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Optimal quantum teleportation protocols for fixed average fidelity
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We demonstrate that, among all quantum teleportation protocols giving rise to the same average fidelity, those
with aligned Bloch vectors between the input and output states exhibit the minimum average trace distance.
This defines optimal protocols. Furthermore, we show that optimal protocols can be interpreted as the perfect
quantum teleportation protocol under the action of correlated one-qubit channels. In particular, we focus on the
deterministic case for which the final Bloch vector length is equal for all measurement outcomes. Within these
protocols, there exists one type that corresponds to the action of uncorrelated channels: these are depolarizing
channels. Thus, we established the optimal quantum teleportation protocol under a very common experimental
noise.
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I. INTRODUCTION

Among the most astonishing techniques in quantum infor-
mation theory are the quantum teleportation protocols (QTPs),
which consist of two distant parties, usually called Alice and
Bob, aiming to transmit an unknown qubit state ρ̂ in from
Alice’s qubit system ā to Bob’s qubit system b, exploiting the
features of quantum states and quantum measurements [1].

QTPs are a paradigmatic example of local operations and
classical communication (LOCC) protocols, defined on a sys-
tem composed of three qubits: the system ā, an additional
qubit a, and the target system b [2]. The most general telepor-
tation protocol operates on the total system ρ̂ in ⊗ ρ̂ab, where
the joint state ρ̂ab is usually referred to as the resource state.
The protocol goes as follows. First, Alice performs a joint
measurement on her qubits ā and a, followed by the classical
communication of the corresponding measurement outcome
(labelled by m) to Bob, who finally applies local unitary
operations on his qubit b according to the communicated re-
sult. The noiseless standard quantum teleportation is the only
scheme that allows perfect transmission, i.e., ρ̂out

m = ρ̂ in ∀ m
and for any input state being ρ̂out

m the output states in the target
system b [1,3,4]. This protocol consists of a Bell measure-
ment, i.e., a projection onto the Bell basis {β̂m}4

1 on qubits ā
and a, and a Bell state as quantum resource, ρ̂ab = β̂.

In realistic teleportation implementations, states and mea-
surements are typically not perfect. The average fidelity
between input and output states is generally employed as a
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figure of merit of the transmission process [3–6]. In noisy
standard QTPs, Alice implements a Bell measurement, where
the resource state ρ̂ab is taken to be an arbitrary mixed state.
Within these standard protocols, one approach is to maximize
the average fidelity over all Bob’s unitary operations, the so-
called strategies, to determine what kind of mixed resource
states give rise to quantum teleportation, i.e., when the av-
erage fidelity exceeds the bound 2

3 for classical teleportation
[3,7]. Another approach is, for any given initial resource state,
to maximize the singlet fraction, i.e., the fidelity between
the resource state and the singlet Bell state, by LOCC, to
produce a state ρ̂ab with the highest average fidelity, to be
used with the standard QTP [4,8]. These are called optimal
standard QTPs.

Furthermore, for general resource states and positive
operator-valued measures (POVMs), the optimal protocol was
given in Ref. [9] using the same framework for the average
fidelity as in Ref. [8]. However, as we show below, we identify
several protocols that give rise to the same average fidelity,
but that can produce significantly different output states. In
Ref. [10] the limited effectiveness of fidelity as a tool for
evaluating quantum resources was demonstrated. Here, we
employ the trace distance as an additional quantum distin-
guishability measure to define the set of optimal QTPs in the
following sense: they minimize the average trace distance for
a fixed value of the average fidelity. One of our main findings
is showing that this set is given by the teleportation protocols
that align, i.e., those for which the direction of the Bloch
vector of the output states is the same as that of the initial
state to be teleported.

II. GENERAL TELEPORTATION PROTOCOLS

Let us introduce the main elements for our analysis and
fix the notation. The input state of Alice’s qubit system ā
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can be written as ρ̂ in = 1
2 (1̂ + tᵀσ̂ ), where t = (t1, t2, t3)ᵀ

is the Bloch vector of ρ̂ in with euclidean norm t = ‖t‖ � 1,
σ̂ = (σ̂1, σ̂2, σ̂3)ᵀ is the vector of Pauli operators, ·ᵀ denotes
transposition, and 1̂ is the identity operator. The resource
state can be written as

ρ̂ab = 1

4

⎛
⎝1̂4 + (ra)ᵀσ̂ ⊗ 1̂ + 1̂ ⊗ (rb)ᵀσ̂+

3∑
i, j=1

ri j σ̂i ⊗ σ̂ j

⎞
⎠,

(1)

where ra and rb are, respectively, the Bloch vectors of the
reduced states ρ̂a = Trb(ρ̂ab) and ρ̂b = Tra(ρ̂ab) and ri j are
the elements of the correlation matrix r = Tr(ρ̂ab σ̂ ⊗ σ̂).
The parametrization (1) defines the Fano form of a two-qubit
state [11].

We shall consider general measurements on Alice’s qubit
systems ā and a described by POVMs, that is, a set {Ê āa

m }
of positive-definite operators acting on the Hilbert space Hāa

such that
∑

m Ê āa
m = 1̂ ⊗ 1̂. Each POVM element Ê āa

m de-
fines univocally a two-qubit POVM state by means of ω̂āa

m =
1

4P̄m
Ê āa

m where P̄m = 1
4 Tr(Ê āa

m ). Each POVM state ω̂āa
m is com-

pletely characterized by its Fano form, in terms of the Bloch
vectors ωā

m and ωa
m of the reduced states ω̂ā

m = Tra(ω̂āa
m ) and

ω̂a
m = Trā(ω̂āa

m ), respectively, and the correlation matrix wm =
Tr(ω̂āa

m σ̂ ⊗ σ̂ ). Note that because the POVM elements add up
to the identity, the following POVM conditions have to be
fulfilled: ∑

m

P̄m = 1, (2a)

∑
m

P̄m
(
ωa

m

)ᵀ = 0ᵀ, (2b)

∑
m

P̄mωā
m = 0, (2c)

∑
m

P̄mwm = 0, (2d)

where 0 and 0 denote the null vector and null matrix,
respectively.

As a result of Alice’s measurement, the qubit b
of Bob collapses to ρ̂b

m = 1
2 [1̂ + (tb

m)ᵀσ̂] with probability
Pm = Tr(Ê āa

m ⊗ 1̂bρ̂ in ⊗ ρ̂ab) = P̄m gm(t), where gm(t) = 1 +
(ωa

m)ᵀra + (wmra + ωā
m)ᵀt. The Bloch vector of ρ̂b

m is

tb
m = am

gm(t)
t + κm

gm(t)
, (3)

where am = rb(ωā
m)ᵀ + rᵀwᵀ

m and κm = rb + rᵀωa
m. Finally,

Alice communicates to Bob her measurement result m and
Bob applies a unitary operation Ûm on qubit b. The output
quantum state is ρ̂out

m = Ûmρ̂b
mÛ †

m = 1
2 (1̂ + tᵀ

mσ̂) with Bloch
vector

tm = Rmtb
m, (4)

where Rm is the unique rotation matrix such that Ûm nᵀσ̂ Û †
m =

(Rmn)ᵀσ̂ with n a real unit vector. Thus, for each
QTP there is an associated channel � that yields

�(ρ̂ in ) = ∑
m Pmρ̂out

m whose Bloch vector is

t� =
∑

m

Pmtm = C�t + v�,

with C� = ∑
m P̄mRmam and v� = ∑

m P̄mRmκm.

III. GENERALIZED ERROR MEASURES
IN QUANTUM TELEPORTATION

The performance of a general QTP can be quantified
by taking a measure of distinguishability between the
input state and the ensemble of output states in the
form D̄(ρ̂ in ) = ∑

m Pm D(ρ̂ in, ρ̂out
m ) where D(·, ·) stands

for a distance measure between quantum states. Being
Pm = P̄m gm(t), for any choice of D the previous quantity can
be expressed as a function of the initial Bloch vector t, so we
write D̄(ρ̂ in ) = D̄(t) ≡ D̄.

The final figure of merit is the average distance defined
as the expectation value of D̄ over the uniform distribution
of pure input states: 〈D̄〉 = 1

4π

∫∫
S(B) D̄(t) d�, where d� =

sin θ dθ dφ (0 � θ � π and 0 � φ < 2π ) is the differential
solid angle in the Bloch sphere S(B). The distance deviation
�D̄ is defined as the standard deviation of the function D̄, that
is, �D̄ =

√
〈D̄2〉 − 〈D̄〉2.

In this work, we shall consider the following distance
measures: the trace distance DT(ρ̂, σ̂ ) = 1

2 Tr(‖ρ̂ − σ̂‖)

where ‖Â‖ =
√

ÂÂ† stands for the operator norm [12],
and the Uhlmann-Jozsa quantum fidelity F (ρ̂, σ̂ ) =
[Tr(

√√
ρ̂ σ̂

√
ρ̂ )]2 [13]. For qubit states characterized by

Bloch vectors t and tm, they give DT(ρ̂ in, ρ̂out
m ) = 1

2‖t − tm‖,
and F (ρ̂ in, ρ̂out

m ) = 1
2 (1 + tᵀtm + √

1 − t2
√

1 − t2
m) where

t = ‖t‖ and tm = ‖tm‖.
The average fidelity takes the following form for general

QTPs:

〈F̄ 〉 = 1
2

[
1 + 1

3 tr(C�)
]

(5)

(where tr denotes the trace of matrices to differentiate from
the trace of operators Tr), and the squared fidelity deviation is
given by

(�F̄ )2 = 1
4

{
1

15

[
tr
(
C2

�

) + (tr(C�))2 + tr
(
C�C

ᵀ
�

)]
− [

1
3 tr(C�)

]2} + 1
12 tr

(
v�vᵀ

�

)
.

Note that different QTPs can result in the same matrix
C�, producing the same average fidelity in Eq. (5). These
protocols in general are not equivalent because they can yield
physically distinct output states.

IV. OPTIMAL PROTOCOLS FOR FIXED
AVERAGE FIDELITY

Let us consider a set of arbitrary teleportation protocols
that yield the same average fidelity. The following theorem
characterizes the optimal protocols within this set.

Theorem 1. Among all QTPs such that 〈F̄ 〉 = α ∈ (0, 1],
the average trace distance 〈D̄T〉 takes its minimum value for
those protocols that align, i.e., when the corresponding Bloch
vectors of the output states ρ̂out

m are given by talig
m = smt ∀ m

042428-2



OPTIMAL QUANTUM TELEPORTATION PROTOCOLS FOR … PHYSICAL REVIEW A 108, 042428 (2023)

with sm ∈ (0, 1] satisfying
∑

m Pmsm = 2α − 1. These proto-
cols are defined as optimal.

Proof. For arbitrary QTPs, we have that

〈D̄T〉 =
〈

1

2

∑
m

Pm ‖t − tm‖
〉

�
〈

1

2
‖t − t�‖

〉
� 1 − 〈F (ρ̂ in,�(ρ̂ in ))〉

= 1

2

(
1 − 1

3
tr(C�)

)
= 1 − 〈F̄ 〉, (6)

where we used consecutively Jensen’s inequality∑
n Pn ‖an‖ � ‖∑

n Pn an‖ with
∑

n Pn = 1 (because
every norm is a convex function), DT � 1 − F [12],
F (ρ̂ in,�(ρ̂ in )) = F̄ because ρ̂ in is a pure state, and Eq. (5).
Let us now consider fidelity-equivalent protocols, in the sense
that 〈F̄ 〉 = α is satisfied for given α ∈ (0, 1]. The average
trace distance can take different values, with a fixed lower
bound, 〈D̄T〉 � 1 − α, as deduced from Eq. (6). It is straight-
forward to see that this lower bound is attained by protocols
such that talig

m = smt ∀ m with
∑

m Pmsm = 2α − 1. �
Let us now give a comprehensive characterization of the

optimal protocols, defined in Theorem 1. In this context, the
following result establishes the necessary and sufficient con-
ditions to have a protocol that aligns.

Theorem 2. An arbitrary QTP aligns if and only if it satis-
fies, for all m, that: (i) wmra + ωā

m = 0, (ii) rb = 0 and ωa
m =

0, and (iii) Rm = smw−ᵀ
m r−ᵀ with sm such that tm = smt ∀ m,

being tm the Bloch vector of the output state of the protocol.
Corollary 1. The quantum channel associated to a protocol

that aligns is characterized by C�alig = 1
3 tr(C�alig )1 and valig

� =
0. Thus, this kind of protocol yields null fidelity deviation,
�aligF̄ = 0.

Proof. The final Bloch vector tm of Bob’s qubit is given
in Eq. (4) with tb

m in Eq. (3). Therefore, if tm = smt, then
gm must be independent of t, and κm must vanish, for all
m. The first condition happens iff the statement (i) of the
theorem is true. Applying the POVM conditions (2a) and
(2c) to the equations κm = rb + rᵀωa

m = 0 ∀ m, we arrive at
rb = 0, so rᵀωa

m = 0 ∀ m. Because κm = 0 ∀ m and rb = 0,
we must have that RmrᵀwmT

gm (t) = sm1 to align, i.e., t = smtm ∀ m.
Therefore, the matrices r and wm must be invertible and from
the condition rᵀωa

m = 0 ∀ m, we obtain that ωa
m = 0 ∀ m. At

this point, we demonstrated statement (ii) of the theorem. Note
that we arrived at gm(t) = 1 ∀ m, which implies Rmrᵀwᵀ

m =
sm1. This proves statement (iii) of the theorem.

Note that statement (iii) of Theorem 2 implies that C�alig =∑
m Pm sm1 = 1

3 tr(C�alig )1 and κm = 0 ∀ m leads to v� = 0.
These are the statements of Corollary 1. On the other hand,
since the lower bound in Eq. (6) is achieved for protocols that
align, we have that for average fidelity α it holds

2α − 1 = 1

3
tr(C�alig ) =

∑
m

P̄m sm. (7)

�
Before establishing the next theorem, we recall that, under

suitable local unitary transformations, i.e.,

ρ̂ab
c = Û a ⊗ Û bρ̂ab(Û a)† ⊗ (Û b)†,

every two-qubit state ρ̂ab can be transformed into a canon-
ical form ρ̂ab

c , with correlation matrix rd = (oa)r(ob)ᵀ =
diag(r1, r2, r3), where oa and ob are rotation matrices, and
the transformed marginal Bloch vectors ra

c = oara and rb
c =

obrb [14]. Furthermore, the positivity condition on the den-
sity operators ρ̂ab and ρ̂ab

c , when rb = 0, corresponds to the
inequalities [15]

−2 det(rd ) − (‖rd‖2 − 1) �
∥∥ra

c

∥∥2
, (8a)

f (r1, r2, r3) � 4
∥∥(

ra
c

)ᵀ
rd

∥∥2

+ ∥∥ra
c

∥∥2 [
2(1 − ‖rd‖2) − ∥∥ra

c

∥∥2]
, (8b)

where f (r1, r2, r3) = −8 det(rd ) + (‖rd‖2 − 1)2 − 4‖r̃d‖2 =
(1 − r1 − r2 − r3)(1 − r1 + r2 + r3)(1 + r1 − r2 + r3)(1 + r1 +
r2 − r3), ‖rd‖2 = tr(r2

d ), r̃d = det(rd ) r−1
d , and −1 �

det(rd ) � 1 [here we are assuming that det(rd ) 
= 0]. Thus,
the diagonal elements r1, r2, r3 belong to a convex subset,
defined by Eqs. (8), inside the tetrahedron given by inequality
(8b) with ra

c = 0 [14].
We are now in a position to present the following theorem

which fully characterizes the QTPs that align.
Theorem 3. All QTPs that align verify the following.

(i) The POVM states ω̂āa
m have correlation matrices wm =

(oā
m)ᵀwdmoa with wdm = smr−1

d and where r = (oa)ᵀrdob is
the correlation matrix of the resource state ρ̂ab, with (oa)ᵀ the
rotation matrix that simultaneously diagonalizes the positive-
definite matrices rrᵀ and wᵀ

mwm, while ob and oā
m are the

rotation matrices that diagonalize rᵀr and wmwᵀ
m respectively.

(ii) Bob’s rotation matrices are of the form Rm = oā
mob ∀ m.

Finally, (iii) the rotation matrices oā
m must fulfill the POVM

condition (2d) that in this case reduces to
∑

P̄msm(oā
m)ᵀ = 0.

Corollary 2. All the protocols that align have det(rd ) < 0.
Proof. From the canonical decomposition of the states ρ̂ab

and ω̂āa
m we have that r = (oa)ᵀrdob and wm = (oā

m)ᵀwdmoa
m,

where the columns of oa are eigenvectors of rrᵀ and the
columns of oa

m are eigenvectors of wᵀ
mwm. Note that rrᵀ and

wᵀ
mwm are positive-definite matrices because r and wm are full

rank. They are diagonalized by orthogonal matrices. From the
orthogonality of Rm and condition (iii) in Theorem 2, we get
rrᵀ( wm

sm
)ᵀ wm

sm
= 1, leading to [rrᵀ,wᵀ

mwm] = 0. Then, rrᵀ

and wᵀ
mwm are diagonalized by a single orthogonal matrix [16]

that we can choose to be one of the possible matrices (oa)ᵀ

in the canonical decomposition of r, i.e., rrᵀ = (oa)ᵀr2
d oa

and wᵀ
mwm = (oa)ᵀw2

dmoa, so oa
m = oa ∀ m. Thus, we imme-

diately arrive at w2
dm = s2

mr−2
d . Finally, we can write Rm =

oā
mw−1

dmsmr−1
d ob, and then wdm = smr−1

d must be true [17]. This
proves statement (i). Statements (ii) and (iii) follow straight-
forwardly. �

From Theorem 3 it is possible to conclude that the only
QTP such that tm = t ∀ m is, up to local unitaries on the
qubit systems, the perfect QTP defined by performing a Bell
measurement on qubits ā and a and a Bell state as resource
for qubits a and b. Specifically, the positivity conditions on
the density operators ρ̂ab and ω̂āa

m correspond, respectively, to
the set of inequalities (8) for the matrix elements of rd with
rb

c = 0, and for the matrix elements of wdm = smr−1
d with

Bloch vectors ωā
cm = −r−1

d ra
c and ωa

cm = 0 ∀ m [this follows
from conditions (i) and (ii) of Theorem 2; see Eqs. (A4) in
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ra
c = 0.01
s = 0.7 s = 0.7

ra
c = 0.1ra

c = 0
s = 0.7 s = 0.7

ra
c = 0.2

ra
c = 0.1
s = 0.8

ra
c = 0.01
s = 0.8s = 0.8

ra
c = 0

s = 0.8
ra
c = 0.2

(a) (b) (c) (d)

(e) (f) (g) (h)

s = 0.7
ra
c = 0.1

(g)

ra
c = 0.011111
s = 0.7

(f)

s = 0.77777
ra
c = 0.22222

(h)

ra
c = 0.01
s = 0.8

(b)

ra
c = 0.1
s = 0.8

(c)

s = 0.8
ra
c = 0.2

(d)

ra
c = 0

s = 0.7

(e)

s = 0.8
ra
c = 0

(a)

FIG. 1. Diagonal matrix elements (r1, r2, r3) of DQTPs that align, with fixed value of average fidelity 〈F̄ 〉alig = 1
2 (1 + s) = α, for different

values of s and Bloch vectors ra
c (see text for explanation). The angular spherical coordinates of ra

c are θ = φ = 0 in panels [(a)–(d)], and
θ = φ = π

2 in panels [(e)–(h)]. In (d) there is no solution; in (h) the solid arrows (red online) indicate the tiny set of solutions. The lines (blue
online) correspond to the four types of Werner states Ŵ = (1−p)

4 1̂ ⊗ 1̂ + p β̂ where β̂ is one of the four Bell states. The solid lines correspond
to separable states, i.e., − 1

3 � p � 1
3 , and the dashed lines to entangled states, i.e., 1

3 < p � 1. In (a) and (e), the dashed arrows (green online)

indicate the special cases with p = s
1
2 .

Appendix A]. The only solutions to these sets of inequalities,
when sm = 1 ∀m, correspond to rBell

d = (rBell
d )−1 = wBell

dm ∈
{rBell


+ = −diag(1, 1, 1), rBell

− = diag(−1, 1, 1), rBell

�+ =
diag(1,−1, 1), rBell

�− = diag(1, 1,−1)} with ra
c = 0 ∀ m.

These solutions are Bell states for the resource ρ̂ab
c = β̂ and

for the POVM operators ω̂āa
cm = β̂m with m = 1, . . . , 4,

in the canonical form. Therefore, from condition (i)
of Theorem 3 we have that the correlation matrix
of ω̂āa

cm is wm = wcm = (oā
m)ᵀwdmoa with oa = 1 and

oā
m = bā

m ∈ {diag(1, 1, 1), diag(1,−1,−1), diag(−1, 1,−1),
diag(−1,−1, 1)}, that are the only diagonal orthogonal
matrices in R3×3 with det(bā

m) = 1. Note that these
matrices satisfy condition (iii) of Theorem 3. All
perfect QTPs, therefore, are those with resource state
ρ̂ab = Û a ⊗ Û b β (Û a)† ⊗ (Û b)†, with r = (oa)ᵀrBell

d ob

being its correlation matrix and with a POVM composed by
ω̂āa

m = Û ā ⊗ Û aω̂āa
cm(Û ā)† ⊗ (Û a)†, with ω̂āa

cm = β̂m, whose
correlation matrices are w = (oā)ᵀbā

mrBell
d oa.

It is worth noting that, according to Theorem 3, for tele-
portation protocols that align, the POVM states can be written
as ω̂āa

m = Û ā
m ⊗ Û aω̂āa

cm(Û ā
m)† ⊗ (Û a)†, where Û a is one of the

local unitary operations that carries ρ̂ab into its canonical
form. Therefore, the Bob’s qubit state ρ̂b

m, after Alice’s mea-
surement, does not depend on Û a. So, we can ignore this local
unitary operation.

Now, let us examine the scenario where Û ā
m is a unitary

matrix such that Û ā
m nᵀσ̂ (Û ā

m)† = (oā
mn)ᵀσ̂ with oā

m a diagonal

matrix. In the case of diagonal matrices oā
m, the only possible

way to satisfy condition (iii) of Theorem 3 is when oā
m = bā

m
and sm = s for m = 1, . . . , 4.

Therefore, for these particular protocols considered, the
resource state has a correlation matrix r = rdob and the
POVM states have wm = wcm = bā

ms r−1
d with m = 1, . . . , 4,

i.e., ω̂āa
m = ω̂āa

cm. We refer to this kind of protocol as deter-
ministic quantum teleportation protocols (DQTPs) that align.
For these protocols the Bloch vectors of the reduced states ρ̂a

and ω̂ā
m are, respectively, ra = ra

c and ωā
m = (bā

m)ᵀωā
cm with

ωā
cm = ωā

c = −s r−1
d ra

c for m = 1, . . . , 4.
The perfect QTP, s = 1, is a special case of a DQTP that

aligns corresponding to ra
c = 0 and rd = rBell

d .
In the case of imperfect alignment of the DQTP, where s <

1, the set of allowed values for the diagonal elements of rd

and s r−1
d , as determined by the positivity conditions for the

density operators of the resource and POVM states, is quite
extensive.

Let us consider, as an example, all the protocols that align
for different values of s and Bloch vectors ra

c in the sce-
nario sm = s for all m. Figure 1 illustrates the sets of values
(r1, r2, r3), represented by the shaded red volume, for which
there exists a POVM that aligns for different values of ‖ra

c‖
and considering two different values of s. These regions are
determined by the positivity conditions on ρ̂ab and ω̂āa

m [see
inequalities (8)]. It can be observed that, as ‖ra

c‖ increases,
the set of solutions becomes smaller. In Figs. 1(a) to 1(d)
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we consider s = 0.8; notice that in Fig. 1(d), correspond-
ing to ‖ra

c‖ = 0.2, there is no solution. However, when we
reduce the average fidelity value as in Figs. 1(e) to 1(h)
where we take s = 0.7, a tiny set of solutions appears for
‖ra

c‖ = 0.2 [indicated by the solid arrows (red online) in
Fig. 1(h)].

V. NOISE IN DQTPs THAT ALIGN

For a deterministic QTP meeting the conditions in Theo-
rems 2 and 3, from Eq. (7) we have that 〈F̄ 〉alig = 1

2 (1 + s) =
α. Therefore, we see that for a fixed value α < 1, i.e., fixed
s < 1, there exist different DQTPs that align giving rise to
the same average fidelity (see Fig. 1). These different pro-
tocols can be identified as the action of a one-qubit channel
over the perfect DQTP that aligns: ρ̂ab

c = (εa ⊗ εb)[β̂] and
ω̂āa

cm = (εā ⊗ εa)[β̂m] with m = 1, . . . , 4.
A generic one-qubit channel ε can be described by the

affine transformation tout = Λtin + v of the vectors tin in the
Bloch sphere, where Λ and v are the matrix and the translation
vector of the channel, respectively [18].

Using the result in Appendix B it is shown
that the correlation matrix of ρ̂ab

c = (εa ⊗ εb)[β̂] is
rd = Λa

d Λb
d rBell

d , where Λa
d and Λb

d are the diagonal
matrices of the affine description of the channels εa

and εb, respectively. Note that, because the values of
the diagonal entries of Λa

dΛ
b
d are inside the tetrahedron of

allowed values for channels, the values of the diagonal
entries of rd = Λa

d Λb
d rBell

d are inside the tetrahedron
of allowed values for correlation matrices of two-qubit
states [18]. The Bloch vectors of the reduced states of
ρ̂ab

c = (εa ⊗ εb)[β̂] are va = ra
c and vb = rb

c = 0, with
va and vb the affine vectors of the channels εa and εb,
respectively. It follows that the channel εb must be unital. The
correlation matrix of the POVM states ω̂āa

cm = (εā ⊗ εa)[β̂m]
are wcm = s bā

m r−1
d = (Λa

d Λb
d )−1 s bā

m rBell
d = Λā

d Λa
db

ā
m rBell

d ,
with Λā

d and Λa
d the matrices of the affine description

of εā and εa, respectively. Then, we arrive at the first
condition

Λā
d

(
Λa

d

)2
Λb

d = s 1. (9)

The second condition, correlating channels on qubits ā, a and
b, is

vā = ωā
c = −s

(
Λa

d Λb
d

)−1
rBell

d ra
c . (10)

Notice that this last condition disappears if the channel εa

is unital, i.e., with affine vector va = ra
c = 0. Thus in this

case all the three qubit channels εa, εā and εb must be unital
to have a DQTP that aligns. It is worth noting that all the
more common noisy one-qubit quantum channels are of this
kind [18].

Conditions (9) and (10) show that, in general, the channels
εā, εa, and εb are correlated. Uncorrelated solutions of Eq. (9)
occur only when the channel matrices are independent. If
none of the channels is the identity (no noise), uncorrelated
solutions are only achieved when all the channels are the
same, i.e., Λā

d = Λb
d = Λa

d = Λd and Λd = s
1
4 1 (which, in

turn, defines a depolarizing channel [18]). Because these
channels are unital, ra

c = 0 so ωā
c = 0, condition (10) is

automatically satisfied. In this case, both the resource and

POVM states are Werner states, i.e., ρ̂ab = Ŵ and ω̂āa
m = Ŵm

where Ŵm = (1−p)
4 1̂ ⊗ 1̂ + p β̂m, with m = 1, . . . , 4, and Ŵ

being one the previous states. The noise parameter p satisfies
p = s

1
2 , for Ŵ and Ŵm ∀ m. For each fixed value of s, i.e.,

fixed average fidelity, these DQTPs that align are spotted in
Figs. 1(a) and 1(e) with dashed (green online) arrows. These
are also the solutions of DQTPs that align corresponding
to uncorrelated channels, but with noise only in one or two
of the qubit systems of the protocol. In this case, the only
difference is that the depolarizing channels have a matrix
Λd = s

1
2 1.

It is worth noting that the DQTPs that align corresponding
to uncorrelated noise in all the qubits are formed by entangled
Werner states when 1

3 � p = s
1
2 � 1, and by separable when

0 < p = s
1
2 � 1

3 . In the case of separable states, the average
fidelity of the protocols ranges 0 < 〈F̄ 〉alig � 5

9 < 2
3 = 〈F̄ 〉cl,

with 〈F̄ 〉cl the average fidelity corresponding to the classical
protocol [19,20]. This shows that entanglement is needed to
surpass the average fidelity of the classical protocol, both in
the resource state and also in the POVM states.

DQTPs that align with Werner states, i.e., ρ̂ab = Ŵ and
ω̂āa

m = Ŵm, exist if the parameter that defines all Ŵm states
is p′ = s

p , where p is the parameter that defines Ŵ . In these

protocols, the correlation matrix of ρ̂ab = Ŵ is rd = prBell
d ,

and those of ω̂āa
m = Ŵm are wcm = bā

m
s
pr

Bell
d . Replacing in

the positivity condition (8b), rd by wdm = s
pr

Bell
d and ra

c by

ωā
cm = −r−1

d ra
c = 0, we can rewrite this inequality as p8 (p −

s)3 (p + 3s) � 0. The solution of this inequality, together with
0 < s � 1 and − 1

3 � p � 1 [21], corresponds to two cases:
case (I) when s � p � 1 with 0 < s � 1, and case (II) when
− 1

3 � p � −3s with 0 < s � 1
9 . We stress that only when

p′ = p = s
1
2 the DQTP that aligns is associated with un-

correlated noise in the qubits. This is a particular solution
included in the case (I). Also, note that the DQTPs that
align with Werner states become standard noisy QTPs when
p = s and s < 1 so Ŵm = β̂m ∀ m. When s = 1 it becomes the
perfect QTP. All these DQTPs that align with Werner states
need entanglement, both in the resource state and also in the
POVM states, to surpass the average fidelity of the classical
protocol.

VI. CONCLUSION

We demonstrate that the optimal quantum teleportation
protocols over random pure states, with a fixed average fi-
delity, are those that align the Bloch vectors of the input and
output states. In other words, tm = smt, where sm is inde-
pendent of the initial Bloch vector t, for any outcome m of
Alice’s measurement. This alignment results in output states
that are diagonal in the same basis as the initial state. In addi-
tion, these protocols effectively act as depolarizing channels
ρ̂m = �

dep
m (ρ̂ in ), for each m. We characterize all the resource

states and POVM measures of these optimal protocols, which,
in turn, determine the rotation operation in the output state of
the protocols.

A remarkable type of aligned QTP is when sm = s for all m.
These deterministic protocols are particularly relevant as they
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emerge when attempting to implement the perfect QTP under
the influence of correlated noise in qubit systems. Among
these protocols, we demonstrate the existence of one with
uncorrelated noise, corresponding to the same depolarizing
channel in the qubits. The amount of noise in this protocol
determines the average fidelity of the teleportation process, a
situation commonly encountered in experimental implemen-
tations [22]. Therefore, in such experimental scenarios, we
establish that the optimal QTP involves preparing a Bell state
as the resource state and employing a Bell measurement as a
POVM.
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APPENDIX A: POSITIVITY CONDITIONS ON THE DENSITY OPERATORS ρ̂ab AND ω̂āa
m THAT SATISFY THEOREM 2

Here we explicitly write down the inequalities that define the positivity conditions on the density operators ρ̂ab and ω̂āa
m that

satisfy Theorem 2, following Ref. [15].
The positivity conditions on density operators ρ̂ab of the form in Eq. (1) were given in Ref. [15]. When the marginal Bloch

vector rb is null these inequalities are

3 − ‖rd‖2 �
∥∥ra

c

∥∥2
, (A1a)

−2 det(rd ) − (‖rd‖2 − 1) �
∥∥ra

c

∥∥2
, (A1b)

−8 det(rd ) + (‖rd‖2 − 1)2 − 4‖r̃d‖2 � 4
∥∥rdra

c

∥∥2 + ∥∥ra
c

∥∥2[
2(1 − ‖rd‖2) − ∥∥ra

c

∥∥2]
, (A1c)

where r̃d = det(rd ) r−1
d . The correlation matrix rd = (oa)r(ob)ᵀ = diag(r1, r2, r3) and the marginal Bloch vector ra

c = oara

correspond to the state in the canonical form ρ̂ab
c . It is straightforward to show that when the matrix rd is invertible, i.e., det(rd ) 
=

0, the first equation is redundant.
Equivalently, the relevant positivity conditions on the density operators ω̂āa

m that satisfy Theorem 2 are

−2 det(wdm) − (‖wdm‖2 − 1) �
∥∥ωā

m,c

∥∥2
, (A2a)

−8 det(wdm) + (‖wdm‖2 − 1)2 − 4‖(w̃m)d‖2 � 4
∥∥wdmωā

m,c

∥∥2 + ∥∥ωā
m,c

∥∥2[
2(1 − ‖wdm‖2) − ∥∥ωā

m,c

∥∥2]
. (A2b)

Now we know that

wdm = smr−1
d ,

(w̃m)d = det(wdm) w−1
dm = s3

m

det(rd )

1

sm
rd = s2

m

det(rd )
rd,

and

ωā
m,c = −smr−1

d ra
c .

Therefore,

‖wdm‖2 = s2
m

∥∥r−1
d

∥∥2 = s2
m

[det(rd )]2
‖r̃d‖2,

‖(w̃m)d‖2 = s4
m

[det(rd )]2
‖rd‖2,

∥∥ωā
m,c

∥∥2 = s2
m

∥∥r−1
d ra

c

∥∥2 = s2
m

[det(rd )]2

∥∥r̃dra
c

∥∥2
,

and ∥∥wdm ωā
m,c

∥∥2 = s4
m

∥∥r−2
d ra

c

∥∥2 = s4
m

[det(rd )]4

∥∥r̃2
dra

c

∥∥2
.
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Replacing these expressions into Eq. (A2) we arrive at the set of inequalities

−2s3
m det(rd ) − {

s2
m‖r̃d‖2 − [det(rd )]2

}
� s2

m

∥∥r̃dra
c

∥∥2
, (A3a)

−8s3
m[det(rd )]3 + {

s2
m‖r̃d‖2 − [det(rd )]2

}2 − 4sm[det(rd )]2‖rd‖2

� 4s4
m

∥∥r̃2
dra

c

∥∥2 − s2
m

∥∥r̃dra
c

∥∥2(
2
{
s2

m‖r̃d‖2 − [det(rd )]2
} + s2

m

∥∥r̃dra
c

∥∥2)
. (A3b)

Therefore, for given values of the Bloch vector ra
c and the parameter sm, the set of allowed values of the matrix elements ri with

i = 1, 2, 3 are defined by the inequalities (A1b), (A1c), and (A3), i.e.,

−2 det(rd ) − (‖rd‖2 − 1) �
∥∥ra

c

∥∥2
, (A4a)

−8 det(rd ) + (‖rd‖2 − 1)2 − 4‖r̃d‖2 � 4
∥∥rdra

c

∥∥2 + ∥∥ra
c

∥∥2[
2(1 − ‖rd‖2) − ∥∥ra

c

∥∥2]
, (A4b)

−2s3
m det(rd ) − {

s2
m‖r̃d‖2 − [det(rd )]2

}
� s2

m

∥∥r̃dra
c

∥∥2
, (A4c)

− 8s3
m[det(rd )]3 + {

s2
m‖r̃d‖2 − [det(rd )]2

}2 − 4s4
m[det(rd )]2‖rd‖2 �

� 4s4
m

∥∥r̃2
dra

c

∥∥2 − s2
m

∥∥r̃dra
c

∥∥2
(

2
{
s2

m‖r̃d‖2 − [det(rd )]2
} + s2

m

∥∥r̃dra
c

∥∥2
)
. (A4d)

Note that the left-hand side of inequality (A4b) is

f (r1, r2, r3) = (1 − r1 − r2 − r3)(1 − r1 + r2 + r3)(1 + r1 − r2 + r3)(1 + r1 + r2 − r3)

= −8 det(rd ) + (‖rd‖2 − 1)2 − 4‖r̃d‖2. (A5)

APPENDIX B: CALCULATION OF THE FANO FORM OF (εa ⊗ εb)[ρ̂ab]

Here we show the action of local arbitrary one-qubit channels on a two-qubit state given in the Fano form (1). An analogous
calculation with only one-qubit channel was performed in Ref. [23].

Lemma 1. Let εa and εb be one-qubit channels described by the affine parameters �a, va, and �b, vb, respectively, and let
ρ̂ab be an arbitrary two-qubit state given in Fano form in Eq. (1), then

(εa ⊗ εb)[ρ̂ab] = 1

4

(
1̂ ⊗ 1̂ + [(ra)ᵀΛa + (va)ᵀ]σ̂ ⊗ 1̂ + 1̂ ⊗ [(rb)ᵀΛb + (vb)ᵀ]σ̂

+
3∑

i=1

3∑
j=1

[
va(vb)ᵀ + (Λa)ᵀra(vb)ᵀ + va

i (rb)ᵀΛb + (Λa)ᵀ r Λb
]

i j σ̂i ⊗ σ̂ j

⎞
⎠. (B1)

Using the linear property of the quantum channels, we get

(εa ⊗ εb)[ρ̂ab] = 1

4

⎛
⎝εa[1̂] ⊗ εb[1̂] + εa[(ra)ᵀσ̂] ⊗ εb[1̂] + εa[1̂] ⊗ εb[(rb)ᵀσ̂] +

3∑
i, j=1

ri j εb[σ̂i] ⊗ εb[σ̂ j]

⎞
⎠

= 1

4

(
1̂ ⊗ 1̂ + [(ra)ᵀΛa + (va)ᵀ]σ̂ ⊗ 1̂ + 1̂ ⊗ [(rb)ᵀΛb + (vb)ᵀ]σ̂(va)ᵀσ̂ ⊗ (vb)ᵀσ̂

+ (ra)ᵀΛaσ̂ ⊗ (vb)ᵀσ̂ + (va)ᵀσ̂ ⊗ (rb)ᵀΛbσ̂ +
3∑

k,l=1

[(Λa)ᵀ r Λb]kl σ̂k ⊗ σ̂l

⎞
⎠

= 1

4

(
1̂ ⊗ 1̂ + [(ra)ᵀΛa + (va)ᵀ]σ̂ ⊗ 1̂ + 1̂ ⊗ [(rb)ᵀΛb + (vb)ᵀ]σ̂

+
3∑

i=1

3∑
j=1

[va(vb)ᵀ + (Λa)ᵀra(vb)ᵀ + va
i (rb)ᵀΛb + (Λa)ᵀ r Λb]i j σ̂i ⊗ σ̂ j

⎞
⎠, (B2)

where we used that ε[1̂] = 1̂ + (v)ᵀσ̂ and ε[σ̂i] = ∑3
j=1 Λi j σ̂ j (so ε[σ̂] = Λσ̂) that can be easily proven using the affine

representation of ε.
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