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Quantum machine learning has attracted considerable interest due to its potential to improve certain learning
tasks. In conventional quantum machine learning, the output is the expectation value of a preselected observable,
and the projective measurement forces a quantum circuit to run many times to obtain the output with reasonable
precision. In this work, we propose a protocol to utilize the adiabatic quantum evolution to execute quantum
learning tasks, in which the output is obtained by the adiabatic weak measurement rather than the projective
measurement. In comparison to previous protocols, we use only a single-shot measurement and therefore avoid
the measurement repetition in the previous protocols. Moreover, our protocol allows us to extract the expectation
values of multiple observables without disrupting the concerned quantum states.
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I. INTRODUCTION

Quantum computation [1,2] is expected to lead the next
computation revolution by exploiting quantum advantages [3].
Progress in quantum computation owes much to pioneering
theoretical [4–7] and experimental [8–11] works. Meanwhile,
inspired by the capability of machine learning [12], tremen-
dous efforts have been made to transplant machine learning
thinking and algorithms to quantum platforms [13–15], hence
the emergence of the research topic of quantum machine
learning. To date, quantum machine learning is mainly based
on the so-called variational quantum circuits (VQCs) [16–22].
In VQCs, we apply a series of gate operations (unitary
operators) to an initial state (e.g., the ground state |0〉 of
the initial Hamiltonian). We use the parameterized gate op-
erators to encode N-dimensional input x = (x1, . . . , xN ) as
well as M training variables w = (w1, . . . ,wM ). Then, we
can achieve the expectation value 〈0|U †(x, w)ÔU (x, w)|0〉 of
an observable Ô, where U †(x, w) is the overall time-evolution
operator. This expectation value is regarded as the prediction
fw(x) of the learning task. In general, the expectation value is
made from the statistic result of many projective measurement
repetitions. In a stimulating development, a quantum version
of the universal approximation theorem [18,23] was obtained,
confirming the expressivity of a quantum circuit to approxi-
mate any integrable functional relationships.

The outlined architecture of VQCs relies on the necessary
repetition of many projective measurements [24] in extracting
the expectation value of an observable of interest. The pre-
cision of measurement is inherently related to the variance
of the eigenvalues of a concerned observable. In situations
involving excitations in a high-dimensional Hilbert space, the
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convergence of the measured observable can be slow. Even
for a low-dimensional Hilbert space, many quantum gates are
still required to encode input x and training variables w, and
the needed repetition number is proportional to the inverse
square of the statistical error. Repeating this large quantum
circuit many times makes it very complex to obtain an output
with high precision [25], hindering its application in prac-
tice [26–30].

In this work, we propose an adiabatic quantum learning
protocol based on the weak measurement [31,32] rather than
the projective measurement to effectively save the needed
repetition number of measurements. In a nutshell, the weak
measurement is based on the weak coupling between a quan-
tum system and a pointer (the measurement device) over
a sufficiently long integration time T . The weak coupling
is described by the Hamiltonian Hint = p̂Ô

T , where p̂ is the
momentum operator of the pointer and Ô is the observable
in the quantum system. From first-order perturbation theory,
one can conclude that if the system is prepared in one of
the energy eigenstates, then there will be a small energy shift
p〈Ô〉

T . Assuming that quantum adiabatic conditions [33,34] are
obeyed, the system will stay in its instantaneous eigenstates.
Meanwhile, the pointer changes over a distance proportional
to 〈O〉, which is caused by the energy shift of the system-
pointer coupling. Throughout this process, the system and the
pointer will not get entangled due to the perturbative nature of
the system-pointer coupling. Indeed, the adiabatic condition
ensures that the system remains at its slightly perturbed energy
eigenstates. That being the case, upon finally checking the
actual position shift of the pointer subject to the initial spread-
ing of the pointer states as the only source of error without
a lower bound [35], one can infer the expectation value 〈O〉
without collapsing the measured state to one of the eigenstates
of Ô. This implies that the readout of the expectation value
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is achieved without incurring a wave-function collapse. Re-
cent brilliant experiments have demonstrated the in-principle
feasibility of such a weak-measurement protocol in trapped-
ion [36] and photon [37] systems. It is important to note
that the prerequisite for implementing this weak-measurement
scheme is preparing the system under measurement in one
of its energy eigenstates. Indeed, it is the Hamiltonian of the
system itself that protects the system in the eigenstate when
weak coupling between the system and a pointer is turned on.

In our protocol, the learning process is based entirely on
adiabatic quantum evolution; that is, throughout the process
the system is always in one of its energy eigenstates. In this
way, weak quantum adiabatic measurement can be introduced
at any step of a quantum learning algorithm without destroy-
ing the quantum state. The expectation value of an observable
of interest can be extracted without the need to repeat the
quantum gate sequences. The extraction of noncommuting
observables, as pointed by Aharonov et al.’s paper [31], is also
possible and hence potentially brings in even more resource
saving. This paper is organized as follows: we will present
(i) how to encode a learning algorithm into operations on
instantaneous Hamiltonians, (ii) how to design operations to
make adiabatic quantum evolution possible, and (iii) how to
execute the training procedure for such architectures. We shall
implement our protocol in two binary classification tasks.

II. LEARNING PROTOCOL

A. Representation and operations

Consider a D-dimensional quantum system described by
a traceless and time-dependent Hamiltonian H (t ) = �n(t ) · �e,
where �n(t ) is a unit vector and ei are the bases of Lie group
SU(D). Under the adiabatic evolution, the quantum system,
initially in the ground state of H (�n(0)), will eventually be in
the ground state of H (�n(T )) at time T . Different tracks of �n(t )
determine different final states and, consequently, different
measurement values. Therefore, we incorporate the learning
process into the track of �n(t ). Constructing such an �n(t ) track
in a high-dimensional space is difficult since the gap related
to the ground state may be closed at some points of �n(t ),
which leads to a breakdown of adiabatic evolution. We adopt a
simple strategy to overcome this problem, that is, limiting the
possible operations for constructing the track of �n to a small
subset of all rotation operations. Such rotation operations on a
unit vector �n should be equivalent to a unitary transformation
U on the corresponding Hamiltonian, �n′ · �e = U �n · �eU †. It can
preserve the spectrum of the Hamiltonian and hence will not
introduce any level crossing during the operation.

Specifically, let us map a Hamiltonian to a point on the
(D2 − 1)-dimensional unit sphere. We consider only the ro-
tation operation with its axis characterized by a unit vector
�m and consider the rotation angle to be the parameter θ .
Using A as the generator corresponding to the rotation axis �m,
such that

Ai j =
∑

k

Ci jkmk, (1)

the resulting rotation matrix can be expressed by eθA. Here,
the coefficient Ci jk is the structure constant of the Lie algebra

such that [ei, e j] = 2i
∑N

k=1 Ci jkek , and A is skew symmetric
with AT = −A. When such a rotation operation acts on �n, the
new vector may be rewritten as �n′ = eθA�n. In order to keep
the energy-level gaps open, we need to select the operation
acting on �n in the form of eθA. The effect of such eθA on �n is
equivalent to a unitary operation on the Hamiltonian, so that
the gap in the system Hamiltonian will not be closed under
adiabatic evolution once the initial gap is open. A detailed
explanation is given in the Appendix.

B. Learning structure

The learning task is to learn the ground-truth relation be-
tween input �x and output y. We know that, restricting the
operations on the vector �n to the set eθA under adiabatic
evolution, the track of �n(t ) determines the output of a learning
process. In our protocol, the ground state of the initial Hamil-
tonian H0 is used as the initial state. The initial Hamiltonian
H0 is constructed in such a way that the gap between the
ground state and the first excited state is sufficiently large. The
classical input data �x are then encoded into the rotation angle
of eθA, forming the encoding part, where the rotation axis is
fixed. Meanwhile, some of the remaining rotation operations
are reserved as the adjustable part, whose rotation angles are
taken as the variational parameters. Under adiabatic evolution,
the quantum system evolves along the constructed track of �n.
After the whole evolution, we obtain the predicted y, from
which an approximate relation can be constructed. However,
this relation is usually different from the ground-truth one. We
need to train this learning structure by adjusting variational
parameters with some known samples to approximate the
ground-truth relation. This is the training process, and the
samples used are known as the training dataset.

In the practical learning structure, we choose a special op-
eration configuration as the encoding block, with the rotation
parameters x being the input data, and another configuration
as the variational block, with the rotation parameters w be-
ing the variational parameters for the training step. These
two blocks make up a learning unit. To enable our learning
model to gain better learning capability, we repeat the learn-
ing unit several times, so that our protocol implements the
data reuploading strategy [38]. This point is supported by the
fact that our adiabatic learning process can be mapped to a
quantum circuit. After we implement the data reuploading
strategy, a quantum circuit obtains better expressivity since
the restricted frequency spectrum in its Fourier expansion has
been extended [23,39]. In different units, the encoding blocks
are the same, but the parameters of the different variational
blocks are not necessarily taken to be the same values.

Then, we outline the execution process of the learning.
As mentioned above, the ground state of H0 is set as the
initial state. The rotation operations in encoding blocks and
variational blocks, whose rotation angles are determined by
input x and variational parameters w, act on the unit vector
�n, forming a track for the adiabatic evolution. For our pur-
poses, we introduce the parameter g = �t/�θ , where �t is
the duration of angle rotation �θ and g is hence the period
needed for a unit change in the rotation angle. To make the
evolution along this track adiabatic, the inverse of g, which
determines the speed of the adiabatic time evolution, needs to
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FIG. 1. The flow of the adiabatic learning protocol. The initial Hamiltonian H0 and initial state are prefixed. The input x and variational
parameters w control the rotation operations on the vector �n(t ) of the time-dependent Hamiltonian, and the state evolves adiabatically along
the resulting evolution track of the Hamiltonian. During the entire learning process, the system remains in one of the energy eigenstates.
This allows our learning protocol to be integrated with weak adiabatic measurement, such that the expectation value of an observable can be
obtained without collapsing the state of the system. The repetition of a learning unit improves the expressivity, just like how data reuploading
improves the learning capability of a conventional quantum circuit structure. For a two-dimensional Hilbert space with one-dimensional input
x = π/3 and weight w1 = [π/2, π/6], there are three adiabatic rotations around the y axis (in an encoding clock) by x, around the z axis
(in a variational block) by w11, and around the x axis (in a variational block) by w12. The Bloch sphere illustrates the track traced out by the
Hamiltonian starting from H0 = σz.

be sufficiently small in comparison to the spectral gap in the
Hamiltonian. In this way, the final state is still the ground state
of HT , where T is the total evolution time. Consequently, we
are able to extract the expectation values of some observables
by using the weak adiabatic measurement advocated above.
The layout of this learning protocol is shown in Fig. 1.

To understand the effect of the learning unit, we visualize
a specific track of a time-evolving Hamiltonian determined by
the first learning unit. As is illustrated in the Bloch sphere
in Fig. 1, the encoding block has only one rotation opera-
tion around the y axis, and the variational block consists of
two operations around the z and x axes, all preserving the
spectrum of the Hamiltonian. The initial Hamiltonian is taken
to be σz; thus, the initial state is |1〉. The one-dimensional
input x = π/3 is encoded into the rotation angle around the y
axis. Two-dimensional weights (variational parameters) w1 =
[π/2, π/6] are the rotation angles of two rotation operations
in the variational block. With these three rotation operations,
the initial vector colored in green is rotated around y by 60◦
to the brown intermediate vector, then around z by 90◦ to the
blue vector, and, finally, around x by 30◦ to the red vector.

As a result, three arcs (green, brown, and blue) form the track
depicting the adiabatic evolution path. The entire track of �n
can be obtained by repeating series of learning units.

C. Training

We have demonstrated the learning structure. Let us now
move on to the training step for optimizing the variational
parameters. We randomly select some samples with feature
vectors �x and known labels y. The training dataset consists
of these selected sample (�x, y), which are believed to be
general. The constructed relation between �x and y from the
learning structure should approach the ground-truth relation.
Therefore, we need an appropriate loss function that reflects
the difference between predicted labels and the known labels
of these training samples. One must attempt to minimize this
loss function to get optimal variational parameters w in these
variational blocks, with which an accurate y can be predicted
for an input �x.

Assume that the adiabatic evolution can be achieved
perfectly. Considering that a rotation operation on the
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Hamiltonian is equivalent to a unitary operation acting on
its ground state, there is a mapping between our adiabatic
protocol and the conventional VQC. This implies that all
optimization methods in the conventional VQC are appli-
cable to our adiabatic protocol. There are two branches in
optimization algorithms: one is based on gradient descent,
and the other is gradient free. Numerical differentiation and
parameter shift [19,40] are gradient-descent methods, and
they can be executed solely on a quantum circuit without
relying on a classical computer. Constrained optimization by
linear approximation (COBYLA) is a gradient-free method.
It is efficient for a problem with a relatively small number
of variables and will be used in our verification cases. It is
worth noting that these methods need the expectation values
of some observables from experiments for optimization. In the
conventional VQC, a large number of measurements will be
executed. Differently, in our adiabatic learning protocol, the
expectation value of concerned observables can be obtained
with a single-shot measurement by invoking weak measure-
ment.

In order to validate our learning protocol in principle, we
adopt the strategy below. When a specific adiabatic learning
structure has been constructed, we map it to an equivalent
quantum circuit, and thus, various well-developed libraries
for building and training a quantum circuit can be applied.
In this way, we determine optimal variational parameters of
this quantum circuit as well as those of the adiabatic learn-
ing structure with the training dataset (�x, y). With an input
and these optimal variational parameters, we then construct
the track for the adiabatic evolution. Afterward, we simulate
this adiabatic evolution numerically and calculate the final
expectation value with the final evolving state, where a perfect
weak measurement has been performed. There may be some
errors due to the absence of perfect adiabaticity. However, our
verification examples below show that this is a small issue.

III. IMPLEMENTATION

To demonstrate the feasibility of our adiabatic learning pro-
tocol, we implement our protocol in two binary classification
tasks; one treats a one-dimensional data set, and the other
treats a two-dimensional data set. We select COBYLA as our
optimization method to get the optimal parameters.

A. Case I

We start with a working task for one-dimensional bi-
nary classification. We show the distribution of the label in
Fig. 2(a). The input is a real number x. There are three isomet-
ric parts in the range x ∈ (−1, 1). The outer two parts (blue)
are arranged with the same label, y = 1, and the central part
(green) is arranged with the label y = 0. For a sample i, the
data are (xi, yi ) with input xi ∈ (−1, 1) and label yi ∈ {−1, 1}.

To accomplish this one-dimensional binary classification
task, we execute an adiabatic learning protocol based on a
two-dimensional Hilbert space, i.e., a one-qubit system. The
initial state is taken to be the qubit ground state |0〉, and the
initial Hamiltonian is taken to be −σz, whose vector repre-
sentation is �n0 = (0, 0,−1) according to the notation used in
the previous section. The unit vector is allowed to rotate on

FIG. 2. One-dimensional binary classification. (a) The label y
distribution in range x ∈ [−1, 1]. y = 1 when |x| > 1

3 , and y = 0
otherwise. (b) The classification result for 100 samples. The misclas-
sifications marked with red circles occur in the neighborhood of the
two boundaries. The accuracy of the classification is 94%. (c) The
output difference between ideal evolution with perfect adiabaticity
and the actual time evolution in our numerical simulation. The rough-
ness of the actual simulation result is due to nonadiabatic effects.
(d) The fidelity of the evolution state against the eigenstate of the
instantaneous Hamiltonian for sample x = 0 for the whole adiabatic
evolution. Note that although the fidelity remain at almost unity
throughout the operation, the influence of the finite-time operation
on adiabaticity is still visible in (c).

the Bloch sphere embedded in three-dimensional parameter
space. In a learning unit, the encoding block contains only
one rotation operation because the input is one dimension.
The rotation axis of this operation can be chosen as the
x axis, whose vector representation is (1,0,0). The rotation
angle is the input x. The variational block consists of three
rotation operations: rotation around the z axis (0,0,1) by w1,
rotation around the y axis (0,1,0) by w2, and rotation around
the z axis (0,0,1) by w3. The variational parameter in this
block is hence a three-dimensional vector (w1,w2,w3). To
achieve good classification accuracy, we repeat this learn-
ing unit three times. For a given input, the track of the
instantaneous Hamiltonian H (t ) is determined by 4 × 3 = 12
rotations. This track of the qubit Hamiltonian determines
the evolution of the quantum state, and the final state is
given by |φT 〉 = T̂ {exp[−i

∫ T
0 dtH (t )]}|0〉, where T̂ is the

time-ordering operator. In the training step, the adjustable pa-
rameters are implemented by three three-dimensional vectors,
each of which is from one learning unit. Under the adiabatic
evolution, the final state is an eigenstate of the final instanta-
neous Hamiltonian H (T ). The outcome can be the expectation
value of the observable σz, denoted by e, with e ranging from
−1 to 1. The predicted label y is determined by e according to
the classification criterion,

y =
{

0 e � 0,

1 e > 0.
(2)

Having explained the learning structure, in following nu-
merical experiments, we transform these rotation operations

042420-4



ADIABATIC QUANTUM LEARNING PHYSICAL REVIEW A 108, 042420 (2023)

into their quantum circuit analogy. We then use the package
QISKIT [41] to construct the quantum circuit and train it with
COBYLA to get these optimal parameters.

In numerical experiments, we randomly select Nt = 20
samples from the distribution presented in Fig. 2(a) as
the training dataset, which is {(x1, y1), . . . , (xNt , yNt )}. Af-
ter training, we get optimal parameters [−0.572, 0.643,

0.478, 1.57, 1.886,−1.225,−1.4,−1.568, 0.856]. The train-
ing score that represents the ratio of getting the correct
prediction is 0.95. This means that there is only one sample
classified wrongly. Then we uniformly select 100 samples
from the distribution in Fig. 2(a) as the test dataset to verify
our adiabatic learning structure. Again, for a given input,
a quantum state prepared in |0〉 evolves along the track of
the instantaneous Hamiltonians. We then get the output. In
this process, we set the operation timescale parameter to
be g = 0.01/0.0005 = 20 per angle change (the larger this
number is, the closer to the adiabatic limit it is). Then, the
evolution period for different inputs will be �t = g × �θ

(as mentioned in Sec. II B). The final classification result is
presented in Fig. 2(b), and its accuracy can be up to 94%.
This demonstrates that our adiabatic quantum learning works
well. Here, it is also clear that the misclassifications (marked
with red circles) all occur around two boundaries. This is
understandable and typical because of the effect of the finite
size of the training dataset.

The adiabatic evolution is guaranteed by the condition
T � �/�2, where T is the entire period of time, � is the
minimal energy gap, and � = maxs∈[0,1] ‖Ḣ (s)‖ represents
the evolution rate with s = t/T ∈ [0, 1]. In our protocol, the
Hamiltonian H (s) is determined by the learning structure, so
the gap � and evolution rate � are fixed. Therefore, to guaran-
tee the adiabatic evolution in an experimental implementation,
we need to take a long evolution period T . It is adjusted by the
scale parameter g. Considering that the adiabatic protocol is
completed with a finite duration and thus the time-evolution
state cannot exactly follow the track of the time-evolving
Hamiltonian, we now turn to investigate nonadiabatic effects
on the performance of our adiabatic learning. Figure 2(c)
compares the output of actual time evolution with that of
the ideal time evolution. The results match each other with
high accuracy. To probe the nonadiabatic effects on the inter-
mediate state, we calculate the fidelity f = |〈φsim(t )|φg(t )〉|2
between the actual time-evolving state |φsim(t )〉 and the ideal
state |φg(t )〉. Figure 2(d) shows the fidelity f as a function
of time t , where we select a sample with x = 0 from the
test data. One can see that the fidelity stays close to unity
for the finite-time evolution with g = 20. This implies that,
to suppress possible nonadiabatic effects on the accuracy of
our classification task, g should be on the order of 10, so the
fidelity is expected to be around 99.9%.

B. Case II

Having benchmarked our protocol in a one-dimensional
classification example, we stretch to a two-dimensional binary
classification task. Figure. 3(a) depicts the distribution of this
classification task. In a square with a width of 2, a circle
divides it into two parts with the same area. The radius is√

2/π . Like the situation in the previous case, we set the label

FIG. 3. Two-dimensional binary classification of a two-
dimensional Hilbert space. (a) The label distribution inside a square
of length 2, with the boundary of the two labels being a circle with
a radius of

√
2/π . (b) The classification result of 200 randomly

selected samples. The wrongly classified samples are marked with
red circles and locate around the boundary. The accuracy is 92.5%.
(c) The output distribution in this square. The surface is somewhat
rough, which is again due to nonadiabatic effects in our actual time
evolution. This is also reflected from its projection at the bottom,
where the boundary (white part, output = 0) for classification is
shown to be not a perfect circle.

of the part (blue) outside this circle as y = 1 and that of the
other part (green) as y = 0. The input is a two-dimensional
vector [x1, x2], with x1, x2 ∈ [−1, 1]. The target output y for
label 1 is 1, and that for label 0 is −1. In this task, a sample i
has data ([xi

1, xi
2], yi ).

Similarly, we execute an adiabatic learning structure based
on a two-dimensional Hilbert space. The encoding block is
composed of two rotations corresponding to the two elements
of input. They are the rotation around the z axis by x1 and
the following rotation around the y axis by x2. The variational
block is the same as the previous one. We still repeat this
learning unit three times. The initial state is taken to be |0〉,
and the observable for the measurement is set to be σz. We also
train our variational parameters on the corresponding quantum
circuit from which 200 samples are selected randomly as the
training dataset. The optimal parameter vector is obtained as
[−0.268, 1.628, 0.0176, 2.367, 0.1684, 2.796, 1.044, 1.616,

0.866], and the training accuracy is up to 91.5%.
We still simulate the adiabatic evolution using the adiabatic

timescale parameter g = 0.01/0.0005 = 20 per angle change.
The performance of such an adiabatic learning protocol is ver-
ified with a test dataset consisting of 200 samples, the result of
which is presented in Fig. 3(b). The points classified wrongly
are marked with red circles, and the classification accuracy
is found to be 92.5%. Like in the previous case, these wrong
points are located around the boundary (the black circle). Ev-
idently, the adopted learning structure has effectively learned
the pattern of this two-dimensional binary distribution. The
output of adiabatic learning for all the input data is shown in
Fig. 3(c), where the color represents the value of the output.
From the contour plane projected at the bottom of Fig. 3(c),
we can confirm that although the classification boundary is
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FIG. 4. Two-dimensional binary classification on a four-dimensional Hilbert space. (a) The equivalent quantum circuit on a two-qubit
system. In a learning unit (separated by barriers), the encoding block consists of an RZ gate (the first rotation in the encoding block) on qubit 0
and an RY gate (the second rotation) on qubit 1. The variational block is composed of a controlled-NOT gate, CNOT(1,0) (the first rotation in the
variational block), and a U gate (the last three rotations) with three training parameters. (b) The classification result of 200 randomly selected
samples. The wrongly classified samples are marked with red circles and locate around the boundary. The accuracy is 91%.

not a perfect circle, it really reflects the correct pattern with
an acceptable error.

Besides the above learning structure, we also consider
a learning structure based on a four-dimensional Hilbert
space, i.e., a two-qubit system. A Hermitian operator in
this Hilbert space can be expanded in term of 15 bases,
{

√
2

2 σ�(i+1)/4� ⊗ σ(i+1) mod 4}/{σ0 ⊗ σ0}, i ∈ {0, 1, . . . , 14}.
The initial state is taken to be |00〉. The vector representation
of the initial Hamiltonian is �n0, with the nonzero elements
being n0i = −1/

√
3, i ∈ {2, 11, 14}. In the learning unit,

the encoding block consists of two rotation operations
corresponding to the two elements of input. They are selected
as rotation around axis �ra (whose nonzero element in our
vector representation is rai = 1, i = 2) by angle x1 and a
second rotation around axis �rb (whose nonzero element
in our vector representation is rbi = 1, i = 7) by angle
x2. In the variational block, we introduce four rotation
operations: rotation around axis �rc with its nonzero elements
rc0 = rc11 = 1/

√
3 and rc12 = −1/

√
3 by angle 2π/

√
3,

rotation around axis �ra (already defined above) by angle w1,
rotation around axis �rd with its nonzero element rd1 = 1
by angle w2, and, finally, rotation around axis �ra by angle
w3. The three variational parameters in the variational block
constructed this way form a three-dimensional vector. We
repeat the learning unit three times, in the same fashion as
for the above single-qubit learning structures, and then train
this model after transforming it to the corresponding quantum
circuit in Fig. 4(a). The optimal parameters are obtained
as [−1.553,−1.573, 0.6506,−1.967,−0.008876,−2.018,

−2.996,−1.565,−0.9585], and the training accuracy is up
to 95% using the quantum circuit. Our adiabatic learning
model is then verified on our test data composed of 200
random samples with an adiabatic timescale parameter
g = 0.02/0.0003 = 66.6 per angle change. The adiabatic
learning classification result is presented in Fig. 4(b), and the
obtained accuracy is found to be 91%.

Our results demonstrate that the adiabatic learning struc-
ture outlined above can also achieve good learning capability
in comparison to others based on more general quantum cir-
cuits. The peculiar advantage of our protocol is that, even

though some small nonadiabatic effects exist, the state of the
system always stays in the ground state of the instantaneous
Hamiltonian, so that our protocol, in principle, allows us to
carry out adiabatic weak measurements at any point of the
learning process. Hence, we can bypass the costly repetition
of projective measurements to obtain the expectation value
of an observable. Finally, we would like to mention that our
simulations are computational and hence ideal. When our pro-
tocol is implemented on actual hardware, nonideal effects may
arise. For that reason further engineering adiabaticity may be
useful [42].

IV. CONCLUSION

In this work, we proposed an adiabatic learning structure
which allows us to obtain the expectation value with the in-
novative weak-measurement scheme proposed by Aharonov
et al. [31], instead of projective measurement in the con-
ventional structure based on a quantum circuit. The output
state in conventional quantum learning protocols is usually not
the eigenstate of a prechosen observable, so repetition of the
strong projective measurement is needed to obtain expectation
values, which always destroys the final state. The key message
from this paper is that the quantum learning structure can
be integrated with weak measurement by letting the time-
evolving states always be those of energy states. Therefore,
at the end of quantum operations, the expectation value of
an observable can be obtained by a single-shot measurement
without collapsing the state. This will greatly facilitate the op-
timization process in variational learning since the complexity
of output measurements in a quantum learning machine has
been reduced. For our purposes, we encoded the learning
process into the rotations on the Hamiltonian matrix around
a set of axes to construct a learning structure. We showed
that our learning protocol has the same learning capacity
as the traditional protocols based on more general quantum
circuits. However, our learning protocol allows us to probe
the intermediate state without disturbing the computation or
learning process. This is different from a conventional pro-
tocol in which the computation process is regarded as a black
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box. Hence, the flow of our protocol becomes transparent, and
any unexpected error can be monitored along the way without
destroying the time-evolving state. The actual performance of
our protocol in real experimental platforms should be explored
in the near future.

Recently, some other learning structures have been de-
veloped, such as deep multilayer perceptrons [43] and
quantum-classical convolutional neural networks [44,45]. We
note that more layers would require more measurements in
the interior of their learning processes. A way to reduce com-
plications in the measurement steps there is urgent, and our
adiabatic learning protocol will likely provide a long-term
solution when these learning structure can be implemented in
our protocol.

APPENDIX: MAPPING BETWEEN ADIABATIC
EVOLUTION AND QUANTUM CIRCUITS

Consider now a traceless Hamiltonian, which can be ex-
pressed with N Lie algebra group elements ei, i ∈ {1, . . . , N}.
In other words, an N-dimensional unit vector �n represents

a Hamiltonian through the relation H = �n · �e. We have also
assumed that Cabc is the structure constant, with [ea, eb] =
2i

∑N
c=1 Cabcec. After a selected rotational operation R around

an N-dimensional unit vector �m by angle θ , the new unit
vector �n′ = R(�n) representing a new Hamiltonian H ′ can be
regarded as the result of a unitary operator U acting on H ,
H ′ = UHU †.

Here, we give the explicit mapping relation to find the
corresponding unitary operator U . As shown in the main text,
the selected rotational operation around �m by θ is in the form
of R = eθA, with Aab = ∑

c Cabcmc. As the rotation angle ap-
proaches zero, i.e., θ → 0, a straightforward relation emerges:

n′
a =

∑
b

Rabnb =
∑

b

(
δab + θ

∑
c

mcCabc

+1

2
θ2

∑
cde

CacdCcbemd me + · · ·
)

nb. (A1)

The effect on the Hamiltonian then becomes

�n′ · �e = �n · �e + θ
∑
abc

mcnbCabcea + 1

2
θ2

∑
abcde

CacdCcbemd menbea + · · ·

= �n · �e + i(θ/2)
∑

ab

manb[ea, eb] + 1

2
(iθ/2)2

∑
abcd

2iCcbd [ea, ed ] + · · ·

= �n · �e + i(θ/2)
∑

ab

manb[ea, eb] + 1

2
(iθ/2)2

∑
abc

manbmc(ea[ec, eb] + [eb, ea]ec) + · · ·

=
{

I + i(θ/2) �m · �e + 1

2
i[(θ/2) �m · �e]2 + · · ·

}
· �e

{
I − i(θ/2) �m · �e + 1

2
− i[(θ/2) �m · �e]2 + · · ·

}

= ei(θ/2) �m·�e�n · �ee−i(θ/2) �m·�e

= U (θ )�n · �eU †(θ ). (A2)

Thus, with an infinitesimal rotation, the relation between a unitary transformation U (θ ) = ei(θ/2) �m·�e experienced by a Hamiltonian
and the corresponding rotational operation R = eθA on the corresponding unit vector is obvious. With multiplication of many
such infinitesimal rotations, it becomes obvious that a corresponding unitary operator can be found for any rotation angle θ . This
clarifies the mapping between a rotational operation in our protocol and unitary operators in a conventional quantum circuit. This
also explains why we can first find optimal variational parameters from the corresponding quantum circuits in the training step
and then finally do the finite-time rotational operations to implement our adiabatic learning protocol. Finally, if N = D2 − 1 is
now as large as the dimension of the Lie algebra associated with the whole Hilbert space of the system, then any unitary operator
in a quantum circuit can be written as U (θ ) via the exponential of some Hermitian operators (apart from a global phase). In this
limiting case, any unitary operator considered in a quantum circuit can be realized by a corresponding rotational operator, whose
experimental realization can, however, be challenging for a high-dimensional Hilbert space.
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