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Experimental study on the principle of minimal work fluctuations

Wei Cheng,1,2 Wenquan Liu ,3 Yang Wu ,1,2 Zhibo Niu,1,2 Chang-Kui Duan,1,2 Jiangbin Gong,4,5,6,7,*

Xing Rong,1,2,8,† and Jiangfeng Du 1,2,8,9,‡

1CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences,
University of Science and Technology of China, Hefei 230026, China

2CAS Center for Excellence in Quantum Information and Quantum Physics,
University of Science and Technology of China, Hefei 230026, China

3School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
4Department of Physics, National University of Singapore, Singapore 117551, Singapore

5Center for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore
6Joint School of National University of Singapore and Tianjin University,

International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
7MajuLab, CNRS-UCA-SU-NUS-NTU International Joint Research Unit, Singapore

8Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
9School of Physics, Zhejiang University, Hangzhou 310027, China

(Received 18 May 2023; revised 7 September 2023; accepted 28 September 2023; published 23 October 2023)

The central quantity in the celebrated quantum Jarzynski equality is e−βW , where W is work and β is the inverse
temperature. The impact of quantum randomness on the fluctuations of e−βW and hence on the predictive power
of the Jarzynski estimator is an important problem. Working on a single nitrogen-vacancy center in diamond and
riding on an implementation of the two-point measurement of nonequilibrium work with single-shot readouts,
we have conducted a direct experimental investigation of the relationship between the fluctuations of e−βW and
adiabaticity of nonequilibrium work protocols. It is observed that adiabatic processes minimize the variance of
e−βW , thus verifying an early theoretical concept, the so-called principle of minimal work fluctuations. Further-
more, it is experimentally demonstrated that shortcuts-to-adiabaticity control can be exploited to minimize the
variance of e−βW in fast work protocols. Our work should stimulate further experimental studies of quantum
effects on the bias and error in the estimates of free-energy differences based on the Jarzynski equality.

DOI: 10.1103/PhysRevA.108.042423

I. INTRODUCTION

Thermal and quantum fluctuations are dominant features
in nonequilibrium thermodynamics [1–5] and can be quan-
tified by fluctuation theorems [6–12]. Fluctuation theorems
are not only insightful for our understanding of the second
law of thermodynamics but also instrumental for us to extract
equilibrium thermodynamic quantities from nonequilibrium
processes [13–16]. The celebrated Jarzynski equality [6]
does apply to quantum systems and assumes essentially the
same form as in the classical case, namely, 〈e−βW 〉 = e−β�F ,
where 〈·〉 represents both thermal and quantum ensemble
averaging. This equality connects the mean of e−βW with
the exponential function of a free-energy difference �F at
the inverse temperature β. Interestingly, though suppression
of work fluctuations is of great interest in the context of
nanoscale heat engines [17–19], experimental efforts focus-
ing on the fluctuations in the quantity e−βW measured in
quantum processes are lacking. Such fluctuations can be en-
hanced by quantum randomness and are hence of crucial

*phygj@nus.edu.sg
†xrong@ustc.edu.cn
‡djf@ustc.edu.cn

importance when applying the Jarzynski relation to quantum
settings.

For a finite number of measured work values, the
Jarzynski free-energy estimator of �F is given by −β−1

ln[
∑N

k=1 e−βWk /N], where Wk denotes work in the kth ex-
perimental run. This estimator is a biased one, so when
regarding practical applications the fluctuations of e−βW are
crucial. It determines whether the variance of e−βW di-
verges, in which case the convergence of our estimate of
�F will be extremely slow. If the variance of e−βW does
converge, it still determines the number of experimental runs
(N) needed to reach a given estimate precision of �F [20].
Several theoretical studies [21–24] touched upon the suppres-
sion of the fluctuations in e−βW . In particular, the so-called
principle of minimal work fluctuations (PMWF) [22] states
that for a quantum system initially at thermal equilibrium
but detached from its surrounding afterwards, the minimal
variance of e−βW can be achieved in an adiabatic process
if the instantaneous energy levels do not cross during the
work protocol. This indicates if the variance diverges for
the adiabatic process, then it diverges for all work proto-
cols. Adiabatic processes call for a long evolution time,
however, the coherence time of realistic quantum systems is
limited. Regarding this, the PMWF also proved that one can
equally use shortcuts-to-adiabatic (STA) processes [25,26]
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to achieve the minimal variance of e−βW . PMWF can thus
guide us in the design of work protocols in order to sup-
press the variance of e−βW and hence reduce experimental
efforts when applying the Jarzynski equality to estimate
�F . The suppression of the variance of e−βW also natu-
rally leads to the suppression of the fluctuations in the work
itself [21].

Here, we report an experimental investigation of the
PMWF utilizing a single nuclear spin of a nitrogen-vacancy
(NV) center in diamond. Our study focuses on the variance
of e−βW during a work protocol applied to a thermal equi-
librium state. The work statistic is directly obtained by the
two-point measurement of work [1,2]. The realization of the
two-point measurement of work makes it possible to examine
the fluctuations in e−βW and hence verify the PMWF. Ex-
perimental results show that the variance of e−βW decreases
gradually as the work protocol approaches the adiabatic limit.
Furthermore, we demonstrate that the variance of e−βW in
the STA process, which is achieved by implementing a coun-
terdiabatic (CD) driving Hamiltonian, is the same as that in
adiabatic work protocols. In addition, the role of temperature
on the variance of e−βW is also examined. It is observed
that a higher-temperature setting suppresses the variance
of e−βW .

II. THEORY

We investigate the variance of e−βW when a system ini-
tially at thermal equilibrium undergoes a nonequilibrium work
protocol while being isolated from the heat bath. During the
protocol, an external control was applied to tune the system
Hamiltonian from H (0) to H (τ ). The work done on the sys-
tem can be obtained via the two-point measurement scheme,
which requires performing two projective measurements at
the beginning and the end of the protocol. This allows us to
determine the trajectory, such as |Em(0)〉 → |Ẽn(τ )〉, in each
realization of the work protocol, with |Em(0)〉 and |Ẽn(τ )〉
denoting the eigenstates of H (0) and H (τ ), respectively.
The work associated with the trajectory |Em(0)〉 → |Ẽn(τ )〉
is Wmn = Ẽn − Em, where Em and Ẽn are eigenvalues cor-
responding to |Em(0)〉 and |Ẽn(τ )〉, respectively. The work
distribution is given by

P(W ) =
∑
m,n

p0
m pτ

m→nδ[W − (Ẽn − Em)], (1)

where p0
m is the initial thermal population of |Em(0)〉 and

pτ
m→n is the transition probability to |Ẽn(τ )〉 conditioned that

the trajectory started from |Em(0)〉. The variance of e−βW is
directly obtained from

σ 2(e−βW ) =
∑
W

P(W )e−2βW −
[∑

W

P(W )e−βW

]2

. (2)

The PMWF predicts that σ 2(e−βW ) achieves its minimal value
when pτ

m→n = δmn, which can be realized in an adiabatic pro-
cess or an STA process.

III. EXPERIMENTS

In our experiment, a single nuclear spin of an NV center
system with a natural abundance of 13C (1.1%) is used. The
NV center is a type of defect in diamond which consists of a
substitutional nitrogen atom adjacent to a carbon vacancy. The
vacancy contains a spin-1 electron spin which couples to the
spin-1 nuclear spin of the adjacent 14N atom. The Hamiltonian
of the NV center system can be written as HNV = 2π (DS2

z +
ωeSz + QI2

z + ωnIz + AzzIzSz ), where Sz and Iz are the spin op-
erators of the electron spin and the nuclear spin, respectively.
Here, D = 2.87 GHz is the ground-state zero-field splitting of
the electron spin, Q = −4.95 MHz is the quadrupolar interac-
tion of nuclear spin, and Azz = −2.16 MHz is the longitudinal
component of the hyperfine interaction between nuclear spin
and electron spin. The Zeeman frequencies of the electron
and nuclear spin induced by the applied static magnetic field
are denoted by ωe and ωn, respectively. We select two energy
levels of the nuclear spin, |−1〉n and |0〉n, as the system, with
the electron spin playing an ancillary role in the study, as
illustrated in Fig. 1.

To implement a two-point measurement of work in the
NV center system, we realized nondemolition projective mea-
surements of the nuclear spin using the single-shot readout
technique [27]. The photoluminescence rate of the NV cen-
ter for |0〉e is higher than that for |−1〉e with a contrast of
about 30% [28]. To perform projective measurement on the
14N nuclear spin in the computational basis, the electron spin
was first polarized into |0〉e, then flipped to |−1〉e only if the
nuclear spin state was |−1〉n with a selective microwave pulse.
The selective microwave pulse was designed via optimal con-
trol to be robust against quasistatic noise. Subsequently, a
532-nm laser pulse with a time duration of 200 ns was applied
to excite the NV center and the fluorescence photons emitted
were collected. Our experiment was executed at a magnetic
field of about 7600 G with its direction along the NV center
symmetry axis. This high external magnetic field can suppress
the relaxation of nuclear spin, so the application of the 532-nm
laser pulse almost does not alter the state of the nuclear spin.
By repeating the procedures above, we can accumulate the
fluorescence signal to distinguish between different nuclear
spin states. Experimentally, the procedure was repeated 1200
times and the fidelity of the single-shot readout was 0.98(1).
Projective measurements along arbitrary energy bases can be
realized by applying appropriate rotations before the single-
shot readout.

The pulse sequence to study the PMWF consists of four
steps, as depicted in Fig. 1. In our experiment, the switching
of the system Hamiltonian as a work protocol is chosen as
follows,

H0(t ) = 2π [ZS′
z + X (t )S′

x], (3)

where S′
z = (|1〉〈1| − |0〉〈0|)/2, S′

x = (|1〉〈0| + |0〉〈1|)/2,
Z = 5/

√
3 kHz, and X (t ) = 5[1 − cos (πt/τ )]/2 kHz. Here,

energy levels |0〉n and |−1〉n are relabeled as |1〉 and |0〉,
respectively. First, we prepared the thermal state of the initial
Hamiltonian H (0) in three substeps. Initially, the nuclear spin
was initialized into state |0〉 through the single-shot readout
and postselection. Next, a radio-frequency (rf) pulse R1 was
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FIG. 1. Experimental pulse sequence to study the PMWF in the NV center platform. The pulse sequence is used to obtain work statistics
via the two-point measurement scheme, which includes the thermal state preparation, the first projective measurement, the work protocol, and
the second projective measurement.

applied to prepare a coherent state
√

P0
thm|0〉 +

√
P1

thm|1〉,
where P0

thm and P1
thm are populations of the thermal state.

Then, the coherence of the nuclear spin was dissipated by
applying two selective microwave (MW) pulses separated
by a free evolution time being 10 µs. The selective MW
pulse was applied to flip the electron spin from |0〉e to |−1〉e

conditioned that the nuclear spin state is |0〉. The fidelity
of the prepared thermal state in this way exceeds 0.9999 in
our experiment. After the thermal state was prepared, the
first projective measurement was performed, projecting the
nuclear spin onto an eigenstate of H0(0), such as |Em(0)〉, with
a probability of p0

m. Subsequently, an rf pulse was applied
to tune the Hamiltonian of the nuclear spin from H0(0) to
H0(τ ) to realize the work protocol. Experimentally, the Rabi
frequency and time duration of the rf pulse were adjusted
to realize the work protocol with different adiabaticities.
Finally, the second projective measurement was performed
to project the nuclear spin onto an eigenstate of H0(τ ),
such as |Ẽn〉, and gave the transition probability pτ

m→n. Note
that the energy basis of the final Hamiltonian H (τ ) differs
from the computational basis, so an rf pulse R2 was applied
before the single-shot readout.

The results of the thermal state preparation and the joint
probabilities Pmñ ≡ p0

m pτ
m→n are presented in Fig. 2. Two

different initial states were prepared according to two differ-
ent inverse temperatures: βZ = 0.6 and 0.8. The measured
populations are shown in the left-hand panels of Figs. 2(a)
and 2(b), respectively. These populations indicate that the
inverse temperatures of the experimentally prepared thermal
states are βZ = 0.62(2) and 0.78(2), which is consistent
with our intended state preparation. We varied the time
duration τ of the work protocol from 50 to 800 µs to
investigate how the fluctuation of e−βW changes as the pro-
tocol approaches the adiabatic limit. To characterize the
adiabaticity of work protocols, the adiabatic parameter was in-
troduced as 	 = mint∈[0,τ ] |〈E1(t )|∂H (t )/∂t |E2(t )〉|/[E1(t ) −
E2(t )]2 [29]. Here, |E1(t )〉, |E2(t )〉 are two instantaneous
eigenstates of H (t ) with E1(t ), E2(t ) being the corresponding
energies. When 	 is much smaller than 1, the work protocol
can be regarded as adiabatic. In our experiment, 	 decreases
from 1.014 to 0.063 as τ increases. Joint probabilities with
different time durations are displayed in the right-hand panels

of Figs. 2(a) and 2(b). These joint probabilities presented here
have been corrected to consider the influence of the infidelity
of the single-shot readout (see Appendix A). Pmn with m 	= n
characterizes the probability of nonadiabatic transitions that
happened during the work protocol. As seen in Figs. 2(b)
and 2(d), Pmñ with m 	= n decays to zero as τ increases, which
fulfills the anticipation of the quantum adiabatic theorem.

To investigate the PMWF, the average values and fluctu-
ations of e−βW are experimentally obtained and displayed in
Fig. 3. The mean values of e−βW for different time durations
are plotted as blue circle dots in Figs. 3(a) and 3(b) for differ-
ent values of β, with lines indicating the theoretical values of

FIG. 2. Thermal state and joint probability for effective temper-
atures (a) βZ = 0.6 and (b) βZ = 0.8. The left panels show the
population of the initial thermal state. The right panels show the
joint probability of different trajectories. Dots with error bars are
experimental results. Bars and lines show theoretical predictions.
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FIG. 3. Mean and variance of the exponential work vs the time
durations of the work protocol. Blue circle dots (with error bars) and
lines depict the experimental and theoretical mean values [denoted
as 〈e−βW 〉], respectively. Green square dots (with error bars) and
lines show the experimental and theoretical variances [denoted as
σ 2(e−βW )], respectively. Inverse temperatures were (a) βZ = 0.6 and
(b) βZ = 0.8.

e−β�F . All dots are consistent with lines when error bars were
considered, verifying the validity of the Jarzynski equality.
The variance of e−βW calculated via Eq. (2) is presented by
green square dots in Figs. 3(a) and 3(b). The results clearly
confirm that σ 2(e−βW ) decreases as τ increases. In particular,
it is observed that the variance of e−βW acquires its minimum
value when the work protocol reaches adiabatic, as predicted
by the PMWF.

Next, we investigate the PMWF associated with fast
work protocols. This is of great interest since an adi-
abatic process can be impractical in some situations,
e.g., where inevitable decoherence becomes severe. In
an adiabatic process, the dynamics of the nth eigen-
state follows the adiabatic path [25], such that |ψn(t )〉 =
e−i

∫ t
0 dt ′En(t ′ )−∫ t

0 dt ′〈En (t ′ )|∂t ′ En(t ′ )〉|En(t )〉. Here, |En(t )〉 is the nth
instantaneous eigenstate of H0(t ). To realize this evolution
rapidly, a CD Hamiltonian is introduced such that the solu-
tion of the Schrödinger equation i∂t |ϕ(t )〉 = HCD(t )|ϕ(t )〉 is
exactly |ψn(t )〉 given that |ϕ(0)〉 = |En(0)〉. In our model, the
CD Hamiltonian takes the following form (see Appendix B),

HCD(t ) = H0(t ) + Y (t )S′
y, (4)

where Y (t ) = ZẊ (t )/[X 2(t ) + Z2] and S′
y = (−i|1〉〈0| +

i|0〉〈1|)/2. The variance of e−βW , denoted as σ 2(e−βW ), in
such STA work protocols versus that in bare work proto-
cols, both with inverse temperature βZ = 0.6, is shown in
Fig. 4(a). The σ 2(e−βW ) in the STA work protocols are ob-
viously less than those in bare and fast work protocols (τ =
50, 100, 200, 300 µs) without STA. When τ = 800 µs, the
bare work protocol can be regarded as adiabatic. The obtained
variance of e−βW in the STA work protocols matches with that
obtained in the bare and slow work protocol. These results
confirm that fast STA work protocols can exhibit the same
minimal variance of e−βW as in an adiabatic work protocol.
This observation is further enhanced by considering a lower
temperature in Fig. 4(b) with βZ = 0.8. It is also seen that the
lower-temperature case yields an appreciably larger variance
of e−βW , indicating that for a fixed precision in estimating
�F , more experimental runs are required as temperature de-
creases to suppress the estimator bias.

FIG. 4. Variances of e−βW for normal and STA work protocols.
Red (dark gray) and blue (light gray) bars show σ 2(e−βW ) of normal
and STA work protocols with the same time duration, respectively.
The minimal variance of e−βW can be achieved in fast work proto-
cols assisted by STA. Inverse temperatures were (a) βZ = 0.6 and
(b) βZ = 0.8.

IV. CONCLUSION

Quantum effects on the statistics of e−βW , a central
quantity in the quantum Jarzynski equation, constitute an
intriguing topic to understand the predictive power of the
Jarzynski estimator in the quantum domain. With the suc-
cessful implementation of two-time measurement of quantum
work, we have conducted a direct experimental investigation
of the relationship between the variance of e−βW and adia-
baticity of nonequilibrium work protocols. We experimentally
observed that adiabatic processes minimized the variance of
e−βW , and further studied the minimal variance of e−βW in
fast work protocols assisted by shortcuts-to-adiabaticity con-
trol. Our experimental results verify the so-called principle
of minimal work fluctuations and shall stimulate future ex-
perimental studies on work fluctuations. For example, work
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protocols involving systems with infinite-dimensional Hilbert
space tend to yield a diverging variance of e−βW [23,24].
The convergence or divergence of the variance depends on
many system parameters and can exhibit interesting phase
diagrams [24]. The predictive power of the Jarzynski equality
in such systems requires scrutiny.
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APPENDIX A: CORRECTION TO JOINT PROBABILITIES

In our experiments, we implemented the two-time mea-
surement protocol to measure work statistics. In particular, we
performed projective measurements at the start and the end
of a switching process. The required projective measurement
was realized by a single-shot readout and this procedure is
not perfect due to errors mainly caused by the longitudinal
relaxation process of the nuclear spin [27]. To mitigate the
influence of such errors on our statistics, we considered a
transition matrix (elaborated below) to correct the bare state-
to-state transition probabilities accordingly.

Let us assume that the state before the readout is in a
measurement basis | j〉. Consider now a nonzero probability
p(i| j) that the output of the single-shot readout ends up with
a different basis |i〉 (hence errors in our readout). We can now
define a transition matrix as T i j = p(i| j). Because our study
involves a two-level system consisting of |−1〉n and |0〉n, the
transition matrix is a two by two matrix:

T =
[

p(−1|−1) p(−1|0)
p(0|−1) p(0|0)

]
. (A1)

In our experiment, this transition matrix can be measured and
was found to be

T expt =
[

0.980 0.045
0.020 0.955

]
. (A2)

With this transition matrix that reflects our errors in the state
readout, we can correct our state-to-state transition probabili-
ties.

First, the initial populations of our true prepared thermal
state are p0 = [p0(−1), p0(0)]T , where p0(−1) and p0(0) rep-
resent the populations in states |−1〉n and |0〉n, respectively.
The measured populations are slightly different from p0 due
to readout errors in the first projective measurement, resulting

in pexpt
0 = T expt p0. Thus, the corrected initial populations are

given by p0 = (T expt )−1 pexpt
0 . Additionally, the readout error

of the second projective measurement can also affect the
measured state-to-state transition probabilities. Suppose the
true state-to-state transition probabilities due to the population
transfer in our work protocol are given by

Pc =
[

pc(−1|−1) pc(−1|0)
pc(0|−1) pc(0|0)

]
. (A3)

Then, the measured transition probabilities become Pc
expt =

T exptPc. This indicates that the corrected state-to-state tran-
sition probabilities are given by Pc = (T expt )−1Pexpt

c . With
both the initial populations and the state-to-state transition
probabilities corrected, the corrected joint probabilities for
a sampled initial state making a transition to a final state
are (P)i j = [(T expt )−1Pc]i j[(T expt )−1 pexpt

0 ] j , which can be ex-
pressed as the following matrix:

P =
[

pc(−1|−1)p0(−1) pc(−1|0)p0(0)
pc(0|−1)p0(−1) pc(0|0)p0(0)

]
. (A4)

APPENDIX B: COUNTERDIABATIC HAMILTONIAN TO
REALIZE SHORTCUTS TO ADIABATICITY

In our experiment, the chosen Hamiltonian in a bare work
protocol takes the form as follows:

H0(t ) = 2π [ZS′
z + X (t )S′

x]. (B1)

The instantaneous eigenstates of H0(t ) are given by
H0(t )|En(t )〉 = En(t )|En(t )〉. In the adiabatic approximation,
the dynamics of the nth eigenstate follows the adiabatic
path, |ψn(t )〉 = e−i

∫ t
0 dt ′En(t ′ )−∫ t

0 dt ′〈En (t ′ )|∂t ′ En (t ′ )〉|En(t )〉 [25].
Then the unitary operator is given by U (t ) =∑

n e−i
∫ t

0 dt ′En(t ′ )−∫ t
0 dt ′〈En (t ′ )|∂t ′ En (t ′ )〉|En(t )〉〈En(0)|. To realize

this unitary evolution, the counterdiabatic Hamiltonian is

FIG. 5. CD Hamiltonian to realize the STA process with switch-
ing time τ = 50 µs.
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given by

HCD(t ) = i∂tU (t )U †(t )

=
∑

n

En(t )|En(t )〉〈En(t )|

+ i
∑

n

|∂t En(t )〉〈En(t )|

− i
∑

n

〈En(t )|∂t En(t )〉|En(t )〉〈En(t )|. (B2)

The instantaneous eigenstates of H0(t ) are |E0(t )〉 =
cos[θ (t )/2]|0〉 + sin[θ (t )/2]|1〉 and |E1(t )〉 = sin[θ (t )/2]|0〉

− cos[θ (t )/2]|1〉, where θ (t ) = arctan[X (t )/Z]. It is easy
to calculate and find that i

∑
n |∂t En(t )〉〈En(t )| = ∂tθ (t )S′

y =
ZẊ (t )/[X 2(t ) + Z2]S′

y and 〈En(t )|∂t En(t )〉 = 0 for n = 0, 1.
Thus in our experiment, the counterdiabatic Hamiltonian
takes the following form,

HCD(t ) = 2π [Z (t )S′
z + X (t )S′

x + Y (t )S′
y], (B3)

where 2πY (t ) = ZẊ (t )/[X 2(t ) + Z2]. Taking the time du-
ration τ = 50 µs as an example, Fig. 5 depicts the time
dependence of all specific components of HCD(t ).
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