak values and the projective probabil-
ity. This scheme is further verified by measuring the average
of the product of Pauli operators with a single trapped ion.
Lastly, the measured values are used to verify the commuta-
tion and anticommutation relation between Pauli operators.

II. THEORETICAL MODEL

In this section, our scheme for measuring the expectation
value of the POTNOs Â and B̂ in a two-level system is
introduced.

To begin with, let us review the principle of weak
measurement. The concept of weak measurement is
introduced on the basis of the von Neumann measurement
model [29]. The Hamiltonian of the measured system and the
measuring pointer can be written as

HI = gÂ ⊗ p̂, (1)
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where g is the coupling strength between measured system
and measuring pointer, Â is the observable of measured
system, and p̂ is the canonical momentum of measuring
pointer. In weak measurement, the coupling strength g is so
small that the measured system is not completely “collapsed”.
If the measured system’s initial state is selected to be |ψ〉
and the postselection state is |ψ f 〉, the displacement of the

measuring pointer can be measured as g|〈Â〉ψ f ,ψ
w |, where

〈Â〉ψ f ,ψ
w is a weak value defined as

〈Â〉ψ f ,ψ
w = 〈ψ f |Â|ψ〉

〈ψ f |ψ〉 . (2)

From the definition of the weak value 〈Â〉ψ f ,ψ
w , the weak value

can beyond the eigenvalue spectrum of the observable Â. In
particular, the complex results for weak values can be applied
to quantum measurement [30].

The following shows the use of weak measurement to
measure the expectation value of ÂB̂ in our scheme. At first,
we need to select a complete set for the measurement basis,
for example |↑〉 and |↓〉 (the eigenstates of the Pauli operator
σ̂z). Then this basis is inserted into the formula 〈ÂB̂〉. If the
measured initial state is |ψ〉, the expectation value of the
operator ÂB̂ in a two level system is written as

〈ψ |ÂB̂|ψ〉 = 〈ψ |Â|↑〉〈↑|B̂|ψ〉 + 〈ψ |Â|↓〉〈↓|B̂|ψ〉

= |〈↑|ψ〉|2 〈ψ |Â|↑〉
〈ψ |↑〉

〈↑|B̂|ψ〉
〈↑|ψ〉 + |〈↓|ψ〉|2

× 〈ψ |Â|↓〉
〈ψ |↓〉

〈↓|B̂|ψ〉
〈↓|ψ〉

= |〈↑|ψ〉|2〈Â〉ψ,↑
w

∗〈B̂〉ψ,↑
w +|〈↓|ψ〉|2〈Â〉ψ,↓

w

∗〈B̂〉ψ,↓
w ,

(3)

where |〈↑|ψ〉|2 is the probability of the initial state |ψ〉 pro-
jected to final state |↑〉, 〈Â〉ψ,↑

w is the weak value of the
operator Â for a postselected state |↑〉 and preselected state
|ψ〉, and 〈Â〉ψ,↑

w

∗
is the conjugate number of 〈Â〉ψ,↑

w .
To verify the accuracy of our scheme, the expectation value

of the commutation relation for observables Â and B̂ can
be measured using Eq. (3). The expectation value of their
commutation relation can be rewritten as

〈ψ |[Â, B̂]|ψ〉 = 〈ψ |ÂB̂|ψ〉 − 〈ψ |B̂Â|ψ〉
= (|〈↑|ψ〉|2〈Â〉ψ,↑

w

∗〈B̂〉ψ,↑
w + |〈↓|ψ〉|2

× 〈Â〉ψ,↓
w

∗〈B̂〉ψ,↓
w

)
− (|〈↑|ψ〉|2〈B̂〉ψ,↑

w

∗〈Â〉ψ,↑
w

+ |〈↓|ψ〉|2〈B̂〉ψ,↓
w

∗〈Â〉ψ,↓
w

)
, (4)

and the anticommutation relation can be rewritten as

〈ψ |{Â, B̂}|ψ〉 = |〈↑|ψ〉|2〈Â〉ψ,↑
w

∗〈B̂〉ψ,↑
w

+ |〈↓|ψ〉|2〈Â〉ψ,↓
w

∗〈B̂〉ψ,↓
w

+ (|〈↑|ψ〉|2〈B̂〉ψ,↑
w

∗〈Â〉ψ,↑
w

+ |〈↓|ψ〉|2〈B̂〉ψ,↓
w

∗〈Â〉ψ,↓
w

)
. (5)

Therefore, the expectation value of the product ÂB̂ of two
arbitrary noncommuting observables can be determined by

FIG. 1. (a) Illustration of the experimental setup for weak mea-
surement with a trapped 40Ca+ ion. The qubit states are S1/2(mJ =
−1/2) and D5/2(mJ = −5/2), in our experiment, and the auxiliary
state is P1/2 used for detection. The laser at 729 nm is used to manip-
ulate the qubits, and the laser at 397 nm is used to cool and detect.
We collect fluorescence photons for state detection using the electron
shelving technique. The position displacement of the motional wave
packet is obtained by reconstructing the motional wave packet using
convex optimization method. Panel (b) shows the sequence of the
single weak measurement experiment. The solid boxes indicate the
pulses that must be applied for each experiment. The dashed box
indicates that if |S〉 is to be postselected, the π pulse of the carrier
transition needs to be performed first.

measuring the probability |〈↓|ψ〉|2 and the weak values of
single observables Â and B̂. The measurement results can
be applied to verify their commutation and anticommutation
relations.

III. EXPERIMENTAL SCHEME AND SETUP

The previous section introduces the theoretical measure-
ment scheme. To verify this scheme, we need to measure
the weak values of single qubit observables. According to
the theoretical scheme, the weak values of the three Pauli
operators postselected to |↑〉 and |↓〉 must be measured in the
experiment. In this section, the experimental scheme and setup
for measuring the weak value of Pauli operators using a single
trapped 40Ca+ ion is illustrated [31,32].

The whole setup and the main sequence of our experiment
is shown in Fig. 1. We use a blade-shaped linear Paul trap
with axial trapping frequency ωz ≈ 2π × 1.33 MHz and ra-
dial trapping frequency ωr ≈ 2π × 1.6 MHz to trap a single
40Ca+ ion. The axial motion of the ion acts as the measuring
pointer, and the internal electronic state of the ion is chosen
as the measured system. The Zeeman sublevels S1/2(mJ =
−1/2) and D5/2(mJ = −5/2) are selected as the pseudospin
states |↑〉 and |↓〉, respectively. A narrow-linewidth laser at
729 nm, going through the two endcaps of the trap and over-
lapping with the axial direction of the trap, coherently couples
qubit states with a Lamb-Dicke parameter of η 	 0.08. Using
acousto-optic modulators (AOMs), the 729 nm laser can be
modulated to produce the light field required for the exper-
iment. Another important laser beam, 397 nm, which has a
wave vector angle of π/4 with the 729 nm laser, is used to im-
plement laser cooling and state detection. A photomultiplier
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tube (PMT) can collect the fluorescence photons of dipole
transition as the primary data. Figure 1(b) shows the sequence
of weak measurement experiment. Implementing the Doppler
cooling 1000 µs and EIT cooling 300 µs can prepare the mo-
tion state of the ion to the ground state. The internal electronic
state of the ion can be prepared to S1/2(mJ = −1/2) by optical
pumping (OP) for 3 µs. The preselection and weak-coupling
time are set based on the experimental requirements. The
postselection of 120 µs retains the data that the internal state of
the ion is |D〉. The primary data were obtained by scanning the
duration time t of the wave packet reconstructing operation
and detecting the internal state of the ion for 300 µs.

In the trapped-ion system, the weak measurement exper-
iment roughly consists of four steps, and we describe the
experimental details of each step as follows: In a first step, the
measured system should be selected to an arbitrary superpo-
sition of the eigenstates of σ̂z, which can be written as |ψ〉 =
cos(θ )|↑〉 + sin(θ )|↓〉. And the measuring pointer should be
prepared to the ground state, which can be described by the
Gaussian wave packet |ϕi(z)〉 = ( 1

2π�z
2 )

1
4 exp(− z2

4�z
2 ), where

�z = √
h̄/2mωz is the width of ground-state wave packet. Im-

plementing Doppler cooling and electromagnetically induced
transparency (EIT) cooling [33–35] using the 397 nm laser
beam can prepare the external motional state of ion to the
ground state. Optical pumping pulse for 3 µs can prepare the
trapped ion to a pure internal state |↑〉. Then a 729 nm laser
beam pulse resonant with the carrier transition is applied to
create an arbitrary superposition state with phase θ = 
rottpre,
where 
rot = 2π × (8.6 ± 0.15) kHz is the Rabi frequency of
the carrier transition. This operation has a fidelity of over 96%.
At the second stage, we need to synthesize the von Neumann
measurement model Hamiltonian that couple the measuring
pointer and the measured system. The spin-dependent opera-
tor [36], which can be implemented by the bichromatic light
field consisting of the blue and red sidebands of |↑〉 → |↓〉
transition, can help us to achieve it. This interaction Hamilto-
nian can be written as

Hbic = h̄η 
bic

2
(σ̂x sin φ+ − σ̂y cos φ+)

⊗ [(â + â†) cos φ− + i(â† − â) sin φ−], (6)

where 
bic = 2π × (19.2 ± 0.4) kHz is the interaction cou-
pling strength (less than 2 kHz drift in a month), the Pauli
operators σ̂x and σ̂y are the qubit observables for the internal
electronic state, â† and â are the creation and annihilation
operators for the external motional state, and φ+ = 1

2 (φred +
φblue ) and φ− = 1

2 (φred − φblue ) are the sum and the difference
of the red sideband laser phase φred and the blue sideband laser
phase φblue. It can be found from Eq. (6) that the measured
observable is determined by setting the laser phase sum φ+
and the observable of measuring pointer is determined by
setting the laser phase difference φ−. For example, if we
set φ+ = φ− = π

2 , Eq. (6) is changed to Hbic = η
bic�zσ̂x p̂
with the momentum operator p̂ = i(â† − â)/2�z. Using this
Hamiltonian we can measure the weak value of observable σ̂x.
Performing interaction laser pulse for a duration of tbic on the
initial state of the system, the total state of the system becomes

an entangled state, which can be described as

|�〉 = sin
(
θ + π

4

)
|+〉|ϕi(z + g�z )〉

+ cos
(
θ + π

4

)
|−〉|ϕi(z − g�z )〉, (7)

where |+〉 = 1√
2
(|↑〉 + |↓〉), |−〉 = 1√

2
(|↑〉 − |↓〉), and weak

measurement interaction coefficient g = η
bictbic. At this
point, the external motional state wave packet of the ion is
weakly displaced in two different directions. In the third step,
a determined final state of the measured system is postselected
by a projective measurement of the system state. We use the
397 nm laser to excite the dipole transition |S〉 → |P〉, then
a photon is emitted due to the short lifetime of |P〉 state
[37–39]. This process will destroy the external motion state
of the ion when the internal state of the ion is in |S〉, in this
case, the data will be discarded. The data will be reserved for
the other case. This manipulation duration is 120 µs, and the
detection error is measured to be less than 0.002%. However,
if we want to postselect the |S〉 state, a π pulse of the carrier
transition should be applied to swap the |S〉 state and |D〉
state before the projective measurement. For example, if |↓〉
is selected as the postselection state and we are performing
a strong projective measurement on the internal state, the
external motional state wave packet changes to (the units of
the position axis are �z)

|ϕ f (z)〉 = 1

(2π )
1
4

√
1 − cos(2θ )e− g2

2

×
[

sin
(
θ + π

4

)
e− (z−g)2

4 − cos
(
θ + π

4

)
e− (z+g)2

4

]
.

(8)

Finally, we apply a spin-dependent operator with a strong-
coupling strength 
W PR = 2π × (96.7 ± 9.1) kHz, where the
observable of the measuring pointer in this step is canonically
conjugated to the counterpart in the second step to reconstruct
the motional wave packet [31,40] and determine its central
displacement. In this step, the duration of the reconstruction
pules is varied and the fluorescence of the ion is collected the
second time as the primary data. We use convex optimization
method [41,42] to process the data to obtain the probability
distributions of the motional wave packet in phase space. (For
more details see Ref. [31].) Using Eq. (8) we can theoretically
calculate the center position displacement of the external mo-
tion wave packet

δz = 〈ϕ f (z)|ẑ|ϕ f (z)〉 = g sin(2θ )

1 − cos(2θ )e− g2

2

. (9)

It can be found from the theory of weak measure-
ment that the weak value can be calculated by Eq. (9) as
〈Â〉ψ f ,ψ

w ≈ δz/g. Since the weak value is defined as a re-
sult of an approximation [21], its value is not equal to the
result obtained by the practical wave-packet displacement
calculation. To reduce their deviations, the value of g in
the experiment is selected as small as possible. However, g
also determines the probability of successful postselection,
which determines the number of cycles of the experimental
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FIG. 2. The probability of successful postselection with mea-
sured observable σ̂x and the postselected state |↓〉. The color
represents the size of the probability of successful postselection in
different θ and g. The dark dots represent the parameters selected in
the actual experiment.

sequence. The probability of successful postselection can be
written as

Ppost = 1
2 [1 − cos(2θ )e− g2

2 ]. (10)

For instance, we set θ = 0.2 rad and g = 0.1, the probabil-
ity of successful postselection is theoretically approximately
equal to 0.042. To reconstruct the external motion wave
packet with high fidelity, we need to repeat the previ-
ous sequence at least 10 000 times. Hence, in order to
best balance the experimental fidelity and the volume of
experimental data, we simulate the postselection success-
ful probability as a function of parameters g and θ , and
we carefully choose the experimental parameters as shown
in Fig. 2.

The previous four steps are only suitable for obtain-
ing the weak value of observables σ̂x and σ̂y. In our
scheme, absolute value of the weak value of observable
σ̂z is constantly equal to 1. This is explained by the

following:

〈σ̂z〉w = 〈↑ |σ̂z|ψ〉
〈↑ |ψ〉 = cos(θ )

cos(θ )
= −〈↓ |σ̂z|ψ〉

〈↓ |ψ〉 = sin(θ )

sin(θ )
= 1.

(11)

Therefore, we only need to measure the weak values of σ̂x and
σ̂y in the experiment.

IV. EXPERIMENTAL RESULT AND DISCUSSION

To obtain the expectation value of the product of Paul
operators, the weak values for single observable and the
probability of the initial state |ψ〉 projected to final state
|↓〉 should be measured in the experiment. The experimental
results for the single weak values of σ̂x and σ̂y are shown in
Figs. 3(a) and 3(b), respectively. The probability |〈↑ |ψ〉|2 can
be calculated by |〈↑ |ψ〉|2 = 1 − |〈↓ |ψ〉|2, where the results
for |〈↓ |ψ〉|2 is shown in Fig. 3(c). To demonstrate that this
scheme has no dependence on the initial state, we vary the
phase θ of the initial state from 0.2 to 1.3 radians in steps of
0.1 radians. The experimental results (dots) have a remark-
able agreement with the theoretical results (thick solid lines)
plotted by 〈σ̂x〉ψ,↓

w = cot(θ ), 〈σ̂x〉ψ,↑
w = tan(θ ), 〈σ̂y〉ψ,↓

w =
i cot(θ ), 〈σ̂y〉ψ,↑

w = −i tan(θ ), and |〈ψ |↓〉|2 = sin[2](θ ). The
weak values 〈σ̂y〉w in our scheme is a pure imaginary
number. Figure 3(b) shows the imaginary part of 〈σ̂y〉w.
A little larger data errors at θ = 0.2 radians and θ =
1.3 radians points come from small postselection success
probability and small motional wave packet position dis-
placement. The long-term frequency drift of the laser at
729 nm is the main source of error in our experiments.
To reduce this error, we increase the postselection success
probability by adjusting the coupling strength g for weak
measurements to reduce the collection time for each set of
experimental data.

Using Eq. (3) and Eq. (11), the expectation value of
the product of two arbitrary qubit observables and their
(anti)commutation relations can be obtained. The expectation
value of the operators σ̂xσ̂y, σ̂yσ̂x, σ̂yσ̂z, and σ̂zσ̂y are shown
in Figs. 4(a) and 4(c), and the experimental results agree well
with the theoretical predictions 〈σ̂xσ̂y〉 = i cos(2θ ), 〈σ̂yσ̂x〉 =

FIG. 3. The weak values 〈σ̂x〉ψ,↓(↑)
w , 〈σ̂y〉ψ,↓(↑)

w measured in experimental are shown in panels (a) and (b), respectively. The experimental
results of |〈ψ |↓〉|2 are shown in panel (c). The horizontal axis is θ in the initial state |ψ〉, and the vertical axis is the weak value and the
measured probability. The makers represent the experimental data, while the solid lines denote the theoretical results, the error bars of the
weak values represent the size of the error in fitting the center of the motional wave packet, and the error bars of the projective probability are
the standard deviation of the binomial distribution of measurements.
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FIG. 4. Panels (a) and (c) show the imaginary part of the ex-
pectation value of operators σ̂xσ̂y, σ̂yσ̂x , σ̂yσ̂z, and σ̂zσ̂y, respectively.
The symbols are the experimental results. The lines are the accurate
theoretical results. Panels (b) and (d) demonstrates imaginary part of
the expectation value of commutation and anticommutation relations.
The symbols are the experimental data, while the solid and dotted
lines are the theoretical results of commutation and anticommutation
relations. The error bars are calculated using the error propagation
formula based on the data in Fig. 3.

−i cos(2θ ), 〈σ̂yσ̂z〉 = i sin(2θ ), and 〈σ̂zσ̂y〉 = −i sin(2θ ). It
can be found from the experimental results that 〈σ̂xσ̂y〉 is
not equal to 〈σ̂yσ̂x〉 and is mutually complex conjugate,
indicating that the operators σ̂x and σ̂y are noncommu-
tative. The expectation values of the product of the two
Pauli operators in our experimental results are pure imag-
inary numbers, which indicate that σ̂xσ̂y, σ̂yσ̂x, σ̂yσ̂z, and
σ̂zσ̂y are non-Hermitian operators. The expectation values
of the (anti)commutation relation [σ̂x, σ̂y] and [σ̂y, σ̂z] are
calculated by Eqs. (4) and (5), shown in Figs. 4(b) and
4(d), respectively. The theoretical results of the expectation
value of the commutation relations, represented with the
solid lines in Fig. 4, are plotted by 2i〈σ̂z〉 = 2i cos(2θ ) and
2i〈σ̂x〉 = 2i sin(2θ ), respectively. The expectation values of
their anticommutation relations are equal to zero, indicated
by the orange dashed lines. From our experimental results,
the (anti)commutation relations of Pauli operators have been
well verified by measuring their expectation values. To fur-
ther verify the accuracy of our scheme, 〈[σ̂x, σ̂y]〉, 2i〈σ̂z〉,
and their difference are shown in Fig. 5. The dark blue dots
depict the magnitude of the difference between Im(〈[σ̂x, σ̂y]〉)
and 2〈σ̂z〉. The difference is due to the accumulation of
errors from each weak measurement. Selecting appropri-
ate parameters g during theoretical design and improving
the fidelity of single rotation operation can minimize these
differences.

Note that the expectation value of the product of σ̂x and
σ̂z is not shown in this work due to the fact that the initial
state is the eigenstate of σ̂z, in this case the measurement for
their product is transformed to be just the σ̂x. According to the
commutation relation, there exists 〈[σ̂x, σ̂z]〉 = 2i〈σ̂y〉, so the
(anti)commutation relations is equal to zero constantly since

FIG. 5. The difference of Im(〈[σ̂x, σ̂y]〉) and 2〈σ̂z〉. The green
balls represent the value of Im(〈[σ̂x, σ̂y]〉), and the yellow square
blocks represent the value of 2〈σ̂z〉. The dark blue dotted line rep-
resents their difference.

the average for σ̂y is always zero under the initial state |ψ〉.
If one wants to verify their (anti)commutation relations, the
only change would be preparing the initial measured state to
|ψ〉 = cos(θ )| ↑〉 + eiφ sin(θ )| ↓〉 with phase φ. Since other
experimental setups are the same, this measurement is not
repeated in this paper.

V. CONCLUSION

In conclusion, we present a direct scheme to measure the
expectation value of the POTNO, and this scheme is veri-
fied by measuring the expectation value of operators σ̂xσ̂y,
σ̂yσ̂x, σ̂yσ̂z, and σ̂zσ̂y in a trapped-ion system. We showed
that the (anti)commutation relations of qubit observables are
well agreed with the theoretical predictions with above the
expectation value measurement. Since the error of multiple
weak measurement experiments will eventually accumulate
to the measurement result of the POTNO and the proba-
bility of successful postselection is relatively small, a large
amount of measurement is required to improve the final
measurement fidelity of the POTNO. Fortunately, our exper-
imental scheme and the trapped-ion system allow easily to
select a suitable initial state and coupling strength g, there-
fore the fidelity of the measurement and the probability of
successful postselection can be balanced. The average of the
product of two observables is generally defined as their cor-
relation function, hence the measurement scheme presented
in this paper would help us to study the correlation be-
tween these two observables. Using this value to verify the
(anti)commutation relations is beneficial for understanding
the qubit operators. Even though our scheme is only verified
for measuring the expectation value of the POTNO, it is ap-
plicable to case for any number of operators. Furthermore,
our scheme also can be extended to measure the average of
the arbitrary non-Hermitian operator of the two-level system,
since these operators can be decomposed by Pauli operators.
The non-Hermitian term in the decomposition is gener-
ally represented by the product of Pauli operators, and our
scheme provides a solution for measuring the average value of
this term.
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