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Nearly Heisenberg-limited noise-unbiased frequency estimation by tailored sensor design
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We consider entanglement-assisted frequency estimation by Ramsey interferometry in the presence of de-
phasing noise from general spatiotemporally correlated environments. By working in the widely employed local
estimation regime, we show that even for infinite measurement statistics, noise renders standard estimators biased
or ill defined. We introduce ratio estimators which, at the cost of doubling the required resources, are insensitive
to noise and retain the asymptotic precision scaling of standard ones. While ratio estimators are applicable also
in the limit of Markovian noise, we focus on non-Markovian dephasing from a bosonic bath and show how
knowledge about the noise spectrum may be used to maximize metrological advantage by tailoring the sensor’s
geometry. Notably, Heisenberg scaling is attained up to a logarithmic prefactor by maximally entangled states,
while optimal Zeno scaling is afforded by one-axis twisted spin-squeezed states.
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I. INTRODUCTION

High-precision estimation of transition frequencies (or en-
ergy splittings) is a fundamental task in quantum metrology,
with implications ranging from atomic spectroscopy [1–3] to
timekeeping with atomic clocks [4–6]. In the context of Ram-
sey interferometry [7,8] with a quantum sensor comprising N
probes, the use of initial entangled states can yield, in prin-
ciple, asymptotic precision bounds which surpass the optimal
N−1/2 standard quantum limit (SQL) achievable classically.
Under ideal conditions and assuming that no interaction be-
tween the probes is permitted after preparation, the ultimate
N−1 precision bound is set by the Heisenberg limit (HL),
and is saturated by maximally entangled Greenberger-Horne-
Zeilinger (GHZ) states [9–11].

In practice, noise inevitably degrades the attainable preci-
sion to an extent that depends on the model specifics [12].
In many quantum sensors, dephasing noise which couples
through the same operator as the signal provides the dom-
inant noise mechanism. While no gain over the SQL can
be achieved for independent Markovian noise (that is, noise
with no spatial and temporal correlations) [9,13], temporal
correlations alone can be exploited to achieve a superclassi-
cal Zeno limit ∝ N−3/4 [14–16]. Strong temporal correlations
have been detected in a variety of systems via quantum noise
spectroscopy experiments, see, e.g., [17–23], including for
nonclassical noise environments [24–26]. Spatial noise corre-
lations also tend to emerge due to probe proximity [27–30],
making noise substantially more harmful than uncorrelated
one. For perfectly correlated (collective) Markovian noise,
GHZ states are the most fragile, resulting in an N-independent
precision scaling [28,31], and sub-SQL scaling is also pre-
cluded in the non-Markovian regime [32,33]. For noise with
partial spatial correlations, superclassical precision scaling
can be restored by tailored error-correcting codes in the

Markovian case [34], or by means of a randomized protocol
for general temporally correlated scenarios [33].

While, as the above shows, the impact noise on the scaling
of precision has been extensively studied, far less attention
has been devoted thus far to the fact that noise may also
introduce unwanted bias, compromising accuracy if unac-
counted for. Most research on bias in quantum metrology has
focused on estimation in the regime of limited data, using
Bayesian approaches [35–37]. More recently, in the context of
Markovian noise, bias due to finite-frequency error-corrected
sensing was addressed in [38] through postprocessing, while
a purification-based protocol was proposed in [39] to mitigate
bias due to imperfect knowledge of the noise model.

Here we focus on general spatiotemporally correlated de-
phasing noise, potentially arising from nonclassical sources,
and address its impact on both the mean and the variance
of the possible measurement outcomes. We first show how
even in the ideal limit of infinite measurement statistics and
perfect knowledge of the noise spectral properties, standard
estimators for both GHZ and one-axis twisted (OAT) states
become systematically biased and possibly ill defined. By
suitably modifying the estimation protocol, we introduce ratio
estimators, which are insensitive to dephasing by construction
and match the asymptotic N scaling of standard estimators.
Importantly, no detailed noise knowledge is needed for con-
structing ratio estimators, which remain applicable in the
limiting case of noise with no temporal or spatial correlations.

As our second main result, we further show that if spa-
tiotemporal correlations are present, access to the noise
spectral features allows for the achievable precision scaling
to be optimized for a given initial state. We make our analysis
concrete by examining a setting where N qubits are placed on
a one-dimensional (1D) regular lattice with tunable separation
and couple to a bosonic bath. We show that by effectively
engineering negative noise correlations yields a far greater
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scaling advantage than achievable via randomized protocols
that spatially decorrelate the probes on average [33]. Re-
markably, OAT states saturate the N−3/4 Zeno limit which
is optimal for independent non-Markovian dephasing [16],
whereas a nearly Heisenberg N−1√ln(N ) scaling emerges for
GHZ states.

The content is organized as follows. Section II summa-
rizes the main tools needed to understand our work, including
the spatiotemporally correlated dephasing setting we consider
and some basic estimation-theoretic notions used in standard
metrology protocols. In Sec. III we demonstrate the emer-
gence of noise-induced bias and show how the latter can
be countered by introducing ratio estimators, at the cost of
doubling the total time resources needed to carry out the ex-
periment. The performance of these estimators is illustrated in
the simplest instance of perfectly correlated (collective) non-
Markovian dephasing. In Sec. IV we specialize our analysis to
a 1D lattice geometry and show explicitly how to optimize the
sensor’s performance by tailoring the spatial separation of the
qubit probes while preparing them in a GHZ and OAT state,
respectively. Some considerations about the robustness of our
predicted superclassical precision scaling against variations
of the underlying noise model are also included. We briefly
summarize our conclusions in Sec. V, and provide complete
detail about our scaling derivations for both GHZ and OAT
states in a separate Appendix.

II. BACKGROUND

A. Open quantum system setting

We consider N qubit probes, each coupled to the target
frequency b, and a “parallel” dephasing noise environment (or
bath). In the interaction picture with respect to the free bath
Hamiltonian HB, the joint evolution is generated by

HSB(t ) = bJz ⊗ IB + 1

2

N∑
n=1

σ z
n ⊗ Bn(t ), (1)

where σ u
n , Ju ≡ 1

2

∑N
n=1 σ u

n , u ∈ {x, y, z}, are Pauli matrices
and collective spin operators, respectively, and the bath op-
erators {Bn(t )} describe a noise process which we take to be
zero-mean, stationary, and Gaussian. Under the assumption
that the initial joint state is factorized, ρSB(0) ≡ ρ0 ⊗ ρB, with
[ρB, HB] = 0, the statistical properties of the noise are fully
captured by the two-point correlation functions,

Cnm(t ) ≡ 〈Bn(t )Bm(0)〉 = TrB{Bn(t )Bm(0)ρB}.
For a classical noise environment, Bn(t ) and 〈•〉 denote a
stochastic commuting process and an ensemble average, re-
spectively. In general, the noise is nontrivially correlated both
in space, across different qubits, and in time (non-Markovian);
“δ-correlated” (white or Markovian) noise is included as a
special case, Cnm(t ) = cnmδ(t ), for some Hermitian matrix cnm

that encodes the spatial noise correlations.
In the frequency domain, the presence of temporal correla-

tions translates into “colored” classical (symmetrized, +) and
quantum (antisymmetrized, −) noise spectra given by

S±
nm(ω) ≡

∫ ∞

−∞
dt e−iωt 〈[Bn(t ), Bm(0)]±〉,

with [Bn(t ), Bm(0)]− and [Bn(t ), Bm(0)]+ denoting the com-
mutator and anticommutator, respectively, of the relevant
noise operator [40]. Let |
α〉 ≡ ⊗N

n=1 |αn〉, with αn = ±1 cor-
responding to the eigenstates {|↑〉, |↓〉} of σ z

n , denote the z
basis. The time-evolved state of the system may then be gen-
erally represented as

〈
α|ρ(t )|
β〉 = eibt
∑N

n=1(βn−αn )e−γ (t )+iϕ0 (t )+iϕ1(t )〈
α|ρ0|
β〉,
in terms of real functions γ (t ), ϕ0(t ), ϕ1(t ) which involve
products of a state-dependent component and a corresponding
time-dependent dynamic coefficient [33]. Irrespective of the
classical or quantum nature of the noise, γ (t ) governs the
decay of off-diagonal coherence elements,

γ (t ) ≡
N∑

n,m=1

(αn − βn)(αm − βm)κnm(t ), (2)

where the decay dynamic coefficient κnm(t ) is expressible in
terms of a frequency overlap integral:

κnm(t ) = 1

32π

∫ ∞

−∞
dω

sin2(ωt/2)

ω2
S+

nm(ω). (3)

On the other hand, phase evolution is distinctive of a quan-
tum, noncommuting environment. One may show that ϕ0(t )
arises from a unitary “Lamb-shift” contribution due to bath-
mediated entanglement between the qubits, whereas ϕ1(t ) is
linked to whether the dephasing can be described as “random
unitary,” and hence as classical in nature [33,41]. In particular,
we can write

ϕ0(t ) ≡
N∑

n,m=1

(βnβm − αnαm)ξnm(t ), (4)

with a corresponding phase dynamic coefficient ξnm(t ) which
can be expressed as

ξnm(t ) = 1

32π

∫ ∞

−∞
dω

ωt − sin(ωt )

ω2
S−

nm(ω), (5)

and depends explicitly on the quantum spectra S−
nm(ω). Struc-

turally similar relationships hold for ϕ1(t ), although for
symmetry reasons this phase will not play a role in the model
systems we shall focus on [33]. Under the assumption that the
spectra have vanishing support above a high-frequency cutoff,
say, S±

nm(ω) ≈ 0 for |ω| � ωc, Eq. (3) implies a quadratic
dependence upon time of κnm(t ), and hence of γ (t ), in the
short-time limit ωct � 1. This contrasts with the linear be-
havior [γ̇ (t ) = const] that arises in the formal limit ωc → ∞
of Markovian noise, described by semigroup dynamics [12].

B. Noiseless frequency estimation

1. Basic estimation notions

A typical estimation protocol consists of tree distinct steps.
On a first stage the N qubit probes are initialized in a (possibly
entangled) input state ρ0. In the absence of noise, the system
is then left to evolve unitarily under the Hamiltonian in Eq. (1)
with Bn(t ) = 0, for an “encoding” period of duration τ , after
which a suitable observable, say, O, is measured. This process
is repeated ν ≡ T/τ � 1 times over a total duration T , re-
sulting in a vector of independently distributed measurement
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outcomes 
μ ≡ {μ1, . . . , μν}, from which information about
b is extracted. An estimator b̂(
μ) is a function of random
variable that associates each set of outcomes with an estimate
of b. Let the mean and variance of b̂ be denoted, respectively,
by 〈b̂(
μ)〉 and �b̂2(
μ) = 〈(b̂(
μ) − 〈b̂(
μ)〉)2〉, where expecta-
tions 〈·〉 are taken over all possible measurement outcomes.
The estimator is unbiased if 〈b̂(
μ)〉 = b and is asymptotically
unbiased if the bias vanishes as ν → ∞. More precisely, we
say that b̂(
μ) is consistent if it converges in probability to
the true value for an infinitely large sample, that is, ∀ε > 0,
limν→∞ P(|b̂(
μ) − b| > ε) = 0, implying limν→∞ b̂(
μ) = b.
A consistent estimator with vanishing variance as ν → ∞
is asymptotically unbiased. The estimators in which we are
interested in this work fall under this category.

In a setting where the relationship between the expectation
value of O and b is well known, 〈O(τ )〉 ≡ f (b), an estimator
b̂(
μ) is customarily constructed as follows: First, the fre-
quency can be written as a function of 〈O(τ )〉 by inverting the
above relationship, b ≡ f −1(〈O(τ )〉). Then, after performing
ν � 1 measurements, we estimate 〈O(τ )〉 as the sample mean
of the measurements outcomes,

〈O(τ )〉 ≈ 〈Ô(τ )〉 = 1

ν

ν∑
i=1

μi ≡ f̂ (b).

From this, the estimator readily follows: b̂(
μ) = f −1( f̂ (b)).
An analytic expression for �b̂2 can be obtained if we further
assume that the target frequency is confined within a small
neighborhood of a known value b0, with a corresponding
mean value 〈O(τ )〉0, such that f (b) is injective. To do so we
first linearize around b0,

b̂ ≈ f −1( f (b0)) + ∂

∂ f
f −1( f (b))

∣∣
f (b0 )( f̂ (b) − f (b0)),

whereby it follows, using the expression for the derivative of
an inverse function, that

b̂ − b0 ≈ [∂b f (b̂)
∣∣
b0

]−1[〈Ô(τ )〉 − 〈O(τ )〉0].

Because the variance is independent of additive constants (b0

and 〈O(τ )〉0 in our case), it is then clear that the variance of b̂
is proportional to �Ô2(τ ) = 〈Ô2(τ )〉 − 〈Ô(τ )〉2 in this limit,
leading to the well-known error propagation formula

�b̂2(τ ) ≈ (∂b 〈O(τ )〉∣∣b0
)−2 ν−1�Ô(τ )2. (6)

This procedure, known as the method of moments [3], has been
widely used for quantifying estimation precision in metrol-
ogy settings. The approximate equality in Eq. (6) allows us
to obtain an analytic expression for the uncertainty in the
asymptotic limit of ν � 1 and high prior knowledge, and
is commonly treated as an exact measure of the frequency
uncertainty. We henceforth follow this standard practice and
write the relationship in Eq. (6) as an equality.

For the particular case of an initial N-qubit GHZ state,
|GHZ〉 ≡ 1√

2
(|↑〉⊗N + |↓〉⊗N ), we will explicitly verify that

the analytic expression in Eq. (6) accurately reproduces the
behavior of the average over all measurement outcomes of
an appropriate survival probability (see Sec. II B 2). In addi-
tion, we are also interested on frequency estimation through
Ramsey interferometry for spin-squeezed initial states, which
exhibit a reduced variance of the collective spin Ju along a

particular direction and are easier to generate and measure
experimentally than GHZ states are [42]. It can be shown
that their uncertainty �b̂(τ ) can scale superclassically when
measuring an angular momentum component, O = Jn̂. Here
we consider OAT states obtained from product coherent spin
states (CSS) as follows [43–45]:

|OAT〉 = e−iβJx e−iθJ2
z |CSS〉x, |CSS〉x ≡ |+〉⊗N , (7)

with β, θ ∈ [0, 2π ] being rotation and squeezing angles set to
minimize the initial variance along y, and σx|+〉 = |+〉. For
such an OAT state, the precision �b̂ resulting from measuring
Jy scales like N−5/6 in the noiseless scenario [33].

Lastly, we remark that if b̂ is an unbiased estimator, the
variance associated with measuring any O is lower bounded
by the quantum Cramér-Rao bound (QCR) [46,47],

�b̂2(τ ) � �b̂2
QCR = (νFQ[ρb(τ )])−1, (8)

where FQ[ρb(τ )] is the quantum Fisher information (QFI) of
the output state ρb(τ ). By construction, the QFI is derived
from the maximization of its classical, operator-dependent
counterpart, the Fisher information, over the set of all positive
operator-valued measurements (POVMs), which includes all
possible observables O [48].

2. Case study: GHZ state

In the absence of noise, an input GHZ state saturates the
HL [3], as can be shown by performing a measurement of the
survival probability pb,0(τ ). Since the dynamics is unitary in
this case, at a given interrogation time τ the latter is given
by pb,0(τ ) = [1 + cos(Nbτ )]/2. Let us apply the method of
moments by defining the relevant observable

O ≡ �|GHZ〉 − (I − �|GHZ〉), �|GHZ〉 = |GHZ〉〈GHZ|,
(9)

in terms of the projector �|GHZ〉 onto the initial state. In this
way, 〈O(τ )〉 = cos(Nbτ ) ≡ f (b). The frequency can then be
written as a function of 〈O(τ )〉 by inverting this relationship,

b = arccos[〈O(τ )〉]/(Nτ ) ≡ f −1(〈O(τ )〉).

After performing ν � 1 measurements, we can estimate
〈O(τ )〉 in terms of the ratio of the number of detections of
the initial state ν+ over the total number of trials: 〈Ô(τ )〉 =
f̂ (b) = 2(ν+/ν) − 1. This leads to the estimator

b̂(τ ) = f −1[ f̂ (b)] = 1

Nτ
arccos [2(ν+/ν) − 1].

Thanks to the fact that the relevant POVM has only two
outcomes, the resulting measurement probability distribution
is binomial, and the estimator’s variance can thus be computed
numerically by averaging over all measurement outcomes:

�b̂2(τ ) = 〈(b̂(
μ) − 〈b̂(
μ)〉)2〉,

〈•〉 =
ν∑

ν+=0

(
ν

ν+

)
pb,0(τ )ν+ (1 − pb,0(τ ))ν−ν+ (•). (10)

On the other hand, �b̂2(τ ) may be calculated by means of
Eq. (6). Using the second moment of the binomial distri-
bution, �Ô(τ )2 = ν−14pb,0(τ )(1 − pb,0(τ )), Eq. (6) reduces
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FIG. 1. Standard estimator uncertainty in the noiseless setting
and noise-induced bias. Top: Standard estimator uncertainty as a
function of time in the ideal limit of no dephasing. Sample variance
(blue, dashed), and analytic expression �b̂(t ) ≈ (N

√
T t )−1 derived

from the method of moments (gray, solid). Bottom: Performance
of the standard estimator in the presence of collective spin-boson
dephasing from a 1D zero-temperature environment (see Sec. IV A).
The spectral density [Eq. (21)] is supra-Ohmic with an exponential
cutoff, with s = 3, ωc = 1, and different noise strengths α, as shown
in the legend. The limiting analytic expression in the absence of noise
(gray, solid) is also included. The measurement time τ = 0.2067 is
optimal in the lattice setting. We consider an initial GHZ state with
N = 100 qubits, and ν = 400 measurement shots.

to �b̂2(τ ) ≈ (N2 T τ )−1, that is, the HL. It follows that this
particular choice of measurement operator O is optimal, as it
saturates the QCR bound in Eq. (8). We can verify that such
an approximate analytic expression accurately reproduces the
behavior of the average over all measurement outcomes. As
one may see from Fig. 1 (top), the agreement is excellent
already for ν = 400 measurements.

III. NOISY FREQUENCY ESTIMATION

A. Noise-induced bias

Crucially, the method of moments we described above re-
lies on the assumption that the function f to be one-to-one, at
least in a neighborhood of b0. Despite being ubiquitous in the
literature, this inversion procedure on which the construction
of b̂(
μ) hinges upon generally becomes problematic in the
presence of noise. To illustrate the issue, consider as before an
initial GHZ state, but this time evolving under the dephasing
Hamiltonian of Eq. (1) which, to simplify our argument, we
take to be collective (permutation-invariant), that is, Bn(t ) ≡
B(t ),∀t .

In the presence of dephasing, the survival probability be-
comes pb(τ ) = [1 + cos(Nbτ )e−γGHZ(τ )]/2 and, correspond-
ingly, the mean value is multiplied by a decay factor,

〈O(τ )〉 = e−γGHZ(t ) cos(Nbτ ) ≡ g(b). Thus, using the same in-
version formula to estimate b as in the noiseless scenario,
b̂(τ ) = arccos (2(ν+/ν) − 1)/(Nτ ) = f −1(g(b)), leads to a
systematic noise-induced bias as γGHZ(t ) is not accounted for.
This is illustrated in Fig. 1 (bottom), which shows how the
performance of the standard estimator increasingly degrades
as the dephasing rate increases. Alternatively, computation of
b̂ using the correct inversion formula would require perfect
knowledge of the decay parameter γGHZ(τ ),

b̂(τ ) = 1

Nτ
arccos[eγGHZ(τ )(2(ν+/ν) − 1)],

which would imply previous noise characterization to the
same level of precision desired for the estimation of b. Not
only would this add to the resource count, but there is no
known noise characterization protocol capable of achieving
sub-SQL scaling. Even more importantly from a conceptual
standpoint, the above recipe returns imaginary values for b̂
whenever eγGHZ(τ )(2(ν+/ν) − 1) � 1. Note that this happens
for a nonvanishing set of outcomes whenever γGHZ(τ ) > 0,
rendering quantities such as 〈b̂(
μ)〉 ill defined.

Despite the pitfalls involved in this procedure, the analyt-
ical expression for the uncertainty which follows from the
method of moments has found widespread application in the
literature. For a fixed total time T , we have [12]

�b̂(τ )2 = 1

T τN2

[
1 − e−2γGHZ(τ ) cos2(Nbτ )

e−2γGHZ(τ ) sin2(Nbτ )

]
. (11)

The performance of Eq. (11) can be quantitatively assessed
once a specific noise model is chosen. For collective spin-
boson dephasing [32], which we will also recover as a limiting
case in Sec. IV A, we have γGHZ(τ ) = N2κ (τ ). Optimizing
with respect to the phase argument ϕ ≡ Nτb by demanding
that ϕ = (2k + 1)π/2, k ∈ N, and minimizing with respect
to τ in the short-time regime ωcτ � 1 where γGHZ(τ ) ≈
N2κ2

0 (ωcτ )2 for some dimensionless constant κ2
0 , the optimal

performance can be shown to be SQL limited. Specifically,
�b̂GHZ

opt,coll = e1/4(κ0ωc/T )1/2N−1/2, for an optimal measure-
ment time τGHZ

opt, coll = 1/2(κ0ωc)−1N−1.

B. Ratio estimator for GHZ states

To circumvent the inversion issues plaguing the estima-
tor linked to Eq. (11), we propose to modify the estimation
protocol in such a way that two suitable observables are inde-
pendently measured and their outcomes combined to obtain a
noise-robust estimator. Concretely, for the GHZ state we are
focusing on, we propose to not only measure the observable O
given in Eq. (9), but also O′ ≡ �|GHZ′〉 − (I − �|GHZ′〉), where
we now project into a related state within the GHZ class:

|GHZ′〉 ≡ 1√
2

(|↑〉⊗N + i|↓〉⊗N ).

Accordingly, the probability of measuring �|GHZ′〉 is given
by p′

b(τ ) = [1 + sin(Nbτ )e−γGHZ(τ )]/2. With each observable
being measured ν = T/τ times, our protocol implies a total
of 2ν measurements: that is, we double the time resources
needed to carry out the experiment from T to 2T . Since
〈O′(τ )〉 = e−γGHZ(τ ) sin(Nbτ ) ≡ h(b), we can solve for the
frequency by taking the ratio between the two mean values,
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FIG. 2. Performance of ratio estimator for collective dephasing.
Top: Ratio estimator’s sample mean for ν = 30 (red, solid), ν = 400
(blue, dashed), and analytic ν → ∞ mean value (gray, solid). Bot-
tom: Ratio estimator’s sample variance for ν = 400 and limiting
analytic expression (gray, solid). In both cases, a GHZ state of N =
100 qubits is considered, subject to collective spin-boson dephasing
from a 1D zero-temperature noise environment; a supra-Ohmic spec-
tral density with s = 3, ωc = 1 and noise strength α = 1 is used, and
the measurement time τ ≈ 0.0028 is chosen to minimize uncertainty.

b = arctan[〈O′(τ )〉/〈O(τ )〉]/(Nτ ). It follows that a noise-
robust ratio estimator for b can be constructed as

b̂GHZ
R (τ ) ≡ 1

Nτ
arctan[〈Ô′(τ )〉/〈Ô(τ )〉], (12)

where 〈Ô′(τ )〉 = ĥ(b) = 2(ν ′
+/ν) − 1, and 〈Ô(τ )〉 = ĝ(b) =

2(ν+/ν) − 1 are the finite-sample estimators to the respective
mean values, obtained from ν ′

+ (respectively, ν+) detections
in ν trials. In Fig. 2 (top), the limiting estimator function
for b̂R(τ ), arctan[tan(Nbτ )]/(Nτ ), is compared to an average
over all measurement outcomes, which now involves two in-
dependent probability distributions corresponding to O and
O′, for two different numbers of repetitions ν and ν ′, showing
excellent asymptotic convergence.

In a similar way, for the variance of the ratio estimator in
Eq. (12), we have

�b̂GHZ
R (τ )2 = [(b̂R(
μ, 
μ′) − 〈b̂(
μ, 
μ′)〉)2],

〈•〉 =
{ ν∑

ν+,ν ′+=0

(
ν

ν+

)
pb(τ )ν+ [1 − pb(τ )]ν−ν+

×
(

ν

ν ′+

)
p′

b(τ )ν
′
+ [1 − p′

b(τ )]ν−ν ′
+ (•)

}
. (13)

Assuming that our prior knowledge confines the frequency
within a neighborhood of b0 in which both g(b) and h(b) are

injective, we can linearize to obtain an analytic expression
for the uncertainty in terms of the dispersions �Ô2(τ ) and
�Ô′ 2(τ ) = ν−14 p′

b(τ )(1 − p′
b(τ )). This leads to

�b̂GHZ
R (τ )2=

(
∂ b̂R

∂〈O′(τ )〉
)2

�Ô′2(τ ) +
(

∂ b̂R

∂〈O(τ )〉
)2

�Ô2(τ )

= 1

T τN2

[
e2γGHZ(τ ) − 1

2
sin2(2Nbτ )

]
, (14)

to be contrasted with Eq. (11). Interestingly, in this case the
optimal performance is achieved when the phase ϕ′ ≡ 2Nbτ
is ϕ = (2k + 1)π/4. In Fig. 2 (bottom) the analytic expression
�b̂2

R(τ ) in Eq. (14) is compared against the sample variance
for finite ν, showing remarkable agreement in the region
where the estimator is linear. Note that the sample variance di-
verges around the points where the estimator is discontinuous,
forcing our prior knowledge of the frequency to be confined
to an interval of length π/(Nτ ).

In order to compare the performance of �b̂R(τ )2 against
the standard figure of merit of Eq. (11), for consistency it
is necessary to let T �→ 2T in the latter, so that the same
fixed resources are ensured. It can be checked by plotting both
uncertainties as a function of time, that �b̂R(τ ) is slightly
bigger than its standard counterpart at all times [see inset
of Fig. 3 (left)]. The optimal interrogation time for the ratio
estimator is harder to compute analytically. However, evalu-
ating the ratio estimator uncertainty at the time τGHZ

opt, coll that
minimizes the standard one, we can verify that it reaches the
same SQL scaling as its standard counterpart, �b̂R(τGHZ

opt, coll ) =
(2

√
e − 1)1/2(κ0ωc/T )1/2N−1/2, albeit with a slightly larger

constant prefactor [(2
√

e − 1)1/2 ≈ 1.52 as opposed to e1/4 ≈
1.28]. A similar analysis for the more general case of noncol-
lective spin-boson dephasing will be carried out in the context
of the noise-tailored lattice sensor of Sec. IV.

C. Ratio estimator for general Ramsey interferometry

While the emergence of noise-induced bias was illustrated
for GHZ states in the above discussion, standard estimators
used in Ramsey interferometry with different initial states are
plagued by similar issues in the presence of dephasing noise.
Here we focus on dephasing noise from a bosonic bath and a
class of OAT states, as defined in Eq. (7), which includes CSS
product states as a limiting case (θ = β = 0), as well as OATs
with squeezing and rotation angles set to minimize the initial
variance along y. In the N � 1 limit, we have [33,43]

θopt(N ) ≈ 121/6 22/3 N−2/3

βopt(N ) ≈ π/2 − 3−1/6N−1/3 − 31/62−1 N−2/3. (15)

After an encoding time τ , the mean value 〈Jy(τ )〉 can
be shown to be given by an expression of the form
(see Appendix 2 a for more detail)

〈Jy(τ )〉 = e−γOAT(τ )Q(τ ) sin(bτ ), (16)

where γOAT(τ ) depends on decay coefficients κnm(τ ), Q(τ ) is
a function of both the angles θ, β and, for a nonclassical envi-
ronment, the coefficients ξnm(τ ) determine the phase evolution
ϕ0(τ ).
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FIG. 3. Ratio estimator comparative performance for collective spin-boson dephasing. Left: GHZ optimal uncertainty vs qubit number for
the standard (gray circles) and ratio estimator (blue triangles). Both saturate the SQL, with the standard uncertainty outperforming �b̂GHZ

R opt by
a constant C ≈ 0.85 factor. Inset: GHZ N = 100 qubit uncertainty as a function of time for standard (gray, solid) and ratio estimator (blue,
solid). Right: CSS optimal uncertainty vs qubit number for the standard (gray, circles) and ratio estimator (blue, triangles). Both estimators
show N−1/4 scaling with the same constant factor when evaluated at their respective optimal phases. Inset: CSS N = 100 qubit uncertainty as
a function of time for standard (gray, solid) and ratio estimator (blue, dashed). The limit of no quantum noise, ξ (τ ) = 0, for �b̂(τ ) in Eq. (20)
(orange, dotted) is included for comparison as a lower bound. Collective spin-boson dephasing noise from a 1D zero-temperature environment
and a supra-Ohmic spectral density as in Fig. 2 is assumed.

For a product state, it is possible to obtain the exact
expression Q(τ ) = ∑

n

∏
m �=n cos( ξnm(τ )), whereas for arbi-

trary squeezing and twisting angles, the reduced dynamics
become highly entangled and an exact analytic approach is un-
feasible. However, in the short-time regime ωcτ � 1, where
the relevant evolution takes place, the above mean values can
be computed to great accuracy by performing a second-order
cumulant expansion over the qubit operators [32,33]. In this
same limit, any quantum noise contribution due to ϕ0(t ) enters
as a correction to the decoherence dynamics determined by the
decay terms κnm(t ). Thus, it may be disregarded to first ap-
proximation, making Q(τ ) approximately time independent,
say, Q0 ≡ Q0(θ, β ). Inverting this relationship yields

b̂(τ ) = 1

τ
arcsin

[
eγOAT(τ )〈Ĵy(τ )〉Q−1

0

]
,

with 〈Ĵy(τ )〉 = ∑N/2
m=−N/2(νm/ν) being the sample average of

〈Jy(τ )〉 after ν detections. Similar to the GHZ case, evaluating
this estimator would require precise knowledge of the noise
parameters γOAT(τ ), Q0, and may yield an imaginary number
for the subset of outcomes where eγOAT(τ )〈Ĵy(τ )〉Q0 > 1 in
the argument of the arcsin. We now show how this issue
can again be circumvented by constructing a ratio estimator
after measuring two distinct observables—in this case the two
orthogonal angular momentum components Jx and Jy.

Since, from Eq. (16), the target frequency b enters the
reduced dynamics unitarily, say, U (ϕ) = exp(−iϕJz ), with
ϕ = bt , we can derive the equations of motion with respect
to ϕ for 〈J�

v (ϕ)〉, v ∈ {x, y}, for the two relevant moments
� ∈ {1, 2}. For � = 1, taking the derivatives in 〈Jv (ϕ)〉 ≡
Tr{JvU (ϕ)ρ0(t )U (ϕ)†}, with ρ0(t ) depending parametrically
on the noisy dynamical coefficients, we obtain

∂ϕ〈Jx(ϕ)〉 = −i〈[Jx, Jz](ϕ)〉 = 〈Jy(ϕ)〉,
∂ϕ〈Jy(ϕ)〉 = −i〈[Jy, Jz](ϕ)〉 = −〈Jx(ϕ)〉,

which immediately leads to ∂2
ϕ〈Jv (ϕ)〉 = −〈Jv (ϕ)〉. Thus,

〈Jx(t )〉 = cos(ϕ)F (t ) + sin(ϕ)G(t ),

〈Jy(t )〉 = − sin(ϕ)F (t ) + cos(ϕ)G(t ),

for some state-dependent functions F (t ),G(t ) which fully
capture the noise effects. If we impose the initial conditions
〈Jx(0)〉 ≡ Jx, 〈Jy(0)〉 = 0, which hold for the CSS and OAT
states we are interested in, we are led to the following ratio
estimator:

b̂OAT
R (τ ) = 1

τ
arctan[〈Ĵy(τ )〉/〈Ĵx(τ )〉]. (17)

Again, implementing the same number of measurements ν =
T/τ for each observable doubles the time resources from T to
2T . Linearizing the expressions in the asymptotic limit ν � 1
and high prior knowledge yields the desired expression for the
squared uncertainty:

�b̂OAT
R (τ )2 =

(
∂ b̂R

∂〈Jx(τ )〉
)2

�Ĵ2
x (τ ) +

(
∂ b̂R

∂〈Jy(τ )〉
)2

�Ĵ2
y (τ )

= 〈Jx(τ )〉2�J2
y (τ ) + 〈Jy(τ )〉2�J2

x (τ )

T τ [〈Jx(τ )〉2 + 〈Jy(τ )〉2]2
. (18)

This provides a ratio estimator useful to carry out asymptoti-
cally unbiased quantum sensing in the presence of dephasing,
starting from a class of squeezed states with 〈Jx(0)〉 �= 0 and
〈Jy(0)〉 = 0.

The expression in Eq. (18) can be simplified by obtain-
ing the ϕ dependence of 〈J2

x (ϕ)〉 and 〈J2
y (ϕ)〉. Taking first-

and second-order derivatives with respect to ϕ and solving
the resulting partial differential equation system leads to the
following mean values:

〈J2
x (ϕ)〉 = K(t ) + A(t ) cos(2ϕ) + B(t ) sin(2ϕ),

〈J2
y (ϕ)〉 = K(t ) − A(t ) cos(2ϕ) − B(t ) sin(2ϕ).
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Here, K(t ), A(t ), and B(t ) are state-dependent quantities
that capture the noise effects. Enforcing the initial conditions
〈J2

x (0)〉 = J 2
x , 〈J2

y (0)〉 = J 2
y , and 〈[Jx, Jy]+(0)〉 = 0, again

valid for the CSS and OAT states considered here, we get
B(t ) = 0. Substituting in Eq. (18) yields

�b̂OAT
R (τ )2 = 2K(τ ) − A(τ )[1 + cos(4ϕ)] − F (τ )2 sin(2ϕ)2

2T τF (τ )2
.

On the other hand, the precision attained by using the standard
method of moments for a set of measurements taking the same
fixed total time 2T is given by

�b̂(τ )2 = �J2
y (τ )

2T τ (∂ϕ〈Jy(τ )〉)2

= K(τ ) + A(τ ) cos(2ϕ) − [F (τ ) sin(ϕ)]2

2T τF (τ )2 cos(ϕ)2
. (19)

Let us now compare the performance of both uncertainties
for a product CSS state along x undergoing collective spin-
boson dephasing, as considered for the GHZ state. In this
scenario the relevant mean values can be computed exactly
[32,33], from which the quantities F (t ),K(t ),A(t ) are easily
deduced. Substituting into Eqs. (18) and (19) at their respec-
tive optimal phases ϕ = π (2n + 1/4) and ϕ = nπ, n ∈ N, for
fixed total time 2T , we find the following for the CSS squared
uncertainties arising from the ratio estimator and the method
of moments:

�b̂CSS
R (τ )2 = 1

2T τ

[
eκ (τ )(N + 1)

2N cos [ξ (τ )]2N−2) − 1

]
,

�b̂CSS(τ )2 = (N + 1)eκ (τ ) − (N − 1)e−κ (τ ) cos [2ξ (τ )]N−2

2N (2T ) τ cos [ξ (τ )]2N−2 .

(20)

For the standard estimation setting, the optimal measure-
ment time and precision for �b̂CSS(τ ) have been com-
puted to be [32] τCSS

opt, coll = (κ0 ωc)−1N−1/2 and �b̂CSS
opt, coll =

(κ0 ωc/T )1/2N−1/4, respectively. For the ratio estimator, we
can carry out an expansion in the short-time limit to derive
the optimal measurement time, τCSS

R opt, coll = (κ0 ωc)−1N−1/2 =
τCSS

opt, coll, and performance �b̂CSS
R opt, coll = (κ0 ωc/T )1/2N−1/4.

In line with our findings for the GHZ state, the ratio estimator
optimal precision follows the same N-scaling as its standard
counterpart; furthermore, for a CSS it is multiplied by the
same constant factor and hence attains identical precision:
�b̂CSS

R opt coll = �b̂CSS
opt coll. This is shown in Fig. 3, where we plot

the optimal uncertainty obtained by numerical optimization as
a function of qubit number for both estimators and CSS as
well as GHZ initial states evaluated at their respective ideal
phases. The results confirm that the analytic predictions for
both scaling and constant factors are valid to great accuracy.

IV. NOISE-TAILORED LATTICE SENSOR

A. Spin-boson model

As a concrete illustrative setting, we consider a one-
dimensional (1D) dephasing spin-boson model, whereby the
qubits interact with a collection of oscillators vibrating at
frequencies �k , in thermal equilibrium at inverse temperature

β. Then, the relevant bath operators read

Bn(t ) =
∑

k

(gk eikrn ei�kt b†
k + H.c.),

in terms of bosonic operators bk , b†
k , with gk ∈ R being a

coupling strength for momentum mode k > 0. We assume a
linear dispersion �k ≡ vk, with v > 0 a speed parameter, and
envision the qubits to be arranged in a regular lattice with
tunable spacing x0, that is, the position of qubit n obeys rn =
nx0, 1 � n � N . By contrast, the collective limit analyzed
in the previous section is obtained when all qubits share the
same position, rn = x0, ∀n, leading to perfect spatial correla-
tions which cannot be tuned. For a qubit pair n, m, a transit
time proportional to their distance may then be defined by
tnm ≡ |n − m|x0/v.

Notably, for the above setting we have ϕ1(t ) ≡ 0 under
standard physical assumptions on the coupling [33,49]. The
dynamic coefficients determining γ (t ) and ϕ0(t ) are given in
Eqs. (2) and (4), respectively. To compute κnm(t ) and ξnm(t ),
we further assume a continuum of bosonic modes, character-
ized by a spectral density of the form

J (ω) ≡ αωc(ω/ωc)se−ω/ωc , α > 0, s > 0, (21)

with s being the so-called Ohmicity parameter. In a low-
temperature regime where thermal effects may be taken to be
negligible (coth(β|ω|/2 ≈ 1), the noise classical and quantum
spectra are then calculated as

S+
nm(ω) = 4πJ (ω) cos(ωtnm), S−

nm(ω) = S+
nm(ω)sgn(ω),

where sgn(ω) is the sign function.
The cutoff frequency ωc defines a metrologically relevant,

short-time limit, given by ωct � 1, where the quantum advan-
tage in estimation precision may be maximized [15,32,33]. In
this regime the dynamic coefficients entering γ (t ) and ϕ0(t )
can be approximated as

κnm(t ) ≈ κ2
0 (ωct )2δ1(|n − m|x0), κ2

0 ≡ α �(s + 1),

ξnm(t ) ≈ ξ 3
0 (ωct )3δ2(|n − m|x0), ξ 3

0 ≡ (α/6) �(s + 2),

with � being the Euler Gamma function. Their temporal
dependence is thus factored from the relevant spatial corre-
lations, which are encoded in the functions

δ1(|n − m|x0) ≡ us+1 Ts+1(u), (22)

δ2(|n − m|x0) ≡ us+2 Ts+2(u), (23)

where u ≡ [1 + (|n − m|x0)2]−1/2, and one can show that
Tn(x) denotes the nth-order Chebyshev polynomial of the first
kind. Provided that knowledge of the spectral density J (ω),
and hence of the spatial correlation functional forms δ�(x) is
available, and that J (ω) exhibits supra-Ohmic low-frequency
behavior (s > 1), spatial correlations with n �= m can be made
negative by tuning the distance x0. We now show how this may
engender a drastic improvement in the scaling of estimation
precision with respect to both collective noise [32] and our
previous randomized Ramsey protocol [33].

B. Initial GHZ state

Since, despite being noncollective, the noise remains pure
dephasing, the same analysis carried out in Sec. III B holds
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FIG. 4. Noise-optimized superclassical precision scaling. Left: GHZ optimal uncertainty vs qubit number. Gray circles: Exact numerical
optimization. Blue, solid line: Analytic expression for �b̂GHZ

opt . Orange, dashed: Asymptotic scaling limit, Eq. (24). Inset: GHZ uncertainty
vs time for N = 100 qubits and optimal lattice spacing x0 = 0.4296. Gray, solid: Exact expression. Blue, dashed: Short-time approximate
uncertainty. Right: Optimal uncertainty vs qubit number for an OATS ideally squeezed along y before evolution. Blue triangles: Numerical
optimization for purely classical noise. Gray circles: Numerical optimization including quantum noise. Orange, dashed: Asymptotic scaling
limit, Eq. (25). Inset: OATS uncertainty vs time for N = 30 qubits and optimal spacing x0 = 0.46. Blue, dashed: Purely classical dephasing.
Gray, solid: Classical and quantum dephasing. Orange, dotted: Short-time approximate uncertainty. All other parameters are as in Fig. 2.

here; thus we may estimate the target frequency without
incurring noise-induced bias through Eq. (12). The result-
ing precision, however, is different, with the dephasing rate
γGHZ(t ) no longer being that of the collective setting. To de-
termine the GHZ optimal precision, we not only minimize the
uncertainty with respect to time but also the lattice parameter
x0 for the optimal phase Nbt = (2k + 1) π/4, k ∈ N. Since
ϕ0(t ) ≡ 0 for |GHZ〉 by symmetry, quantum correlations do
not play any role in this case [δ2 ≡ 0 in Eq. (23)]. Taking
advantage of the fact that, in the short-time limit,

γGHZ(t )≈ (ωct )2FN (x0), FN (x0) ≡ κ2
0

N∑
n,m

δ1(x0|n − m|),

the minimization may be carried out with respect to each vari-
able separately. Substituting in Eq. (14) and optimizing with
respect to τ leads to the optimal measurement time, τGHZ

R opt =
1
2ω−1

c FN (x0)−1/2. It follows that the best sensing performance
is achieved by minimizing the spatial function FN (x0) for the
time-optimized uncertainty, leading to

�b̂R
(
τGHZ

R opt

) ≈ 2.96 (ωc/T )1/2 FN (x0)1/4 N−1.

While the details are provided in Appendix 1 [see, in particu-
lar, Eq. (A2) for the origin of the above numerical prefactor],
the resulting approximate (analytically) minimized spatial
function, FN (xGHZ

0 opt ), can be shown to scale logarithmically in
the large-N limit: FN (xGHZ

0 opt ) ∝ O( ln(N )2). Accordingly, the
optimal asymptotic sensing performance is

�b̂GHZ
R opt ≈ 2.96 (ωc/T )1/2

√
ln(N ) N−1, (24)

which is closer to Heisenberg scaling than any power law.
Figure 4 (left) demonstrates that the agreement between the

analytic expression in Eq. (24) and the exact numerical opti-
mization over x0, τ is excellent even at finite N � 20, despite
the fact that discrepancies between the lattice parameter that
numerically minimizes δ1 and its analytic approximation xGHZ

0 an
vanish only asymptotically in N . This indicates a high degree
of robustness against deviations from the exact optimal lattice

parameter and, in turn, against uncertainty in the characteriza-
tion of the underlying noise spectral density.

C. Initial OAT state

Unlike GHZ states, OATS are not immune to the genuinely
quantum contribution of the noise. For clarity, however, let
us first consider the classical decay contribution, described as
before by Eqs. (2) and (3), and assess the impact of the phase
ϕ0(t ) at a later stage. As detailed in Appendix 2 b, by perform-
ing a cumulant expansion over appropriate qubit operators
[32], we may derive approximate expressions for the moments
〈Jv (t )〉, 〈J2

v (t )〉, v = x, y, which are remarkably accurate in the
short-time limit ωct � 1. Substituting in Eq. (18), it is then
possible to expand the uncertainty in powers of t ,

�b̂R(t ) ≈ [√
T t h0(N )

]−1
( ∑

k=0,1,2

a2k (N, x0) (ωct )2k

)1/2

,

where the coefficients h0(N ) and a2k (N, x0) can be evaluated
analytically by the same approach used to compute the spatial
function FN (x0) for the GHZ state. This expansion is accurate
in the region where the minimum occurs [see inset of Fig. 4
(right)], and once again it allows one to separate the spatial
and temporal dependence of the uncertainty into two distinct
contributions. The best performance can then be extracted by
minimizing the expansion with respect to time and, subse-
quently, with respect to the lattice parameter. For s > 1, as
detailed in Appendix 2 b, we find that the noise-tailored sensor
reaches the Zeno limit,

�b̂OATS
R opt ≈ [ωc/(3T )]1/2 �(s + 1)1/4N−3/4. (25)

This is a mere N−1/12 scaling loss with respect to the noise-
less OAT scenario and is found to be in full agreement with
numerical minimization, see Fig. 4 (right).

Accounting for the effect of quantum noise due to ϕ0(t )
makes the expression for the mean values significantly more
involved. This prevents us from deriving a tractable short-time
expansion for the uncertainty and lengthens the computational
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FIG. 5. Ratio estimator uncertainty optimal performance for different Ohmicity parameters. Minimal uncertainty as function of N of a
GHZ (left) and OAT state (right) for different spectral density with a high-frequency exponential cutoff and different Ohmicity parameters
s = 0, (solid lilac stars) s = 1 (solid green diamonds), s = 2 (hollow orange squares), s = 3 (hollow gray circles), s = 4 (hollow blue
triangles), and s = 5 (hollow brown rectangles). The solid black line describes lower bounds obtained by numerical fitting, equal to
3−1/2�(3)1/4(ωc/T )1/2N−3/4 and 3/4(ωc/T )1/2N−1

√
ln(N ) for OATS and GHZ, respectively. Here, α = 1 = ωc, as in previous figures.

time required to evaluate �b̂OAT
R (τ ) numerically, limiting in

turn the accessible values of N . Still, as one may see from the
inset in Fig. 4 (right), the uncertainty as a function of time
has a nearly identical behavior as in the presence of classical
noise alone, with the contribution of ϕ0(t ) entering as a small
correction. In line with the above, numerical minimization in
the range of N we were able to test leads to similar values
for the optimal uncertainty as when quantum noise was dis-
regarded, see Fig. 4 (right). Such a behavior is plausible in
light of the fact that, as in the GHZ case, ξnm(t ) ∝ (ωct )3, as
compared to κnm(t ) ∝ (ωct )2, which causes the decay contri-
butions to dominate in the short-time limit. Altogether, this
strongly suggests that a Zeno limit as in Eq. (25) is realized
asymptotically, also when quantum noise is fully included.

D. Parameter robustness

While the calculations reported thus far for the spin-
boson setting have been carried out by assuming a spectral
density with Ohmicity parameter s = 3 and an exponential
high-frequency decay, that is, J (ω) = α ω−2

c ω3 e−ω/ωc , it is
important to assess how sensitively the resulting precision
scaling depends upon the details of the noise spectra. Numer-
ical optimization indicates that the same nearly Heisenberg
uncertainty scaling and Zeno limit derived for GHZ and OAT
states, respectively, hold for other supra-Ohmic densities, with
the N-independent prefactor increasing with s, see Fig. 5. Fur-
thermore, a linear fit shows that for OAT states, the prefactor
is �(s + 1)/

√
3, which was only rigorously derived for s = 3.

Figure 5 also shows that for an Ohmic (s = 1) spec-
tral density, however, the optimal ratio-estimator uncertainty
experiences a small scaling loss for both GHZ (left) and
OAT (right) states, which manifests as a slight slope decrease
with respect to the supra-Ohmic cases in the log-log plot.
Finally, for a sub-Ohmic spectral density (s = 0), such a
change in slope and scaling loss are more pronounced, espe-
cially for OAT states. This is in line with the expectation that
negative spatial correlations play a diminished role in the pres-
ence of nonvanishing zero-frequency noise. Understanding in
more detail the precision achievable in the Ohmic and sub-
Ohmic scenarios, as well as addressing spectral densities with

nonexponential (e.g., Gaussian) high-frequency cutoffs or
nontrivial spectral features (e.g., high-frequency peaks), re-
mains a task worthy of additional investigation.

V. CONCLUSION

We have shown how to construct ratio estimators for
entanglement-assisted frequency estimation by Ramsey in-
terferometry which, at the cost of doubling the required
measurement resources, overcome noise-induce bias and re-
tain the same precision scaling of standard local estimators
in the asymptotic large-N regime. While our construction is
applicable to both Markovian and non-Markovian dephas-
ing settings and requires no prior detailed noise knowledge,
we have additionally shown that asymptotically unbiased
frequency estimation with noise-optimized superclassical pre-
cision is possible by suitable sensor’s engineering and tuning
of the noise spatial correlations. In particular, by focusing on
spin-boson dephasing in a one-dimensional lattice geometry
with tunable qubit-probe separation, we established a scaling
which is a ln(N )1/2 factor away from the Heisenberg limit for
a GHZ state and found that Zeno scaling is reachable with a
properly squeezed OAT state.

An outstanding question for future work is to explore po-
tential experimental realizations of our tunable lattice-sensor
model, for instance, in trapped ion settings [50,51] or NV
centers in diamond [52]. From a theoretical standpoint, our
results hint at the possibility that the Heisenberg limit may
be reachable by further optimizing the initial entangled state,
in addition to the sensor’s geometry. Likewise, it would be
interesting to extend the applicability of our noise-unbiased
estimators to generalized Ramsey echo-based protocols, for
which the symmetry condition 〈Jy(0)〉 = 0 of the input states
is relaxed and premeasurement antisqueezing operations are
allowed [53,54]. Finally, assessing the usefulness of our ideas
in a nonasymptotic metrology setting with a limited amount
of data [37,55], where a Bayesian estimation paradigm is ap-
propriate and noise-induced bias competes with finite-sample
effects, may be especially important to expand the practical
reach of quantum metrology applications.
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APPENDIX: ADDITIONAL DETAIL
ON TECHNICAL DERIVATIONS

1. Optimal noise-tailored precision scaling for initial GHZ states

Here we derive the GHZ optimal uncertainty achievable by
our ratio estimator in the presence of spin-boson noise with
tunable spatial correlations. Our starting point is Eq. (14),
evaluated for optimal phase ϕ = π/4 in the short-time
regime:

�b̂GHZ
R (τ )2 = 1

N2T τ

(
e2γGHZ(τ ) − 1

2

)

≈ 1

N2T τ

(
e2κ2

0 (ωcτ )2 ∑N
n,m=1 δ1(x0|n−m|) − 1

2

)
. (A1)

One may first minimize with respect to time, leading to
the optimal measurement time and the corresponding time-
optimized uncertainty. The result may be cast in the following
form:

τGHZ
R opt = 1

2
ω−1

c FN (x0)−1/2

√
1 + 1

2
W (e−1/2/4),

�b̂R
(
τGHZ

R opt

) =
√

2
[1 + 2W (e−1/2/4)]√

−W (e−1/2/4)

√
ωc

T
FN (x0)1/4 N−1,

(A2)

where FN (x0) = κ2
0

∑N
n,m=1 δ1(x0|n − m|) is the function of

the lattice spacing x0 also defined in the main text, and W (x)
is the principal branch of the Lambert W function [56]. Recall
that the Lambert W function, Wk (z), is defined, given complex
numbers w and z, by the equation wew = z, which holds if
and only if w = Wk (z) for some integer k. For simplicity we
have dropped the subscript k for the principal branch k = 0.
The numerical prefactor in Eq. (A2) can be computed to be√

2 [1 + 2W (e−1/2/4)][−W (e−1/2/4)]−1/2 ≈ 2.96, as quoted
in the main text above Eq. (24).

In order to obtain the best precision, we must now mini-
mize FN (x0) with respect to x0. Using the symmetry of a 1D
regular lattice, we may write the spatial function FN (x0) in
terms of a single index sum and a term including the spatial
“self-correlations” δ1(0) corresponding to the n = m case,
that is,

FN (x0) = κ2
0

[
Nδ1(0) + 2

N−1∑
j=1

(N − j)δ1( j x0)

]
. (A3)

Replacing the explicit functional form of the spatial correla-
tions δ1(|n − m|x0) for s = 3 into FN (x0) [Eq. (22) in the main

text] yields

FN (x0) = κ2
0

[
N + 2

N−1∑
j=1

(N − j)
1 − 6 ( j x0)2 + ( j x0)4

[1 + ( j x0)2]4

]

= κ2
0 [N + SN (x0)], (A4)

with κ2
0 = α �(4) a dimensionless constant and SN (x0) con-

sisting of two finite sums:

SN (x0) = 2N
N−1∑
j=1

1 − 6 ( j x0)2 + ( j x0)4

[1 + ( j x0)2]4

− 2
N−1∑
j=1

j
1 − 6 ( j x0)2 + ( j x0)4

[1 + ( j x0)2]4
.

To evaluate these series, we now show that they can be
written as linear combinations of polygamma functions, de-
fined by ψ (m)(z) ≡ (−1)m+1

∫ ∞
0

tme−zt

1−e−t dt . The key step is to
expand (1 − e−t )−1 in the integrand that defines ψ (m)(t ) by
using the geometric series and summing each contribution
term-by-term. For example, for

Re ψ (3)

(
i + x0

x0

)
= 1

2

[
ψ (3)

(
i + x0

x0

)
+ ψ (3)

(−i + x0

x0

)]
,

we have

Re ψ (3)

(
i + x0

x0

)
=

∫ ∞

0

t3e−t

1 − e−t
cos

(
t

x0

)
dt

=
∞∑
j=1

∫ ∞

0
t3 e− jt cos

(
t

x0

)
dt

= 6x4
0

∞∑
j=1

1 − 6 ( j x0)2 + ( j x0)4

[1 + ( j x0)2]4
, (A5)

where integrating each series coefficient independently is al-
lowed by Fubini’s theorem. Similarly,

Re ψ (3)

(
i

x0
+ N

)
= 6x4

0

∞∑
j=N+1

1 − 6 ( j x0)2 + ( j x0)4

[1 + ( j x0)2]4
.

(A6)

We can then subtract Eq. (A6) from Eq. (A5) and, multiplying
by N κ2

0 x−4
0 , we get

N κ2
0 x−4

0

[
Re ψ (3)

(
i + x0

x0

)
− Re ψ (3)

(
i

x0
+ N

)]

= 2N
N−1∑
j=1

1 − 6 ( j x0)2 + ( j x0)4

[1 + ( j x0)2]4
, (A7)

which is the first of the desired sums in SN (x0). The second
sum can be computed in a similar fashion by combining the
appropriate polygamma functions. We obtain, carrying out the
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FIG. 6. Spatial function and optimal lattice parameter. Left: Spatial function FN (x0 ) given by Eq. (A3) (gray, solid) and analytic
approximation F an

N (x0) given by Eq. (A9) (blue, dashed) vs lattice parameter x0 for N = 100 qubits. Right: Optimal lattice parameter as a
function of qubit number. Gray dots: Exact numerical optimization, yielding the optimal lattice parameter xGHZ

0 opt . Blue, dashed: Approximate
analytic solution xGHZ

0an , given by Eq. (A12). Noise parameters as in Fig. 2, except that now dephasing is clearly not collective.

algebra:

SN (x0) = N

6x5
0

{
3x0 Re ψ (2)

(
i + x0

x0

)

− 3x0 Re ψ (2)

(
i

x0
+ N

)
− 2 Im ψ (3)

(
i + x0

x0

)

+ x0 N Re ψ (2)

(
i + x0

x0

)
+ Im ψ (3)

(
i

x0
+ N

)

+ x0N Re ψ (3)

(
i

x0
+ N

)}
. (A8)

Equation (A8) can be further simplified by invoking two key
properties of the polygamma functions:

ψ (m)(z + 1) = ψ (m)(z) − (−1)mm! z−m−1,

ψ (m)(z) − (−1)mψ (m)(1 − z) = −π
dm

dzm
cot(πz).

This allows us to write some of the terms in Eq. (A8) in terms
of elementary functions by using

ψ (m)

(
i + x0

x0

)
− (−1)mψ (m)

(−i + x0

x0

)

= (−1)mm!

(
i

x0

)−m−1

− π
dm

dum
cot(πu),

with u = x−1
0 . For example, recalling the above expression for

Re ψ (3)( i+x0
x0

), we have

Re ψ (3)

(
i + x0

x0

)

= −3 +
(

π

x0

)4[
2 + cosh

(
2

π

x0

)]
sinh

(
π

x0

)−4

≈ −3 + 8

(
π

x0

)4

e−2π/x0 ,

where the last approximate equality comes from assuming
a small-lattice parameter regime, x0 � 0.5, which is where
the optimal qubit separation lies, as shown by numerical

optimization. Furthermore, all terms carrying polygamma
functions with (i/x0 + N ) in their argument give a negligi-
ble contribution to the series SN (x0) in the region where the
minimum of FN (x0) occurs. We can then safely drop them in
Eq. (A8), if our task is to find the optimal lattice separation.
Lastly, we expand the remaining terms in Eq. (A8) in powers
of x0, for x0 � 0.5. Substituting in Eq. (A3) after performing
these steps finally leads to the following analytic approxima-
tion to the spatial function:

FN (x0) ≈ 1

6

[
8N

(
π

x0

)4

exp

(
−2

π

x0

)
+ 2

1

π2

(
π

x0

)2]

≡ F an
N (x0). (A9)

In Fig. 6 (left) we have plotted FN (x0) and F an
N (x0) as a

function of the lattice parameter x0 for N = 100 qubits. One
can see that the analytical expression F an

N (x0) reproduces the
behavior of the spatial function to great accuracy, which only
increases for large N . Bearing that in mind, in what follows
we drop the superscript “an” and denote it by the same label
as its exact counterpart, FN (x0). The optimal lattice param-
eter minimizing FN (x0) lies around x GHZ

0 opt ≈ 0.44; however,
there is a neighborhood around this point in which the spa-
tial function stays approximately constant. Importantly, since
small departures from the optimal x0 value do not drastically
alter FN (x0), no prohibitively precise noise characterization
is needed. This grants our noise-tailored sensor a degree of
parameter robustness with respect to deviations from the ideal
lattice separation.

To obtain an approximate expression for xGHZ
0 opt , it is con-

venient to let v ≡ π/x0 and write FN (v) = 1
6 (8Nv4e−2v +

2 1
π2 v2). Taking the derivative with respect to v and equating

to zero then yields the following condition:

8Ne−2vv2(2 − v) + 1

π2
= 0 ⇒ −8π2Ne−2vv3 ≈ 1.

(A10)

The second approximate equality is fulfilled in the N � 1
limit, where the optimal lattice parameter obeys x GHZ

0 opt � 1,
and hence vGHZ

an � 2. This can again be solved with the help
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of the Lambert W function. The relevant solution is given by

vGHZ
an = π

xGHZ
0 opt

≈ −3

2
W−1[−(3 π2/3 N1/3)−1]. (A11)

Since the argument in the Lambert function vanishes for
N � 1, we can use an expansion for W−1(x), valid when
x < 0 and |x| � 1 [56], to cast Eq. (A11) into a simpler
form. That is, W−1(x) ≈ L1 − L2 + L1

L2 , with L1 ≡ ln(|x|),
and L2 ≡ ln(− ln(|x|)). In practice, keeping the first two
terms of the expansion, W−1(x) ≈ L1 − L2, greatly simplifies
the ensuing algebra and still provides an accurate enough
characterization for our purposes. Substituting in Eq. (A11)
and solving for xGHZ

0 an , we finally obtain

xGHZ
0 opt ≈ xGHZ

0 an = 2π

ln(3π2/3N1/3) + ln[ln(3π2/3N1/3)]
. (A12)

We have plotted the analytic approximation xGHZ
0 an and exact

optimal lattice parameter xGHZ
0 opt , obtained by numerical opti-

mization, as a function of qubit number N in Fig. 6 (right).
We can see that Eq. (A12) has an N-dependent offset. This is
the result of having discarded the constant factor, (v − 2) ≈ v

in Eq. (A10), when minimizing the spatial function, which
only vanishes in the asymptotic limit. Despite this, the ana-
lytic value lies close enough to the true value of the optimal
lattice parameter to yield an excellent approximation to the
optimal uncertainty, see Fig. 4 in main text. Upon substituting
Eq. (A12) into Eq. (A9), we arrive at an expression for the
minimum of the spatial function, namely,.

FN
(
x GHZ

0 an

) = 1

6π2
[ln(π2N ) + ln[ln3(27π2N )]]2

×
[ {ln[ln3(27π2N )] + ln(π2N )}2

ln(27π2N )
+ 1

2

]
,

(A13)

which is of O( ln(N )2) in the N � 1 limit. Finally, replacing
FN (xGHZ

0 an ) in the time-optimized uncertainty, Eq. (A2), we ob-
tain an analytic formula for the overall minimum uncertainty,

�b̂GHZ
R opt(N ) ≈

√
2

[1 + 2W (e−1/2/4)]1/4√
−W (e−1/2/4)

√
ωc

T

× [
FN

(
xGHZ

0 an

)]1/4
N−1 ∝

√
ln(N ) N−1, (A14)

with
√

2 [1 + 2W (e−1/2/4)]1/4(
√

−W (e−1/2/4))−1 ≈ 2.96
as noted above, and with the last proportionality relation
holding for N � 1. Remarkably, the agreement between the
above analytic expression and the exact numerical result is
excellent even at finite number of qubits, N � 20, despite the
discrepancies between xGHZ

0 opt and xGHZ
0 an ; see again Fig. 4 in the

main text.

2. Initial OAT states

a. Expectation values of collective angular momentum operators

Generally, the dynamics of a state |OATS〉 =
e−iβJx e−iθJ2

z |CSS〉x subject to Gaussian dephasing noise

are highly entangled, and exact expressions for the relevant
mean values are not available. To evaluate the mean values, a
cumulant expansion over the qubit operators, which matches
numerical calculations to great accuracy, was devised in
Ref. [32]. In Ref. [33] we have further provided the relevant
expressions 〈Jy(τ )〉, 〈J2

y (τ )〉 for noncollective spin-boson
dephasing, where qubit n is assumed to be at position 
rn;
analogous formulas for 〈Jx(τ )〉, 〈J2

x (τ )〉 may be readily
deduced. Here we work in 1D, with rn ≡ nx0 in the limit
of short interrogation time ωcτ � 1. In this regime the
quantum noise (phase) contributions to the dynamics may
be disregarded to first approximation, as we argued in the
main text. The relevant cumulant expansion for the required
expectation values can then be greatly simplified:

〈Jx(τ )〉 ≈ e−κ2
0 (ωcτ )2Q0(θ, β ) cos(ϕ), (A15)

〈Jy(τ )〉 ≈ e−κ2
0 (ωcτ )2Q0(θ, β ) sin(ϕ), (A16)

〈J2
v (τ )〉 ≈ N

4
+ e−2κ2

0 (ωcτ )2
[C1(θ, β ) G+(x0)

± cos(2ϕ)C2(θ, β ) G−(x0)], v ∈ {x, y}, (A17)

with ϕ = bτ and G±(x0) ≡ ∑N−1
j=1 (N − j) e± 2κ2

0 (ωcτ )2 g̃1( jx0 )

capturing the lattice spatial correlations, and
Q0(θ, β ),C1(θ, β ), C2(θ, β ) being functions of the angles
θ, β. In the N � 1 limit we are interested in, the latter take
the form

Q0(θ, β ) = N

2
eNθ2/8, (A18)

C1(θ, β ) = 1
8 [2 cos(β )2 − (1 + e−Nθ2/2) sin(β )2

− 2e−Nθ2/2 sin(2β ) sin(θ/2)], (A19)

C2(θ, β ) = 1
16 [2 sin(β )2 + 4 sin(2β ) sin (θ/2)e−Nθ2/8

+ (cos(2β ) + 3) e−Nθ2/2]. (A20)

We emphasize that numerical calculations show that, in
the time regime of interest, for as low as N = 30 qubits,
the ratio uncertainty which follows from these approximate
expressions already closely reproduces its counterpart, includ-
ing quantum noise contributions, whose expressions are much
more involved; see inset in Fig. 4 (right) of the main text.

b. Optimal noise-tailored precision scaling

Let us now derive the optimal sensor performance for an
OATS under classical dephasing (that is, ignoring contribu-
tions from the quantum spectra, hence ϕ0(t )). As remarked
in the main text, the squeezing and twisting angles were
chosen to minimize the initial variance along the y axis,
according to Eq. (15). The numerator and denominator in
�b̂OAT

R (τ ), obtained by substituting the OATS mean values
from Eqs. (A15)–(A17) into Eq. (18), must first be min-
imized with respect to their phase argument ϕ. Since an
optimally squeezed initial variance along y has a maximally
antisqueezed component along x, the ideal phase is such that
this latter term vanishes: ϕ = kπ, k ∈ N. In this case Eq. (18)
becomes proportional to the precision derived from method
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of moments when measuring the observable O = Jy:

�b̂OAT
R (τ )2 = �J2

y (τ )

T τ 〈Jx(τ )〉2
, (A21)

where we used ∂ϕ〈Jy(τ )〉 = 〈Jx(τ )〉. For the same fixed to-
tal time 2T , however, when we are only measuring Jy and
computing the precision through the method of moments, we
have �b̂OAT(τ )2 = �J2

y (τ )/(2T τ [∂ϕ〈Jy(τ )〉]2 ), that is, the
variance of the ratio estimator is larger by a factor of 2.

The variance �J2
y (τ ) in the numerator of Eq. (A21) can

now be expanded in powers of (ωcτ ) up to the fourth order,
whereas we only need to keep the denominators’ leading-

order contribution. Replacing in �b̂R(τ ) yields

�b̂R(τ ) ≈ [a0(N, x0) + a2(N, x0)(ωcτ )2 + a4(N, x0 ) (ωcτ )4]1/2

√
T τ h0(N )

,

(A22)

where the coefficients have a well-defined N dependence
through the ideal squeezing and twisting angles of Eq. (15),
as well as a spatial dependence coming from the G±(x0) in
the short-time expansion. Analytic formulas for the coeffi-
cients can be derived by means of the polygamma functions
approach worked out for the GHZ state in Sec. A 1. This yields
h0(N ) ≈ N/2 and

a0(N, x0) ≈ 32/3

8
N1/3,

a2(N, x0) ≈ 1

2
�(s + 1)

{
1

6x2
0

+ 4

(
π

x0

)4

e− 2π
x0

[(
1

3

)1/3

N1/3 −
(

1

3

)2/3

N2/3 + 1

3
N

]
+ 1

2

(
31/3N2/3 − 32/3N1/3)},

a4(N, x0) ≈
{[

�(s + 3)

(
1

16 31/3
N1/3 − 1

16 32/3
N2/3

)
+ 1

2
N �(s + 1)2

]
− �(s + 3)

480

1

x2
0

+ �(s + 3)e− 2π
x0

(
π

x0

)6(
−N1/3 1

30 31/3
+ 1

30 32/3
N2/3 + N

1

90

)}
.

Similar to the GHZ state, Eq. (A22) allows us to minimize
with respect to τ and x0 independently. We can obtain the
optimal interrogation time by setting the first derivative of
Eq. (A22) with respect to τ equal to zero:

τOATS
R opt = 1√

6a4(N, x0)
[(12a0(N, x0)a4(N, x0) + a2(N, x0)2)1/2

− a2(N, x0)]1/2. (A23)

Evaluating Eq. (A22) at τOATS
R opt leads, in turn, to the following

approximate time-optimized frequency uncertainty:

�b̂R
(
τOATS

R opt

) = 25/4

33/4

[a2(x0, N )�+ 12a0(N, x0)a4(N, x0)]1/2

h0(N )N[a4(N, x0)�]1/4 ,

� ≡ (12a0(N, x0)a4(N, x0) + a2(N, x0)2)1/2

− a2(N, x0). (A24)

Analytic minimization with respect to x0, however, is in-
volved. Numerical evidence shows that the value of the ideal
lattice parameter is remarkably close to the value xOATS

0 an that
minimizes a2(x0, N ). Following a similar procedure as in de-
riving Eq. (A11), we can then provide an asymptotic solution
to the equation ∂x0 a2(x0, N ) = 0:

xOATS
0 an = −2π

3
ln

[
ln(3π2/3N1/3)

3π2/3N1/3

]
.

Much like for the GHZ state, the values of xOATS
0 an differ

from the numerical optimization by a small offset, see Fig. 7;
nonetheless, parameter robustness leads to the analytic value
obtained by computing �b̂R(τOATS

R opt , xOATS
0 an ) to be extremely

close to the exact minimum. Evaluating the expansion coef-
ficients at xOATS

0 an , and disregarding all nonleading orders in N ,

we get

a0
(
N, xOATS

an

) ≈ 32/3

27/3
N1/3, a2

(
N, xOATS

an

)

≈ 31/3

25/3
�(s + 1) N2/3,

a4
(
N, xOATS

an

) ≈ 1

4
�(s + 1)2 N.

For supra-Ohmic spectral densities with s = 3, in particular,
Zeno-like scaling is then found upon substituting the above

FIG. 7. Optimal lattice separation for OAT states under classi-
cal noise. Gray dots: Exact numerical optimization, yielding xOATS

opt .
Blue dashed line: Approximate analytic solution xOATS

opt an, Eq. (A12).
A supra-Ohmic spectral density with an exponential cutoff, and
α = 1, s = 3, ωc = 1 is assumed.
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approximate expressions in Eq. (A24),

�b̂OATS
R opt (N ) ≈ 1√

3
�(s + 1)1/4

√
ωc

T
N−3/4, (A25)

attained at an optimal time τOATS
R opt ≈ 3−1/3 �(s + 1)−1/2N−1/6,

in excellent agreement with numerical optimization. We re-
mark that, based on numerical fittings, Eq. (A25) has been
found to hold for all s > 1 spectral densities we investigated,
although it has only been rigorously derived for s = 3.

[1] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and
D. J. Heinzen, Spin squeezing and reduced quantum noise in
spectroscopy, Phys. Rev. A 46, R6797 (1992).

[2] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen,
Squeezed atomic states and projection noise in spectroscopy,
Phys. Rev. A 50, 67 (1994).

[3] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and
P. Treutlein, Quantum metrology with nonclassical states of
atomic ensembles, Rev. Mod. Phys. 90, 035005 (2018).

[4] S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates,
Standards of time and frequency at the outset of the 21st cen-
tury, Science 306, 1318 (2004).

[5] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt,
Optical atomic clocks, Rev. Mod. Phys. 87, 637 (2015).

[6] S. Colombo, E. Pedrozo-Penafiel, and V. Vuletić,
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