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From entanglement to discord: A perspective based on partial transposition
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Here, we show that partial transposition, which is initially introduced to study entanglement, can also
inspire many results on quantum discord, including (I) a discord criterion of a spectrum invariant under partial
transposition, stating that one state must contain discord if its spectrum is changed by the action of partial
transposition, and (II) an approach to estimate the geometric quantum discord and the one-way deficit based on
the change of the spectrum. To compare with entanglement theory, we also lower bound the geometric quantum
entanglement and the entanglement of relative entropy. Thus, on one hand, we illustrate an approach to specify
and estimate discord based on partial transposition. On the other hand, we show that, entanglement and discord,
two basic notions of nonclassical correlations, can be placed on the same ground such that their interplay and
distinction can be illustrated within a universal framework.

DOI: 10.1103/PhysRevA.108.042417

I. INTRODUCTION

One distinctive feature of quantum theory is that quan-
tum systems can demonstrate various forms of nonclassical
correlations, which often find applications in quantum infor-
mation science [1–4]. Entanglement was the first such notion
to be known and then appreciated as a key resource in many
quantum information tasks, such as quantum teleportation [5],
cryptography [6], quantum algorithms [7–9], and metrology
[10]. Entanglement was even believed to be responsible for
why quantum resources can outperform classical ones. This
belief started to change when quantum discord was discov-
ered, which goes beyond entanglement and exists in a wide
range of quantum states that may be separable. As entan-
glement, discord can also demonstrate quantum advantages
in diversified tasks, such as mixed-state quantum comput-
ing [11,12], bounding distributed entanglement [13], remote
state preparation [14], and quantum state merging [15,16].
Although it is known that entanglement must demonstrate
quantum discord, the specification and quantification of these
two basic properties are commonly seen as distinct subjects
and follow different lines of research. One interesting question
is whether or not these two properties can be characterized and
quantified within a universal framework [17].

Much focus has been placed on entanglement and many
powerful tools have been introduced [1,18]. One may concern
whether these tools can be borrowed to specify and estimate
the relatively less studied discord. For this purpose, we con-
sider the primary tool of detecting entanglement, namely, the
positive partial transpose (PPT) criterion [19,20], with which
one state is certified to be entangled if its partially transposed
density matrix presents a negative eigenvalue. This criterion
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also induces one computable entanglement quantifier, referred
to as negativity [21,22], as the sum of negative eigenvalues
in absolute values. Although the tool of PPT was related to
discord, e.g., in (2 × n)-dimensional system, all discord-free
states belong to a subclass of PPT states, called strong PPT
states [23], quantum discord is mainly detected with a discord
witness [24,25]. To quantify discord, quite a few measures
have been introduced [3,4]. Unfortunately, most of them are
hard to compute. One exception is the geometric quantum
discord (GQD) [26–28], which can be equivalently defined
as the minimal disturbance under a projective measurement
performed on one party, and thus can be computed via an
optimization on the measurement [27–31].

In this paper, we show that many results on quantum dis-
cord can be inspired by the map of partial transposition. We
first illustrate that the spectrum of discord-free states is invari-
ant (up to relabeling of indices) under partial transposition.
Therefore, the change of the spectrum indicates the presence
of discord. We refer to this criterion as the spectrum invariant
under partial transposition (SIPT) in contrast to the PPT in
entanglement theory. Quantitatively, we find that the spectrum
change implies a lower bound on the GQD and a discordlike
quantity of a one-way deficit. For the sake of comparing
discord and entanglement, we also provide lower bounds for
the geometric quantum entanglement and the entanglement of
relative entropy. Thus, a perspective based on partial trans-
position is provided, in which entanglement is specified and
estimated based on the negative eigenvalues presented under
the map, and in contrast, discord is specified and estimated
based on the change of the spectrum.

II. PRELIMINARIES

Let us first briefly review some basic notions. One quantum
state ρAB is said to be entangled if it cannot be written as the
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mixture of product states, namely,

ρAB =
∑

i

fi · ρi,A ⊗ ρi,B. (1)

One can expand a general bipartite state in N ⊗ M-
dimensional Hilbert space, entangled or separable, in a chosen
product basis as

ρAB =
N∑
i, j

M∑
k,l

ρi j,kl |i〉〈 j|A · |k〉〈l|B. (2)

Henceforth we shall omit the subscripts A, B where not in-
troducing ambiguity. Given this decomposition, performing a
partial transposition on Alice’s side leads to

ρ�A =
N∑
i, j

M∑
k,l

ρi j,kl | j〉〈i| · |k〉〈l|. (3)

The density matrix of any separable state is positive, and one
state is certified to be entangled if it violates the PPT criterion.
The PPT criterion also induces an entanglement quantifier of
negativity as the sum of the negative spectrum in the absolute
value as

N := ‖ρ�A‖tr − 1

2
, (4)

where ‖A‖tr = Tr
√

AA†.
Quantum discord (QD) is a typical quantum correlation

referring to the phenomenon where a composite quantum
system contains more information than the subsystems taken
separably. By definition, one discord-free state ρ can be writ-
ten in the form of

ρ =
∑

i

fi · |i〉〈i| ⊗ ρi, (5)

where {|i〉} is one set of orthogonal bases. It is clear that
an entangled state must contain discord, however, it is not
necessary for the converse.

III. THE CRITERION OF SPECTRUM INVARIANT
PARTIAL TRANSPOSITION

The partially transposed matrix depends on the party
and basis on which it is performed. However, the spec-
trum of the partially transposed state is independent on
them. We specify the spectrum of ρ by λ↓(ρ), shortened
as λ↓, where the elements are arranged in descending or-
der, namely, λ↓ = (λ↓

1 , λ
↓
2 , . . . , λ

↓
M·N ) with λ

↓
i � λ

↓
i+1, ∀i. The

fact that λ↓(ρ�A ) = λ↓(ρ�B ) can be illustrated via λ↓(ρ�A ) =
λ↓([ρ�A ]� ) = λ↓(ρ�B ), where � specifies the usual transposi-
tion acting on the joint system, which does not alter the state’s
spectrum. The different choices of the basis to perform a par-
tial transposition can be captured with a local unitary opera-
tion UA acting on Alice’s side. The basis-independence feature
can be illustrated as λ↓[(UA ρ U†

A)�A ] = λ↓[(UA ρ U†
A)�B ] =

λ↓[UA(ρ�B ) U†
A] = λ↓[ρ�B ] = λ↓[ρ�A ]. Therefore, the spec-

trum of the partially transposed state is determined solely by
state ρ.

Considering a discord-free state ρ = ∑
i fi · |i〉〈i|A ⊗ ρi,B,

one can perform partial transposition with respect to the basis

{|i〉A} without losing any generality. Clearly, the state is in-
variant under the operation. An immediate consequence is our
criterion of SIPT.

Theorem 1. The spectrum of a discord-free state ρ is invari-
ant under partial transposition:

λ↓(ρ) = λ↓(ρ�A ). (6)

Thus, from the perspective of partial transposition, a
change of the spectrum under the map indicates a nontrivial
discord. To certify quantum entanglement, the change needs
to be large enough to ensure the presence of a negative spec-
trum.

To verify discord via Theorem 1, one can compute the
spectrum of ρ and ρ�A , then make a statement after compar-
ing them, or alteratively, by using the method based on the
moments of matrix defined as �n(ρ) := Tr(ρn), noting that

�n(ρ) = �n(ρ�A ),∀n, if λ↓(ρ) = λ↓(ρ�A ). (7)

Such a justification begins with the third moment as �1(ρ) =
�1(ρ�A ) and �2(ρ) = �2(ρ�A ) are trivially satisfied, which
is due to the fact that partial transposition is trace preserving
and �2(ρ) = �2(ρ�A ) is trivially satisfied. To deal with a state
ρ of a M ⊗ N-dimensional system, a sufficient judgment of
Eq. (7) stops at most in the (M · N + 2)th moment.

It is interesting to ask a question whether SIPT provides
a sufficient and necessary justification of discord. Unfortu-
nately, it is not the case as there are states containing discord
while the spectrum is invariant under partial transposition,
such as the X state having equal antidiagonal terms [32]. This
is similar to the case in entanglement theory, where there
are bound entangled states standing positivity under partial
transposition, for which the PPT criterion fails.

IV. QUANTITATIVE ESTIMATION OF DISCORD
AND DISCORDLIKE QUANTITY

Motivated by the fact that the negative spectrum of a par-
tially transposed state can be used to quantify entanglement,
we consider how the spectrum change under partial transposi-
tion quantitatively relates to quantum discord.

A. Lower bounds of GQD

GQD is defined as the minimum Hilbert-Schmidt distance
or 2-norm between the state of interest ρ and the set of
discord-free states specified by D [26–28],

DHS(ρ) = min
�∈D

‖ρ − �‖2
2. (8)

For later use, we define the set of positive and normalized
spectra as �: If a spectrum r ∈ �, its elements are positive
ri � 0, ∀i and normalized

∑
i ri = 1. Clearly, if � is a zero-

discord state, i.e., � ∈ D, the spectrum of its partial transpose
λ�A (�) ∈ �.

As preparation for estimating DHS, we first provide an es-
timate of the quantity minr∈� ‖λ′↓ − r↓‖2

2 with λ′↓ specifying
the spectrum of ρ�A , which is trivial if λ′↓ ∈ �. Otherwise, we
have the following:

Lemma 1. An analytic lower bound on minr∈� ‖λ′↓ − r↓‖2
2

specified by L(λ′↓) is given as (see the Appendix for the
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proof)

L(λ′↓) := min
r∈�

‖λ′↓ − r↓‖2
2 = ‖λ′

(n̄)‖2
2 + nτ 2, (9)

where λ′↓ is partitioned into two parts, namely,
λ′↓ = λ′↓

(n)

⋃
λ′↓

(n̄) with λ′↓
(n) = {λ′↓

1 , . . . , λ′↓
n } and

λ′↓
(n̄) = {λ′↓

n+1, . . . , λ
′↓
MN } with n specifying the minimal

number such that τ :=
∑n

i=1 λ′↓
i −1

n � λ′↓
n+1 and MN are the

number of eigenvalues. The r achieving the minimum is
{λ′↓

1 − τ, . . . , λ′↓
n − τ } ⋃ {0, . . . , 0}.

We then have the following:
Theorem 2. The GQD is lower bounded as

DHS � LD := max
{
LD

PPT, LD
SIPT

}
, (10)

where LD
SIPT = ‖λ↓−λ′↓‖2

2
4 + L( λ′↓+λ↓

2 ) and LD
PPT = N 2

N+
+ N 2

N−
, λ

specifies the spectrum of ρ, and N is negativity defined in
Eq.(4).

By this theorem, one can estimate the GQD by the change
of the spectrum of the partially transposed state or the nega-
tivity.

We first derive the lower bound specified by LD
SIPT(ρ) on

DHS from the violation of the SIPT criterion, namely, using
the change of the spectrum under partial transposition of the
quantum state as

DHS(ρ) � ‖λ↓ − λ′↓‖2
2

4
+ L

(
λ′↓ + λ↓

2

)
:= LD

SIPT(ρ). (11)

We specify the closest free-discord state of ρ by ρmin and its
spectrum by λ

↓
min,

2DHS(ρ) = ‖ρ − ρmin‖2
2 + ∥∥ρ�A − ρ

�A
min

∥∥2

2

� ‖λ↓ − λ
↓
min‖2

2 + ‖λ′↓ − λ
↓
min‖2

2

=
∑

i

[
λ

↓
i

2 + λ′↓
i

2 + 2λ↓2
i,min − 2(λ↓

i + λ′↓
i )λ↓

i,min

]

= ‖λ↓ − λ′↓‖2
2

2
+ 2

∥∥∥∥∥λ′↓ + λ↓

2
− λ

↓
min

∥∥∥∥∥
2

2

� ‖λ↓ − λ′↓‖2
2

2
+ 2 min

r↓∈�

∥∥∥∥∥λ′↓ + λ↓

2
− r↓

∥∥∥∥∥
2

2

= ‖λ↓ − λ′↓‖2
2

2
+ 2L

(
λ′↓ + λ↓

2

)

:= 2LD
SIPT(ρ). (12)

The first equality is due to 2-norm being invariant under
partial transposition as it only involves the sum of the square
modulus of matrix elements which is invariant under partial
transposition. This observation implies ‖ρ − �‖2

2 = ‖ρ�A −
��A‖2

2. The first inequality follows from where, for any two
states ρ and �, it holds ‖ρ − �‖2

2 � ‖λ↓(ρ) − λ↓(�)‖2
2 [33].

The last equality is due to Lemma 1.
GQD is often related to the negativity of entanglement

[34,35]. We can also provide a lower on GQD in terms of

negativity (see the Appendix),

DHS � N 2

N+
+ N 2

N−
:= L′D

PPT, (13)

where we have specified the numbers of positive and negative
elements of λ′ by N+ and N−, respectively. The proof follows
as

DHS = min
�∈D

‖ρ − �‖2
2 = ∥∥ρ�A − �

�A
min

∥∥2

2

� ‖λ′↓ − λ
↓
min‖2

2

� min
r↓

‖λ′↓ − r↓‖2
2

= L(λ′) := L′D
PPT, (14)

� N 2

N+
+ N 2

N−
:= LD

PPT. (15)

Equation (14) is due to the above Lemma, and the proof
for Eq. (15) is left for the Appendix. Here, two inequivalent
lower bounds, namely, LD

PPT := L(λ′) and LD
PPT := N 2

N+
+ N 2

N−
,

are provided, which are nontrivial only if state ρ violates the
PPT criterion, namely, N > 0. LD

PPT can be compared with
the lower bound based on the entanglement witness reported
in Refs. [34,35],

DHS � 4N 2

d2 − d
:= LD

WIT, (16)

where d := min{M, N}. The LD
PPT can be larger than LD

WIT, for
instance, in the case where N− is smaller than d2−d

4 . This is
possible as there are entangled states having only one nega-
tive eigenvalue for any dimensional system while d2−d

4 > 1
when d � 3. It is worth stressing that some states may violate
SIPT but do not violate PPT (for instance, bound entangled
states), for which LD

SIPT(ρ) is nonzero. One two-qutrit bound
entangled state [36,37] is analyzed in the Appendix.

B. Comparison with previous results

To compare our lower bounds obtained above with known
results, let us consider the Werner and isotropic states. For a
(d × d )-dimensional system, the Werner state reads

ρW = d − z

d3 − d
IAB + dz − 1

d3 − d
FAB, z ∈ [−1, 1] (17)

with FAB = ∑
i j |i〉〈 j| ⊗ | j〉〈i| the swapping operator. The

negativity for the Werner state is

NW = max
{

0,− z

d

}
, (18)

so that it is entangled for −1 < z < 0. The exact value of
GQD has been calculated to be [28,30]

DHS(ρW ) = (dz − 1)2

d (d − 1)(d + 1)2
. (19)

The previous estimation of GQD, namely, Eq. (16), reads

LD
WIT(ρW ) = 4N 2

W

d2 − d
.
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FIG. 1. Comparing the lower bounds on GQD of the Werner and isotropic states: In the first row, we compare our two lower bounds,
namely, LD

PPT and LD
SIPT, with the exact value denoted by DHS in (a) and (d) respectively for the cases of d = 2 and d = 10, and compare

LD := max{LD
PPT, LD

SIPT} with the previous result LD
WIT and exact value in (c) and (d). The second row is for the comparisons when considering

isotropic states.

Our bound is given by

LD(ρW ) = max
{
LD

SIPT(ρW ), LD
PPT(ρW )

}
with (see the Appendix)

LD
SIPT(ρW ) = 1

2
DHS +

{
0, − 1

d+2 � z,
[(d+2)z+1]2

4(d−1)(d+1)3 , z < − 1
d+2 ,

LD
PPT(ρW ) = d2N 2

W

d2 − 1
.

These two lower bounds are plotted in two diagrams in the top
left-hand side in Fig. 1 for two dimensions d = 2, 10, together
with the exact value. For comparison, we also plot our best
lower bound, the previous bound Eq. (16) from the witness,
and the exact value in the top right-hand side of Fig. 1.

For another example, we consider the (d × d)-dimensional
isotropic state

ρi = 1 − z

d2 − 1
IAB + d2z − 1

d2 − 1
|	〉〈	|, z ∈ [0, 1], (20)

where |	〉 = ∑
i

1√
d
|ii〉 is a maximally entangled state. As its

negativity is

Ni = max

{
0,

dz − 1

2

}
, (21)

the isotropic state ρi is entangled when 1
d < z � 1. We also

have the exact value of its GQD, which reads [28,30]

DHS(ρi ) = (d2z − 1)2

d (d − 1)(d + 1)2
. (22)

With details given in the Appendix, our bounds in this case
are

LD
SIPT(ρi ) = 1

2
DHS(ρi ) +

{
0, otherwise,
[2d+1−d (d+2)z]2

4(d−1)(d+1)3 , 2d+1
d (d+2) < z,

LD
PPT(ρi ) = 4N 2

i

d2 − 1
.

These bounds are plotted in two diagrams in the bottom left-
hand side of Fig. 1 corresponding to d = 2, 10, together with
the exact value. The comparison with known results is shown
in the two diagrams in the bottom right-hand side of Fig. 1.

From a numerical comparison we see that for those states
violating SIPT but not violating PPT, the lower bound LD

SIPT
is nontrivial while the other two lower bounds, namely, LD

PPT
and LD

WIT, are trivial, as shown in Figs. 1(b) and 1(d) for z > 0.
When the state violates the criterion of PPT, namely, N > 0,
LD

PPT could be larger than LD
SIPT [shown in Fig. 1(a) for z < 0

and Fig. 1(e)] and LWIT [shown in Figs. 1(b) and 1(d)].
In the following, we show that such a lower bound also

induces the estimate of another discordlike quantity, namely,
the one-way deficit.
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C. Lower-bound one-way deficit

A quantum work deficit [4,38] is introduced to capture
the connection between thermodynamics and information and
defined as the additional extractable information, or work
from a bipartite quantum state when the two parties are in
the same place as compared to the cases when they are in
distant locations. Denoting the dephasing operation on Bob’s
side as {�i

B} and �AB = ∑
i I ⊗ �i

BρABI ⊗ �i
B, the one-way

deficit reads

WDB := min
{�i

B}
S(ρAB‖�AB), (23)

where S(ρ‖�) := Tr(ρ ln ρ − ρ ln �) and the minimization is
taken over all projective measurements performed on Bob’s
side. Clearly, �AB is a discord-free state for any {�i

B}. We thus
have

min
{�i

B}
S(ρAB‖�AB) � min

�∈�
S(ρAB‖�) = S(ρAB‖�min,re)

� ‖ρ − �min,re‖2
tr

2 ln 2
� min

�′∈�

‖ρ − �′‖2
tr

2 ln 2

= ‖ρ − �min,tr‖2
tr

2 ln 2
� ‖ρ − �min,tr‖2

2

2 ln 2

� LD

2 ln 2
, (24)

where �min,re specifies the closest discord-free state of ρ with
respect to the relative entropy, and ρmin,tr specifies the closest
state with respect to trace distance, and we have used the quan-
tum Pinsker inequality S(ρ‖�) � 1

2 ln 2‖ρ − �‖2
tr in the second

inequality and the norm inequality ‖ρ − �‖2
tr � 2‖ρ − �‖2

2
[39] in the fourth inequality.

V. QUANTITATIVE ESTIMATION OF SOME
ENTANGLEMENT MEASURES

Let us move to entanglement theory and estimate two
entanglement measures that can be seen as the counterparts
of the above ones in entanglement theory. The geometric
geometric of entanglement is defined as the minimal Hilbert-
Schmidt distance between the state of interest and the set of
separable states specified by S [40] as

EHS(ρ) := min
�∈S

‖ρ − �‖2
2. (25)

Note that separable states are PPT and 2-norm is invariant un-
der partial transposition. By the same consideration in Eq. (14)
as

EHS(ρ) = min
�∈S

‖ρ�A − ��A‖2
2

� LD
PPT � N 2

N+
+ N 2

N−
(26)

� 4N 2

M · N
, (27)

we have used N− + N+ � M · N in the third inequality and
the minimum is taken when N− = N+ = M·N

2 .
For a comparison to the one-way deficit, we now consider

the relative entropy of entanglement. This measure serves as
an upper bound for the entanglement of distillation, namely,

the minimal number of singlets that are needed to build a
single copy of the concerned state. By a similar derivation
done in Eq. (24), we have

Ere := min
�∈S

S(ρ‖�) � LD
PPT

2 ln 2
. (28)

VI. CONCLUSION

Entanglement and discord are two typical quantum corre-
lations that are generally studied separately. In this paper, we
show that one can use the partial transposition, a primary tool
of entanglement theory, to study discord, and many aspects
of the two notions can be connected in a one-to-one corre-
spondence. In contrast to the PPT in entanglement theory, we
show that discord can be specified by the change of spectrum
of the density matrix after partial transposition, which leads to
a discord criterion of SIPT. Analogously to the entanglement
measure of negativity, the change of the spectrum is shown
to imply the estimation of the GQD and one-way deficit. We
also estimate the geometric measure of quantum entanglement
and the relative entropy of entanglement. In this way, we
provide not only one perspective to investigate discord but
also a hierarchical specification and quantitative estimation of
entanglement and discord.
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APPENDIX

1. Proof of the Lemma

With λ′ we specify the spectrum of the partially transposed
state ρ, and λ′↓ = λ′↓

(n)

⋃
λ′↓

(n̄) with λ′↓
(n) = {λ′↓

1 , . . . , λ′↓
n }

and λ′↓
(n̄) = {λ′↓

n+1, . . . , λ
′↓
N ·M} where the subscript n denotes

where the spectrum is partitioned. N+ and N− denote the
number of positive and nonpositive elements of λ′. With
� we specify the set of positive and normalized spectra,
namely, if r ∈ �,

∑
i ri = 1 and ri � 0, and �δ ⊆ �, if r ∈

�δ ,
∑

i�N+ ri = δ < 1. For later use, with nδ we specify the

minimum number such that τδ :=
∑nδ

i=1 λ′↓
i −δ

nδ
� λ′↓

nδ+1. The no-
tion n in the main text is n1 here defined and τ is τ1. Two
properties of nδ and τδ are given as follows.

(1) τδ < λ′↓
nδ

: Otherwise, τδ � λ′↓
nδ

, we have
∑nδ−1

i=1 λ′↓
i −δ

nδ−1 =
nδτδ−λ′

nδ

nδ−1 � (nδ−1)τδ

nδ−1 � λ′↓
nδ

, implying that nδ is not the mini-

mum number as n′
δ = nδ − 1 also ensures that

∑n′
δ

i=1 λ′↓
i −δ

n′
δ

�
λ′↓

n′
δ+1.

(2) nδ � n1 if δ < 1: For δ < 1, one has
∑n1

i=1 λ′↓
i −δ

n1
>∑n1

i=1 λ′↓
i −1

n1
� λ′↓

n1+1, and one may find nδ < n1 such that∑nδ
i=1 λ′↓

i −δ

nδ
� λ′↓

nδ+1.

The proof of the Lemma consists of two parts. First, we
show that the minimum value

f (δ) := min
r∈�δ

‖λ′↓
(N+ ) − r↓

(N+ )‖2
2
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is achieved if its first part r↓
(N+ ) = {r↓

i = λ′↓
i − τδ,∀i : λ′↓

i � τδ; r↓
i = 0,∀i : 0 < λ′↓

i < τδ}, and f (δ) > f (1). The former can be

proved by considering another γ ∈ �δ, �= r. As (λ′↓
i − r↓

i )2 = λ′↓2
i − 2

∫ r↓
i

0 (λ′
i − xi )dxi, we have

‖λ′↓
(N+ ) − r↓

(N+ )‖2
2 − ‖λ′↓

(N+ ) − γ
↓
(N+ )‖2

2 = −2
∑
i�N+

∫ r↓
i

0
(λ′↓

i − xi )dxi + 2
∑
i�N+

∫ γ
↓
i

0
(λ′↓

i − xi )dxi

= −2
∑

i|γ ↓
i <r↓

i �N+

∫ r↓
i

γ
↓
i

(λ′↓
i − xi )dxi + 2

∑
i|r↓

i <γ
↓
i �N+

∫ γ
↓
i

r↓
i

(λ′↓
i − xi )dyi

� −2τδ

∑
i|γ ↓

i <r↓
i

(r↓
i − γ

↓
i ) + 2τδ

∑
i|r↓

i <γ
↓
i

(γ ↓
i − r↓

i ) = 0

= 2τδ

∑
i

(γ ↓
i − r↓

i ) = 2τδ (δ − δ) = 0, (A1)

where we have used when xi ∈ [γ ↓
i , r↓

i ] and r↓
i > γ

↓
i � 0, we

have λ′↓
i − xi � λ′↓

i − r↓
i = τδ , and xi ∈ [ri, γi] and r↓

i < γ
↓
i ,

λ′↓
i − xi � λ′↓

i − r↓
i � τδ . Thus one has

f (δ) =
N+∑

i=nδ+1

λ′2
i + nδτ

2
δ (A2)

and

f (1) =
N+∑

i=n1+1

λ′2
i + n1τ

2. (A3)

We now prove f (δ) > f (1). When nδ = n1, f (δ) > f (1) fol-
lows from τ < τδ .

When n1 > nδ , we have n1 � nδ + 1 and λ′↓
nδ

> τδ �
λ′

nδ+1 � λ′
n1
� τ (by the properties 1 and 2), so we then have

f (δ) − f (1) =
n1∑
nδ

(
λ′2

i − τ 2
) + nδ

(
τ 2
δ − τ 2

)
> 0. (A4)

Thus we have proved that minδ f (δ) = f (1) = ∑N+
i=n1+1 λ′2

i +
n1τ

2.
Second, we prove that

‖λ′
(N̄+ ) − r(N̄+ )‖2

2 �
∑
i�N+

λ′2
i = ‖λ′

(N̄+ )‖2
2.

This is straightforward as λ′↓
i>N+ � 0 while r↓

i>N+ � 0. Then
we have

‖λ′↓ − r↓‖2
2 = ‖λ′↓

(N+ ) − r↓
(N+ )‖2

2 + ‖λ′↓
(N̄+ ) − r↓

(N̄+ )
‖2

2

� f (1) + ‖λ′
(N̄+ )‖2

2 =
MN∑

i=n1+1

λ′2
i + nτ 2. (A5)

The last inequality is saturated when r↓ = {r↓
i = λ′↓

i − τ,∀i :
λ′↓

i > τ1; r↓
i = 0 ∀i : λ′↓

i � τ }.

2. Proof of LPPT � N 2

N+ + N 2

N−

Let r↓ achieving minr∈� ‖λ′↓ − r↓‖ when r↓ =
{r↓

1 , . . . , r↓
N+} ⋃{0, . . . , 0}, so we have

‖λ′↓ − r↓‖2
2 = ‖λ′↓

(N+ ) − λ
↓
(N+ )‖2

2 + ‖λ′↓
(N̄+ ) − r↓

(N̄+ )
‖2

2

� N 2

N+
+ N 2

N−
, (A6)

where N = −∑
i>N+ λ′↓

i specifies negativity. By the con-

vexity of ‖ · ‖2
2 and

∑
i�N+ λ′↓

i − r↓
i = 1 + N − 1 = N and∑

i>N+ λ′↓
i − r↓

i = −N , one has ‖λ′↓
(N+ ) − r↓

(N+ )‖2
2 � N 2

N+
with

the inequality being saturated when λ′↓
i − r↓

i = N
N+

for i �
N+, and ‖λ′↓

(N̄+ )
‖2

2 � N 2

N−
with the inequality saturated when

λ′↓
i = λ′↓

i+1 = · · · = λ′↓
MN = − N

N−
for i > N+.

3. Lower bounds for the GQD of the Werner state

The eigenvalues of ρW are

λi ∈
{

1 ± z

d (d ± 1)

}

with multiplicity

d± = d (d ± 1)

2

while the eigenvalues of the partial transpose ρ
�A
W are λ′

i =
d−z

d (d2−1) with multiplicity d2 − 1 or λ′
i = z

d . In the case of z �
1

d+2 the average λ
↓
i +λ

′↓
i

2 is non-negative so that L( λ′↓+λ↓
2 ) = 0

from which it follows

LSIPT = ||λ′↓ − λ↓||2
4

= DHS(ρW )

2
.

In the case z < − 1
d+2 there is a single negative value λ− :=

1+(d+2)z
2d (d+1) in the sequence λ′↓+λ↓

2 and it holds n = d2 − 1 and
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τ = −λ−/(d2 − 1) giving rise to the lower bound

LSIPT = DHS

2
+ d2λ2

−
d2 − 1

.

4. SIPT works for bound entangled states

Here, we provide a family of two-qutrit states containing
many bound entangled states (we refer to Ref. [37] for details)
as

ρ = |φ3〉〈φ3| + b
2∑

k=0

|k, k ⊕ 1〉〈k, k ⊕ 1|

+ c
2∑

k=0

|k, k ⊕ 2〉〈k, k ⊕ 2|, (A7)

where |φ3〉 ≡
√

3
3

∑2
i=0 |ii〉 and with respect to the constraint

a + 3(b + c) = 1. There are three distinct eigenvalues for ρ

as

λ = {a, b, c}.
The transposition of ρ also has three distinct eigenvalues as

λ′ =
{

a

3
,

1

6

[
1 − a ±

√
4a2 + 9(b − c)2

]}
.

Notably, the spectrum of ρ is changed by partial transposition
even if they are positive. Then the LD

SIPT is nontrivial.

5. Lower bounds for the GQD of the isotropic state

The eigenvalues of ρi are

λi ∈
{

1 − z

d2 − 1
, z

}

with multiplicity {d2 − 1, 1} while the eigenvalues of its par-
tial transpose are

λ′
i ∈

{
1 + dz

d (d + 1)
,

1 − dz

d (d − 1)

}
with multiplicity {d+, d−}. As the smallest value in the se-
quence λ′↓+λ↓

2 is

λ∗ = 2d + 1 − d (d + 2)z

2d (d2 − 1)
,

so that in the case of

z � 2d + 1

d (d + 2)

we have L( λ′↓+λ↓
2 ) = 0, so that

LSIPT = ||λ′↓ − λ↓||2
4

= DHS(ρi )

2
,

otherwise we have

LSIPT = DHS(ρi )

2
+ d2d−

d+
λ∗2,

giving the desired results.
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