
PHYSICAL REVIEW A 108, 042418 (2023)

General quantum matrix exponential dimensionality-reduction framework based on block encoding

Yong-Mei Li, Hai-Ling Liu, Shi-Jie Pan, Su-Juan Qin ,* Fei Gao,† and Qiao-Yan Wen
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

(Received 29 May 2023; revised 1 September 2023; accepted 26 September 2023; published 19 October 2023)

As a general framework, matrix exponential dimensionality reduction (MEDR) deals with the small-sample-
size problem that appears in linear dimensionality-reduction (DR) algorithms. High complexity is the bottleneck
in this type of DR algorithm because one has to solve a large-scale matrix exponential generalized eigenproblem.
To address it, here we design a general quantum algorithm framework for MEDR based on the block-encoding
technique. This framework is configurable, that is, by selecting suitable methods to design the block encodings
of the data matrices, a series of efficient quantum algorithms can be derived from this framework. Specifically,
by constructing the block encodings of the data matrix exponentials, we solve the generalized eigenproblem
and then obtain the digital-encoded quantum state corresponding to the compressed low-dimensional data set,
which can be directly utilized as the input state for other quantum machine learning tasks to overcome the
curse of dimensionality. As applications, we apply this framework to four linear DR algorithms and design their
quantum algorithms, which all achieve a polynomial speedup in the dimension of the sample over their classical
counterparts.

DOI: 10.1103/PhysRevA.108.042418

I. INTRODUCTION

The power of quantum computing is illustrated by quantum
algorithms that solve specific problems, such as factoring [1],
unstructured data search [2], linear systems [3], and crypt-
analysis [4], much more efficiently than classical algorithms.
In recent years, a series of quantum algorithms for solving
machine learning problems has been proposed and attracted
the attention of the scientific community, such as clustering
[5–7], dimensionality reduction [8–11], and matrix compu-
tation [12–14]. Quantum machine learning (QML) [15] has
appeared as a remarkable emerging direction with great po-
tential in quantum computing.

In the era of big data, dimensionality reduction (DR) has
gained significant importance in machine learning and sta-
tistical analysis, which is a powerful technique to reveal the
intrinsic structure of data and mitigate the effects of the curse
of dimensionality [16,17]. The essential task of DR is to find
a mapping function F : x �→ y that transforms x ∈ RM into
the desired low-dimensional representation y ∈ Rm, where
typically m � M. Most of the DR algorithms, such as locality
preserving projections (LPP) [18], unsupervised discriminant
projection (UDP) [19], neighborhood preserving embedding
(NPE) [20], and linear discriminant analysis (LDA) [21],
were unified into a general graph embedding framework pro-
posed by Yan et al. [22]. The framework provides a unified
perspective for the understanding and comparison of many
popular DR algorithms and facilitates the design of new
algorithms. Unfortunately, almost all linear DR (i.e., F is a lin-
ear function) algorithms in the graph embedding framework

*qsujuan@bupt.edu.cn
†gaof@bupt.edu.cn

encounter the well-known small-sample-size (SSS) problem
that stems from the generalized eigenproblems with singular
matrices. To tackle it, a general matrix exponential dimension-
ality reduction (MEDR) framework [23] was proposed. In the
framework, the SSS problem is solved by transforming the
original generalized eigenproblem into eS1 v = λeS2 v, where
the data matrices S1 and S2 have different forms for different
algorithms. However, it involves the solution of the large-
scale matrix exponential generalized eigenproblem, resulting
in the matrix exponential–based DR algorithms being time
consuming for a large number of high-dimensional samples.
Therefore, it would be of great significance to seek new strate-
gies to speed up this type of DR algorithm.

There exists some work on quantum DR algorithms, which
achieve different degrees of acceleration compared with clas-
sical algorithms [8–11,24–32]. In the early stages, the work
focused on linear DR. Lloyd et al. [8] proposed the first
quantum DR algorithm, quantum principal component anal-
ysis (PCA), which provided an important reference for many
subsequent quantum algorithms. Later, the quantum nonlinear
DR algorithms gradually emerged based on manifold learning
[25,29] and kernel method [28]. However, there is no quantum
algorithm that efficiently realizes the matrix exponential–
based DR. An interesting question is whether we can design
quantum algorithms for this type of DR algorithm in a unified
way, which will provide computational benefits and facilitate
the design of alternative quantum DR algorithms. We answer
the question in the affirmative by using the method of block
encoding [33–36].

Block encoding is a good framework for implementing
matrix arithmetic on quantum computers. The block encoding
U of a matrix A is a unitary matrix whose top left block
is proportional to A. Given U , one can produce the state
A|φ〉/‖A|φ〉‖ by applying U to an initial state |0〉|φ〉. Low

2469-9926/2023/108(4)/042418(13) 042418-1 ©2023 American Physical Society

https://orcid.org/0000-0002-6405-6711
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.042418&domain=pdf&date_stamp=2023-10-19
https://doi.org/10.1103/PhysRevA.108.042418

LI, LIU, PAN, QIN, GAO, AND WEN PHYSICAL REVIEW A 108, 042418 (2023)

and Chuang [34] showed how to perform optimal Hamiltonian
simulation given a block-encoded Hamiltonian H . Based on
this, Chakraborty et al. [36] developed several tools within the
block-encoding framework, such as singular value estimation
and quantum linear system solvers. Moreover, the block-
encoding technique has been used to design QML algorithms,
such as quantum classification [37] and quantum DR [31].

In this paper we apply the block-encoding technique to
MEDR and design a general quantum MEDR (QMEDR)
framework. This framework is configurable, that is, for a
matrix exponential–based DR algorithm, one can take suitable
methods to design the block encodings of S1 and S2 and then
construct the corresponding quantum algorithm to obtain the
compressed low-dimensional data set. Once these two block
encodings are implemented efficiently, the quantum algorithm
will have a better running time compared to its classical coun-
terpart. More specifically, the main contributions of this paper
are as follows.

(a) Given a block-encoded Hermitian H , we present a
method to implement the block encoding of eH or e−H and
derive the error upper bound. It provides a way for the
computation of the matrix exponential, which is one of the
most important tasks in linear algebra [38]. To be specific,
depending on the application, the computation of the matrix
exponential may be to compute eA for a given square matrix
A, to apply eA to a vector, and so on [38]. They are very time
consuming when A is an exponentially large matrix. With the
help of block encodings, these tasks can be performed much
faster on a quantum computer.

(b) By combining the block-encoding technique and
quantum phase estimation [39], we solve the generalized
eigenproblem eS1 v = λeS2 v and then construct the com-
pressed digital-encoded state [40], i.e., directly encode the
compressed low-dimensional data set into qubit strings in
quantum parallel. The compressed state can be further uti-
lized as the input state for a variety of QML tasks, such as
quantum k-medoids clustering [41], to overcome the curse of
dimensionality. This builds a bridge between quantum DR al-
gorithms and other QML algorithms. In addition, the proposed
method for constructing the compressed state can be extended
to other linear DR algorithms.

(c) As applications, we apply the QMEDR framework
to four matrix exponential–based DR algorithms, i.e., expo-
nential LPP (ELPP) [42], exponential UDP (EUDP) [23],
exponential NPE (ENPE) [43], and exponential discriminant
analysis (EDA) [44], and design their quantum algorithms.
The results show that all of these quantum algorithms achieve
a polynomial speedup in the dimension of the sample over
the classical algorithms. Moreover, for the number of samples,
the quantum ELPP and quantum ENPE algorithms achieve a
polynomial speedup over their classical counterparts, and the
quantum EDA algorithm provides an exponential speedup.

The remainder of the paper proceeds as follows. In Sec. II
we review the MEDR framework in Sec. II A and the block-
encoding framework in Sec. II B. In Sec. III we propose the
QMEDR framework in Sec. III A and analyze its complexity
in Sec. III B. In Sec. IV we present several applications of the
QMEDR framework. In Sec. V we discuss the main idea of
the QMEDR framework and compare the framework with the
related work. A summary is given in Sec. VI.

II. PRELIMINARIES

A. MEDR framework

In this section we first review the linear DR in regard to
graph embedding and then review the general MEDR frame-
work and analyze its complexity.

Let X = [x0, x1, . . . , xN−1]T ∈ RN×M denote the original
data matrix. Dimensionality reduction aims to seek an opti-
mal transformation to map the M-dimensional sample xi onto
an m-dimensional (m � M) sample yi, i = 0, 1, . . . , N − 1.
Many DR algorithms were unified into a general graph em-
bedding framework [22]. In the framework, an undirected
weighted graph G = {X , S} with vertex set X = {xi}N−1

i=0 and
similarity matrix S = (Si j) ∈ RN×N is defined to characterize
the original data set, where Si j measures the similarity of a pair
of vertices xi and x j . For the case m = 1, the graph-preserving
criterion is

y∗ = arg min
yT By=d

∑
i 	= j

‖yi − y j‖2Si j = arg min
yT By=d

yT Ly, (1)

where y = [y0, y1, . . . , yN−1]T is the low-dimensional data
matrix (now it is a vector), B is a constraint matrix (it is
Hermitian in general), d is a constant, L = D − S is the Lapla-
cian matrix, D is a diagonal matrix, and Dii = ∑

j 	=i Si j . Note
that ‖ · ‖ denotes the l2-norm in this paper. Assuming that the
low-dimensional vector representations of the vertices can be
obtained from a linear projection as yi = wT xi, where w is
the unitary projection vector, the objective function in Eq. (1)
becomes

w∗ = arg min
wT XT BXw=d

or wT w=d

∑
i 	= j

‖wT xi − wT x j‖2Si j

= arg min
wT XT BXw=d

or wT w=d

wT X T LXw. (2)

The solutions of Eqs. (1) and (2) are obtained by solving the
generalized eigenproblem

S1v = λS2v, (3)

where S1 = L or X T LX and S2 = I , B, or X T BX [22]. Then
the optimal projection vector is the generalized eigenvec-
tor corresponding to the minimum generalized eigenvalue.
Generalized to the case m � 2, let v0, v1, . . . , vm−1 be the
generalized eigenvectors corresponding to the first m small-
est generalized eigenvalues. Then W = [v0, v1, . . . , vm−1]
is the optimal transformation matrix and the desired low-
dimensional data matrix Y = XW = [y0, y1, . . . , yN−1]T .

However, in many cases of real life, N < M, resulting in
the matrices S1 and S2 being singular and then Eq. (3) is
unsolvable. This is a so-called SSS problem. To solve it, the
general MEDR framework is proposed [23]. It replaced the
matrices S1 and S2 in Eq. (3) with their respective matrix ex-
ponentials [38]. In other words, the MEDR framework should
solve the generalized eigenproblem

eS1 v = λeS2 v (4)

and take the first m principal generalized eigenvectors to ob-
tain the optimal transformation matrix. The flowchart of the
MEDR framework is shown in Fig. 1.

042418-2

GENERAL QUANTUM MATRIX EXPONENTIAL … PHYSICAL REVIEW A 108, 042418 (2023)

The original data matrix ∈ ℝ ×

Compute the matrices 1, 2

Compute the matrix exponentials 1 , 2

mapping

Solve the generalized eigenproblem 1 = λ 2

Transformation matrix = [0, 1, … , −1] ∈ ℝ
×

The first principal generalized eigenvectors

Low-dimensional data matrix = ∈ ℝ ×

The original space

The new space

Dimensionality reduction

FIG. 1. Flowchart of the general MEDR framework.

The matrix exponential method solves the SSS problem
well. Nevertheless, its high complexity constitutes a bot-
tleneck in this type of matrix exponential–based algorithm
because one has to compute the multiples and the exponentials
of matrices and to solve a matrix exponential generalized
eigenproblem. First, for a matrix of the type X T FX , the time
complexity of computing it is O(N2M + NM2), where F is a
square matrix of order N . Note that although N is less than
M and can be ignored, we keep N here for a clearer repre-
sentation of the parameter relationship. Second, in general,
for a given M × M matrix, the complexity of computing its
matrix exponential is O(M3) [38,45]. Third, the complexity
of solving the generalized eigenproblem is O(M3) for a square
matrix of order M. Adding them up, the total time complexity
is O(N2M + M3), which introduces difficulty to the practi-
cal applications of this type of algorithm when dealing with
a larger number of high-dimensional data. Therefore, it is
necessary to seek alternative strategies to speedup the matrix
exponential–based DR algorithms.

B. Block-encoding framework

In this section we briefly review the framework of block
encoding.

Definition 1 (block encoding [35]). Suppose that A is an
s-qubit operator, α, ε ∈ R+, and a ∈ N. Then we say that the
(s + a)-qubit unitary U is an (α, a, ε) block encoding of A if

‖A − α(〈0|⊗a ⊗ I)U (|0〉⊗a ⊗ I)‖ � ε. (5)

Note that since ‖U‖ = 1, we necessarily have ‖A‖ � α +
ε. Moreover, the above definition is not restricted to only
square matrices. When A is not a square matrix, we can define
an embedding square matrix Ae such that the top left block of
Ae is A and all other elements are 0.

There are several methods to implement the block encod-
ings for specific matrices, such as sparse matrices [34,35],
density operators [33–35], Gram matrices [35], and matri-

ces stored in structured quantum random access memories
(QRAMs) [36,47]. The main motivation for using block en-
codings is to perform optimal Hamiltonian simulation for a
given block-encoded Hamiltonian.

Theorem 1 (optimal block Hamiltonian simulation
[34,46,48]). Suppose that U is an (α, a, ε

|2t |) block encoding
of the Hamiltonian H . Then we can implement an ε-precise
Hamiltonian simulation unitary V which is a (1, a + 2, ε)-
block encoding of eiHt , with O(|αt | + log2(1/ε)

log2log2(1/ε)) uses of

controlled U or its inverse and with O(a|αt | + a log2(1/ε)
log2log2(1/ε))

two-qubit gates.
The block-encoding technique has been applied to

many quantum algorithms, such as quantum linear systems
[13,34,36] and quantum mean centering [49]. In the follow-
ing section, we will apply the block-encoding framework to
MEDR and design a general quantum algorithm framework
for MEDR to speed up the matrix exponential–based DR
algorithms.

III. GENERAL QMEDR FRAMEWORK BASED
ON BLOCK ENCODING

In this section we will detail the general quantum algorithm
framework that performs matrix exponential–based DR more
efficiently than what is achievable classically under certain
conditions.

Assume that the original data matrix X =
[x0, x1, . . . , xN−1]T ∈ RN×M is stored in a structured QRAM
[36,50,51]. Then there exists a quantum algorithm that can
perform the mapping

O1 : |i〉|0〉 �→ |i〉|‖xi‖〉 (6)

in time O(polylog(NM)) and perform the mappings with εx

precision in time O(polylog(NM
εx

)),

O2 : |i〉|0〉 �→ |i〉|xi〉 = |i〉 1

‖xi‖
M−1∑
j=0

xi j | j〉,

O3 : |0〉| j〉 �→ 1

‖X‖F

N−1∑
i=0

‖xi‖|i〉| j〉, (7)

where xi j denotes the (i, j) entry of X and ‖ · ‖F is the
Frobenius norm for a matrix. Based on this assumption, the
framework can be summarized as the following theorem.

Theorem 2 (QMEDR framework). For an algorithm be-
longing to the MEDR framework, let κ1, κ2 � 2 such that
I
κ1

� S1 � I and I
κ2

� S2 � I . Suppose that U1 is an (α, a, ε)
block encoding of S1 and U2 is a (β, b, δ) block encoding of
S2, which can be implemented in times T1 and T2, respectively.
Then there exists a quantum algorithm to produce the com-
pressed digital-encoded state

1√
Nm

N−1∑
i=0

m−1∑
j=0

|i〉| j〉|yi j〉 := |ψ〉 (8)

in time Õ(T maxi ‖xi‖2m
√

M
ε

), where T = Õ(ακ1(a + T1) +
βκ2(b + T2)), yi j is the (i, j) entry of the low-dimensional
data matrix Y , and its error is ε.

042418-3

LI, LIU, PAN, QIN, GAO, AND WEN PHYSICAL REVIEW A 108, 042418 (2023)

Note that with Õ(·) we hide the polylogarithmic factors. To
prove Theorem 2, we give the framework details in Sec. III A
and analyze its complexity in Sec. III B.

A. QMEDR framework

The core of the QMEDR framework is to solve the gen-
eralized eigenproblem in Eq. (4) and then construct the
compressed digital-encoded state. Since the matrices eS1 and
eS2 are nonsingular, the generalized eigenproblem can be
transformed into the standard eigenvalue problem and then
solved by quantum phase estimation [39]. One could rewrite
Eq. (4) as e−S2 eS1 v = λv (see Appendix D); however, one
runs into the immediate problem that the matrix e−S2 eS1 is
generally not Hermitian. This will make the quantum phase
estimation fail. Instead here we consider the more general case
and use the fact that a positive-definite matrix eS1 has a unique
positive-definite square root eS1/2. Letting u := eS1/2v, Eq. (4)
can be transformed into

eS1/2e−S2 eS1/2u = λu. (9)

Obviously, it is a Hermitian eigenvalue problem. Based on
this, we first use the block-encoding technique to simulate
eS1/2e−S2 eS1/2, which can be done by constructing its block
encoding. With it, we extract the eigenvalue λ and the asso-
ciated eigenvector u by quantum phase estimation [39] and
then use the quantum minimum-finding algorithm [52] to find
the first m smallest eigenvalues. Next we apply e−S1/2 to u
to get the corresponding generalized eigenvector v = e−S1/2u.
After that, we construct the compressed digital-encoded state
by quantum amplitude amplification [53] and inner product
estimation [54]. The QMEDR framework consists of four
steps, which we will now detail one by one.

(1) Construct the block encoding of eS1/2e−S2 eS1/2. We first
give the following lemma, which is inspired by [46] and
allows us to construct the block encodings of eS1 and e−S2 .

Lemma 1 (implementing the block encodings of matrix ex-
ponential and its inverse). Let c ∈ {1,−1}, ε ∈ (0, 1

2], κ � 2,
and H be a Hermitian matrix such that I

κ
� H � I . If for some

fixed ω ∈ R+ we have δ � ωε/κ log2(1
ε

) log2
2[κ log2(1

ε
)] and

U is an (α, a, δ) block encoding of H which can be imple-
mented in time TU , then we can implement a unitary Ũ that is
an (e2, a + O(log2[κ log2(1

ε
)]), e2ε) block encoding of ecH in

cost O(ακ log2(1
ε

)(a + TU) + κ log2(κ
ε

) log2(1
ε

)).
For the proof of Lemma 1, see Appendix A.
In general, S1 and S2 are semipositive-definite Hermitian.

Since they may involve large numbers, the normalization
is needed in most cases [44]. For simplicity, here we
assume that I

κ1
� S1 � I and I

κ2
� S2 � I , where κ1, κ2 � 2.

Suppose that U1 is an (α, a, ε) block encoding of S1 and
U2 is a (β, b, δ) block encoding of S2. We implement an
(e2, a + O(log2[κ1 log2(1

ε1
)]), e2ε1) block encoding of eS1

and an (e2, b + O(log2[κ2 log2(1
ε2

)]), e2ε2) block encoding of

e−S2 by Lemma 1, where ε1, ε2 ∈ (0, 1
2]. We can also obtain

an (α
2 , a, ε

2) block encoding of S1
2 [55] and then construct

an (e2, a + O(log2[κ1 log2(1
ε1

)]), e2ε1) block encoding

of eS1/2. Then an (e6, 2a + b + O(log2[κ2 log2(1
ε2

)] +
log2[κ1 log2(1

ε1
)]), 2e6ε1 + e6ε2) block encoding of

eS1/2e−S2 eS1/2 is implemented by the product of block-encoded
matrices [35,56]. Based on this, we can simulate eS1/2e−S2 eS1/2

by Theorem 1.
(2) Extract the first m principal generalized eigenvalues.

Here we first use quantum phase estimation [39] to reveal
the eigenvalues and eigenvectors of eS1/2e−S2 eS1/2 and then
use the quantum minimum-finding algorithm [52] to search
for the first m smallest eigenvalues, i.e., the first m smallest
generalized eigenvalues of Eq. (4). The details are as follows.

(2.1) Reveal the eigenvalues and eigenvectors of
eS1/2e−S2 eS1/2. Given the block encoding of eS1/2e−S2 eS1/2,
the unitary eı(eS1/2e−S2 eS1/2)t can be implemented according
to Theorem 1, where ı2 = −1. By using it, we apply
quantum phase estimation on the first two registers of
the state

|0〉⊗q1
1√
M

M−1∑
i=0

|i〉|i〉 (10)

and then we obtain the state

1√
M

M−1∑
i=0

|λi〉|ui〉|ui〉 := |�〉, (11)

where λi and |ui〉 are the eigenvalue and the corresponding
eigenvector of eS1/2e−S2 eS1/2, respectively, and the value of
q1 determines the accuracy of phase estimation, which we
discuss in Sec. III B. Such an entangled state in Eq. (10)
can be efficiently constructed by using Hadamard gates and
controlled-NOT (CNOT) gates and its partial trace over the first
two registers is proportional to the identity matrix.

(2.2) Find the first m smallest eigenvalues. To invoke the
quantum minimum-finding algorithm, we should be able to
construct an oracle Oχ to mark the item λi � γ , where γ is
a threshold parameter which can be determined by measuring
the eigenvalue register. We define a classical Boolean function
χ on the eigenvalue register satisfying

χ (λ) =
{

1, λ � γ

0, λ > γ .
(12)

Based on χ , the corresponding quantum oracle Oχ can be
constructed, satisfying

Oχ |λi〉|vi〉|vi〉 = (−1)χ (λi)|λi〉|vi〉|vi〉. (13)

Then we apply quantum minimum-finding algorithm on |�〉
to find the minimum eigenvalue, in which the Grover iteration
operator is (2|�〉〈�| − I)Oχ .

Without loss of generality, we assume that the eigenvalues
have been arranged in ascending order, that is, λ0 � λ1 �
· · · � λM−1. Suppose that we have obtained the first s smallest
eigenvalues. We modify χ as

χ (λ) =
{

1, λ � γ , λ /∈ {λ j}s−1
j=0

0, λ > γ
(14)

and construct the new oracle Oχ and the new Grover opera-
tor. Based on this, we invoke the quantum minimum-finding
algorithm again to find λs. The first m smallest eigenvalues
{λ j}m−1

j=0 can be obtained in this way. Note that when we get an
eigenvalue λ j , we also get the corresponding quantum state
|u j〉|u j〉.

042418-4

GENERAL QUANTUM MATRIX EXPONENTIAL … PHYSICAL REVIEW A 108, 042418 (2023)

FIG. 2. Quantum circuit of step 2 in the QMEDR framework,
where / denotes a bundle of wires, H is the Hadamard gate, X is
the NOT gate, U = eı(eS1/2e−S2 eS1/2)t , FT denotes the quantum Fourier
transformation, and Umin denotes the quantum minimum-finding
algorithm.

The entire quantum circuit of step 2 is shown in Fig. 2.
(3) Extract the first m principal generalized eigenvec-

tors. With {λ j}m−1
j=0 we obtained in the preceding step, here

we first use the quantum amplitude amplification [53] to
get the first m principal eigenvectors of eS1/2e−S2 eS1/2 and
then use the matrix computation technique (similar to the
Harrow-Hassidim-Lloyd algorithm [3]) to get the correspond-
ing generalized eigenvectors.

(3.1) Prepare the state 1√
m

∑m−1
i=0 |λi〉|ui〉|ui〉. We prepare

the state |�〉 as the initial state. Then an oracle Oλ is defined to
mark the items {λ j}m−1

j=0 (similar to Oχ), i.e., Oλ|λ j〉|u j〉|u j〉 =
−|λ j〉|u j〉|u j〉 for j = 0, 1, . . . , m − 1. With Oλ, we use
quantum amplitude amplification [53] to get

1√
m

m−1∑
i=0

|λi〉|ui〉|ui〉, (15)

where the Grover operator G = (2|�〉〈�| − I)Oλ.
(3.2) Obtain the first m principal generalized eigen-

vectors. Suppose that the Hermitian matrix e−S1 has a
spectral decomposition form

∑M−1
j=0 σ j |w j〉〈w j |. Obviously,

σ j ∈ [e−1, e−1/κ1] ⊂ [e−1, 1). We decompose |ui〉 of the sec-
ond register in the eigenbasis of e−S1 and then Eq. (15) can be
rewritten as

1√
m

m−1∑
i=0

|λi〉
(

M−1∑
j=0

γi j |w j〉
)

|ui〉, (16)

where γi j = 〈w j |ui〉.
To obtain the corresponding generalized eigenvector |vi〉,

we introduce two auxiliary registers to produce

1√
m

m−1∑
i=0

|λi〉
(

M−1∑
j=0

γi j |w j〉
)

|ui〉|0〉⊗q1 |0〉. (17)

By Lemma 1 we can implement an (e2, a +
O(log2[κ1 log2(1

ε1
)]), e2ε1) block encoding of e−S1 . With

it and Theorem 1 we perform quantum phase estimation on
the second and fourth registers to get

1√
m

m−1∑
i=0

|λi〉
(

M−1∑
j=0

γi j |w j〉
)

|ui〉|σ j〉|0〉. (18)

Then we rotate the last qubit, conditioned on |σ j〉, to yield

1√
m

m−1∑
i=0

|λi〉
(

M−1∑
j=0

γi j |w j〉
)

|ui〉|σ j〉[
√

1 − σ j |0〉 + (σ j)
1/2|1〉].

(19)

Next we amplify the amplitude of |1〉 and discard the last two
registers to get∑m−1

i=0

∑M−1
j=0 (σ j)

1
2 γi j |λi〉|w j〉|ui〉√∑m−1

i=0

∑M−1
j=0 σ jγ

2
i j

, (20)

which can be rewritten as

m−1∑
i=0

√∑M−1
j=0 σ jγ

2
i j√∑m−1

i=0

∑M−1
j=0 σ jγ

2
i j

|λi〉

⎛
⎜⎝

∑M−1
j=0 (σ j)1/2γi j |w j〉√∑M−1

j=0 σ jγ
2
i j

⎞
⎟⎠|ui〉

=
m−1∑
i=0

√∑M−1
j=0 σ jγ

2
i j√∑m−1

i=0

∑M−1
j=0 σ jγ

2
i j

|λi〉|vi〉|ui〉,

where λi and |vi〉 are the generalized eigenvalue and the cor-
responding generalized eigenvector of Eq. (4). After that, we
do the same for |ui〉 of the third register. Finally, we get the
state

m−1∑
i=0

ζi|λi〉|vi〉|vi〉 := |ϕ〉, (21)

where ζi =
∑M−1

j=0 σ jγ
2
i j√∑m−1

i=0 (
∑M−1

j=0 σ jγ
2
i j)

2
is the normalization coefficient

and 1
e
√

m
< ζi < e√

m
(see Appendix B for the proof).

The entire quantum circuit of step 3 is shown in Fig. 3.
(4) Construct the compressed digital-encoded state. Since

yi j = ‖xi‖〈xi|v j〉, we can obtain the value of yi j by com-
puting the inner product 〈xi|v j〉, i = 0, 1, . . . , N − 1, j =
0, 1, . . . , m − 1. Without loss of generality, we assume
〈xi|v j〉 � 0 because both |v j〉 and −|v j〉 are generalized
eigenvectors of Eq. (4) corresponding to the generalized
eigenvalue λ j . Then we can get the value of 〈xi|v j〉 by com-
puting (〈xi|v j〉)2. An intuitive idea is to use the Hadamard test
[57]. (See Appendix C for the reason why we do not compute
〈xi|v j〉 directly.) However, it would be exhausting to do so
over a large data set. Instead, here we use the inner product
estimation to accomplish this task in parallel. The following
lemmas are required for step 4.

Lemma 2 (distance or inner product estimation [54]). As-
sume that the unitaries |i〉|0〉 �→ |i〉|xi〉 and | j〉|0〉 �→ | j〉|x j〉
can be performed in time T and the norms of the vectors
are known. For any � > 0 and ε > 0 there exists a quantum
algorithm that can compute

|i〉| j〉|0〉 �→ |i〉| j〉∣∣xT
i x j

〉
(22)

or

|i〉| j〉|0〉 �→ |i〉| j〉|‖xi − x j‖2〉 (23)

with a probability of at least 1 − 2� for any ε with com-
plexity Õ(‖xi‖‖x j‖T log2(1/�)

ε
), where ε is the error of xT

i x j or
‖xi − x j‖2.

042418-5

LI, LIU, PAN, QIN, GAO, AND WEN PHYSICAL REVIEW A 108, 042418 (2023)

FIG. 3. Quantum circuit of step 3 in the QMEDR framework, where U� is the unitary operation for preparing state |�〉 (see Fig. 2),
V = eı(e−S1)t , and R is the controlled unitary operation corresponding to controlled rotation.

Lemma 3 (quantum multiplier [14,58,59]). Let integers a
and b be an n-bit string. Then there is a quantum algorithm
with O(poly(n)) single- and two-qubit gates that can realize

|a〉|b〉 �→ |a〉|ab〉. (24)

Note that for accuracy defined as ε = 2−n, the complexity of
the quantum multiplier (QM) is given by O(polylog(1

ε
)).

We now elaborate on step 4 as follows.
(4.1) With these two unitaries |i〉 1√

m

∑m−1
j=0 | j〉|0〉 �→

|i〉 1√
m

∑m−1
j=0 | j〉|φi j〉 (|φi j〉 = |λ j〉|xi〉|xi〉) and |i〉| j〉|0〉 �→

|i〉| j〉|ϕ〉, we use Hadamard gates and Lemma 2 to produce
the state

1√
Nm

N−1∑
i=0

m−1∑
j=0

|i〉| j〉
∣∣∣∣ζ j (〈xi|v j〉)2

√
m

〉
|0〉⊗q2 |0〉⊗q3 |0〉⊗q3 , (25)

where q2 is the largest number of qubits necessary to store 1
ζi

and q3 is the largest number of qubits necessary to store yi j

and ‖xi‖.
For |φi j〉, the mapping

|i〉 1√
m

m−1∑
j=0

| j〉|0〉 �→ |i〉 1√
m

m−1∑
j=0

| j〉|φi j〉 (26)

is performed by O2 and a sequence of controlled unitary
operations C(j) : | j〉|0〉 �→ | j〉|λ j〉 [24], j = 0, 1, . . . , m − 1.
Each C(j) can be performed efficiently because we have ob-
tained {λ j}m−1

j=0 in step 2. The quantum circuit for preparing the
state |φi j〉 is shown in Fig. 4.

(4.2) In this stage, we need the values of { 1
ζi
}m−1

i=0 which
can be obtained by measuring the first registers of |ϕ〉 and
counting the probability distribution of the generalized eigen-
values. Then we store them in a structured QRAM [50,51],
which allows us to perform the mapping

O4 : |i〉|0〉 �→ |i〉
∣∣∣∣ 1

ζi

〉
(27)

in time O(log2 m).

Based on this, we perform O4 on the second and fourth
registers of Eq. (25) to get

1√
Nm

N−1∑
i=0

m−1∑
j=0

|i〉| j〉
∣∣∣∣ζ j (〈xi|v j〉)2

√
m

〉∣∣∣∣ 1

ζ j

〉
|0〉|0〉 (28)

and then perform QM on the third and fourth registers to get

1√
Nm

N−1∑
i=0

m−1∑
j=0

|i〉| j〉
∣∣∣∣ (〈xi|v j〉)2

√
m

〉∣∣∣∣ 1

ζ j

〉
|0〉|0〉. (29)

(4.3) We perform O1 on the first and fifth registers to obtain

1√
Nm

N−1∑
i=0

m−1∑
j=0

|i〉| j〉
∣∣∣∣ (〈xi|v j〉)2

√
m

〉∣∣∣∣ 1

ζ j

〉
|‖xi‖〉|0〉 (30)

and then perform QM twice on the third and fifth registers to
get

1√
Nm

N−1∑
i=0

m−1∑
j=0

|i〉| j〉
∣∣∣∣ (〈xi|v j〉)2‖xi‖2

√
m

〉∣∣∣∣ 1

ζ j

〉
|‖xi‖〉|0〉, (31)

that is,

1√
Nm

N−1∑
i=0

m−1∑
j=0

|i〉| j〉
∣∣∣∣ y2

i j√
m

〉∣∣∣∣ 1

ζ j

〉
|‖xi‖〉|0〉. (32)

The compressed digital-encoded state |ψ〉 can be obtained
by uncomputing the third, fourth, and fifth registers after

FIG. 4. Quantum circuit for preparing state |φi j〉 where con-
trolled U (j) corresponds to C(j) for j = 0, 1, . . . , m − 1.

042418-6

GENERAL QUANTUM MATRIX EXPONENTIAL … PHYSICAL REVIEW A 108, 042418 (2023)

FIG. 5. Quantum circuit of step 4 in the QMEDR framework. For simplicity, a = q1 + 2�log2 M�, b denotes the number of qubits required
for the inner product estimation, and Uϕ and Uφ are the unitary operations for preparing states |ϕ〉 and |φi j〉, respectively (here we omit the
ancillary registers; see Figs. 3 and 4 for more details). Note that the ancillary registers are required for inner product estimation and we omit
them from Eq. (25) for convenience.

applying Uf : |x〉|0〉 �→ |x〉| f (x)〉 on the third and sixth reg-

isters, where f (x) =
√√

mx and x = y2
i j√
m

.
The entire quantum circuit of step 4 is shown in Fig. 5.

B. Complexity analysis

Now we analyze the complexity of each step and discuss
the overall complexity.

In step 1, U1 is an (α, a, ε) block encoding of S1 and U2 is
a (β, b, δ) block encoding of S2, which can be implemented
in times T1 and T2, respectively. Then, by Lemma 1, the time
complexity of implementing the block encodings of eS1 and
e−S2 are Õ(ακ1(a + T1)) and Õ(βκ2(b + T2)), respectively.
Then we can implement a block encoding of eS1/2e−S2 eS1/2 in
time Õ(ακ1(a + T1) + βκ2(b + T2)) := T by Lemma B.4 in
[56].

In step 2, for stage (2.1), O(�log2 M�) Hadamard gates
and CNOT gates are needed to prepare the state in Eq. (10).
Next, with the block encoding of eS1/2e−S2 eS1/2, the unitary
eı(eS1/2e−S2 eS1/2)t can be implemented in time Õ(T t) by Theorem
1. Hence, the quantum phase estimation has a query complex-
ity of O(1

ε1
(2 + 1

2η
)) and each query has a time complexity

Õ(T), where ε1 is the error of quantum phase estimation
and 1 − η is the probability to succeed. Suppose we wish to
approximate λ j to an accuracy 2−n with a probability of suc-
cess of at least 1 − η; we should choose q1 = n + �log2(2 +
1
η

)� [39]. For stage (2.2) we should invoke the quantum
minimum-finding algorithm m times to get the first m smallest
eigenvalues, and each takes O(

√
M) query complexity.

In step 3, for stage (3.1), with |�〉, O(
√

M
m) Grover op-

erator iterations is enough to obtain the state in Eq. (15).
For stage (3.2), which is similar to (2.1), with the block
encoding of e−S1 , the unitary eı(e−S1)t can be implemented in
time Õ(ακ1(a + T1)t) by Theorem 1. Hence, the time com-
plexity of quantum phase estimation is O(ακ1(a+T1)

ε1
). The time

complexity of controlled rotations and quantum amplitude
amplifications can be neglected compared with other subrou-
tines.

In step 4, for stage (4.1), when preparing the state |φi j〉,
C(j) (j = 0, 1, . . . , m − 1) and two O2 are needed to perform
the mapping in Eq. (26). Each C(j) takes O(log2(1

ε1
) log2 m)

elementary gates [24,39], so O(m log2(1
ε1

) log2 m) time is
needed to perform all C(j). Each O2 can be done with εx

precision in time O(polylog(NM
εx

)). Hence, the time complex-

ity for preparing the state |φi j〉 is Õ(m). Moreover, the time

complexity for preparing the state |ϕ〉 is Õ(T
ε1

√
M
m). Based

on the above, the time complexity of producing the state in

Eq. (25) is Õ(T
ε1ε2

√
M
m), where ε2 is the error of the inner prod-

uct estimation. For stage (4.2), O(1
mini ζi

log2(1
mini ζi

) log2(1
εζ

))

measurements is enough to get all the values of {ζi}m−1
i=0

with accuracy εζ , where mini ζi = 1
e
√

m
. Then the time and

space complexity to store { 1
ζi
}m−1

i=0 in a structured QRAM

are O(m log2
2 m). Note that here the error of 1

ζi
will become

O(mεζ). To ensure the error of (〈xi|v j〉)2
√

m
is ε2, we should

control εζ = O(ε2
m). After that, we use O4 to get the state

in Eq. (28) in time O(log2 m). The time complexity of QM
is O(polylog(1

ε2
)) with accuracy ε2, which can be neglected

compared with other subroutines. For stage (4.3), we use O1 to
get the state in Eq. (30) in time O(polylog(NM)). Moreover,
we omit the complexity of QM and Uf .

The complexity of each step of the QMEDR framework
is summarized as Table I. Furthermore, if every λ j = O(1

m),
ε1 should take O(1

m) and thus the time complexities of steps
2 and 3 are Õ(T m2

√
M) and Õ(T

√
mM), respectively. In

step 4, the error of (〈xi|v j〉)2
√

m
is ε2, which will make the error

of y2
i j = (〈xi|v j〉)2‖xi‖2 equal to

√
m‖xi‖2ε2. Suppose yi j =

O(1). To ensure the final error of yi j is within ε, we should take

042418-7

LI, LIU, PAN, QIN, GAO, AND WEN PHYSICAL REVIEW A 108, 042418 (2023)

TABLE I. Time complexity of each step of the QMEDR frame-
work. Here ε1 is the error of quantum phase estimation and ε2 is the
error of inner product estimation.

Step Time complexity

1 T = Õ(ακ1(a + T1) + βκ2(b + T2))
2 Õ

(
T m

√
M

ε1

)
3 Õ

(
T
ε1

√
M
m

)
4 Õ

(
T

ε1ε2

√
M
m + T

√
mM

ε1

)

ε2 = O(ε√
m maxi ‖xi‖2). Therefore, the total time complexity of

step 4 is Õ(T maxi ‖xi‖2m
√

M
ε

).
In conclusion, the QMEDR framework can output the com-

pressed digital-encoded state |ψ〉 in time Õ(T maxi ‖xi‖2m
√

M
ε

),
where T = Õ(ακ1(a + T1) + βκ2(b + T2)) and ε is the error
of yi j .

IV. APPLICATIONS

In this section we use the QMEDR framework to accelerate
the classical ELPP [42], EUDP [19,23], ENPE [43], and EDA
[44] algorithms, which all belong to the MEDR framework.
The core is to implement the block encodings of S1 and S2

of these algorithms. Once the two block encodings are imple-
mented efficiently, we can design the corresponding quantum
algorithms by Theorem 2.

A. Quantum ELPP algorithm

In ELPP, S1 = X T LX and S2 = X T DX , where L = D − S,
D is a diagonal matrix, Dii = ∑

j 	=i Si j , and the similarity
matrix S is defined as

Si j =
{

e− ‖xi−x j ‖2

2σ2 for xi ∈ Nk (x j) or x j ∈ Nk (xi)
0 otherwise,

(33)

where σ is a parameter that is determined empirically and
Nk (x j) denotes the set of the k nearest neighbors of x j .
To construct the block encodings of S1 and S2, we should
be able to compute the matrices S, D, and L. We first use
the quantum k nearest-neighbor algorithm, a straightforward
generalization of quantum nearest-neighbor classification in
[60], to obtain the k nearest neighbors of each sample, which
takes Õ(kN

√
N) time. Then the matrices S, D, and L can be

computed in classical in time O(kN).
For S1, we can implement the block encodings of X and

L and then implement its block encoding by the product of
block-encoded matrices [35]. Since X is stored in a struc-
tured QRAM [50,51], an (‖X‖F , �log2(N + M)�, εx) block
encoding of X can be implemented in time O(polylog(NM

εx
))

by Lemma 6 in [36]. Since L is a (k + 1)-sparse ma-
trix, we can implement its (k + 1, polylog(N

εl
), εl) block

encoding with O(1) queries for the sparse-access oracles
and O(polylog(N

εl
)) elementary gates by Lemma 7 in [36].

Then we implement a ((k + 1)‖X‖2
F , 2�log2(N + M)� +

polylog(N
εl

), ‖X‖2
F εl + 2(k + 1)‖X‖F εx) block encoding of

S1 with complexity O(polylog(NM
ε

)), where ε = min{εl , εx}
[35].

For the semipositive-definite matrix S2 = ∑
i DiixixT

i , we
can construct its block encoding by preparing the purified
density operator S2

tr(S2) := ρ [35]. We first store the vector

d = [d0, d1, . . . , dN−1]T , di = √
Dii, in a structured QRAM

[50,51]. Note that the time and space complexity of storing
d are O(N log2

2 N) and O(kN log2
2(kN)), respectively. Then

there exists a quantum algorithm that can perform the map-
ping Ud : |i〉|0〉 �→ |i〉|di〉 in time O(log2 N). With Ud , O2,

and O3, we prepare the state
∑

i di‖xi‖√∑
i Dii‖xi‖2

|i〉|xi〉 whose partial

trace over the first register is ρ. Then a (1, O(log2 N), ε2)
block encoding of ρ can be constructed by Lemma 25 in
[35], where ε2 comes from the unitary operation for preparing
the above state. Then we implement a (tr(S2), O(log2 N), ε2)
block encoding of S2 in time O(polylog(NM

εx
)) [55], where the

value of tr(S2) can be computed in time O(N) and tr(S2) =
O(‖X‖2

F). The quantum ELLP algorithm can then be achieved
by Theorem 2.

B. Quantum EUDP algorithm

In EUDP, S1 = X T LX and S2 = X T L′X , where L′ = D′ −
S′, with D′ a diagonal matrix, D′

ii = ∑
j S′

i j , and S′
i j = 1 − Si j .

The block encoding of S1 is the same as ELPP’s. For S2, we
first compute the matrix L′ in time O(N2) and store it in a
structured QRAM [50,51]. The space and time complexities
to construct the data structure are O(N2 log2

2 N). Then we
implement an (‖L′‖F , �log2(2N)�, εl ′) block encoding of L′
and further implement an (‖X‖2

F ‖L′‖F , 2�log2(N + M)� +
�log2(2N)�, ‖X‖2

F εl ′ + 2‖X‖F ‖L′‖F εx) block encoding of S2

in time O(polylog(NM
εx

)) by the product of block-encoded ma-
trices [35]. Then we invoke Theorem 2 to obtain the quantum
ELLP algorithm.

C. Quantum ENPE algorithm

In ENPE, S1 = X T W X and S2 = X T X , where W =
arg min

∑
i ‖xi − ∑

x j∈Q(xi) Wi jx j‖ and
∑

x j∈Q(xi) Wi j = 1.
Here we use the ε-neighborhood criterion to get the
nearest-neighbor set Q(xi) of xi, in which each set
has �(k) samples. For S1, we first use the method of
the quantum NPE algorithm [11] to get the classical
information of the matrix W , which can be done in time
Õ(N). Since W is a matrix of �(k) nonzero elements in
each row and column, we assume that it is a k-sparse
matrix. We can implement a (k, polylog(N

εw
), εw) block

encoding of W by Lemma 7 in [36] and further implement
an (‖X‖2

F k, 2�log2(N + M)� + polylog(N
εw

), ‖X‖2
F εw +

2‖X‖F kεx) block encoding of S1 with complexity
O(polylog(NM

ε
)), where ε = min{εw, εx} [35]. For S2, we

can implement an (‖X‖2
F , 2�log2(N + M)�, 2‖X‖F εx) block

encoding of it in time O(polylog(NM
εx

)) [35]. The quantum
ENPE algorithm is obtained by Theorem 2.

D. Quantum EDA algorithm

In EDA, S1 and S2 are the between-class scatter matrix and
the within-class scatter matrix, respectively [44]. According
to the quantum LDA algorithm [9], we can first construct
the density operators corresponding to S1 and S2 in time
O(log2(NM)). Then a (1, O(log2 M), ε1) block encoding of

042418-8

GENERAL QUANTUM MATRIX EXPONENTIAL … PHYSICAL REVIEW A 108, 042418 (2023)

TABLE II. Complexity comparisons between the classical ELPP, EUDP, ENPE, and EDA algorithms and their quantum versions.

Algorithm S1 S2 Classical complexity Quantum complexitya

ELPPb X T LX X T DX O(MN2 + M3) Õ(N3/2 + T ηM1/2), T = Õ(‖X‖2
F κ1 + ‖X‖2

F κ2)
EUDPc X T LX X T L′X O(MN2 + M3) Õ(N2 + T ηM1/2), T = Õ(‖X‖2

F κ1 + ‖X‖2
F ‖L′‖F κ2)

ENPEd X T W X X T X O(k3NM + M3), k � N e Õ(kN + T ηM1/2), T = Õ(‖X‖2
F κ1 + ‖X‖2

F κ2)
EDAf Sb Sw O(MN2 + N3) Õ(κ1 + κ2ηM1/2)

aFor convenience, we let 1/ε, m = O(polylog(NM)) in Theorem 2 and delete the factor k in ELPP and EUDP. In addition, η = maxi ‖xi‖2 and
κ1 and κ2 correspond to S1 and S2, respectively, in different algorithms.
bFrom Ref. [42].
cFrom Refs. [19,23].
dFrom Ref. [43].
eFrom Ref. [11].
fFrom Ref. [44]. In EDA, Sb and Sw are the between-class scatter matrix and the within-class scatter matrix, respectively.

S1 and a (1, O(log2 M), ε2) block encoding of S2 are imple-
mented in time O(log2(NM)), where ε1 and ε2 come from the
unitary operations for preparing these two density operators
corresponding to S1 and S2. The quantum EDA algorithm
can then be achieved by Theorem 2. Note that in quantum
EDA, the first m principal eigenvectors are the eigenvectors
corresponding to the first m largest generalized eigenvalues.
We can replace the quantum minimum-finding algorithm in
step 2 with the quantum maximum-finding algorithm [61].

The complexity comparison between the classical ELPP,
EUDP, ENPE, and EDA algorithms and their quantum
versions is summarized in Table. II. When κ1, κ2, ‖xi‖ =
O(polylog(NM)), the results show that the quantum ELPP
and quantum NPE algorithms achieve polynomial speedups
in both N and M, the quantum EUDP algorithm achieves a
polynomial speedup in M, and the quantum EDA algorithm
provides an exponential speedup on N and a polynomial
speedup on M over their classical counterparts.

V. DISCUSSION

One core of the QMEDR framework is to construct the
block encoding of the matrix exponential. It provides a
method for simulating the matrix exponential or the product
of matrix exponentials. With it, we can easily use quantum
phase estimation to reveal the eigenvectors and eigenvalues of
eS1/2e−S2 eS1/2. The block-encoding framework we used here is
a useful tool, which can be applied to algorithms for various
problems, such as Hamiltonian simulation and density matrix
preparation. By using it, one can significantly improve the ex-
isting quantum DR algorithms, such as quantum LPP [30] and
quantum LDA [9], and further reduce the dependence of their
complexity on error. Moreover, it is useful for constructing
the density matrix corresponding to the matrix chain product
in the form (Al · · · A2A1)(Al · · · A2A1)†, which can be seen as
a special simplified version of the Hermitian chain product in
[9], but here the matrix Ai, i = 1, 2, . . . , l , is not limited to a
Hermitian matrix. For the general Hermitian chain product in
the form [fl (Al) · · · f2(A2) f1(A1)][fl (Al) · · · f2(A2) f1(A1)]†,
the role of block encoding remains to be explored.

The other core of the QMEDR framework is to construct
the compressed digital-encoded state which can be utilized as
input for QML tasks to overcome the curse of dimensionality.
For example, the quantum k-medoids algorithm [41] has a

time complexity Õ(N1/2M2) for one iteration and is therefore
not suitable for dealing with high-dimensional data. One can
select a suitable quantum DR algorithm as a preprocessing
subroutine to produce the compressed digital-encoded state
and input it to the quantum k-medoids algorithm. This leads
to a better dependence on M in the algorithm complexity.
While the digital-encoded state can be used as input for QML,
the analog encoding is sometimes required, such as a quantum
support vector machine [62] and quantum k-means clustering
[54]. One can also construct the compressed analog-encoded
state 1

‖Y ‖F

∑N−1
i=0

∑m−1
j=0 yi j |i〉| j〉 as in [24,32]; however, in

this case, extra work may be needed, which is worth further
exploration.

Now we divide the quantum linear DR algorithms into
three types: (I) those that output the quantum states corre-
sponding to the column vectors of the transformation matrix,
(II) those that output the compressed analog-encoded state,
and (III) those that output the digital-encoded state. The
type I algorithms have not provided the desired quantum
data compression, namely, obtaining its corresponding low-
dimensional data set. The algorithms of types II and III are
well adapted directly to other QML algorithms. The com-
parison between the QMEDR framework and the existing
quantum linear DR algorithms in an end-to-end setting is
summarized in Table III.

Our QMEDR framework is related to solving the gener-
alized eigenproblem Av = λBv, where the matrices A = eS1

and B = eS2 are positive-definite Hermitian. This is a typi-
cal class of symmetric generalized eigenvalue problems. The
standard algorithm for solving this class of eigenvalue prob-
lems is to reduce them to the Hermitian eigenvalue problem
B−1/2AB−1/2u = λu, where u = B1/2v. Parker and Joseph
[64] studied the symmetric generalized eigenproblem through
this idea for some types of A and B arising from applications in
physics such that B−1/2AB−1/2 is sparse and can be simulated
efficiently. Later, Shao and Liu [65] proposed a new quantum
algorithm for symmetric generalized eigenvalue problems by
solving ordinary differential equations instead of Hamiltonian
simulation. In this paper, because of the special properties
of matrices eS1 and eS2 , we solve Eq. (4) by transforming it
into eS1/2e−S2 eS1/2u = λu, where u = eS1/2v. It is a Hermitian
eigenvalue problem where the matrices eS1/2e−S2 eS1/2 and e−S1

can be simulated efficiently by optimal block Hamiltonian
simulation.

042418-9

LI, LIU, PAN, QIN, GAO, AND WEN PHYSICAL REVIEW A 108, 042418 (2023)

TABLE III. Comparison between the QMEDR framework and the existing quantum linear DR algorithms in an end-to-end setting.

Outputa

Algorithm Input Type I Type II Type III

quantum PCAb multiple copies of the density operators, m
√

quantum PCAc X stored in a structured QRAM, m
√

quantum LDAd X stored in a structured QRAM, m
√

quantum LDAe X stored in a structured QRAM, m
√

quantum LPPf X stored in a structured QRAM, m
√

quantum AOPg √
quantum NPEh oracles preparing quantum states {|xi〉}N−1

i=0 , m
√

quantum NPEi X stored in a structured QRAM, m
√

quantum DCCAj X stored in a QRAM,k m
√

QMEDR framework X stored in a structured QRAM, m
√

aHere type I denotes that the output is quantum states corresponding to the column vectors of the transformation matrix, type II denotes that
the output is a compressed analog-encoded state, and type III denotes that the output is a compressed digital-encoded state.
bFrom Ref. [8].
cFrom Ref. [24].
dFrom Ref. [9].
eFrom Ref. [32].
fFrom Ref. [30].
gFrom Refs. [10,26]. The quantum AOP algorithms output quantum superposition states corresponding to transformation matrices; here we
classify them as type I for convenience.
hFrom Ref. [27]. Although two methods of getting compressed data are given in this algorithm, no superposition compressed state is
constructed, so it is classified as type I.
iFrom Ref. [11].
jFrom Ref. [31].
kFrom Ref. [63].

VI. CONCLUSION

In this paper we proposed the QMEDR framework, which
is configurable and from which a series of alternative quantum
DR algorithms can be derived. The applications on ELPP,
EUDP, ENPE, and EDA showed the quantum superiority of
this framework. The techniques we presented in this paper can
be extended to solve many important computational problems,
such as computing the matrix exponential and simulating the
matrix exponential. Moreover, the QMEDR framework can
also be regarded as a common framework in which to explore
the quantization of other linear DR techniques. This work
builds a bridge between quantum linear DR algorithms and
other QML algorithms, which is helpful to overcome the curse
of dimensionality and solve problems of practical importance.
We hope it can inspire the study of QML.

ACKNOWLEDGMENTS

This work was supported by Beijing Natural Science Foun-
dation (Grant No. 4222031) and National Natural Science
Foundation of China (Grants No. 61976024, No. 61972048,
and No. 62171056).

APPENDIX A: PROOF OF LEMMA 1

To prove Lemma 1, we will use the following tools.
Lemma 4 (block encoding of controlled-Hamiltonian simu-

lation [46]). Let M = 2J for some J ∈ N, γ ∈ R, and ε � 0.
Suppose that U is an (α, a, ε

2(J+1)2Mγ
) block encoding of the

Hamiltonian H . Then we can implement a (1, a + 2, ε) block

encoding of a controlled (M, γ) simulation of the Hamil-
tonian H , with O(|αMγ | + J log2(J/ε)

log2 log2(J/ε)) uses of controlled

U or its inverse and with O(a|αMγ | + aJ log2(J/ε)
log2 log2(J/ε)) three-

qubit gates.
Note that here the controlled (M, γ) simulation of the

Hamiltonian H is defined as a unitary

W :=
M−1∑

m=−M
|m〉〈m| ⊗ eimγ H , (A1)

where |m〉 denotes a (signed) bit string |bJbJ−1 · · · b0〉 such
that m = −bJ2J + ∑J−1

j=0 b j2J .
Theorem 3 (implementing a smooth function of a Hamilto-

nian [36]). Let x0 ∈ R and r > 0 be such that f (x0 + x) =∑∞
l=0 alxl for all x ∈ [−r, r]. Suppose that B > 0 and δ ∈

(0, r] are such that
∑∞

l=0(r + δ)l |al | � B. If ‖H − x0I‖ � r
and ε ∈ (0, 1/2], then we can implement a unitary Ũ that is a
(B, b + O(log2(r log2(1/ε)

δ
)), Bε) block encoding of f (H), with

a single use of a circuit V , which is a (1, b, ε
2) block encoding

of the controlled (O(r log2(1/ε)
δ

), O(1
r)) simulation of H , and

using O(r
δ

log2(r
δε

) log2(1
ε

)) two-qubit gates.
Now we provide the proof of Lemma 1. We first consider

the case of c = 1. Let f (x) := ex and observe that

f (1 + x) =
∞∑

n=0

(1 + x)n

n!
=

∞∑
n=0

∑∞
l=0

(n
l

)
xl

n!

=
∞∑

l=0

∑∞
n=0

(n
l

)
n!

xl (A2)

042418-10

GENERAL QUANTUM MATRIX EXPONENTIAL … PHYSICAL REVIEW A 108, 042418 (2023)

for all x ∈ [−1, 1], where
(n

l

) = n(n−1)···(n−l+1)
l! . We choose

x0 := 1, r := 1 − 1
κ

, and δ := 1
κ

and observe that

∞∑
l=0

(r + δ)l

∣∣∣∣∣
∑∞

n=0

(n
l

)
n!

∣∣∣∣∣ =
∞∑

l=0

∑∞
n=0

(n
l

)
n!

=
∞∑

l=0

2n

n!
= e2 := B. (A3)

Let κ � 2 and H be a Hermitian matrix such that I
κ

� H � I .
If ε ∈ (0, 1/2], then we can implement a unitary Ũ that is
an (e2, b + O(log2[(κ − 1) log2(1

ε
)]), e2ε) block encoding of

eH , with a single use of a circuit V , which is a (1, b, ε
2)

block encoding of controlled (O((κ − 1) log2(1
ε

)), O(κ
κ−1))

simulation of H , and using O((κ − 1) log2(κ−1
ε

) log2(1
ε

)) two-
qubit gates. Letting b := a + 2 and ε

2 := ε, then the circuit V
uses

O

(∣∣∣∣ακ log2

(
1

ε

)∣∣∣∣ + log2

[
(κ − 1) log2

(
1

ε

)]
log2{log2[(κ − 1) log2(1

ε
)]/ε}

log2 log2{log2[(κ − 1) log2(1
ε

)]/ε}
)

(A4)

controlled U or its inverse and with

O

(
a

∣∣∣∣ακ log2

(
1

ε

)∣∣∣∣ + a log2

[
(κ − 1) log2

(
1

ε

)]
log2{log2[(κ − 1) log2(1

ε
)]/ε}

log2 log2{log2[(κ − 1) log2(1
ε

)]/ε}
)

(A5)

three-qubit gates, where U is an (α, a, σ) block encoding of H and σ = ε
4{log2[(κ−1) log2(1/ε)]+1}2κ log2(1/ε) .

For simplicity, we delete some items with a small proportion and let TU denote the cost of U . Then the total cost of Ũ is

O

(
ακ log2

(
1

ε

)
(a + TU) + (κ − 1) log2

(
κ − 1

ε

)
log2

(
1

ε

))
. (A6)

The case of c = −1 can be proved similarly. Then Lemma 1
holds.

APPENDIX B: PROOF OF 1
e
√

m
< ζi < e√

m

Since 1
e � σ j < 1, then

1
e

∑M−1
j=0 γ 2

i j√∑m−1
i=0

(∑M−1
j=0 γ 2

i j

)2
< ζi <

e
∑M−1

j=0 γ 2
i j√∑m−1

i=0

(∑M−1
j=0 γ 2

i j

)2
. (B1)

Let U1 and U2 be two unitaries such that U1|u j〉 = |w j〉 and
U2|e j〉 = |u j〉, where |e j〉 is the computational basis state.
Then we have

M−1∑
j=0

γ 2
i j =

M−1∑
j=0

(〈w j |ui〉)2

=
M−1∑
j=0

(〈u j |U †
1 |ui〉)2

FIG. 6. Hadamard test circuit for measuring the real and imag-
inary parts of 〈�i|� j〉 for any arbitrary unitary operations Ui :
|0〉 �→ |�i〉 and Vj : |0〉 �→ |� j〉 [57]. Here S is the phase gate and
a ∈ {0, 1}. The success probability of measuring |1〉 is given by
Pi j = 1−Re(ζ 〈�i |� j 〉)

2 , where ζ = 1 if a = 0 and ζ = ı if a = 1. Then
ζ = 1 and ζ = ı recover the real and imaginary parts of 〈�i|� j〉,
respectively.

=
M−1∑
j=0

(〈e j |U †
2 U †

1 U2|ei〉)2

=
M−1∑
j=0

(Uji)
2

= 1, (B2)

where Uji is the (j, i) entry of the unitary U = U †
2 U †

1 U2 and
the last equation holds by U †U = I . Therefore, 1

e
√

m
< ζi <

e√
m

.

APPENDIX C: HADAMARD TEST FAILS TO COMPUTE
〈xi|v j〉 DIRECTLY

The Hadamard test [57] is a modified version of the stan-
dard SWAP test [66] and their quantum circuits are shown in
Figs. 6 and 7, respectively. The biggest difference between
them is that Hadamard test can estimate the inner product
of two quantum states (note that here we need unitaries to
prepare these quantum states) and the SWAP test can only
estimate the modular square of the inner product. Moreover,

FIG. 7. SWAP test circuit for measuring the value of |〈�i|� j〉|2
for any arbitrary states |�i〉 and |� j〉 [66]. The success probability of

measuring |1〉 is given by Pi j = 1−|〈�i |� j 〉|2
2 .

042418-11

LI, LIU, PAN, QIN, GAO, AND WEN PHYSICAL REVIEW A 108, 042418 (2023)

FIG. 8. Simple example.

if the measurement in the Hadamard test is replaced with
parallel amplitude estimation [24], then Lemma 2 is derived.

Now we explain why the Hadamard test cannot be directly
calculated 〈xi|v j〉 in the QMEDR framework. As shown in
Fig. 6, if we want to compute 〈xi|v j〉, we need two uni-
taries Ui : |0〉 �→ |xi〉 and Vj : |0〉 �→ |v j〉. The Ui is naturally
achieved with O2. However, for Vj , as discussed in step 3,
we are only provided with the unitary |0〉|0〉 �→ |v j〉|v j〉 and
the additional |v j〉 cannot be avoided, which will inevitably
impact the inner product value. For example, as illustrated in
Fig. 8, with Ui and Ṽj : |0〉|0〉 �→ |v j〉|v j〉, we can compute
the value of 〈xi|v j〉〈0|v j〉, but we do not know what the
value of 〈0|v j〉 is. This is what causes the Hadamard test to
fail. Furthermore, the same reason will lead to the failure of
Lemma 2 when we utilize it to estimate the inner product
〈xi|v j〉 directly. Therefore, we only get the value of 〈xi|v j〉
by computing its square rather than computing it directly.

APPENDIX D: THE QMEDR FRAMEWORK WHEN e−S2 eS1

IS HERMITIAN

For Eq. (4), if e−S2 eS1 is Hermitian, one could rewrite it as

e−S2 eS1 v = λv (D1)

and construct the state |�〉 := ∑M−1
i=0 |λi〉|vi〉|vi〉. Then the

compressed digital-encoded state can be constructed in a sim-
ilar way.

The core of constructing the state |�〉 lies in implementing
the block encoding of e−S2 eS1 . Given U1 and U2, which
are the block encodings of S1 and S2, respectively, we can
implement an (e2, a + O(log2[κ1 log2(1

ε1
)]), e2ε1) block

encoding of eS1 and an (e2, b + O(log2[κ2 log2(1
ε2

)]), e2ε2)

block encoding of e−S2 by Lemma 1, where ε1, ε2 ∈ (0, 1
2].

Then we implement an (e4, a + b + O(log2[κ1 log2(1
ε1

)] +
log2[κ2 log2(1

ε2
)]), e4(ε1 + ε2)) block encoding of e−S2 eS1

in time Õ(max{ακ1(a + T1), βκ2(b + T2)}) := T , where
ε1, ε2 ∈ (0, 1

2]. Next we can implement the unitary eı(e−S2 eS1)t

in time Õ(T t) by Theorem 1. Based on this, we could
produce the compressed digital-encoded state in time

Õ(T maxi ‖xi‖2m
√

M
ε

).

[1] P. W. Shor, in Proceedings of the 35th Annual Symposium on
Foundations of Computer Science, Sante Fe (IEEE Computer
Society, Washington, DC, 1994), pp. 124–134.

[2] L. K. Grover, in Proceedings of the Twenty-Eighth An-
nual ACM Symposium on Theory of Computing, Philadelphia
(Association for Computing Machinery, New York, 1996),
pp. 212–219.

[3] A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103,
150502 (2009).

[4] Z.-Q. Li, B.-B. Cai, H.-W. Sun, H.-L. Liu, L.-C. Wan, S.-J.
Qin, Q.-Y. Wen, and F. Gao, Sci. China Phys. Mech. Astron.
65, 290311 (2022).

[5] S. Lloyd, M. Mohseni, and P. Rebentrost, arXiv:1307.0411.
[6] J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M.

Block, B. Bloom, S. Caldwell, N. Didier, E. S. Fried, S. Hong,
P. Karalekas, C. B. Osborn, A. Papageorge, E. C. Peterson,
G. Prawiroatmodjo, N. Rubin, C. A. Ryan, D. Scarabelli, M.
Scheer, E. A. Sete et al., arXiv:1712.05771.

[7] I. Kerenidis and J. Landman, Phys. Rev. A 103, 042415
(2021).

[8] S. Lloyd, M. Mohseni, and P. Rebentrost, Nat. Phys. 10, 631
(2014).

[9] I. Cong and L. Duan, New J. Phys. 18, 073011 (2016).
[10] S.-J. Pan, L.-C. Wan, H.-L. Liu, Q.-L. Wang, S.-J. Qin, Q.-Y.

Wen, and F. Gao, Phys. Rev. A 102, 052402 (2020).
[11] S.-J. Pan, L.-C. Wan, H.-L. Liu, Y.-S. Wu, S.-J. Qin, Q.-Y. Wen,

and F. Gao, Chin. Phys. B 31, 060304 (2022).
[12] L.-C. Wan, C.-H. Yu, S.-J. Pan, F. Gao, Q.-Y. Wen, and S.-J.

Qin, Phys. Rev. A 97, 062322 (2018).

[13] L.-C. Wan, C.-H. Yu, S.-J. Pan, S.-J. Qin, F. Gao, and Q.-Y.
Wen, Phys. Rev. A 104, 062414 (2021).

[14] H.-L. Liu, L.-C. Wan, C.-H. Yu, S.-J. Pan, S. J. Qin, F. Gao, and
Q.-Y. Wen, Adv. Quantum Technol. 6, 2300031 (2023).

[15] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Nature (London) 549, 195 (2017).

[16] P. C. Hammer, SIAM Rev. 4, 163 (1962).
[17] C. Bishop, Pattern Recognition and Machine Learning

(Springer, Berlin, 2006).
[18] X. He and P. Niyogi, in Proceedings of the 16th Interna-

tional Conference on Neural Information Processing Systems,
Whistler, edited by S. Thrun, L. K. Saul, and B. Schölkopf (MIT
Press, Cambridge, 2003), pp. 153–160.

[19] J. Yang, D. Zhang, Z. Jin, and J.-Y. Yang, in Proceedings of the
18th International Conference on Pattern Recognition, Hong
Kong (IEEE Computer Society, Washington, DC, 2006), Vol. 1,
pp. 904–907.

[20] X. He, D. Cai, S. Yan, and H.-J. Zhang, in Proceedings of
the Tenth IEEE International Conference on Computer Vision,
Beijing (IEEE Computer Society, Washington, DC, 2005), Vol.
2, pp. 1208–1213.

[21] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, IEEE
Trans. Pattern Anal. Mach. Intell. 19, 711 (1996).

[22] S. Yan, D. Xu, B. Zhang, H.-j. Zhang, Q. Yang, and S. Lin,
IEEE Trans. Pattern Anal. Mach. Intell. 29, 40 (2007).

[23] S.-J. Wang, S. Yan, J. Yang, C.-G. Zhou, and X. Fu, IEEE Trans.
Image Process. 23, 920 (2014).

[24] C.-H. Yu, F. Gao, S. Lin, and J. Wang, Quantum Inf. Process.
18, 249 (2018).

042418-12

https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1007/s11433-022-1921-y
http://arxiv.org/abs/arXiv:1307.0411
http://arxiv.org/abs/arXiv:1712.05771
https://doi.org/10.1103/PhysRevA.103.042415
https://doi.org/10.1038/nphys3029
https://doi.org/10.1088/1367-2630/18/7/073011
https://doi.org/10.1103/PhysRevA.102.052402
https://doi.org/10.1088/1674-1056/ac523a
https://doi.org/10.1103/PhysRevA.97.062322
https://doi.org/10.1103/PhysRevA.104.062414
https://doi.org/10.1002/qute.202300031
https://doi.org/10.1038/nature23474
https://doi.org/10.1137/1004050
https://doi.org/10.1109/34.598228
https://doi.org/10.1109/TPAMI.2007.250598
https://doi.org/10.1109/TIP.2013.2297020
https://doi.org/10.1007/s11128-019-2364-9

GENERAL QUANTUM MATRIX EXPONENTIAL … PHYSICAL REVIEW A 108, 042418 (2023)

[25] X. He, L. Sun, C. Lyu, and X. Wang, Quantum Inf. Process. 19,
309 (2020).

[26] B.-J. Duan, J.-B. Yuan, J. Xu, and D. Li, Phys. Rev. A 99,
032311 (2019).

[27] J.-M. Liang, S.-Q. Shen, M. Li, and L. Li, Phys. Rev. A 101,
032323 (2020).

[28] Y. Li, R.-G. Zhou, R. Xu, W. Hu, and P. Fan, Quantum Sci.
Technol. 6, 014001 (2021).

[29] A. Sornsaeng, N. Dangniam, P. Palittapongarnpim, and T.
Chotibut, Phys. Rev. A 104, 052410 (2021).

[30] X.-Y. He, A.-Q. Zhang, and S.-M. Zhao, Quantum Inf. Process.
21, 86 (2022).

[31] Y.-M. Li, H.-L. Liu, S.-J. Pan, S.-J. Qin, F. Gao, and Q.-Y. Wen,
Quantum Inf. Process. 22, 163 (2023).

[32] K. Yu, S. Lin, and G.-D. Guo, Physica A 614, 128554 (2023).
[33] J. van Apeldoorn and A. Gilyén, in 46th International

Colloquium on Automata, Languages, and Programming
(ICALP 2019), Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 132, edited by C. Baier, I. Chatzigiannakis, P.
Flocchini, and S. Leonardi (Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, 2019), pp. 99:1–99:15.

[34] G. H. Low and I. L. Chuang, Quantum 3, 163 (2019).
[35] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, in Proceedings

of the 51st Annual ACM SIGACT Symposium on Theory of
Computing (ACM, New York, 2019), pp. 193–204.

[36] S. Chakraborty, A. Gilyén, and S. Jeffery, in Proceedings
of the 46th International Colloquium on Automata, Lan-
guages, and Programming, Patras, 2019, edited by C. Baier,
I. Chatzigiannakis, P. Flocchini, and S. Leonardi, Leibniz Inter-
national Proceedings in Informatics (LIPIcs), Vol. 132 (Schloss
Dagstuhl, Dagstuhl, 2019), pp. 33:1–33:14.

[37] C. Shao, J. Phys. A: Math. Theor. 53, 045301 (2020).
[38] N. J. Higham, Functions of Matrices (Society for Industrial and

Applied Mathematics, Philadelphia, 2008).
[39] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information, 2nd ed. (Cambridge University Press,
New York, 2011).

[40] K. Mitarai, M. Kitagawa, and K. Fujii, Phys. Rev. A 99, 012301
(2019).

[41] Y.-M. Li, H.-L. Liu, S.-J. Pan, S.-J. Qin, F. Gao, D.-X. Sun, and
Q.-Y. Wen, Phys. Rev. A 107, 022421 (2023).

[42] S.-J. Wang, H.-L. Chen, X.-J. Peng, and C.-G. Zhou,
Neurocomputing 74, 3654 (2011).

[43] R. Ran, B. Fang, and X. G. Wu, IEICE Trans. Inf. Syst. E101-D,
1410 (2018).

[44] T. Zhang, B. Fang, Y. Y. Tang, Z. Shang, and B. Xu, IEEE Trans.
Syst. Man Cyb. B 40, 186 (2010).

[45] C. Moler and C. Van Loan, SIAM Rev. 45, 3 (2003).
[46] S. Chakraborty, A. Gilýen, and S. Jeffery, arXiv:quant-

ph/1804.01973v2 (We refer here specifically to Appendix A.2,
which is not found in the published version (Ref. [36]).).

[47] I. Kerenidis and A. Prakash, Phys. Rev. A 101, 022316 (2020).
[48] J. van Apeldoorn and A. Gilyén, arXiv:1804.05058 [quant-ph].

We refer specifically to Theorem 9, which is omitted from the
published version (Ref. [33]).).

[49] H.-L. Liu, C.-H. Yu, L.-C. Wan, S.-J. Qin, F. Gao, and Q. Wen,
Physica A 607, 128227 (2022).

[50] I. Kerenidis and A. Prakash, in Proceedings of the Eighth Inno-
vations in Theoretical Computer Science Conference, Berkeley,
2017, edited by C. H. Papadimitriou, Leibniz International Pro-
ceedings in Informatics (LIPIcs), Vol. 67 (Schloss Dagstuhl,
Dagstuhl, 2017), pp. 49:1–49:21.

[51] L. Wossnig, Z. Zhao, and A. Prakash, Phys. Rev. Lett. 120,
050502 (2018).

[52] C. Durr and P. Hoyer, arXiv:quant-ph/9607014.
[53] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Contemp. Math.

305, 53 (2002).
[54] I. Kerenidis, J. Landman, A. Luongo, and A. Prakash, in Ad-

vances in Neural Information Processing Systems, Vancouver,
2019, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F.
Alché-Buc, E. Fox, and R. Garnett (Curran, Red Hook, 2019),
Vol. 32.

[55] S. Takahira, A. Ohashi, T. Sogabe, and T. S. Usuda, Quantum
Inf. Comput. 22, 965 (2021).

[56] Q. T. Nguyen, B. T. Kiani, and S. Lloyd, Quantum 6, 876
(2022).

[57] N. Liu and P. Rebentrost, Phys. Rev. A 97, 042315 (2018).
[58] S. S. Zhou, T. Loke, J. A. Izaac, and J. B. Wang, Quantum Inf.

Process. 16, 82 (2017).
[59] L. Ruiz-Perez and J. C. Garcia-Escartin, Quantum Inf. Process.

16, 152 (2017).
[60] N. Wiebe, A. Kapoor, and K. M. Svore, Quantum Inf. Comput.

15, 316 (2015).
[61] A. Ahuja and S. Kapoor, arXiv:quant-ph/9911082.
[62] P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev. Lett. 113,

130503 (2014).
[63] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 100,

160501 (2008).
[64] J. B. Parker and I. Joseph, Phys. Rev. A 102, 022422

(2020).
[65] C. Shao and J.-P. Liu, Proc. R. Soc. A 478, 20210797

(2020).
[66] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Phys. Rev.

Lett. 87, 167902 (2001).

042418-13

https://doi.org/10.1007/s11128-020-02818-y
https://doi.org/10.1103/PhysRevA.99.032311
https://doi.org/10.1103/PhysRevA.101.032323
https://doi.org/10.1088/2058-9565/abbe66
https://doi.org/10.1103/PhysRevA.104.052410
https://doi.org/10.1007/s11128-022-03424-w
https://doi.org/10.1007/s11128-023-03909-2
https://doi.org/10.1016/j.physa.2023.128554
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1088/1751-8121/ab5d77
https://doi.org/10.1103/PhysRevA.99.012301
https://doi.org/10.1103/PhysRevA.107.022421
https://doi.org/10.1016/j.neucom.2011.07.007
https://doi.org/10.1587/transinf.2017EDP7259
https://doi.org/10.1109/TSMCB.2009.2024759
https://doi.org/10.1137/S00361445024180
http://arxiv.org/abs/arXiv:quant-ph/1804.01973v2
https://doi.org/10.1103/PhysRevA.101.022316
http://arxiv.org/abs/arXiv:1804.05058
https://doi.org/10.1016/j.physa.2022.128227
https://doi.org/10.1103/PhysRevLett.120.050502
http://arxiv.org/abs/arXiv:quant-ph/9607014
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.26421/qic22.11-12-4
https://doi.org/10.22331/q-2022-12-13-876
https://doi.org/10.1103/PhysRevA.97.042315
https://doi.org/10.1007/s11128-017-1515-0
https://doi.org/10.1007/s11128-017-1603-1
https://doi.org/10.5555/2871393.2871400
http://arxiv.org/abs/arXiv:quant-ph/9911082
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevA.102.022422
https://doi.org/10.1098/rspa.2021.0797
https://doi.org/10.1103/PhysRevLett.87.167902

