
PHYSICAL REVIEW A 108, 042426 (2023)

Virtual quantum error detection

Kento Tsubouchi ,1,* Yasunari Suzuki,2 Yuuki Tokunaga,2 Nobuyuki Yoshioka,1,3,4 and Suguru Endo 2,†

1Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
2NTT Computer and Data Science Laboratories, NTT Corporation, Musashino, Tokyo 180-8585, Japan

3Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
4JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

(Received 6 February 2023; revised 6 July 2023; accepted 2 October 2023; published 25 October 2023)

Quantum error correction and quantum error detection necessitate syndrome measurements to detect errors.
Performing syndrome measurements for each stabilizer generator can be a significant overhead, considering
the fact that the readout fidelity in the current quantum hardware is generally lower than gate fidelity. Here,
by generalizing a quantum error mitigation method known as symmetry expansion, we propose a protocol
called virtual quantum error detection (VQED). This method virtually allows for evaluating computation results
corresponding to postselected quantum states obtained through quantum error detection during circuit execution,
without implementing syndrome measurements. Unlike conventional quantum error detection, which requires
the implementation of Hadamard test circuits for each stabilizer generator, our VQED protocol can be performed
with a constant depth shallow quantum circuit with an ancilla qubit, irrespective of the number of stabilizer
generators. Furthermore, for some simple error models, the computation results obtained using VQED are robust
against the noise that occurred during the operation of VQED, and our method is fully compatible with other
error mitigation schemes, enabling further improvements in computation accuracy and facilitating high-fidelity
quantum computing.
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I. INTRODUCTION

The last decade has seen the remarkable development of
the noisy-intermediate quantum computing paradigm from
both theoretical and experimental sides [1–8]. Nevertheless,
the effect of noise lies as a crucial problem in realizing practi-
cal quantum computing. Quantum error correction (QEC) and
quantum error detection (QED), which reduce computation
errors through the encoding of logical qubits with many phys-
ical qubits, have been investigated for enhancing computation
accuracy for a long time since the early days of quantum
information science [9–14]. Syndrome measurements are per-
formed in QEC and QED to detect physical errors by using
ancilla qubits; QEC actively corrects physical errors based
on the error information obtained in the decoding process
while QED discards the noisy quantum states once an error
is detected.

While the utility of QEC and QED has been shown
theoretically in numerous previous works, they require high-
fidelity syndrome measurements of stabilizer generators.
Furthermore, the number of required syndrome measurements
increases with the number of stabilizer generators in the QEC
and QED codes. Considering the current situation of super-
conducting hardware, in which the measurement fidelity is
lower than gate errors [6,15,16], the necessity of single-shot

*tsubouchi@noneq.t.u-tokyo.ac.jp
†suguru.endou.uc@hco.ntt.co.jp

measurements [17] for syndrome measurements can be a sig-
nificant overhead in QEC and QED.

For the ease of error reduction in near-term quantum hard-
ware, a class of error reduction techniques referred to as
quantum error mitigation (QEM) has been recently studied
[18–22]. In many QEM methods, the noiseless expectation
values of observables are estimated via postprocessing of
measurement results. This indicates that we cannot physi-
cally obtain quantum states with reduced noise; nevertheless,
QEM allows for virtually simulating the expectation values
of observables for such states. Symmetry expansion (SE) is
one of the QEM methods that use symmetries inherent to the
system to mitigate errors [23–26]. The noisy quantum state
is virtually projected onto the symmetric subspace through
random sampling of the symmetry operators, additional
measurements, and classical postprocessing of measurement
outcomes. As we will discuss later, SE allows for the calcula-
tion of the expectation value of an observable corresponding
to the postselected quantum states through QED without im-
plementing syndrome measurements, and hence is suitable
for near-term hardware. So far, SE is theoretically formulated
for error mitigation for noisy states immediately before mea-
surement [24,25] and state preparation for rotation symmetric
bosonic codes (RSBCs) [26]. Thus, SE in its current form
cannot effectively suppress the accumulation of noise during
computation, whereas the conventional QED can be more
flexibly used during the circuit execution.

In this paper, we significantly expand the framework of
SE so that it can be leveraged during the execution of quan-
tum algorithms. Because our method enables us to obtain the
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expectation values corresponding to the postselected state via
QED, we call it virtual quantum error detection (VQED).
While the conventional SE can only detect errors immediately
before the measurement of expectation values, VQED can
detect errors even during the execution of the quantum circuit,
enabling us to mitigate the accumulation of errors during
the computation. Although VQED inherits the disadvantages
of SE, i.e., we can only obtain error-mitigated expectation
values, not the quantum state itself, and the required sampling
complexity is quadratically worse for the success probability
of QED, the significant advantages of VQED compared with
the QED are as follows.

(1) The depth for QEM is constant regardless of the number
of stabilizer generators of the code.

(2) We only need to measure an expectation value of an
observable without the need for single-shot syndrome mea-
surements.

(3) The obtained expectation values are robust against the
noise that occurred during the operation of VQED for some
simple error models.

(4) Our method is fully compatible with other QEM meth-
ods, e.g., readout error mitigation [27,28] for the ancilla qubit
used in our protocol.

We numerically verify the behavior of the fidelity improve-
ment with our VQED protocol over the conventional SE and
the unencoded physical qubits. We also evaluate the required
sampling costs and verify that the sampling cost for VQED
does not significantly increase compared to SE. Furthermore,
our method can offer virtual implementation of stabilizerlike
QEM methods using spin and particle number preservation in
the computation [23,29] in an even more hardware-friendly
manner.

In addition, we discuss the virtual implementation of
quantum error correction, which results in the computation
outcome corresponding to the error-corrected quantum states.
While the conventional QEC does not induce additional sam-
pling overheads, we find that our virtual QEC generally incurs
a larger sampling overhead than the virtual QED method;
therefore, we conclude VQED is preferred in typical quantum
computation scenarios.

II. PRELIMINARIES

A. Quantum error detection and quantumerror correction
for stabilizer codes

We first review stabilizer codes and ways to detect and
correct their errors [30,31]. QED and QEC are performed
by encoding quantum information into enlarged Hilbert space
at the expense of multiple quantum systems. Due to its re-
dundancy, we can detect and correct their errors during the
computation.

Here, we review the stabilizer formalism, which is the most
standard method to construct quantum error-correcting codes.
Consider an n-qubit Pauli group as

Gn = {±1,±i} × {I, X,Y, Z}⊗n (1)

where I is the identity operator for a single qubit system
and X = (0 1

1 0), Y = (0 −i
i 0 ), and Z = (1 0

0 −1) are Pauli
operators. To encode k logical qubits into n physical qubits,

FIG. 1. Quantum circuit for quantum error detection.

we define a stabilizer group S = {S1, · · · , S2n−k } ⊂ Gn as a
commutative subgroup of the Pauli group Gn with −I⊗n /∈ S .
We denote a generator set of the stabilizer group S as G =
{G1, · · · , Gn−k}. Then, we can define the logical space of the
stabilizer code C as an eigenspace with +1 eigenvalues for
all the operators in the stabilizer group, i.e., C = {|ψ〉 |∀Si ∈
S, Si |ψ〉 = |ψ〉}. In the 2k-dimensional Hilbert space, we can
introduce a logical basis as {|0〉L , |1〉L}⊗k and logical Pauli
operators as {IL, XL,YL, ZL}⊗k . The code distance d is the
minimum number of physical qubits on which an arbitrary
logical operator of the code nontrivially operates. We denote
such stabilizer codes as [[n, k, d]] stabilizer codes.

We can detect physical errors during quantum computa-
tion by measuring the generators G1, · · · , Gn−k by using the
Hadamard test circuits as shown in Fig. 1, and such mea-
surement is called syndrome measurement. If there exists Gi

such that its measurement result is −1, then we can determine
the presence of errors during the computation. Conversely,
when the measurement results are +1 for all Gi, we can say
that there was no error with a sufficiently high probability.
By continuing the computation only when the measurement
results for all the generators are +1, we can project the noisy
state ρ = E (ρid ) into the code space as

ρdet = PρP

tr[ρP]
, (2)

where P is a projector to the code space C written as

P =
∏

Gi∈G

I + Gi

2
= 1

2n−k

∑
Si∈S

Si. (3)

Because the probability to measure +1 for all the syndrome
measurements is tr[ρP], the effect of physical errors acting on
less than d qubits can be eliminated with O(tr[ρP]−1) times
more execution of quantum circuits. Note that stabilizerlike
QEM methods work in a similar way when the spin and
electron number preservation is imposed in the variational
ansatz of quantum states [23,29].

We can not only detect errors but also correct them by
applying appropriate feedback operations according to the
measurement results, enabling us to suppress the effect of
noise without any additional execution of quantum circuits.
When the measurement result for the generator Gi is si,
and there is no measurement error, we can correct errors by
applying a recovery operation Rs, which is estimated from
s = (s1, . . . , sn−k ) to maximize the probability of correcting
erroneous quantum states to the original logical state. Since
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the recovery Pauli operator at least maps quantum states to a
logical state, Rs commutes with Gi if si = +1 and anticom-
mutes if si = −1. In this way, the effect of physical errors
acting on less than �(d − 1)/2� qubits can be corrected as

ρcor =
∑

s∈{−1,1}n−k

EsρEs, (4)

where

Es = Rs

∏
i

I + siGi

2

= PRs. (5)

While QEC and QED can reduce the effective error rates,
they impose additional difficulties in the implementation. To
implement QEC and QED, we need repetitive applications of
Pauli measurements for all the elements in the stabilizer gen-
erator set. Since the error rates of measurement operations are
typically higher than the others [6,15,16], they induce large
overheads on the process. In the case of QEC, we also need
to estimate recovery operations from the observed syndrome
values, and error rates must be smaller than the value called
code threshold for a reliable estimation.

B. Symmetry expansion

In order to combat errors on near-term devices, QEM has
been developed in recent years [21,22]. SE is one of the
promising QEM methods which mitigates errors by virtually
projecting the noisy quantum state onto the symmetric sub-
space without syndrome measurements [24,25].

Suppose that we want to estimate an expectation value of
an observable O for a noiseless state ρid from the measurement
of the noisy state ρ = E (ρid ). We assume that the observable
O commutes with the projector P. Then, we can mitigate
errors by virtually projecting the noisy states onto the code
space as

tr[ρdetO] = tr[ρOP]

tr[ρP]

= 2−(n−k) ∑
Si∈Si

tr[ρOSi]

2−(n−k)
∑

Si∈Si
tr[ρSi]

, (6)

which can be calculated in the following way.
(1) For s = 1, · · · , N , repeat the following operations.

(a) Uniformly sample Si ∈ S .
(b) Simultaneously measure the noisy state ρ for Si

and OSi, and record the results as as and bs.
(2) Calculate a = 1

N

∑
s as and b = 1

N

∑
s bs.

(3) Output b/a.
The number of measurements needed to estimate Eq. (6)

for some fixed accuracy ε is known to scale as N =
O(ε−2tr[ρP]−2). In this way, we can obtain an error-mitigated
expectation value of the observable O, which corresponds to
the virtual projection of the noisy state immediately before the
measurement ρ onto ρdet.

III. VIRTUAL QUANTUM ERROR DETECTION

Symmetry expansion is only applicable to the state im-
mediately before measurement [24,25] and state preparation

FIG. 2. Quantum circuits for virtually projecting a quantum state
ρ into the code space. The white and black circles indicate the control
operations which act for states 0 and 1, respectively. The circuit in
panel (a) utilizes two controlled-stabilizer gates, whereas the circuit
in panel (b) can virtually project quantum states using only a single
controlled-stabilizer gate.

for rotation symmetric bosonic codes [26]. In this section, we
introduce our VQED method, which allows for the compu-
tation of error-mitigated expectation values corresponding to
the postselected states after syndrome measurements during
circuit execution.

Let us first explain the way to virtually project a quan-
tum state ρ into the code space by using the circuit shown
in Fig. 2(a). We can derive the expectation value obtained
through this circuit as

1
2 (tr[SiρS jO] + tr[S jρSiO]). (7)

Thus, by uniformly sampling i, j ∈ {1, · · · , 2n−k} and taking
the average of the distribution, we can obtain the expectation
value of the projected state as

tr[PρPO] (8)

since the average of Si can be written as 〈Si〉 =
2−(n−k) ∑

i Si = P.
We can further simplify the circuit as in Fig. 2(b) for

stabilizer codes. The expectation value obtained through this
circuit is

1
2 (tr[S jSiρSiO] + tr[SiρSiS jO]). (9)

Thus, by uniformly sampling i, j ∈ {1, · · · , 2n−k} and taking
the average of the distribution, we can also obtain Eq. (8) since
PSi = SiP = P holds.

These methods can be used to virtually detect errors in
noisy quantum circuits. We consider a logical quantum circuit
composed of a state preparation of a logical initial state ρ0

followed by the L logical unitary gate Ul (·) = Ul · U †
l (l =

1, · · · , L) and a measurement of an observable O in the
hope of estimating the expectation value of O for the state
ρid = UL ◦ · · · ◦ U1(ρ0). However, we assume that these log-
ical quantum gates are affected by Markovian noise and that
the actual gates are represented as U ′

l = El ◦ Ul . For simplic-
ity, we ignore state preparation and measurement errors, but
these effects can easily be reflected. When we can perform
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FIG. 3. Quantum circuit for virtual quantum error detection.

quantum error detection after each gate, we will have

ρdet = ρ ′
det

tr[ρ ′
det]

, (10)

where

ρ ′
det = P ◦ EL ◦ UL ◦ · · · ◦ P ◦ E1 ◦ U1(ρ0). (11)

Here, we define P (·) = P · P.
In order to obtain the expectation value for ρdet through

VQED, we construct a quantum circuit represented in Fig. 3.
This circuit allows for computing the expectation values cor-
responding to the error-detection circuits by performing the
Sil gate on the noisy circuit, preparing a single qubit ancilla
initialized to |+〉, coupling the ancilla qubit with the noisy
circuit through the controlled-S jl gate, and measuring the an-
cilla in the X bases. Note that the frequency of applying these
operations of VQED can be reduced according to the noise
level, although we discuss gatewise VQED for generality. The
state immediately before the measurement of this circuit ρbf

reads

ρbf = 1

2L

∑
pq

|p〉 〈q| ⊗ ρ
pq
i j ,

ρ
pq
i j = P pLqL

iL jL
◦ EL ◦ UL ◦ · · · ◦ P p1q1

i1 j1
◦ E1 ◦ U1(ρ0), (12)

where p and q are bit strings of length L and

P pl ql
il jl

(·) = Spl
jl

Sil · Sil S
ql
jl
. (13)

Then, the expectation value of the observable X ⊗L ⊗ O in this
state is

〈X ⊗L ⊗ O〉 = tr[ρbf X
⊗L ⊗ O]

= 1

2L

∑
p

tr
[
ρ

pp+1
i j O

]
(14)

where 1 is a bit string of length L whose elements are all 1.
When we uniformly sample il , jl ∈ {1, · · · , 2n−k} (1 � l �
L) and denote the expectation value under the probability
distribution as 〈·〉i j , we can project the noisy state into the
code space after each noisy gate as

〈
ρ

pp+1
i j

〉
i j = P ◦ EL ◦ UL ◦ · · · ◦ P ◦ E1 ◦ U1(ρ0)

= ρ ′
det, (15)

where we use〈
P pl pl +1

il jl
(·)〉

il jl
= 〈

Spl
jl

Sil · Sil S
1−pl
jl

.
〉
il jl

=
{〈Sil · Sil S jl 〉il jl (pl = 0)
〈S jl Sil · Sil 〉il jl (pl = 1)

= P · P. (16)

Thus, the expectation value of the observable O for the
postselected state ρdet can be represented as

tr[ρdetO] =
〈
tr
[(

1
2L

∑
pq |p〉 〈q| ⊗ ρ

pq
i j

)
X ⊗L ⊗ O

]〉
i j〈

tr
[(

1
2L

∑
pq |p〉 〈q| ⊗ ρ

pq
i j

)
X ⊗L ⊗ I

]〉
i j

. (17)

Therefore, we can perform our VQED in the noisy quantum
circuit with the following procedure.

(1) For s = 1, · · · , N , repeat the following operation.
(a) Uniformly sample il , jl ∈ {1, · · · , 2n−k}
(1 � l � L).
(b) Run the circuit illustrated in Fig. 3.
(c) Record the product of the X measurement as as and
the product of as and the O measurement as bs.

(2) Calculate a = 1
N

∑
s as and b = 1

N

∑
s bs.

(3) Output b/a.
In this way, with the sampling overhead of N =

O(ε−2tr[ρ ′
det]

−2), we can perform VQED to virtually detect
errors that occurred during the computation with some fixed
accuracy (standard deviation) ε. Note that while we focus
on the stabilizer QEC and QED codes our method can be
straightforwardly applied to the stabilizer-based QEM method
for the spin and electron number preservation [23,29] for more
near-term quantum hardware.

Note that our VQED protocol circumvents the syndrome
measurements of stabilizer generators that need high-fidelity
single-shot measurement of ancilla qubits; our method only
measures expectation values of the observable. Moreover,
while quantum error detection requires measurements of n −
k stabilizer generators via Hadamard test circuits shown in
Fig. 1, our method only necessitates a single controlled oper-
ation irrespective of the number of stabilizer generators.

Furthermore, for certain simple error models, the obtained
expectation value is robust against noise that occurs in the
ancilla qubit. Since we calculate the expectation value of X for
each ancilla, the only terms of the ancilla that affect Eq. (17)
are |0〉〈1| and |1〉〈0|. Thus, even if the single qubit depo-
larizing noise Ep : ρ �→ (1 − p)ρ + pI/2 affects each ancilla
during the execution of the controlled-S jl gate, the numerator
and the denominator of Eq. (17) are only multiplied by (1 −
p)L. Therefore, the value obtained through VQED remains
unchanged. Note that the circuit level noise model, where
each CNOT gate and CZ gate to implement the controlled-Sjl
gate is affected by a single qubit depolarizing noise, also does
not affect the expectation value. This is because the noisy
term represented as |0〉〈0| ⊗ ρ + |1〉〈1| ⊗ ρ ′, where ρ and
ρ ′ are the states of the system qubits where noise may be
propagated, cancels out when we take the expectation value
of X . The same principle applies to other noise models which
are not biased by Pauli X or Y , such as local dephasing and
amplitude damping noise. We further discuss these points in
Appendix A. We also want to mention that, by combining
the readout error mitigation [27,28] method with our method
for the ancilla qubits, we can perform high-fidelity virtual
projection onto the code space even under the existence of
measurement errors.

The disadvantages of VQED are that we can only obtain
the error-mitigated expectation values, not the quantum state
itself, as well as quadratically worse sampling cost for the
projection probability tr[ρ ′

det]. While sampling costs can only
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be overcome by increased parallelization, lightweight quan-
tum phase estimation algorithms only employing expectation
values are proposed [32–35] in addition to the fact that most
NISQ algorithms use expectation values. Our VQED methods
can be used in such algorithms.

IV. VIRTUAL IMPLEMENTATION OF QUANTUM
ERROR CORRECTION

We also discuss how to perform quantum error correction
virtually without any syndrome measurements and feedback
operations. The main idea is that the error-corrected state as
in Eq. (4) can be also written as

ρcor =
∑

s∈{−1,1}n−k

P (RsρRs). (18)

Thus, we can virtually correct errors by uniformly sampling
s1, · · · , sn−k ∈ {+1,−1}, applying Rs to the noisy state, vir-
tually projecting the state into the code space using the way
mentioned above, and multiplying the result by 2n−k .However,
the sampling cost of this method scales as 22(n−k), which
grows exponentially with the number of redundant qubits.
We may decrease the cost by limiting the scope of the sum.
Let B ⊂ {−1, 1}n be a subset of highly probable measurement
results such as the measurement results when an error did not
occur or occurred only once. Then, we may approximate the
error-corrected state as

ρcor′ = 1∑
s∈B ps

∑
s∈B

P (RsρRs) (19)

where ps = tr[PRsρRs] represents the probability of obtaining
s at the syndrome measurement.However, the sampling cost
of virtually calculating this state is |B|2(1/

∑
s∈B ps)2, which

is still significantly higher than just performing VQED with
B = {1}n. Furthermore, while error detection can detect errors
of at most d qubits, error correction can only correct errors of
at most �(d − 1)/2� qubits. This means that even the accuracy
of this virtual implementation of QEC is generally worse than
VQED. Even though these methods may be more effective
than VQED in the case where the noise maps the state in the
code space outside of it with high probability, finding practical
scenarios to utilize these methods is left as our future work.

V. NUMERICAL SIMULATION

In this section, we numerically evaluate the performance
of our method for [[4,1,2]], [[5,1,3]], and [[7,1,3]] stabilizer
codes [11,12,14]. The generators and logical operators of
these codes are shown in Table I. Similar to the numerical
calculation presented in the previous study on SE [24], we
initialize the state ρ0 as the logical state |0〉L, and the uni-
tary gate Ul is randomly chosen from a set of transversal
single-qubit gates [31,36]. We specify the set of transversal
single-qubit gates we use in Appendix B. We assume that the
local depolarizing noise E = E⊗n

p (Ep(ρ) = (1 − p)ρ + pI/2)
disturbs the circuit with noise strength p = 0.01 each after the
gate. We numerically calculate the depth L dependence of the
infidelity 1 − 〈�̄|ρdet|�̄〉 between the output state of the noisy
circuit ρdet and the noiseless circuit |�̄〉 and the scaling of the
sampling cost tr[ρ ′

det]
−2 by using QUTIP [37].

TABLE I. Generators and logical operators for [[4,1,2]],
[[5,1,3]], and [[7,1,3]] stabilizer codes.

Stabilizer code Name Operator

[[4, 1, 2]] G1 XXXX
G2 ZZZZ
G3 IZZI
ZL ZZII
XL IXXI

[[5,1,3]] G1 XZZXI
G2 IXZZX
G3 XIXZZ
G4 ZXIXZ
ZL ZZZZZ
XL XXXXX

[[7,1,3]] G1 IIIZZZZ
G2 IZZIIZZ
G3 ZIZIZIZ
G1 IIIXXXX
G2 IXXIIXX
G3 XIXIXIX
ZL ZZZZZZZ
XL XXXXXXX

Our results are shown in Figs. 4 and 5. As shown in
Fig. 4, we can reduce the infidelity using VQED compared
to a single physical qubit affected by the error Ep without
encoding. Furthermore, frequent application of VQED dur-
ing the circuit execution prevents the noisy state from being
highly mixed in the code space. This allows us to suppress
logical errors that cannot be mitigated by the conventional
SE performed only on the state immediately before the mea-
surement [24,25]. We also find that we can reduce infidelity
without performing error detection after every gate: we can
sufficiently mitigate errors simply by performing VQED after
every fixed number of gates. This fact can be useful when
the measurement time is much longer than the gate execution
time. By comparing infidelity among different codes, we can
say that infidelity becomes smaller as the code distance gets
larger.

Figure 5 shows that the sampling cost increases expo-
nentially with the circuit depth L when we perform VQED
frequently. This scaling can be roughly considered to be given
by the square inverse of the probability that a state in the
code space remains in the code space when the noise is ap-
plied; thus we can write N ∼tr[ρ ′

det]
−2 = O[(1 − 3

4 p)−2nL].
It is noteworthy that the sampling cost is not significantly
influenced by the frequency of VQED, even when comparing
the cases of the conventional SE and VQED each applied after
the gate (see the numerical results up to the depth L = 40, for
example). Meanwhile, it may appear that the sampling cost of
SE approaches a constant value for large L. However, this is
because the accumulated errors increase and the noisy state
approaches a completely mixed state, and thus the sampling
cost converges to N ∼ tr[I/2nP] = 1

2n−k .
In Figs. 4(d) and 5(d), we also present the performance

of VQED for the [[4, 1, 2]] stabilizer code when the VQED
gadget Sil gate and controlled-S jl gate in Fig. 3 are each
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FIG. 4. Depth L dependence of infidelity 1 − tr[ρdet|�̄〉〈�̄|] = 1 − 〈�̄|ρdet|�̄〉 between the output state of the noisy circuit with VQED ρdet

and the noiseless circuit |�̄〉 for [(a), (d)] [[4,1,2]], (b) [[5,1,3]], and (c) [[7,1,3]] stabilizer codes. [(a)–(c)] Results when the controlled-stabilizer
gates are noiseless. (d) Results when the VQED gadgets are affected by local depolarizing noise. The “without VQED” line represents infidelity
when we did not perform VQED. The “last gate (SE)” line represents infidelity when we perform VQED only before the measurement, which
is just a normal SE, as in Refs. [24,25]. The “every 20 gates” and the “every 10 gates” lines represent infidelity when we perform VQED after
every 20 and 10 gates. The “every gate” line represents infidelity when we perform VQED after every gate. The “physical” line represents the
infidelity of a single physical qubit without encoding.

affected by the local depolarizing noise E⊗n
p and E⊗(n+1)

p with
the same error rate p = 0.01. See Appendix C for the results
for [[5, 1, 3]] and [[7, 1, 3]] stabilizer codes. In the previous
section, we have mentioned that a wide class of realistic noise
that occurred in the ancilla does not affect the accuracy of
VQED. By comparing Figs. 4(a) and 4(d), we can also say that
even in the presence of additional noise acting on the system
qubits VQED still significantly outperforms the unmitigated
results and the conventional SE. Meanwhile, we can see from
Figs. 5(a) and 5(d) that the sampling cost increases when we
assume that the noise affects the VQED gadget. This is mainly
because the probability that a state in the code space remains
in the space decreases due to the additional noise acting on the
system qubits, and the denominator in Eq. (17) is multiplied
by the factor of (1 − p)L. Thus, the sampling cost scales as
N ∼ O[(1 − 3

4 p)−6nL(1 − p)−2L]. However, these effects can
be circumvented by reducing the frequency of applying the
operation of VQED.

From the above, we can say that our method can be used
effectively by adjusting the code distance or frequency of
VQED according to the hardware constraints, the desired
accuracy, or the allowable sampling cost.

VI. DISCUSSION

We propose VQED so that the computation errors during
the circuit execution can be flexibly suppressed by using
additional two-qubit operations and measurements in the X
basis. We verify in the numerical simulations that our virtual
quantum error detection protocol allows for the realization
of significantly higher-fidelity calculation of expectation val-
ues, compared with the conventional symmetry expansion
method, at the cost of sampling costs. We also discuss the
virtual implementation of quantum error correction; how-
ever, even though the fidelity of the quantum state after
quantum error correction is generally lower than that for
quantum error detection, the sampling cost of virtual imple-
mentation of quantum error correction becomes larger than
VQED.

Although we mainly discuss the stabilizer codes based on
the Pauli group, we can apply our method to other types
of codes such as RSBCs [38] as well. In Ref. [26], sym-
metry expansion in RSBCs is proposed, but it is restricted
to state preparation and immediately before measurement.
By considering the rotation symmetry operators rather than

FIG. 5. Scaling of the sampling cost tr[ρ ′
det]

−2 with respect to the depth L of the quantum circuit for [(a), (d)] [[4,1,2]], (b) [[5,1,3]], and
(c) [[7,1,3]] stabilizer codes. [(a)–(c)] Results when the controlled-stabilizer gates are noiseless. (d) Results when the VQED gadgets are
affected by local depolarizing noise. The “without VQED” line represents sampling cost when we did not perform VQED. The “last gate
(SE)” line represents sampling cost when we perform VQED only before the measurement, which is just a normal SE, as in Refs. [24,25]. The
“every 20 gates” and the “every 10 gates” lines represent the sampling cost when we perform VQED after every 20 and 10 gates. The “every
gate” line represents the sampling cost when we perform VQED after every gate.
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Pauli symmetries, we can also perform virtual quantum error
detection for RSBCs, which is a significant generalization
of Ref. [26]. In this case, we need controlled-rotation gates,
which are implemented by the dispersive interactions [39]
between the resonator and the ancilla qubit.

Even after the application of VQED, there remains a finite
logical error, e.g., due to the limitations of code distances.
Therefore, the efficient combination of VQED with other
QEM methods, e.g., purification-based QEM [40–45], will
also be an important research direction for the realization
of even more accurate quantum computing. Also, because
VQED can be regarded as a QEM method implemented on the
code space, the relationship between VQED and other hybrid
QEM and QEC methods is worth exploring [32,46–48].

Experimental implementation of VQED is also an impor-
tant direction for future work. The VQED circuit we propose
in Fig. 3 requires connectivity between the ancilla qubit
and all the qubits constructing logical qubits, and we gener-
ally need SWAP operations to implement controlled-stabilizer
operations in the case of restricted connectivity, e.g., cur-
rent superconducting hardware. However, we can relax the
requirement by assigning different ancilla qubits for each
logical qubit and flexibly choosing the arrangement of the
ancilla qubits according to the constraints of the experiment.
For example, for trapped-ion systems, all-to-all connectiv-
ity is a relatively reasonable assumption [49]; therefore, one
ancilla qubit may be iteratively used for all logical qubits.
Meanwhile, superconducting qubit devices have restricted
connectivity [6], and it may be better to assign different ancilla
qubits to each logical qubit.

Finally, information-theoretic analysis of QEM is one of
the intensively studied topics [50–55]. As far as we know,
symmetries of the system are not explicitly considered in these
works while our paper shows that they can play a crucial
role for QEM. Therefore, the construction of an information-
theoretic analysis of QEM incorporating the symmetries may
shed light on, e.g., the characterization cost of the noise model
for performing QEM.

ACKNOWLEDGMENTS

This work is supported by Japan Science and Technol-
ogy Agency (JST) PRESTO Grants No. JPMJPR1916, No.
JPMJPR2114, and No. JPMJPR2119; JST CREST Grants
No. JPMJCR1771 and No. JPMJCR23I4; Ministry of Edu-
cation, Culture, Sports, Science, and Technology Q-LEAP
Grants No. JPMXS0120319794 and No. JPMXS0118068682;
JST Moonshot Research and Development Grant No. JP-
MJMS2061; COI-NEXT Grant No. JPMJPF2221; and JST
ERATO Grant No. JPMJER2302. K.T. is supported by the
Worldleading Innovative Graduate Study Program for Mate-
rials Research, Industry, and Technology of the University of
Tokyo.

APPENDIX A: ROBUSTNESS AGAINST NOISE IN
ANCILLA QUBITS

In this section, we discuss the robustness of the VQED
gadget against the noise in the ancilla qubits. In order to
perform Si or controlled-S j gates in the VQED gadget, we

FIG. 6. Gate-based decomposition of the VQED gadget in
Fig. 2(b) for the [[4,1,2]] stabilizer code with Si = XXXX and
Sj = ZZZZ . We assume that the single-qubit depolarizing noise
Ep : ρ �→ (1 − p)ρ + pI/2 affects the ancilla qubit every time we
perform controlled-Pauli gates.

need to perform Pauli or controlled-Pauli gates as in Fig. 6.
Here, let us assume that the ancilla qubit is noisy and affected
by the single-qubit depolarizing noise Ep : ρ �→ (1 − p)ρ +
pI/2 every time we perform controlled-Pauli gates. If the error
occurred on the controlled-Pauli gates, the error propagates
to the system qubits and may cause an undetectable error.
This may seem to ruin the performance of VQED. However,
our VQED protocol is not based on single-shot stabilizer
measurements that are highly sensitive to such noise; our
method only measures the expectation value of observables,
and thus the effect of the error on the ancilla qubits can be
removed.

When we apply the noisy VQED gadget as in Fig. 6 to the
state ρ, the state before the measurement will be

(1 − p)w(S j )

2
(|0〉〈0| ⊗ SiρSi + |1〉〈1| ⊗ S jSiρSiS j

+ |1〉〈0| ⊗ S jSiρSi + |0〉〈1| ⊗ SiρSiS j )

+ |0〉〈0| ⊗ ρ ′ + |1〉〈1| ⊗ ρ ′′, (A1)

where w(S j ) is the Pauli weight of S j (the number of Pauli op-
erators in S j) and ρ ′ and ρ ′′ are un-normalized noisy quantum
states in the system qubits. By inserting additional noise in the
ancilla qubits before the measurement, we can further convert
this state to

(1 − p)n

2
(|0〉〈0| ⊗ SiρSi + |1〉〈1| ⊗ S jSiρSiS j

+ |1〉〈0| ⊗ S jSiρSi + |0〉〈1| ⊗ SiρSiS j )

+ |0〉〈0| ⊗ ρ ′′′ + |1〉〈1| ⊗ ρ ′′′′, (A2)

where ρ ′′′ and ρ ′′′′ are also un-normalized noisy quantum
states in the system qubits. When we take the expectation
value of the operator X ⊗ O for this state, we obtain

(1 − p)n

2
(tr[S jSiρSiO] + tr[SiρSiS jO]), (A3)
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FIG. 7. Depth L dependence of infidelity 1 − tr[ρdet|�̄〉〈�̄|] = 1 − 〈�̄|ρdet|�̄〉 between the output state of the noisy circuit with VQED
ρdet and the noiseless circuit |�̄〉 for (a) [[5,1,3]] and (b) [[7,1,3]] stabilizer codes. All of the panels denote the results when the VQED gadgets
are affected by local depolarizing noise. The “without VQED” line represents the infidelity when we did not perform VQED. The “last gate
(SE)” line represents infidelity when we perform VQED only before the measurement, which is just a normal SE, as in Refs. [24,25]. The
“every 20 gates” and the “every 10 gates” lines represent infidelity when we perform VQED after every 20 and 10 gates. The “every gate” line
represents infidelity when we perform VQED after every gate. The “physical” line represents the infidelity of a single physical qubit without
encoding.

and by uniformly sampling i, j ∈ {1, · · · , 2n−k} and taking the
average of the distribution we obtain

(1 − p)ntr[PρPO]. (A4)

Thus, even under the existence of noise on the ancilla qubit,
we can still calculate the expectation value corresponding to
the postselected state ρdet as

tr[ρdetO] = (1 − p)ntr[PρPO]

(1 − p)ntr[PρP]
. (A5)

In the same way, we can say that the value obtained
through VQED in Eq. (17) remains unchanged even under
the existence of such noise, since the numerator and the

denominator of Eq. (17) are only multiplied by (1 − p)nL.
The only change to the performance of VQED is the slight
increase in the sampling overhead from N = O(ε−2tr[ρ ′

det]
−2)

to N = O{ε−2(1 − p)−2nLtr[ρ ′
det]

−2}.
The essential point of this robustness is that the noisy term

|0〉〈0| ⊗ ρ ′′′ + |1〉〈1| ⊗ ρ ′′′′ in Eq. (A2) is removed when we
take the expectation value of X for the ancilla qubit. We note
that the same principle applies to other noise models that
are not biased by Pauli X or Y , such as local dephasing and
amplitude damping noise. We also note that the noise model
we used for the VQED gadget in our numerical simulation
is different from what we consider in this section: instead of
assuming that the noise affects the ancilla qubits after every

FIG. 8. Scaling of the sampling cost tr[ρ ′
det]

−2 with respect to the depth L of the quantum circuit for (a) [[5,1,3]] and (b) [[7,1,3]] stabilizer
codes. All of the panels denote the results when the VQED gadgets are affected by local depolarizing noise. The “without VQED” line
represents sampling cost when we did not perform VQED. The “last gate (SE)” line represents sampling cost when we perform VQED only
before the measurement, which is just a normal SE, as in Refs. [24,25]. The “every 20 gates” and the “every 10 gates” lines represent the
sampling cost when we perform VQED after every 20 and 10 gates. The “every gate” line represents the sampling cost when we perform
VQED after every gate.
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execution of the controlled-Pauli gates, we assumed that the
noise affects both the system and ancilla qubits after every
execution of Si and controlled-S j gates.

APPENDIX B: TRANSVERSAL SINGLE-QUBIT GATES
IN STABILIZER CODES

In this section, we clarify the sets of transversal single-
qubit gates we use in the numerical simulation. For the
[[4, 1, 2]] stabilizer code, we use a set of single-qubit Pauli
gates as a set of transversal single-qubit gates [36]. For the
[[5, 1, 3]] stabilizer code, we use {X,Y, Z, SH} as a set of
transversal single-qubit gates [31]. For the [[7, 1, 3]] stabilizer

code, we use a set of single-qubit Clifford gates as a set of
transversal single-qubit gates [31].

APPENDIX C: NUMERICAL SIMULATION OF VQED
WHEN THE VQED GADGETS ARE NOISY

In this section, we present the performance of VQED for
[[5, 1, 3]] and [[7, 1, 3]] stabilizer codes when the VQED gad-
get Sil gate and controlled-S jl gate in Fig. 3 are each affected
by the local depolarizing noise E⊗n

p and E⊗(n+1)
p with the same

error rate p = 0.01. Our results are shown in Figs. 7 and 8.
The results for [[5, 1, 3]] and [[7, 1, 3]] stabilizer codes are
qualitatively similar to those for the [[4,1,2]] stabilizer codes
shown in Figs. 4(d) and 5(d).
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