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Straightforward logical operations contrasting with complex state preparation are the hallmarks of the
bosonic encoding proposed by Gottesman, Kitaev, and Preskill (GKP). The recently reported generation and
error correction of GKP qubits in trapped ions and superconducting circuits thus holds great promise for the
future of quantum computing architectures based on such encoded qubits. However, these experiments rely on
error-syndrome detection via an auxiliary physical qubit, whose noise may propagate and corrupt the encoded
GKP qubit. We propose a simple module composed of two oscillators and a physical qubit, operated with two
experimentally accessible quantum gates and elementary feedback controls to implement an error-corrected GKP
qubit protected from such propagating errors. In the idealized setting of periodic GKP states, we develop efficient
numerical methods to optimize our protocol parameters and show that errors of the encoded qubit stemming from
flips of the physical qubit and diffusion of the oscillators state in phase space may be exponentially suppressed as
the noise strength over individual operations is decreased. Our approach circumvents the main roadblock towards
fault-tolerant quantum computation with GKP qubits.
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I. INTRODUCTION

In their seminal paper [1,2], Gottesman, Kitaev, and
Preskill (GKP) proposed to encode, within the vast Hilbert
space of a harmonic oscillator, a qubit robustly against po-
sition and momentum shifts of the embedding oscillator.
Clifford operations on encoded GKP qubits are straightfor-
ward to implement and do not amplify small shift errors.
Therefore, concatenation of the GKP code into the surface
code recently attracted interest [3–7] as, beyond the po-
tentially enhanced coherence of GKP qubits compared to
faulty physical qubits, analog information from the GKP
error-correction layer may be decoded to improve the surface
code threshold. Crucially, these desirable features rely on the
assumption that noise-induced shifts of the embedding oscil-
lators are short and can be detected before they accumulate.
This hypothesis is not valid in current experimental imple-
mentations with superconducting circuits [8,9]. In order to
comprehend this serious limitation, one needs to delve into
the code structure and error-correction techniques employed
in these experiments.

In reduced phase-space coordinates (qa, pa),1 the basis
states of the square GKP code are superpositions of period-
ically spaced position eigenstates

|+Z〉 =
∑
n∈Z

|qa = nα〉, |−Z〉 = Dqa

(
α

2

)
| + Z〉, (1)

where α = 2
√

π and the operator Dra (δ) displaces the oscil-
lator state by δ along ra, for ra = qa or ra = pa. The logical
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1corresponding to the operators qa and pa with equal fluctuations

and verifying ([qa, pa] = i).

states | ± X 〉 are obtained by a π/2 rotation in phase space of
| ± Z〉. Note that infinitely delocalized states are unrealistic,
but the essential properties and control techniques considered
in our work apply to states normalized by a broad Gaussian
envelope in phase space [1,8,10,11]. One may measure the
GKP qubit in the | ± Z〉 or | ± X 〉 basis by detecting the mod-
ular logical operators q̃L

a = qa mod α and p̃L
a = pa mod α.

Crucially, a code state |�〉 shifted in position and momentum
can still be correctly decoded as long as the shifts are shorter
than α/4. Moreover, these shifts can be detected without re-
vealing the GKP qubit state by measuring the two commuting
modular stabilizers q̃S

a = qa mod α/2 and p̃S
a = pa mod α/2.

Measuring the modular stabilizers without extracting logi-
cal information is the main challenge in GKP error correction
[12–18]. It was only recently achieved experimentally with
trapped ions [11,19,20] and superconducting circuits [8,9].
In these experiments, the target oscillator is coupled to an
auxiliary qubit via a controllable Rabi-type interaction static
in the interaction picture −χraσz (where ra = qa or ra = pa

[see Fig. 1(a)]), in order to implement a conditional displace-
ment gate UCD

ra
= ei α

2 raσz that rotates the qubit phase by −αr̃S
a

around the z axis of its Bloch sphere. The gate is named after
its backaction on the oscillator, which is displaced by ±α

2
along the π/2-rotated quadrature r⊥

a conditioned on the qubit
state [see Fig. 1(a)]. This evolution deterministically shifts the
logical operator r̃⊥L

a by α/2, accounted for in software, but
otherwise leaves all modular operators unchanged. However,
if a bit flip of the qubit occurs during the evolution, for
instance due to energy relaxation as in Fig. 1, the displace-
ment takes a value uniformly sampled in [−α

2 , α
2 ] depending

on the unknown instant of the flip (see Appendix A). This
randomizes the value of r̃⊥L

a and the error propagates at the
logical level with probability 1

2 . These propagating errors,
which become more frequent as the error-correction clock
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(a) (b)

FIG. 1. Error propagation during (a) qubit-based error correc-
tion. A Rabi-type interaction at rate χ is activated for a duration
TCD = α/(2χ ) to map the value of the target modular stabilizer q̃S

a

onto the phase of an auxiliary qubit prepared in | + x〉 = (|g〉 +
|e〉)/

√
2 beforehand. As a backaction, the modular logical operator

p̃L
a gets shifted conditioned on the qubit state (conditional trajectories

shown in color for an oscillator initially in an eigenstate of p̃L
a with

eigenvalue δpa ). At TCD and in absence of error, p̃L
a retrieves its

initial value but for a deterministic shift by α/2. Relaxation of the
qubit to |g〉 at time (1 − τerr )TCD (with τerr ∈ [0, 1], gold lightning
symbol) propagates as a long shift of p̃L

a by ατerr (dashed trajectory).
(b) Steane-type error correction. A quadrature interaction at rate χ ′

with an auxiliary oscillator b, initially in |ø〉 = ∑
n |qb = nβ〉, maps

the value of q̃S
a onto the modular stabilizer p̃b. As a backaction, p̃L

a

gets shifted conditioned on the position of the auxiliary oscillator
(conditional trajectories shown in color for three position states).
At Tquad = α/(βχ ′) and in absence of error, p̃L

a retrieves its initial
value. A shift of q̃b by δqb � β occurring at (1 − τerr )Tquad (red light-

ning symbol) propagates as a short shift of p̃L
a by

δqb
β

ατerr (dashed
trajectories).

rate increases, are a serious bottleneck towards fault-tolerant
quantum computation with GKP qubits. Various strategies
were proposed [21–25] and experimentally tested [26,27] to
mitigate this advert effect, but either provide only a first-order
protection against auxiliary oscillator errors [21,23–25] or
rely on a biased-noise auxiliary qubit [22] whose development
is not yet mature enough [28,29] to unleash the full potential
of GKP qubits.

This roadblock is not present in the so-called Steane-type
error-correction scheme [1,30], where the target oscillator is
probed via a quadrature interaction −χ ′raqb with an auxiliary
oscillator b to implement a quadrature gate Uquad

ra = ei α
β

raqb .
The auxiliary oscillator is itself prepared in a rectangular
GKP state

|ø〉 =
∑
n∈Z

|qb = nβ〉 (2)

prior to the interaction. Since this state is employed as a
displacement sensor [31] and does not encode logical infor-
mation, we define only modular stabilizers q̃b = qb mod β and
p̃b = pb mod 2π/β, of whom |ø〉 is the single joint eigen-
state with eigenvalue 0 [1]. The quadrature gate displaces the
auxiliary oscillator along pb conditioned on the value of ra

while, reciprocally, the target oscillator is shifted along r⊥
a

conditioned on the value of qb [see Fig. 1(b)]. We summarize

the gate effect on modular operators as2

p̃b

2π/β
→ p̃b

2π/β
+ r̃S

a

α/2
,

r̃⊥L
a

α
→ r̃⊥L

a

α
+ q̃b

β
. (3)

The crucial difference with physical qubit-based error cor-
rection lies in the noise model, assumed to only generate short
shifts of its state. A shift by δqb along qb, occurring before
or during the gate, propagates to the target oscillator as a
shift shorter than

δqb
β

α [τerr ∈ [0, 1] in Fig. 1(b)], correctable
if δqb � β. However, if the auxiliary oscillator is prepared
through a series of qubit-based measurements of its stabiliz-
ers, bit flips of the qubit may induce shifts along qb covering
the whole [− β

2 ,
β

2 ] interval, propagating as shifts of the target
oscillator covering [−α

2 , α
2 ] irrespective of the value of β. In

GKP surface code architectures, these structureless shifts can-
cel the benefits of GKP qubits with respect to physical qubits.
Therefore, a central question for the viability of Steane-type
error correction is as follows: How can we ensure a supply of
auxiliary oscillator states |ø〉 whose errors do not propagate as
long shifts of the target oscillator?

II. ASYMMETRIC PREPARATION OF
THE AUXILIARY OSCILLATOR

We consider the module depicted in Fig. 2(a) where the
target oscillator interacts with an auxiliary oscillator, itself
coupled to a physical qubit. The target oscillator is corrected
by repeated Steane-type correction cycles denoted Cra , alter-
nating ra = qa and ra = pa [Fig. 2(b)]. Each cycle starts with
the auxiliary oscillator prepared in |ø〉 [Fig. 2(c)], possibly
shifted due to preparation errors. A quadrature gate Uquad

ra

maps the value of r̃S
a onto the stabilizer p̃b. The auxiliary

oscillator is then measured and reprepared through a sequence
of preparation rounds labeled Rrb (for rb = qb or rb = pb).
Each round is built around a conditional displacement gate
UCD

rb
mapping the value of r̃b onto the phase of the qubit,

prepared beforehand in an eigenstate of σx and subsequently
measured along σy [Fig. 2(b)]. Each qubit measurement con-
trols a proportional feedback displacement by ±ε along rb. As
detailed below, repeated Rrb rounds corral the auxiliary state
toward r̃b = 0 [8]. We further store the measurement record
outputted by the Rpb rounds as it encodes the value of p̃b

following the quadrature gate, i.e., the target error syndrome
(see Appendix B 4). After straightforward decoding, a correc-
tive feedback displacement is applied to the target oscillator,
concluding the correction cycle.

Our proposal to suppress error propagation is based on two
observations. First, if the oscillators only interact via the qb

quadrature operator of the auxiliary one [see Fig. 2(a)], only
shifts along this quadrature directly propagate to the target
oscillator [second term in Eq. (3)]. As a consequence, the
auxiliary state may be asymmetrically prepared, with a focus
on avoiding long shifts along qb, while allowing long shifts
along pb. Admittedly, shifts along pb blur the extracted error-
syndromes (first term in Eq. (3)), but these errors are mitigated
by cycle repetition. Second, during qubit-based preparation

2With the definition p̃⊥L
a = −q̃L

a .
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(a)

(c)

(b) (d)

FIG. 2. (a) In our proposed architecture, the target oscillator a
couples to an auxiliary oscillator b via a controlled quadrature inter-
action. The auxiliary state is prepared and measured via a physical
qubit. (b) Alternating Cqa and Cpa correction cycles protect the GKP
qubit. (c) A Cra correction cycle (ra = qa or ra = pa) starts with the
auxiliary oscillator prepared in |ø〉. The quadrature gate maps the
value of the target stabilizer r̃S

a to the stabilizer p̃b. The auxiliary
state is then measured and prepared for the next cycle by a series of
Rpb rounds followed by a series of Rqb rounds, robustly suppressing
propagating errors. The measurement record from Rpb rounds is
summed to estimate the value of p̃b following the quadrature gate
as detailed in Appendix B 4 (double black lines represent classical
communication channels). The result −m controls a displacement
by − f (m) on the target oscillator (details on the feedback law f in
Appendix D 1). (d) A Rrb round (rb = qb or rb = pb) starts with the
qubit prepared in |+x〉. A conditional displacement gate maps the
value of r̃b to the qubit phase. The final qubit measurement along σy

controls a proportional feedback displacement by ∓ε, a conditional
flip of the qubit to reset it in |+x〉, and the outcome is stored for
further processing.

of the auxiliary oscillator, flips of the qubit only trigger long
shifts along qb if they occur during Rpb rounds. Based on these
two observations, we propose to prepare the auxiliary state
with a large number Np of Rpb rounds followed by a large
number Nq of Rqb rounds [see Fig. 2(c)], allowing the latter to
correct long shifts induced by the former.

The detailed analysis of this preparation sequence is
facilitated by the periodicity of the auxiliary state along both
quadratures, preserved by the applied controls and by our
noise model. This model combines bit and phase flips of
the physical qubit, with respective small probabilities pBF

and pPF during each round, and quadrature noise of the
oscillators at rate κ , equivalent to photon loss and gain at
equal rate, inducing uniform state diffusion in phase space.
Under these assumptions, we show in Appendix B that the
density matrix of the auxiliary oscillator remains diagonal at
all times in the Zak basis [32], whose base vectors are GKP
states displaced in [− β

2 ,
β

2 ] along qb and in [−π
β
, π

β
] along

pb. Thus, its state is encoded by a two-dimensional (2D)
wrapped probability distribution, and may be viewed as a
classical particle living on a torus with coordinates q̃b and p̃b.
Furthermore, we show that this 2D distribution is separable
into two one-dimensional (1D) distributions, respectively
defined along q̃b and denoted Qb, and along p̃b and denoted

Pb. In this picture, repeated Rrb rounds (r̃b = q̃b or r̃b = p̃b)
induce a classical random walk of the particle along r̃b,
whose steps by ±ε are biased toward r̃b = 0. In the limit of
short steps, the corresponding Rb distribution evolves with
a position-dependent drift velocity v(r̃b) = − εpNF

Tround
sin(2π r̃b

r0
)

and a uniform diffusion constant D = ε2

Tround
+ κ , where Tround

is the round duration, pNF = 1 − pBF − 2pPF is close to 1
and r0 = β when r̃b = q̃b and r0 = 2π/β when r̃b = p̃b.

The steady-state of this dynamic approaches a wrapped
normal distribution whose variance depends on ε and
reaches a minimum Vmin = (κTround )1/2r0/(2π pNF ) for εmin =
(κTround )1/2. However, the vanishing drift velocity in the vicin-
ity of r̃b = r0/2 and small diffusion constant for ε = εmin

(κTround < 10−4 considered in this work) result in a long con-
vergence time and persisting tails of the Rb distribution at this
optimal value. We mitigate this advert effect by varying the
feedback displacement length ε j as a function of the round
index j, starting with ε j ∼ r0/2 to suppress the tails of Rb

and ending with ε j ∼ εmin to limit its central peak width. We
exactly compute the evolution of the distributions throughout
this preparation, compactly encoded in the form of (2nF +
1) Fourier coefficient vectors (nF ∼ 30–60 throughout this
work). In Fig. 3 (top panel), we represent the Qb distribution
obtained after a given number Nq of Rqb rounds. Its tails
are exponentially suppressed as Nq increases while its central
peak has a constant variance Vmin, ensuring robust suppression
of error propagation to the target oscillator.

As the Rb distribution is being sculpted by repeated Rrb

rounds, long shifts triggered by bit flips of the qubit uni-
formize the distribution along the conjugate quadrature, and
quadrature noise deflates its central peak. In our asymmetric
preparation scheme, the Qb distribution is sculpted last and
its final value is not impacted by these errors. On the other
hand, they have a dramatic effect on Pb which becomes near
uniform for large values of Nq (Fig. 3, bottom panel) as the
probability (1 − pBF)Nq that no bit-flip occurred during the
Rqb rounds approaches 0. Thus, Nq cannot be arbitrarily large
for the auxiliary state to be a resource for Steane-type error
correction, even in the limit of weak intrinsic noise of the
oscillators (see Appendix D 2).

III. TARGET MODE OSCILLATOR CORRECTION

We now consider the evolution of the target oscillator over
alternating Cqa and Cpa error-correction cycles. As for the
auxiliary oscillator during preparation, the target oscillator
state remains periodic (see Appendix B 3). In order to estimate
the decay rate of the z component of the GKP qubit Bloch
vector κlog (the x component decays at the same rate and the
y component twice faster in the square code) we consider the
evolution of the wrapped distribution of the logical operator
q̃L

a only, denoted Qa. We compactly represent it as an (2nF +
1) Fourier coefficient vector and encode the system evolution
over a pair of Cqa and Cpa cycles in an (2nF + 1) × (2nF + 1)
evolution matrix, which accounts for realistic auxiliary state
preparation and p̃b detection (see Fig. 2 and Appendix C for
details). The only approximation made in this formalism is to
model noise as effective quantum channels applied in-between
perfect gates, with negligible impact on the estimate of error-
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FIG. 3. Wrapped distributions Qb and Pb of the stabilizers q̃b

and p̃b (for a square lattice corresponding to β = √
2π) prepared

from a uniform distribution by Np + Nq preparation rounds (Np = 50,
varying Nq encoded in color), in presence of quadrature noise at rate
κ = (105 Tround )−1 and physical qubit flips with probabilities pBF =
2pPF = 0.002 per round. Arrows above the top panel schematically
represent the drift velocity (single-headed blue arrows) and diffu-
sion constant (double-headed brown arrows) of each distribution Rb

(Rb = Qb or Rb = Pb) during corresponding Rrb rounds. Vanishing
drift velocity in the neighborhood of r̃b = √

π results in persisting
tails of the distributions. The length of the displacements ε j is varied
throughout the preparation to mitigate this effect while maintaining
a minimal variance for the central peak (see text, the black dashed
line is a Gaussian with variance Vmin), ensuring robust suppression
of error propagation to the target oscillator. As Nq increases, bit
flips of the qubit entail more frequent shifts along pb elevating the
tails of Pb, and the central peak of Pb deflates due to quadrature
noise.

correction performances (see Appendix A). Choosing, as an
initial guess, a simple sine function for the feedback law f
controlling displacements applied to the target oscillator [see
Fig. 2(c)], we observe that the Qa distribution converges over
a few cycles from an arbitrary initial state to a metastable
state with two peaks centered at q̃L

a = 0 and q̃L
a = α/2 (shown

in Fig. 6), as expected from a state close to the GKP code
manifold. A slow dynamic then comes into play, following
which the respective amplitudes of the two peaks equilibrate
as the GKP qubit relaxes to the fully mixed logical state.

For given numbers of preparation rounds Np and Nq and
noise values pBF, pPF, κ , we efficiently extract κlog by spectral
analysis of the evolution matrix (see Appendix C 3). More-
over, we adjust the cycle feedback parameters (auxiliary state
displacements ε j and Fourier coefficients fk of a general
feedback law f on the target) by gradient ascent in order
to minimize κlog. Finally, we select the preparation round
number yielding the smallest error rate, assuming a quadrature
gate time Tquad = 5Tround: a longer gate time does not impact
significantly the performances as long as it does not domi-
nate the overall cycle duration. In Fig. 4, we report the rate
κlog obtained after this optimization. Strikingly, κlog decreases
exponentially as the system noise strength, or equivalently the

FIG. 4. Decay rate of the z component of the GKP qubit Bloch
vector κlog as a function of the oscillator’s quadrature noise rate κ and
of the probability for flips of the physical qubit during each round
pBF = 2pPF, linearly varied. For each noise value, the number of
preparation rounds Nq and Np are swept together (allowing different
values did not significantly improve error-correction performances)
and the cycle feedback parameters optimized by gradient ascent. We
report the minimum error rate with the corresponding round number,
encoded in color. The red circle marks state-of-the-art hardware
parameters for Tround = 1.5 µs (see text).

gate duration, decreases. This is in stark contrast with the
linear scaling found for simple qubit-based error correction,
even considering multimode GKP codes [33], and, following
the argument given at the end of Sec. I, for Steane-type er-
ror correction with a symmetrically prepared auxiliary state.
Assuming that the protocol presented in this work may be
adapted to protect finite-energy GKP states against photon
loss with similar performances, we find that for a state-of-
the-art system (30 ms photon lifetime in the oscillators [34],
T1 ∼ T2 ∼ 500 µs for the physical qubit [35,36] and a prepa-
ration round duration of 1.5 µs [8,37]), the coherence time of
the GKP qubit could surpass that of the embedding hardware
by two orders of magnitude (red circle in Fig. 4).

IV. CONCLUSION AND OUTLOOK

In this paper, we proposed a simple architecture controlled
with two elementary gates to robustly protect an encoded
GKP qubit. The conditional displacement gate is now rou-
tinely employed in superconducting circuit experiments. As
for the quadrature gate, it may be decomposed into a sequence
of single-mode squeezing gates and a beam-splitter gate
[16,30,38] or enabled by activating simultaneously a beam-
splitter Hamiltonian and a two-mode squeezing Hamiltonian
[39]. Recent progress toward the implementation of these
operations in parametrically driven superconducting circuits
[40,41] gives reason to hope that a quadrature gate suited for
continuous-variable quantum computing will be experimen-
tally demonstrated in the near future. This gate will anyhow be
needed to perform operations on encoded GKP qubits. In that
sense, the module we consider does not unnecessarily increase
the complexity of a GKP qubit-based computing platform.

Numerical simulations assuming a simplified noise model
indicate that the lifetime of the GKP qubit protected by our
protocol is exponentially enhanced as the noise strength dur-
ing each gate decreases. Extending this result to normalized
GKP code states and more realistic noise models will be the
subject of future work. In particular, we have not considered
the impact of photon loss nor of imperfect quadrature gates
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in this work, but do not expect these errors to qualitatively
impact our results if they can be mapped to short displace-
ments of the target oscillator state during each correction
cycle. While entering the regime of strong suppression of
logical errors requires both oscillators and the qubit to be
at the state of the art, a substantial margin for improvement
exists by refining the feedback law beyond the short memory
model considered in this work, allowing longer conditional
displacements whose lengths are multiples of the GKP lattice
period [12,15], and considering more extensive hardware with
multiple auxiliary oscillators and physical qubits in order to
multiplex error-syndrome detection. Given that Clifford oper-
ations in the GKP code rely on the same controls considered
in this letter, our work opens a clear path toward fault-tolerant
quantum computation with GKP qubits.
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APPENDIX A: EFFECTIVE NOISE CHANNELS

In this work, we consider a simplified noise model in
which instantaneous and perfect conditional displacement and
quadrature gates are followed by the application of an effec-
tive noise channel accounting for the errors having occurred
during the gates. This effective model considerably reduces
numerical simulation complexity, but leads to approximations.
In this section, we describe the effective noise channel applied
after each gate, and argue that these approximations should
not impact significantly the error-correction performances es-
timated for our protocol.

1. Bit flips of the physical qubit

We consider bit flips induced by qubit relaxation and exci-
tation at respective rates �+ and �−. Their effect on the system
density matrix is modeled by Lindblad dissipators

√
�+D[σ+]

and
√

�−D[σ−], where σ+ and σ− are, respectively, the rais-
ing and lowering operators of the qubit. Each dissipator D[L]
yields, over an infinitesimal time step dt , an evolution of the
density matrix of the system

dρ = dt D[L](ρ) = dt
(
LρL† − 1

2 (L†Lρ + ρL†L)
)
. (A1)

We focus on the case �+ = �− = �1/2 and briefly describe
the most general case �+ �= �− at the end of this section. Note
that this particular case of equal rates of qubit excitation and
relaxation applies to current experiments with superconduct-
ing circuits, as argued below.

We consider the effect of bit flips during the application of
a conditional displacement gate UCD

qb
= ei π

β
qbσz along the pb

quadrature of an oscillator: the calculation is directly adapt-
able to the case of a conditional displacement along qb. We
assume this gate to be performed by the application of a
Rabi-type Hamiltonian, also known as longitudinal coupling
Hamiltonian

HCD
qb

= −χqbσz (A2)

with constant rate χ = π
βTCD

over the gate duration TCD (the
coupling Hamiltonian is then turned off until the following
gate). We unravel the effect of bit flips as stochastic collapses
onto the ground state |g〉 or the excited state |e〉 [42]. Intu-
itively, the trajectories so unraveled are obtained by detecting,
with perfect efficiency, photon emission into the environment,
and photon absorption from the environment. At each in-
finitesimal time step dt , the Kraus operators of this evolution

are P− =
√

�1dt
2 |g〉〈e|, P+ =

√
�1dt

2 |e〉〈g|, respectively, mod-
eling a jump to |g〉 or |e〉 and the no-jump operator 1 − iHNJdt
where

HNJdt = HCD
qb

dt − i

2
(P−†P− + P+†P+)

= HCD
qb

dt − i�1dt

4
1 (A3)

may be viewed as a non-Hermitian Hamiltonian.
We place ourselves in the weak noise limit (�1TCD � 1)

and neglect the possibility of trajectories with two jumps. The
evolution through the gate in absence of jumps is given by the
operator

ONJ = e− �1TCD
4 UCD

qb
. (A4)

and, from a state encoded by the density matrix ρ, the system
evolves to the non-normalized density matrix

ρNJ = ONJρ ONJ† = e− �1TCD
2 UCD

qb
ρUCD†

qb
(A5)

We find the probability of no bit-flip having occurred to be
1 − pBF = e− �1TCD

2  1 − �1TCD
2 , and the normalized density

matrix conditioned on no jump having occurred is the same
as for an evolution through a perfect gate. We detail the evo-
lution of the auxiliary state through the remaining steps of the
preparation round in Appendix B 2 in this no-jump case. Note
that the value of pBF is simply understood as the probability
of a qubit excitation and relaxation over a small time step
dt being ne�−dt + (1 − ne)�+dt = �1dt/2, where ne is the
expectation value of |e〉〈e|.

We now focus on the trajectories during which the qubit
has flipped. The evolution through the gate when the qubit
excites or relaxes in a time interval of duration dt around t
(with 0 < t < TCD) reads as

O±
t = e− �1 (TCD−t )

4 eiχ (TCD−t )qbσz P± e− �1t
4 eiχtqbσz

= e− �1TCD
4 e∓i π

β
(1− 2t

TCD
)qb P±

= e− �1TCD
4 D∓

t P±, (A6)

where we have defined D∓
t = Dpb[∓π

β
(1 − 2t

TCD
)]. O±

t thus
collapses the qubit onto |g〉 or |e〉 and displaces the oscillator
state along pb by ±π

β
(1 − 2t

TCD
) ∈ I = [−π

β
, π

β
]. In the pro-

tocol described in this work, conditional displacement gates
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employed for auxiliary state preparation are immediately fol-
lowed by a measurement of the σy Pauli operator of the qubit
whose outcome controls a feedback displacement by ±ε along

qb and a qubit rotation resetting it in |+x〉 [see Fig. 2(d)]. Re-
combining all trajectories during which the qubit has flipped,
the system state then reads as

ρJ,FB = e− �1TCD
2

∑
s=+,−
u=+,−

∫ TCD

t=0
Dqb (sε)|+x〉〈sy|Ou

t ρOu†
t |sy〉〈+x|Dqb (sε)†

= e− �1TCD
2

∑
s=+,−

∫ TCD

t=0

�1dt

2
Dqb (sε)|+x〉〈sy|(D−

t |e〉〈g|ρ|g〉〈e|D−†
t + D+

t |g〉〈e|ρ|e〉〈g|D+†
t )|sy〉〈+x|Dqb (sε)†

= e− �1TCD
2

∑
s=+,−

∫ TCD

t=0

�1dt

2
Dqb (sε)|+x〉〈sy|D−

t (|e〉〈g|ρ|g〉〈e| + |g〉〈e|ρ|e〉〈g|)D−†
t |sy〉〈+x|Dqb (sε)†

= e− �1TCD
2

∑
s=+,−

∫ TCD

t=0

�1dt

4
Dqb (sε)D−

t |+x〉(〈g|ρ|g〉 + 〈e|ρ|e〉)〈+x|D−†
t Dqb (sε)†

= e− �1TCD
2

∑
s=+,−

∫ TCD

t=0

�1dt

4
Dqb (sε)D−

t ρbD−†
t Dqb (sε)† ⊗ |+x〉〈+x|, (A7)

where we have used that D+
TCD−t = D−

t from the second to the third line, and ρb denotes the density matrix of the auxiliary
state found after tracing out the qubit mode on the last line. Thus, when a qubit flip occurs, which happens with probability

e− �1TCD
2

�1TCD
2  pBF, the auxiliary state is randomly shifted in the whole interval I along pb, and randomly shifted by ±ε along

qb.
We now argue that the echoed conditional displacement gate employed in current superconducting circuit experiments

[8,9], performed on a qubit affected by relaxation only (�− = �1, �+ = 0), is equivalent to a simple conditional displacement
gate performed on a qubit affected by excitation and relaxation at equal rates (�+ = �− = �1/2). The echoed conditional
displacement includes a π rotation of the qubit around σy together with a change of sign for the oscillator-qubit interaction at
TCD/2:

HECD
qb

=
{

HCD
qb

if t < TCD
2 ,

−HCD
qb

if t > TCD
2 .

(A8)

Thus, for a noiseless qubit (perfect gate), the evolution reads as

UECD
qb

= e−i π
2β

qbσz e−i π
2 σy ei π

2β
qbσz

= e−i π
2 σy UCD

qb
.

(A9)

Formally, the final π rotation around σy does not impact the subsequent qubit measurement along σy so that, after applying
a feedback displacement and tracing out the qubit, this evolution is equivalent to that obtained after a simple conditional
displacement gate.

Here again, we unravel the effect of qubit relaxation at rate �− = �1 as stochastic jumps, assuming that the jump probability
is small (�1TCD � 1). In particular, this implies that double-jump trajectories may be neglected. At each infinitesimal time step
dt , the Kraus operators are

√
�1dt |g〉〈e| = √

2P− and the corresponding no-jump operator 1 − iH̃NJdt with

H̃NJdt = HECD
qb

dt − iP−†P−

= HECD
qb

dt − i�1

4
(1 − σz )dt .

(A10)

First focusing the no-jump evolution, it reads as

OECD,NJ = e− �1TCD
8 (1−σz )e−i π

2β
qbσz e−i π

2 σy e− �1TCD
8 (1−σz )ei π

2β
qbσz

= e−i π
2 σy e− �1TCD

4 UCD
qb

, (A11)

where the various terms have simply been ordered using that the two terms in the non-Hermitian Hamiltonian (A10) commute.
Thus, we recover the same no-jump evolution as for the simple conditional displacement gate.
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Now focusing on the case where a jump occurred at time t during the gate, the evolution operator reads as

Õt =
⎧⎨
⎩Õ<

t = √
2 e−i π

2β
qbσz e− �1TCD

8 (1−σz )e−i π
2 σy ei π

2β
(1− 2t

TCD
)qbσz e− �1 (TCD−2t )

8 (1−σz )P−ei π
2β

2t
TCD

qbσz e− �12t
8 (1−σz ) if t < TCD

2 ,

Õ>
t = √

2 e−i π
2β

(2− 2t
TCD

)qbσz e− �1 (2TCD−2t )
8 (1−σz )P−e−i π

2β
( 2t

TCD
−1)qbσz e− �1 (2t−TCD )

8 (1−σz )e−i π
2 σy ei π

2β
qbσz e− �1TCD

8 (1−σz ) if t > TCD
2 .

(A12)

After commuting the projectors and the qubit rotation operator
through the conditional displacements, we find that

Õt =
⎧⎨
⎩Õ<

t = √
2e− �1t

2 e−i π
2 σy O−

t if t < TCD
2 ,

Õ>
t = −√

2e− �1 (t−T )
2 e−i π

2 σy O+
t if t > TCD

2 ,
(A13)

where O± is defined as in Eq. (A6). Õt thus collapses the
qubit onto |e〉 and displaces the oscillator state along pb

by π
β

(1 − 2 t
TCD

) ∈ I> = [0, π
β

] if t < TCD
2 , and collapses the

qubit onto |g〉 and displaces the oscillator state along pb by
−π

β
(1 − 2 t

TCD
) ∈ I> if t > TCD

2 . Notice that for a periodic state

with period 2π
β

, the former displacement is equivalent to a
displacement by −π

β
(1 + 2 t

TCD
) ∈ I<. In both cases, measur-

ing the σy Pauli operator of the qubit following the evolution
yields a random outcome, and thus a random feedback dis-
placement by ±ε along qb. The integrated probability for the
trajectories during which a jump occurred is, at first order
in �1TCD–�1TCD/2 = pBF, and the non-normalized density
matrix conditioned on a jump having occurred is the same as
the one found in Eq. (A7), at first order in �1TCD.

The most notable difference with the case of a simple
conditional displacement in presence of transmon excitation
and relaxation at equal rates lies in the distribution of displace-
ments entailed by a jump. After the qubit measurement and
feedback, the non-normalized system state conditioned on a
jump having occurred differs from Eq. (A7) at second order

ρECD,J,FB = e− �1TCD
2 |+x〉〈+x|

∑
s=+,−

∫ TCD
2

t=0

�1dt

2

× cosh(�1t )Dqb (sε)D+
t ρbD+†

t Dqb (sε)†, (A14)

where the cosh(�1t ) slightly favors shortly displaced states
over states displaced by a long distance (the oscillator modular
position is no longer uniformly sampled in I). We insist that
this correction is of second order in �1TCD, and is given here
to show that such second-order correction should not impact
significantly the performance of our protocol.

To conclude this section, we mention that in the case where
a simple conditional displacement is applied to a qubit in pres-
ence of excitation and relaxation at different rates, one finds
a modified no-jump evolution by which the qubit partially
collapses onto |g〉. This partial collapse slightly unbalances
the relative amplitudes of probability for the two conditionally
displaced copies of ρ, thereby reducing the contrast of the sub-
sequent qubit measurement. The impact on the performances
of our protocol is expected to be similar to that of the qubit
phase flips, which is described in the next section.

2. Phase flips of the physical qubit

By comparison with bit flips, phase flips of the qubit are
simpler to model. Indeed, in the quantum trajectory approach

described above, they correspond to σz gates randomly ap-
plied to the qubit over any time interval of duration dt with
probability �φ

2 dt , where �φ is the qubit pure dephasing time.
Since σz commutes with the interaction Hamiltonian, phase
flips are equivalently modeled as a σz gate applied after the
gate with probability pPF = �φ

2 TCD (in the weak noise limit).
By flipping the sign of the subsequently measured σy Pauli
operator, this error results in an erroneously applied feedback
displacement. We set pPF = pBF/2, typical of superconduct-
ing circuit experiments, in all simulations performed in this
work.

Note that qubit readout errors have an impact similar to
phase flips, but may cause more damage when the qubit is
actively reset based on the measurement outcome, yielding a
qubit erroneously prepared in |−x〉 for the subsequent auxil-
iary state preparation round [see Fig. 2(d)]. Experimentally,
such reset errors may be mitigated by repeating the reset
procedure in |g〉, assuming the measurement to be quantum
nondemolition for the |g〉 state [43,44]. Readout errors are not
modeled in this work.

3. Quadrature noise

Quadrature noise at rate κ is modeled by two Lindblad dis-
sipators

√
κD[q] and

√
κD[p], inducing uniform diffusion of

an oscillator state in phase space. Its effect can equivalently be
modeled by the application of stochastic evolution operators

Uq
dt = ei

√
κdWqq,

Up
dt = ei

√
κdWpp,

(A15)

where dWq and dWp are independent Wiener processes char-
acterized by dWq = dWp = 0 and dW 2

q = dW 2
p = dt [42].

a. Effective noise channel after a conditional displacement gate

We here consider a conditional displacement gate applied
on the q quadrature of the auxiliary oscillator reading

UCD
q = ei π

β
qσz , (A16)

where we dropped the subscript b to designate the auxiliary
oscillator quadrature. It is straightforward to adapt the follow-
ing calculation to the case of a conditional displacement along
the p quadrature.

When the gate is applied in finite time TCD and in presence
of quadrature noise, we use Trotter decomposition over N =
TCD
dt � 1 steps to write the stochastic evolution over a single

trajectory

ŨCD
qa

=
N∏

j=1

(
ei π

Nβ
qσz ei

√
κdW j

q qei
√

κdW j
p p), (A17)
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where all Wiener processes dW j
q , dW j

p are independent. Using
Baker-Campbell-Hausdorff formula, we reorder this product
to put the noise terms in front:

ŨCD
qa

=
N∏

j=1

(
e−i

√
κdW j

p
jπ

Nβ
σz

)

×
N∏

j=1

(
ei

√
κdW j

q q ei
√

κdW j
p p) N∏

j=1

(
ei θ

N qσz
)
. (A18)

The center and rightmost products correspond to a quadrature
noise channel applied for a duration TCD after an error-free
conditional displacement gate UCD

q , corresponding to our ef-
fective noise model. We thus neglect the leftmost term, which
rotates the qubit Bloch vector around its σz axis conditioned
on the value of dW j

p , i.e., the particular value of the q shifts
induced by noise during the interaction. Its physical inter-
pretation is clear: q shifts of the oscillator that occur at the
beginning of the gate ( j → N) leave an imprint on the qubit
phase similarly to shifts having occurred before the gate, while
shifts that occur toward the end of the gate ( j → 1) impact
negligibly the qubit phase. Thus, if we were to exactly model
the system evolution with all the terms in Eq. (A18), the re-
centering feedback displacement following the gate and qubit
readout would partially correct for q-quadrature noise during
the gate. By neglecting the leftmost term in Eq. (A18), we
carry over this noise to the next round, resulting in a slightly
broadened q-probability distribution for the auxiliary state.
Similar arguments can be made for the p distribution. For
the noise figures considered in this work (κTCD < κTround <

10−4), we expect this approximation to have a marginal im-
pact on the estimated performances of our error-correction
protocol, which are only slightly underestimated.

b. Effective noise channel after a quadrature gate

We follow a similar reasoning for the quadrature gate

Uquad
qa

= eiθqaqb, (A19)

where θ = α/β. Here, for simplicity, we consider qa and qb

quadrature noise only, corresponding to stochastic terms of the
form ei

√
κdWpa pa and ei

√
κdWpb pb : the terms inducing shifts along

pa and pb commute trivially through the gate. We decompose
the noisy gate over N = Tquad

dt � 1 steps as

Ũquad
q =

N∏
j=1

(
ei θ

N qaqbei
√

κdW j
pa pa ei

√
κdW j

pb pb
)
, (A20)

where all Wiener processes dW j
pa , dW j

pb are independent.
Using Baker-Campbell-Hausdorff formula, we reorder this
product to place the noise terms in front:

Ũquad
q = eiφ

N∏
j=1

(
ei

√
κdW j

pa pa e−i
√

κdW j
pb

jθ
N qa

)

×
N∏

j=1

(
ei

√
κdW j

pb pb e−i
√

κdW j
pa

jθ
N qb

) N∏
j=1

(
ei θ

N qaqb
)

= eiφ′
N∏

j=1

e−i
√

κdW j
pb

jθ
N qa

N∏
j=1

e−i
√

κdW j
pa

jθ
N qb

×
N∏

j=1

ei
√

κdW j
pa pa

N∏
j=1

ei
√

κdW j
pb pb

N∏
j=1

ei θ
N qaqb, (A21)

where φ and φ′ are irrelevant global phases that can be omit-
ted. Our simplified model includes the fifth product (equal to
the noiseless evolution Uquad

qa ) and the third and fourth prod-
ucts (corresponding to quadrature noise channels applied on
idling oscillators). The first product corresponds to an extra pa

quadrature noise term, correlated to the auxiliary oscillator qb

noise during the gate. Since, in our protocol, we discard the re-
sult of measurements of the modular stabilizer q̃b and reset the
auxiliary state at the end of each cycle, this correlated noise
boils down to random displacements of the target state along

pa, with zero mean value and variance (
√

κθ

N

∑
j jdW j

pb )2 →
κ θ2

3 Tquad, where the last limit is taken for N → ∞. We account
for this term by renormalizing the pa quadrature noise rate
during the gate following κ → κ (1 + θ2

3 ). Note that its ef-
fect could be partially mitigated by decoding the information
yielded by the q̃b measurements at the end of the cycle. Sim-
ilarly, the second product describes shifts along pb correlated
to the target oscillator qa noise during the gate. In analogy
to the case of the conditional displacement gate detailed in
the previous section, it is interpreted as partial mapping of
the target oscillator shift errors occurring during the gate onto
the auxiliary oscillator (shifts occurring at the beginning of the
evolution leave a stronger imprint than those occurring toward
the end). By neglecting this term in our simplified model, we
carry over to the following cycle errors that would have been
partly corrected in a more accurate model, and thereby expect
to slightly underestimate the performances of our protocol.

APPENDIX B: OSCILLATOR DYNAMICS
IN THE ZAK BASIS

1. The Zak basis

The dynamics of our system is conveniently described in
the Zak basis [32] of the oscillators, which is the basis formed
by displaced GKP states within one unit cell of the GKP
lattice. Equivalently, the Zak basis we will consider for the
target oscillator can be seen as the joint eigenbasis of the
modular logical operator q̃L

a and of the modular stabilizer
p̃S

a , and the Zak basis for the auxiliary oscillator as the joint
eigenbasis of the modular stabilizers q̃b and p̃b. Formally, the
Zak states are defined as

|u, v〉a = e−iupa+ivqa |+Z〉 = e
i
2 uv

∑
n∈Z

einvα|nα + u〉qa ,

|u′, v′〉b = e−iu′pb+iv′qb |ø〉 = e
i
2 u′v′ ∑

m∈Z
eimv′β |mβ + u′〉qb,

(B1)

where we use the convention u ∈ [−α
2 , α

2 ], v ∈ [− 2π
α

, 2π
α

],
u′ ∈ [− β

2 ,
β

2 ], and v′ ∈ [− 2π
β

, 2π
β

] and denote by |r0〉r an
eigenstate of the operator r with eigenvalue r0.

We will later use the following properties.
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Momentum basis representation:

|u, v〉a = e− i
2 uv

∑
n∈Z

e−inu 2π
α

∣∣∣∣n2π

α
+ v

〉
pa

,

|u′, v′〉b = e− i
2 u′v′ ∑

m∈Z
e−imu′ 2π

β

∣∣∣∣m 2π

β
+ v′

〉
pb

. (B2)

Displacements (for Zak states of either oscillator):

e−iwp|u, v〉 = e− i
2 wv|u + w, v〉,

e+iwq|u, v〉 = e
i
2 wu|u, v + w〉,

(B3)

where u + w and v + w are to be considered as modular
coordinates (respectively modulo α or β and modulo 2π

α
or

2π
β

).
We will now show that, if the target mode is initialized in

the | ± Z〉 logical basis, the states of both the auxiliary and
target oscillators are described by diagonal density matrices
in their respective Zak bases throughout auxiliary state prepa-
ration and Steane-type error correction. Therefore, they can
be represented by wrapped probability distributions Qa and Pa

for the target oscillator, Qb and Pb for the auxiliary oscillator.
Moreover, these distributions are separable between the two
parameters of each Zak basis:

ρa =
∫

u

∫
v

Qa(u)Pa(v)|u, v〉〈u, v|a,

ρb =
∫

u′

∫
v′

Qb(u′)Pb(v′)|u′, v′〉〈u′, v′|b. (B4)

We also give evolution rules for these distributions throughout
correction rounds and cycles, on which numerical simulations
used in this work are based.

2. Auxiliary state preparation

We here describe the evolution of the auxiliary state
through a Rqb preparation round. The results can be directly
adapted to the case of Rpb rounds. Moreover, we drop the
subscript b to simplify notations.

A Rq round labeled j (Np + 1 � j � Np + Nq) starts with
a qubit initialization in the +1 eigenstate of its Pauli operator
σx, followed by a conditional displacement gate UCD

q = eiθqσz

where θ = π
β

. The qubit is then measured along σy, and a
feedback displacement by ±ε j is applied along q depending
on the outcome. The Kraus operators corresponding to the two
possible outcomes are [8]

M+ = e−iε j pcos
(
θq + π

4

)
,

M− = e+iε j pcos
(
θq − π

4

)
. (B5)

If, before the round, the auxiliary state is of the form (B4) with
probability distributions

Qj−1(u), Pj−1(v), (B6)

the conditional states after the qubit readout and feedback
displacement are of the same form. In detail, if no qubit
flip occurred during the gate, which happens with probability

1 − pPF − pBF (in the limit of small flip probability), the non-
normalized conditional probability distributions read as

Q±,NF
j−1 (u) = (1 − pPF − pBF)

[
1

2
± 1

2
sin

(
2π

β
(u ± ε j )

)]

× Qj−1(u ± ε j ),

P±,NF
j−1 (v) = (1 − pPF − pBF)Pj−1(v). (B7)

As detailed in Appendix A, phase flips of the qubit during the
gate, occurring with probability pPF, lead to an erroneously
applied feedback displacement, yielding non-normalized con-
ditional probability distributions

Q±,PF
j−1 (u) = pPF

[
1

2
± 1

2
sin

(
2π

β
(u ∓ ε j )

)]
Qj (u ∓ ε j ),

P±,PF
j−1 (v) = pPFPj−1(v) (B8)

while bit flips of the qubit during the gate, occurring with
probability pBF, result in a randomly applied feedback dis-
placement by ±ε j along qb and a long displacement along
pb uniformly sampled in [−π

β
, π

β
]. The corresponding non-

normalized conditional probability distributions read as

QBF
j−1(u) = pBF

2
(Qj−1(u + ε j ) + Qj−1(u − ε j )),

PPF
j−1(v) = pBF β

2π
. (B9)

After recombining all conditional probability distributions
to model the proportional (memoryless) feedback strategy, the
summed distributions read as

QFB
j−1(u) =

[
1

2
+ pNF

2
sin

(
2π

β
(u + ε j )

)]
Qj−1(u + ε j )

+
[

1

2
− pNF

2
sin

(
2π

β
(u − ε j )

)]
Qj−1(u − ε j ),

PFB
j−1(v) = (1 − pBF)Pj−1(v) + pBF β

2π
, (B10)

where we defined pNF = 1 − 2pPF − pBF. At the end of the
round, we apply an effective quadrature noise channel, which
convolves the probability distributions with wrapped normal
distributions Gq and Gp, respectively, defined on [− β

2 ,
β

2 ] and
[−π

β
, π

β
], both with variance σ 2 = κTround. We thus get at the

beginning of the following round a state of the form (B4) with
probability distributions

Qj (u) = QFB
j−1 ∗ G(u),

Pj (v) = PFB
j−1 ∗ G(v). (B11)

The evolution of the auxiliary state through a Rp round
is simply obtained by the exchange q → p in the above for-
mulas. In our simulations, we initialize the auxiliary state of
the form (B4) with uniform Q0 and P0 distributions before
preparation (see Appendix B 4 for a justification of this hy-
pothesis). It follows from the above analysis that the auxiliary
state remains of this form throughout preparation. Note that
the Kraus map defined by the operators (B5), as well as
quadrature noise, suppress both off-diagonal terms of the Zak
basis density matrix and classical correlations between the
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values of the modular operators q̃ and p̃. Therefore, a state
which is not initially of the form (B4) becomes so after a long
sequence of preparation rounds.

3. Target oscillator error correction

We here describe the evolution of the target oscillator state
through a Cqa correction cycle [see Fig. 2(c)]. A cycle starts
with the auxiliary state prepared as described in the previ-
ous section. A quadrature gate Uquad

qa = eiθqaqb with θ = α
β

is
applied to the oscillators, followed by detection of the p̃b sta-
bilizer with outcome m ∈ [−π

β
, π

β
]. In this section, we assume

this detection to be perfect, and detail how to model its finite
accuracy in Appendix B 4. Finally, the target oscillator is dis-
placed by − f (m) along qa, and an effective noise channel is
applied to the target oscillator state to account for quadrature
noise throughout the cycle.

We suppose the target state to be of the form (B4) when the
jth cycle begins. After the auxiliary state preparation, which
yields a state of the form (B4) with probability distributions
Qb,Np+Nq and Pb,Np+Nq , abbreviated to Qb and Pb for simplicity,
the joint state of the system reads as

ρ0
j−1 =

∫
u

∫
v

∫
u′

∫
v′

Qaj−1 (u)Paj−1 (v)Qb(u′)

× Pb(v′) |u, v〉〈u, v|a |u′, v′〉
× 〈u′, v′|b du dv du′dv′. (B12)

After the quadrature gate, the state reads as

ρ1
j−1 =

∫
u

∫
v

∫
u′

∫
v′

Qaj−1 (u)Paj−1 (v)Qb(u′)

× Pb(v′) |u, v + θu′〉〈u, v + θu′|a |u′, v′ + θu〉
× 〈u′, v′ + θu|b du dv du′dv′. (B13)

Detection of the p̃b stabilizer yielding an outcome m is
modeled by the application of the Kraus operator Mm =∫

u′ |u′, m〉〈u′, m|b. After tracing out the auxiliary state, the
non-normalized target oscillator density matrix conditioned
on the outcome m reads as

ρm
aj−1

=
∫

u

∫
v

∫
u′

Qaj−1 (u)Paj−1 (v)Qb(u′)Pb(m − θu)

× |u, v + θu′〉〈u, v + θu′|a du dv dv′. (B14)

After a feedback displacement by − f (m) and summing over
m to model our memoryless feedback strategy (in the sense
that the measurement records are not carried to the following
cycle), we get

ρFB
a j−1

=
∫

u

∫
v

∫
u′

∫
m

Qaj−1 (u)Paj−1 (v)Qb(u′)

× Pb(m − θu) |u − f (m), v + θu′〉
× 〈u − f (m), v + θu′|a du dv dv′dm. (B15)

Given that the probability distributions are wrapped functions
and that the integrals are defined over their whole domains,
we find that this state is of the form (B4) with probability

distributions

QFB
a j−1

(u) =
∫

m
Qaj−1 [u + f (m)]Pb

(
m − θ [u + f (m)]

)
dm,

PFB
a j−1

(v) =
∫

u′
Paj−1 (v − θu′)Qb(u′) du′. (B16)

Finally, we apply the effective noise channel accounting for
quadrature noise during the gate and the following auxiliary
state preparation rounds. It convolves the probability distri-
bution Qa with a wrapped normal distribution Ga of variance
σ 2 = κ[Tquad + (Nq + Np)Tround], and the probability distribu-
tion Pa with a wrapped normal distribution G̃a with slightly
larger variance to account for the renormalized quadrature
noise κ → κ̃ during the quadrature gate (Appendix A 3 b). We
thus get the target state at the beginning of the following cycle,
also of the form (B4), with probability distributions

Qaj (u) = QFB
a j−1

(u) ∗ Ga(u),

Paj (v) = PFB
a j−1

(v) ∗ G̃a(v). (B17)

The evolution of the target oscillator state during a Cpa

correction cycle is derived with similar calculations, inverting
the role of Qaj and Paj . It also transforms a state of the form
(B4) into a state of the same form. Therefore, if the target is
initialized in a state of this form, e.g., when prepared in |+Z〉,
it remains so indefinitely. In order to extract the decay rate
of the z component of the GKP qubit Bloch vector under a
particular set of error-correction parameters, one only needs
to compute the evolution of Qa through successive Cqa and
Cpa cycles. After some number of cycles Nc, the GKP qubit is
decoded and its z Bloch sphere coordinates read as

z(Nc) =
∫

u
QaNc

(u) � (u)du, (B18)

where � is a step function with value 1 on [−α
4 , α

4 ] and −1
elsewhere. By fitting the decay of z(Nc) with an exponential
function, one extracts the decay rate of the z component of
the GKP qubit Bloch vector κlog. In Appendix C we present a
more efficient method to extract this same rate.

Note that with the Zak basis we chose, constructed from the
logical |+Z〉 state, we cannot directly simulate the decay of
other logical Pauli operators. One could do so by considering
alternative Zak basis definitions. However, the square GKP
code symmetry properties ensure that the three components
of the logical Bloch vector decay with respective rates κz =
κx = κy/2 = κlog.

4. Detection of the modular stabilizer

In the previous section, we considered the detection of the
p̃b stabilizer as perfect and instantaneous. Since this mea-
surement can be destructive for the auxiliary oscillator state,
homodyne detection of pb is typically considered in the lit-
erature. However, letting the field leak out of the auxiliary
resonator to be detected requires to wait at least a timescale
of a few 1/κ . This is not a viable option for error correction,
which requires κTcycle � 1. One could partly circumvent the
issue by mapping the value of pb to a supplementary, low-
Q resonator via a quadrature gate, but we found that, for a
quadrature-quadrature interaction strength of the same order
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as that activated between the target and auxiliary oscillators,
the operation would here again dominate the error-correction
cycle duration. Moreover, combined photon collection and ho-
modyne detection efficiencies are in practice limited to η � 1

2
in all experimental platforms, which would result in a too low
detection accuracy. Alternatively, we consider detecting the
modular operator p̃b through repeated physical qubit-based
measurement rounds. Indeed, the outcome of the Rpb rounds
preparing the auxiliary state for the following cycle can be
straightforwardly decoded to estimate the value of p̃b prior
to repreparation, with sufficient accuracy for error correction.
This method belongs to the class of phase-estimation pro-
tocols [12–18]. Indeed, measuring the value of the modular
operator p̃b is equivalent to estimating the phase of eiβpb .
Note, however, that here the measurement is not quantum
nondemolition (QND) in the sense that the phase of eiβpb

is modified during each Rpb round by the applied feedback
displacements. As detailed below, the memory of the initial
phase is fully erased after a few tens of rounds.

To justify this approach and estimate the p̃b detection
accuracy, we suppose that the auxiliary oscillator is in a
Zak-diagonal state of the form (B4) with a Pb probability dis-
tribution Dirac peaked in p0, whose value we want to estimate.
Over a number Np of Rpb preparation rounds, this distribu-
tion is on average shifted and broadened by the feedback
displacements {±ε j}1� j�Np applied at the end of each round.
Denoting S = {s j}1� j�Np a particular measurement record

(with s j = ±1 for each round j) and −m(S ) = ∑Np

j=1 s jε j the
total applied displacement, the auxiliary state p distribution
after re-preparation reads as

PS
p0

(p) = δ 2π
β

[p − p0 + m(S )], (B19)

where δ 2π
β

is a Dirac comb of period 2π
β

. Averaging over all

possible measurement outcomes, the auxiliary state distribu-
tion after repreparation reads as

Pp0 (p) =
∑
S

Pp0 (S )δ 2π
β

[p − p0 + m(S )], (B20)

where Pp0 (S ) is the probability of the measurement record S .
Pp0 becomes smooth for Np sufficiently large.

We simply propose to estimate p0 with m(S ) for a given
measurement record S . The accuracy of the p̃b detection so
performed is characterized by the distribution Ep0 of the error
e(S ) = m(S ) − p0. It reads as

Ep0 (e) =
∑
S

Pp0 (S )δ 2π
β

[e − m(S ) − p0] = Pp0 (−e).

(B21)

The last equality simply means that the detection accuracy is
as good as the auxiliary state repreparation.

Crucially, we observe in Fig. 5 that for all the repreparation
sequences used in this work, the auxiliary state distribution
Pp0 after the Rpb rounds, and thus the error distribution Ep0 ,
depends negligibly on p0. This is simply understood as the
long feedback kicks ε j applied during the first few Rpb rounds
quickly erase the memory of its prior state. This justifies a pos-
teriori the hypothesis made in Appendix B 2 that the auxiliary
state is of the form (B4) with uniform distributions prior to

FIG. 5. Measurement and repreparation of the auxiliary state.
We compute the Pp0 distribution of the auxiliary oscillator (plain
lines) prepared by a number Np = 20 of Rpb rounds from a narrow
Gaussian distribution (dashed lines, standard deviation σ ∼ 0.1) cen-
tered at p0 (encoded in color). The feedback displacements applied
after each round and the rectangularity parameter of the auxiliary
oscillator are the ones returned by gradient ascent to minimize the
logical error rate for pBF = 2pPF = 0.005 and κTround = 2.10−5. We
pick these example parameters, in particular the small number of
preparation rounds, as the a priori less favorable situation for the
prepared auxiliary state not to depend on the initial condition p0. We
observe that the final distributions corresponding to different initial
states do not differ significantly, justifying our approach to modular
operator detection as detailed in Appendix B 4.

repreparation: any initial state would yield the same prepared
state. As for the finite accuracy of the p̃b detection this method
yields, it can be modeled by an ideal detection preceded by a
convolution of the Pb probability distribution with the error
function E = PNp , where PNp is the distribution describing the
auxiliary state prepared, from an arbitrary state, by a number
Np of Rpb rounds as detailed in Appendix B 2 (we used that
PNp is an even distribution). Note that in Fig. 5, the auxiliary
state distribution prior to repreparation is a Gaussian centered
in p0 and with width σ = 0.1 in rescaled coordinates. Taking
σ → 0 as in the above calculation led to numerical aberrations
attributed to the encoding of the wrapped distributions in the
form of Fourier coefficient vectors of length 2nF + 1 with
nF = 60 (see Appendix C 1).

In our reasoning, we have omitted shifts of the auxiliary
state distribution entailed by flips of the qubit and intrinsic
quadrature noise of the auxiliary oscillator during the Rpb

rounds. The former only entails shifts of the Qb probability
distribution during Rpb rounds, and has no impact on Pb. The
effect of the latter is to broaden the Pb distribution as it is
being measured and reprepared. We model it by including
quadrature noise in the numerical computation of PNp , by
which we expect to slightly underestimate the p̃b detection
accuracy. Indeed, by supposing that PNp is solely broadened
by the stochastic nature of the applied feedback displacements
we overestimate the spread of E .

APPENDIX C: EFFICIENT NUMERICAL ESTIMATE
OF THE GKP QUBIT DECOHERENCE RATE

Computing the evolution of the auxiliary and target state
under the form of classical probability distributions Qa, Pa,
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Qb, and Pb as detailed in the previous section greatly reduces
the cost of numerical simulation compared to a full description
in terms of density matrices. Typically, one keeps track of the
distributions as two vectors of length 1000. In this section,
we further reduce simulation costs by representing the prob-
ability distributions in Fourier domain, as vectors of 2nF + 1
Fourier coefficients with 30 � nF � 60. After translating the
calculations of Appendixes B 2 and B 3 to the Fourier domain
in Appendixes C 1 and C 2, we encode the evolution of the
target oscillator over a pair of Cqa/Cpa cycle in an evolution
matrix and show how to extract the decay rate of the GKP
qubit by spectral analysis of this matrix in Appendix C 3.
We also show how to compute the gradient of this rate with
respect to the continuous parameters of the protocol (length
of the feedback displacements ε j applied after each round,
Fourier coefficients of the target oscillator feedback law f ,
rectangularity R = √

2π/β of the auxiliary GKP state lattice),
which greatly facilitates their optimization.

In order to simplify calculations, we consider in the fol-
lowing rescaled wrapped distributions �qa , �qb , and �pb ,
and rescaled feedback shifts e j at the end of each round, p̃b

detection outcome ψ at the end of each cycle, and feedback
law F governing the feedback displacement applied to the
target oscillator, all defined over [−π, π ]:

�qa (φ) = 1√
π

Qa

(
φ√
π

)
,

�qb (φ) = β

2π
Qb

(
βφ

2π

)
,

�pb (φ) = 1

β
Pb

(
φ

β

)
,

e j = ε jβ for 1 � j � Np,

e j = ε j
2π

β
for Np + 1 � j � Np + Nq,

ψ = mβ,

F (ψ ) = √
π f

(
ψ

β

)
. (C1)

We also define the Fourier coefficients of a 2π -periodic func-
tion g as g(k) = 1

2π

∫ π

−π
g(φ)e−ikφdφ. Note that the evolution

of the Pa probability distribution is not considered here as
the decay rate κlog of the GKP qubit. The z-Bloch vector
component is computed from the evolution of Qa only.

1. Auxiliary state preparation in Fourier domain

We revisit the auxiliary state preparation described in
Appendix B 2 to translate it in the Fourier domain. The
distributions are uniform before preparation, with Fourier co-
efficients �

(k)
pb,0

= �
(k)
qb,0

= δk/(2π ), where δ is the Kronecker
symbol.

During the jth Rpb round, the �pb distribution evolves
after the physical qubit readout and application of a feedback
displacement following Eq. (B10), which reads as in rescaled

coordinates

�FB
pb, j−1(φ) =

[
1

2
+ pNF

2
sin(� + e j )

]
�pb, j−1(φ + e j )

+
[

1

2
− pNF

2
sin(φ − e j )

]
�pb, j−1(φ − e j ),

(C2)

where we used the shorthand notation pNF = 1 − pBF − 2pPF.
Expanding this expression in powers of e j , we get

�FB
pb, j−1(φ)  1

2

nT∑
n=0

en
j

n!

(
∂n�pb, j−1(φ)

∂φn
[1 + (−1)n]

+ pNF ∂n[�pb, j−1(φ)sin(φ)]

∂φn
(1 − (−1)n)

)
.

(C3)

Note that the term n = 1 corresponds to a drift velocity
e j pNFsin(φ)/Tround and the term n = 2 to a diffusion constant
e2

j/(2Tround ), quoted in Sec. II in nonrescaled coordinates.
Neglecting following terms, one obtains a Fokker-Planck
equation, which is only valid for e j → 0. For the numerical
simulations performed in this work, we truncate the expansion
at nT = 30.

In Fourier domain, this expression translates to

�
FB (k)
pb, j−1 =

∑
n even

(ike j )n

n!
�

(k)
pb, j−1

+
∑
n odd

pNF (ike j )n

n!

1

2i

(
�

(k−1)
pb, j−1 − �

(k+1)
pb, j−1

)
. (C4)

The distribution is then convolved with a Gaussian kernel
modeling the effect of quadrature noise [see Eq. (B11)]. In
Fourier domain, it reads as

�
(k)
pb, j = �

FB (k)
pb, j−1e− 1

2 κpTroundk2
, (C5)

where κp = 2πκ/R2 is the rescaled quadrature noise rate.
After Np rounds, the error function E for the p̃b detection is
inferred from the distribution �pb,Np (see Appendix B 2). The
�qb,Np distribution is still uniform at this stage as we assume
the distributions �qb,0 and �pb,0 prior to preparation to be
uniform (see Appendix B 4).

Through the sequence of Rqb rounds, the �pb distribution
evolves due to quadrature noise and random displacements
induced by bit flips of the qubit as

�
(k)
pb,Np+Nq

= (
1 − pBF

tot

)
�

(k)
pb,Np

e−πNqκpk2 + pBF
tot

δk

2π
, (C6)

where pBF
tot = 1 − (1 − pBF)Nq is the probability for at least

one bit flip to have occurred. As for the �qb distribution,
it evolves through Rqb rounds following the same rules as
�pb through Rpb rounds [Eqs. (C4) and (C5)], albeit with a
rescaled quadrature noise rate κq = 2πκR2 for the Gaussian
kernel convolution.

Overall, we thus compute the prepared auxiliary state un-
der the form of two (2nF + 1) vectors of Fourier coefficients
(−nF � k � nF ), and obtain the error function E for the p̃b

detection under the same form. Moreover, it is straightforward
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to compute the gradient of each vector with respect to each
feedback displacement length e j , as well as with respect to
the grid rectangularity parameter R, by taking the derivative
of the formulas given above and applying chain rules.

2. Target oscillator dynamics in Fourier domain

We revisit the target oscillator evolution over a pair of
Cqa/Cpa cycles, labeled j and j + 1, described in Appendix B 3
to translate it in Fourier domain. The auxiliary state distribu-
tions before the quadrature gate are �qb,Np+Nq (abbreviated to
�qb) and �pb,Np+Nq , as computed in the previous section. As
detailed in Appendix B 4, we model the inaccuracy of the p̃b

detection by convolving �pb,Np+Nq with an error distribution
E = �pb,Np , which is a simple vector multiplication in Fourier
domain, and denote the resulting distribution by �pb .

During the Cqa cycle, the initial target oscillator distribu-
tion �qa, j−1 is first evolved with the left expression in (B16)
modeling the quadrature gate followed by a measurement of
p̃b whose outcome controls a feedback displacement applied
to the target oscillator. In rescaled coordinates, this evolution
reads as

�FB
qa, j−1(φ) =

∫ π

−π

�qa, j−1[φ + F (ψ )]

× �pb{ψ − 2[φ + F (ψ )]}dψ. (C7)

We now expand this expression in powers of the rescaled
feedback displacement F (ψ ) applied to the target oscillator,
and truncate the series at nT (nT = 30 for all simulations
performed in this work). We then get

�FB
qa, j−1(φ) 

∫ π

−π

nT∑
n=0

F n(ψ )

n!

∂n

∂φn

× (
�qa, j−1(φ)�pb (ψ − 2φ)

)
dψ

=
nT∑

n=0

1

n!

∂n

∂φn

(
Dn(φ)�qa, j−1(φ)

)
, (C8)

where we defined the generalized Fokker-Planck coefficient
functions Dn:

Dn(φ) =
∫ π

−π

F n(ψ )�pb (ψ − 2φ)

= (F n ∗ �pb )(2φ) (C9)

(we use that �pb is even in the last equality). In Fourier
domain, this translates to

�
FB (k)
qa, j−1 =

nT∑
n=0

(ik)n

n!

(
N∑

l=−N

D(k−l )
n �qa, j−1

(l )

)
(C10)

and the Fourier coefficients of Dn are computed with

D(k)
n =

{
(F n ∗ �pb )( k

2 ) = 2π (F ∗̃n
)

( k
2 )

�
( k

2 )
pb if k even,

0 if k odd,

(C11)

where ∗̃n denotes the n-fold discrete convolution product
defined as (u∗̃v)(k) = ∑N

l=−N u(k−l )v(l ). In simulations, we

truncate this sum in order to maintain a 2nF + 1 structure for
the Fourier coefficient vectors.

The distribution is then convolved with a Gaussian kernel
Ga modeling the effect of quadrature noise during the Cqa

cycle [left equation in (B17)], then convolved with the �qb

distribution to model the backaction of the quadrature gate
in the following Cpa cycle [right equation in (B16), replacing
Pa → Qa], and again convolved with a Gaussian kernel G̃a

modeling the effect of quadrature noise during the Cpa cycle
[right equation in (B17) replacing Pa → Qa]. In Fourier do-
main, it reads as

�
(k)
qa, j+1 = 2π�(k)

qb
e− k2σ2

tot
2 �

FB (k)
qa, j−1 (C12)

with σ 2
tot = 2κTcycle + θ2

3 κTquad.
Combining Eqs. (C10) and (C12), the evolution through

the two cycles can be expressed under a matrix form

�
(k)
qa, j+1 =

N∑
l=−N

Mkl�
(l )
qa, j−1. (C13)

Note that M is real when F is odd, which is the case in the
following.

3. GKP qubit decoherence rate and convergence rate to the code
manifold by spectral analysis of the evolution matrix

The evolution matrix M is the Fourier transform of a
stochastic matrix. As such, it shares the same eigenspectrum
{λi} where we arrange the eigenvalues in decreasing magni-
tude order. In particular λ0 = 1, and |λi| � 1 for i � 1.

In the regime where the logical flip probability per cycle
is small, we find that the spectrum is gapped with |λ j | � |λ1|
for j > 1. Qualitatively, this gap indicates a fast convergence
of the system to a 2D manifold of probability vectors (distri-
butions), at a rate

�conv = − ln(|λ2|)/(2Tcycle ) (C14)

(note that the evolution matrix corresponds to two error-
correction cycles). We interpret this fast dynamics as a
convergence of the target oscillator state to a metastable state
in the vicinity the GKP code manifold. It is followed by a slow
relaxation, within this manifold, to the system steady state
(the probability distribution �0 obtained by inverse Fourier
transform of the eigenvector attached to λ0) at a rate

κlog = − ln(λ1)/(2Tcycle ). (C15)

In this expression, we have used that, since M is real and λ1

does not have a conjugate eigenvalue, λ1 is real. We interpret
this slow dynamics as the relaxation of the GKP qubit towards
the mixed logical state.

We confirm this intuition by representing the probability
distributions �0 and �1 corresponding to λ0 and λ1 in Fig. 6,
for cycle parameters allowing a robust protection of the GKP
qubit. �0 displays two peaks of equal height centered in
� = 0 and φ = π , as expected from a state close to the code
manifold and decoded as the fully mixed logical state. With
the proper normalization, �0 + �1 displays a single peak
centered in φ = 0, as expected from a state close to the code
manifold and decoded as |+Z〉.
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FIG. 6. Eigenvectors of the evolution matrix M. For κTround =
2 × 10−5, pBF = 1 × 10−5, Np = Nq = 60, and all other parameters
optimized by gradient ascent, we represent the inverse Fourier trans-
form of the eigenvectors of M with largest eigenvalues λ0 = 1 and
λ1 = 1 − 1.3 × 10−5, respectively labeled �0 and �1. Rescaled to
a unit L1 norm, �0 is the probability distribution of the target os-
cillator steady state under error correction (�qa, j with j → ∞ in
Appendix C 2). This state is close to the code manifold, with narrow
peaks centered at φ = 0 mod π and is decoded as the fully mixed
state of the GKP qubit. �1 has a null L1 norm, and is here rescaled
to the same L∞ norm as �0. Given that λ1 is close to 1 and that
a gap exists with the next largest eigenvalue (λ2 = 0.55), a general
state converges in a few correction cycles to a probability distribution
�0 + ζ�1, where ζ is an excellent approximation of the z component
of the GKP qubit Bloch vector when the peaks of �0 and �1 are
sufficiently narrow.

This spectral analysis in Fourier domain is a powerful tool
to estimate the decay rate of the z component of the GKP
qubit Bloch vector. We compared its results to brute-force
computation of the evolution of the target oscillator state,
encoded as a probability vector, over a large number of error-
correction cycles (see Appendix B 3) before fitting the decay
of the decoded z component of the GKP qubit Bloch vector.
Both methods agree quantitatively when the oscillators state
are encoded in a sufficiently long Fourier vector of length
2nF + 1, and when the Taylor expansion in Eqs. (C3) and
(C8) is truncated at a sufficiently high order nT (not shown).
In practice, we found that nF = nT = 30 was sufficient for
all numerical simulations presented in this paper, except to
estimate the smallest decay rates of Fig. 8 and to obtain the
real-domain distributions with no visible ripples presented in
Fig. 3, for which nF = 60 was used. Given the small matrix
size involved, spectral analysis in Fourier domain is signif-
icantly faster than brute-force simulation in real domain. It
also allows us to estimate the convergence rate to the code
manifold �conv, as represented in Fig. 8.

Furthermore, for a given feedback parameter set, the
method allows us to compute the gradient of λ1 with respect
to the cycle continuous parameters (length e j of the feedback
displacements on the auxiliary oscillator, Fourier coefficients
F (k) of the feedback function, and rectangularity R of the
auxiliary state). To this end, we first take the derivative of the
evolution rules for the target and the auxiliary state probabil-
ity distributions (see Appendixes C 1 and C 2), respectively,

through a cycle and through a round, and apply chain rules to
obtain the derivative of the evolution matrix M with respect to
a given parameter x. Each component of the gradient is then
given by

∂λ1

∂x
= PL

1 · M · PR
1

PL
1 · PR

1

(C16)

where the center dot denotes the matrix product and PL
1 and

PR
1 are, respectively, left and right eigenvectors of M for the

eigenvalue λ1.

APPENDIX D: OPTIMIZATION OF ERROR-CORRECTION
PARAMETERS

1. Optimizing continuous parameters by gradient ascent

For a given set of noise values κTround, pBF, and pPF (pPF =
pBF/2 throughout this work) and given preparation round
numbers Nq and Np, we optimize the remaining parameters
of the error-correction cycle by gradient ascent to maximize
the value of λ1. In detail, we consider the gradients

A =
{

∂λ1

∂e j

}
{1� j�Np}

,

B =
{

∂λ1

∂e j

}
{Np+1� j�Np+Nq}

,

C =
{

∂λ1

∂F (k)
s

}
{1�k�kmax}

,

D =
{

∂λ1

∂R

}
,

(D1)

where we defined F (k)
s = (F (k) − F (−k) )/(2i). This choice

constrains the feedback function F to the odd sector, ensuring
that the target probability distribution remains symmetric at
all time (real evolution matrix M). We choose to limit the
number of free Fourier coefficients of F to n′

F = 10 < nF to
limit aberrations entailed by Fourier series truncation during
the convolution step (C11). Pushing n′

F to larger values, and
increasing nF accordingly to avoid aberrations, did not lead to
a significant improvement in error-correction performances.

At each step l of the gradient ascent, for a total number of
steps L = 100, we update the parameter values following

{e j}l+1
{1� j�Np} = {e j}l

{1� j�Np} + a
A

|A|∞ �l ,

{e j}l+1
{Np+1� j�Np+Nq} = {e j}l

{Np+1� j�Np+Nq} + b
B

|B|∞ �l ,

{
F (k)

s

}l+1

{1�k�kmax} = {
F (k)

s

}l

{1�k�kmax} + c
C

|C|∞ �l ,

{R}l+1 = {R}l + d
D

|D|∞ �l ,

(D2)

where the step �l decreases linearly from 1 to 0.05 when l
varies from 1 to L, the parameters a = b = 0.005, c = 0.02,
and d = 0.04 were adjusted empirically such that the vectors
A, B, C, and D would converge at comparable speeds toward
their final values.
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FIG. 7. Optimization of feedback parameters by gradient ascent. The continuous control parameters of our protocol are optimized by
gradient ascent to minimize the decay rate of the z component of the GKP qubit Bloch vector. The top two panels represent this decay
rate κ l

log as a function of the ascent step number l . On the left, we vary the physical qubit flip probability pBF = 2pPF (encoded in color)
for a fixed value of the oscillators’ noise strength κTround = 10−5 (left). On the right, we vary κTround (encoded in color) for a fixed value of
pBF = 2pPF = 5 × 10−4. In the three next lines of panels, we represent, for the same noise figures and at the end of the gradient ascent (l = 100),
the feedback displacements applied after each Rpb round as a function of the round index j � Np (second line), the feedback displacements
applied after each Rqb round as a function of Np < j � Np + Nq (third line), and the feedback law F controlling the displacements applied to
the target oscillator as a function of the normalized outcome ψ of the p̃b estimation (fourth line). For each parameter, the initial guess (before
gradient ascent, l = 0) is represented by a black dashed line. The total number of rounds is fixed to Nq = Np = 60.

As initial guess parameters, we set

e0
j = eie f

e f + (ei − e f ) j
Np

for j � Np,

e0
j = eie f

e f + (ei − e f ) j−Np

Nq

for j > Np,

F (k)
s

0 = f1δk−1, R0 = 1. (D3)

In these expressions, the initial guess for the feedback dis-
placements on the auxiliary oscillator (first two expressions)
is a truncated 1/ j function with large initial value ei = π/2 in
order to suppress the tails of the �pb and �qb distributions, and
small final value e f = 0.05 � 2π to limit the distributions’
central peak width (see Sec. II). The 1/ j power law was cho-
sen to maximize the reduction rate of the distributions central
peak width, while ensuring that this width reaches 0 when
Nq, Np → ∞, in absence of intrinsic noise of the oscillator.
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FIG. 8. Convergence rate towards the GKP code manifold (top
panel) and decay rate of the z component of the GKP qubit Bloch
vector (bottom panel) as a function of the number Nq of Rqb prepa-
ration rounds in each cycle, in absence of intrinsic oscillator noise
(κ = 0) and for various physical qubit flip probabilities per round
(encoded in color, with pPF = pBF/2). For each value of Nq, re-
maining control parameters are optimized by gradient ascent. The
convergence rate towards the code manifold decreases with Nq as
the probability of a single qubit flip to have occurred during the Rqb

preparation rounds approaches 1, blurring error syndromes extracted
during the following error-correction cycle. As a consequence, there
exists a finite value of Nq that minimizes the GKP qubit decay rate.

The initial guess for the rescaled feedback law F is a simple
sine function of amplitude f1 = 0.2.

We observed that the final value of λ1 (and hence the
decay rate κlog) and the correction parameters returned by the
gradient ascent algorithm depends slightly on the initial guess,
indicating the existence of multiple local minima of λ1 (not
shown). The rugged aspect of {e j}l+1

{Np+1� j�Np+Nq} observed
after gradient ascent for some noise values (see Fig. 7, third
line) tends to confirm this complex structure. More refined
gradient ascent techniques may avoid these issues, but were
not attempted in this work.

2. Optimizing the number of preparation rounds

In this section, we analyze the impact of the number of
auxiliary state preparation rounds, Nq and Np, on the perfor-
mances of our error-correction protocol, and comment on the
existence of an optimal, finite value for Nq and Np, irrespective
of the system noise strength.

We first consider the case of noiseless oscillators (κ = 0).
Since the cycle duration is irrelevant in that limit, we allow
the auxiliary state to be prepared with a large number Np →
∞ of Rpb rounds. Letting e j = e → 0, the evolution of the
�pb distribution over a Rpb round is given by Eq. (C3), which
can be truncated at nT = 2. We can approximate this discrete
time evolution with a continuous time evolution governed by
a Fokker-Planck equation

∂�pb

∂t
= −∂

(
v(φ)�pb

)
∂φ

+ 1

2

∂2
(
D�pb

)
∂φ2

, (D4)

where v(φ) = −e(1 − pBF − 2pPF)/Tround and D = e2/Tround.
After an infinite number of Rpb rounds, �pb reaches the steady
state of this equation, which approaches a wrapped normal
distribution with variance e/[2(1 − pBF − 2pPF )] for e → 0.
In other words, �b is a Dirac distribution, and it follows
from Apppendix B 4 that the detection of p̃b following the
quadrature gate is perfect.

We now consider the decay of the GKP qubit in this
configuration. In Fig. 8, we represent the decay rate κlog of
the z component of the GKP qubit Bloch vector and the
convergence rate towards the code manifold �conv, in units of
Tcycle, as a function of Nq. For each value of Nq, the remaining
feedback parameters (feedback displacements following Rqb

rounds, feedback law F , and rectangularity R) are optimized
by gradient ascent as detailed in the previous section. Surpris-
ingly, even in this limit case of noiseless oscillators, we find
that an optimal number of Rqb rounds exists, which can be un-
derstood with the following arguments. When Nq → 0, the Qb

distribution becomes widely spread (see Fig. 3, bottom panel)
and long shifts propagate through the quadrature gate, increas-
ing κlog. In the opposite limit Nq → ∞, Pb is a near-uniform
distribution as the probability of at least one bit flip during Rqb

rounds approaches 1, blurring the error syndromes extracted
from the target oscillator during the following correction cycle
(see Fig. 3, bottom panel). As a result, the convergence rate to
the code manifold drops to 0 (see Fig. 8, top panel), and small
shifts propagating through the quadrature gate are sufficient
to trigger logical errors. Admittedly, we still expect κlog to
vanish for Nq → ∞ (Dirac-peaked Qb distribution) and F = 0
(no feedback displacement applied to the target oscillator)
as the target oscillator dynamics cancels, but this regime is
reached for round numbers far beyond the range considered
here.

Now considering the case of noisy oscillators (κ > 0), the
optimal value of Nq is lower than in the noiseless case [see
Figs. 4 and 9(a)]. Indeed, quadrature noise on the auxiliary
oscillator during Rqb rounds causes the �pb distribution to
diffuse and homogenize, so that the convergence rate to the
code manifold decreases faster with Nq than in the noiseless
case. It also impacts the accuracy of the p̃b detection, with
a similar effect (see Appendix B 4). In Fig. 9(a), we rep-
resent the optimal number of Rqb rounds Nmin found when
sweeping together Nq = Np, for the same range of system
noise strength considered in Fig. 4. Note that here, Nmin is
the value found to minimize κlogTround (and not κlogTcycle as in
Fig. 8), which tends to favor smaller numbers of preparation
round. For completeness, we represent in Figs. 9(b)–9(e) the
value of the other cycle parameters, found by gradient ascent
at Nq = Np = Nmin, which yield the GKP qubit decay rates
presented in Fig. 4. Finally, in order to confirm the exponen-
tial suppression of logical errors as a function of both the
qubit error probability per round pBF and the oscillator noise
strength κTround, we plot in Fig. 9(f) the same data as in Fig. 4
(decay rate of the z component of the GKP qubit Bloch vector
κlog) but here as a function of pBF, with κTround encoded in
color.
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(a) (b) (c)

(d) (e) (f)

FIG. 9. Error-correction parameters used for the simulations whose results are presented in Fig. 4. For each considered noise figure (oscil-
lator noise strength κTround varied along the x axis of each panel, physical qubit flip probability per round pBF = 2pPF encoded color) we sweep
the number of preparation rounds Nq = Np and perform gradient ascent on the continuous correction parameters to minimize the logical qubit
decay rate for each value of Nq = Np. (a) Round number Nmin yielding the minimum logical error rate after gradient ascent. For this round
number, (b) represents the auxiliary lattice rectangularity Rmin found by gradient ascent, (c) the dominant Fourier coefficient F (1) min of the
feedback law controlling the feedback displacement applied to the target oscillator, (d) the average value of the feedback displacements e j

min

( j � Np) applied to the auxiliary oscillator during Rpb rounds, and (e) the average value of the feedback displacements e j
min ( j > Np) applied

to the auxiliary oscillator during Rqb rounds. (f) Decay rate κlog of the z component of the GKP qubit Bloch vector as a function of pBF, with
κTround encoded in color (different colorscale from other panels). These are the same data as presented in Fig. 4, albeit plotted against different
axes.
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