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Coherence manipulation with stochastic incoherent operation
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An important problem in the coherent resource theory is the convertibility of coherent states by free operations.
In this paper we consider such a problem from a mixed coherent state into a pure one by using both stochastic
incoherent operations and incoherent operations. We prove that stochastic incoherent operations can transform
a mixed coherent state into a pure coherent state if and only if the density matrix of the initial state contains
a singular principal submatrix. Then we provide two sufficient conditions with explicit expressions for the
probabilistic transformation and the deterministic transformation. These two sufficient conditions facilitate the
construction of concrete operators of stochastic incoherent operations and incoherent operations. These results
demonstrate that incoherent operations are strictly more powerful than strictly incoherent operations within the
probabilistic transformation as well as the deterministic transformation.
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I. INTRODUCTION

Quantum coherence, or superposition, is an intrinsic fea-
ture of quantum mechanics and offers many advantages over
the classical world. The fact that quantum coherence is the
central component of many quantum information processing
protocols [1] gives rise to broad interest in areas such as
quantum communication, quantum computing, and quantum
cryptography.

Quantum coherence can be regarded precisely as resources,
which provide the advantages enabled by the quantum infor-
mation tasks, within the so-called resource-theoretic setting
[2–7]. The resource-theoretic framework consists of two el-
ements: a set of free states and a set of free operations
which specifically act invariantly on the free states [8–10].
For the resource theory of coherence, the free states en-
joy a simplified form, i.e., a diagonal density matrix on a
fixed computational basis. However, several free operations
are proposed via taking diverse physical and mathematical
motivations into consideration [5,6], such as maximal inco-
herent operations (MIOs) [2], incoherent operations (IOs) [4],
dephasing-covariant incoherent operations (DIOs) [11,12],
strictly incoherent operations (SIOs) [13,14], and physically
incoherent operations [8,15,16]. Here we focus on IOs, which
can be seen as generalized measurements that are performed
on a quantum system and coherence nongenerating for each
measurement outcome.

It is necessary to study the different free operation abilities,
which can help us make better use of them to manipulate co-
herence in practice. Thus, understanding their capabilities and
limitations is one of the fundamental problems posed in co-
herent resource theory. This can be formulated as the question
of resource convertibility: When can a coherent state be trans-
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formed into another under a given set of free operations? This
problem only has been fully resolved for the pure state case. It
was shown in Refs. [16–19] that determining the convertibility
between pure coherent states only requires one to compare
the majorization relationship of pure coherent states, i.e., by
using SIOs, IOs, and DIOs, the deterministic transformation
between pure coherent states must follow the majorization
condition. These results tell us that SIOs, IOs, and DIOs
possess the same operational capabilities in manipulating pure
coherent states, despite SIOs forming a strictly smaller set
than both IOs and DIOs. Moreover, SIOs are as powerful
as IOs and even MIOs in qubit transformations [16,20–26].
These trivial results characterize the corresponding determin-
istic transformations and show that the larger sets of free
operations IOs and DIOs do not give any advantage over SIOs.
In practical quantum information processing protocols, the
last step always refers to a quantum measurement, which itself
reflects the probability of the whole quantum operation. The
probabilistic transformation between pure coherent states via
SIOs was studied in Refs. [18,27]. Notable progress on the
above problem was presented in Ref. [28], where it was shown
that IOs and stochastic IOs can increase the dimension of the
maximal pure coherent subspace, which implies that there
is indeed an operational gap between IOs and SIOs under
coherent state transformations.

The purpose of the present article is to provide a compara-
tive investigation between SIOs and IOs. This is an extension
of Ref. [28] and covers its main results. The main contribu-
tions of this paper are as follows.

(i) Two complete characterizations of extracting pure co-
herence under stochastic IOs are provided for cases of the
target pure coherent state of coherence rank 2 and greater
coherence rank.

(ii) It is shown that a mixed state of rank m − 1 cannot be
converted to a pure coherent state under IOs, where m is the
number of the nonzero diagonal elements in the considered
mixed state.
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(iii) Based on maximal linearly independent sets, a method
is introduced to transform a mixed state into a pure state under
stochastic IOs.

(iv) A simple and operable sufficient condition is proposed
for the deterministic IO transformation which transforms the
initial state into a pure coherent state. Moreover, the specific
IO Kraus operators, which output the target pure state, can be
immediately constructed.

This paper is organized as follows. In Sec. II we recall
several notions of the quantum resource theory of coherence,
including IOs and stochastic IOs. In Sec. III we present our
main results, i.e., we not only tackle and solve the condition
to transform a mixed coherent state into a pure one under
stochastic IOs but also provide a sufficient condition for such
a transformation under IOs. In Sec. IV we summarize and
discuss our results.

II. PRELIMINARIES

Let H be the Hilbert space of a d-dimensional quantum
system. A particular basis of H is denoted by {|i〉}d

i=1. Specif-
ically, a state δ is said to be incoherent if it is diagonal in
the basis, i.e., δ = �d

i=1δi|i〉〈i|, where the coefficients δi � 0
form a probability distribution. We use I to represent the set
of incoherent states. Any state that cannot be called a diagonal
matrix is defined as a coherent state. For a pure coherent state
|ϕm〉 = ∑d

i=1 ϕi|i〉, we will denote |ϕm〉〈ϕm| by ϕm, where
the bold subscript represents the number of nonzero diagonal
terms (ϕi �= 0), i.e., the coherence rank of the pure coher-
ent state ϕm. In particular, the maximally coherent state of
dimension d is defined as |�d〉 = 1√

d

∑d
i=1 |i〉. For a mixed

coherent state ρ, we express
√

ρ as the column-vector form
(|ρ1〉, |ρ2〉, . . . , |ρd〉), which plays a central role in the follow-
ing transformations.

We mainly investigate the transformation from a mixed
coherent state to a pure one (in short, a mixed to pure trans-
formation) by using both incoherent operations and stochastic
incoherent operations. An incoherent operation is a com-
pletely positive and trace-preserving (CPTP) map, expressed
as

�(ρ) =
N∑

α=1

KαρK†
α =

N∑
α=1

(
√

ρK†
α )†√ρK†

α , (1)

where the Kraus operators Kα satisfy not only
∑N

α=1 K†
αKα =

I but also KαIK†
α ⊆ I for all Kα , i.e., each Kα transforms an in-

coherent state into an incoherent state, and such a Kα is called
an incoherent Kraus operator (incoherent operator). With the
notion of incoherent operation, a stochastic incoherent oper-
ation is constructed by a subset of these incoherent Kraus
operators. Without loss of generality, we use the subscript
to represent the subset containing the incoherent operators.
Then a stochastic incoherent operation, denoted by �S (ρ), is
defined as [28,29]

�S (ρ) =
∑L

α=1 KαρK†
α

Tr
( ∑L

α=1 KαρK†
α

) =
∑L

α=1(
√

ρK†
α )†√ρK†

α

Tr
( ∑L

α=1(
√

ρK†
α )†√ρK†

α

) ,

(2)

FIG. 1. Ladder operator.

where the subset {K1, K2, . . . , KL} satisfies
∑L

α=1 K†
αKα � I.

Clearly, the resultant state �S (ρ) is obtained with probability
p = Tr(

∑L
α=1 KαρK†

α ) under a stochastic incoherent opera-
tion �S , while the resultant state �(ρ) is fully deterministic
under an incoherent operation �.

The following lemma characterizes the form of Kraus
operators belonging to an incoherent operation.

Lemma 1 (from [16,28–31]). (a) For an incoherent
operation � = ∑

α Kα (·)K†
α , the form of Kα is Kα =∑

i cαi| fα (i)〉〈i|, where fα : {1, . . . , d} → {1, . . . , d} and the
coefficients cαi satisfy∑

α
fα (i)= fα ( j)

c∗
αicα j = δi j .

(b) For an incoherent Kraus operator Kα , there is at most one
nonzero element in each column of Kα . In other words, an
incoherent Kraus operator can be represented in the form

Kα =
(∑

i

cαi|gα (i)〉〈i|
)

Pα, (3)

where gα : {1, . . . , d} → {1, . . . , d} is a nondecreasing func-
tion and Pα is a permutation operator.

We note that the coefficients cαi of the incoherent oper-
ator K = ∑

i cαi|gα (i)〉〈i| mentioned in Lemma 1(b), where
gα : {1, . . . , d} → {1, . . . , d} is a nondecreasing function, are
arranged in a ladder form, as shown in Fig. 1. This form will
be used repeatedly in the article.

Let 	 denote the dephasing map in the basis {|i〉}d
i=1,

i.e., 	(·) := ∑d
i=1 |i〉〈i|(·)|i〉〈i|, and let 
S denote incoherent

projectors with the form 
S := ∑
i∈S |i〉〈i| for some subset of

indices S ⊆ {1, . . . , d}. Moreover, we refer to SIOs, which are
all IOs with K†

α IKα ⊆ I for all incoherent operators Kα , and
DIOs, which are all CPTP maps satisfying � ◦ 	 = 	 ◦ �.

Here we need to provide further details about the char-
acteristics of

√
ρ = (|ρ1〉, |ρ2〉, . . . , |ρd〉). It is worth noting

that
√· is an operator function, which acts on the eigen-

values of the operator. As mentioned above, we express the
matrix

√
ρ by its column vectors. Besides ρ = √

ρ
†√

ρ =
(〈ρi|ρ j〉)i, j∈{1,...,d}, the following lemma gives general prop-
erties of these column vectors |ρ1〉, |ρ2〉, . . . , |ρd〉.

Lemma 2 (from [32]). Let |v1〉, . . . , |vd〉 be vectors in an
inner product space V with inner product 〈·|·〉 and let G :=
(〈vi|v j〉)i, j=1,...,d , which is a d × d matrix. Then (a) G is
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Hermitian and positive semidefinite and (b) G is positive-
definite (nonsingular) if and only if the vectors |v1〉, . . . , |vd〉
are linearly independent. Here the matrix G is called a Gram
matrix.

The mixed to pure convertibility criterion under stochastic
SIOs is simply presented as the existence of a singular princi-
pal submatrix of order 2 on the incoherent basis representation
of the initial state [33–35]. By leveraging Lemma 2, we update
the complete characterization of the mixed to pure transforma-
tion under stochastic SIOs.

Given a d × d matrix M, for an index subset S ⊆
{1, . . . , d}, we denote by M[S] the principal submatrix of
entries that lie in the rows and columns of M indexed by
S. For example, for a three-dimensional quantum state ρ =

(
ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

), we have

ρ[{13}] =
(

ρ11 ρ13

ρ31 ρ33

)
,

	(ρ)[{13}] =
⎛
⎝ρ11 0 0

0 ρ22 0
0 0 ρ33

⎞
⎠[{13}] =

(
ρ11 0
0 ρ33

)
.

In particular, for a Gram matrix G, we have

G[S] = (〈vi|v j〉)i, j∈S

for any S ⊆ {1, . . . , d}.
Lemma 3 (from [33–35]). Given a d-dimensional coherent

state ρ, write
√

ρ = (|ρ1〉, |ρ2〉, . . . , |ρd〉). Then the following
statements are equivalent.

(a) There exists a stochastic strictly incoherent operation
�S (·) such that the resultant state �S (ρ) is a pure coherent
state ϕm (m � 2).

(b) There is a subset S ⊆ {1, . . . , d} with |S| = m such that

	(ρ)[S] =
∑
i∈S

〈ρi|ρi〉|l (i)〉〈l (i)| (4)

is positive and, for any i, j ∈ S (i �= j), the equation

det(ρ[{i, j}]) = 〈ρi|ρi〉〈ρ j |ρ j〉 − 〈ρi|ρ j〉〈ρ j |ρi〉 = 0 (5)

holds, where l : S → {1, . . . , m} is a strictly increasing bijec-
tion, i.e., l (i) > l ( j) whenever i > j.

(c) There is a subset S ∈ {1, . . . , d} with |S| = m such that,
for any i, j ∈ S (i �= j), the column vectors |ρi〉 and |ρ j〉 are
nonzero vectors and linearly dependent.

Note that Lemma 3(b) is equivalent to Theorem 1 in
Ref. [33], which provides the necessary and sufficient con-
ditions for the probabilistic mixed to pure transformation
via stochastic SIOs. Specifically, if there is an incoher-
ent projector 
{i, j} (i, j ∈ {1, . . . , d} and i �= j) such that


{i, j}ρ
{i, j}
Tr(
{i, j}ρ
{i, j} ) = ϕ2, then we have


{i, j}ρ
{i, j}[{i, j}] =
(〈ρi|ρi〉 〈ρi|ρ j〉

〈ρ j |ρi〉 〈ρ j |ρ j〉
)

=
(〈ρi|

〈ρ j |
)

(|ρi〉, |ρ j〉),

where 〈ρi|ρi〉〈ρ j |ρ j〉 = 〈ρi|ρ j〉〈ρ j |ρi〉. Due to the
Cauchy-Schwarz inequality, we note that 〈ρi|ρi〉〈ρ j |ρ j〉 �
〈ρi|ρ j〉〈ρ j |ρi〉 and the equality holds if and only if |ρi〉
and |ρ j〉 are linearly dependent. For more general cases,
combine Lemma 2 and Theorem 3 in Ref. [35], sustaining the
establishment of Lemma 3.

III. COHERENCE STATE TRANSFORMATION VIA
STOCHASTIC INCOHERENT OPERATIONS

We begin our study by observing the important role played
by individual incoherent operators of stochastic IOs under the
mixed to pure transformation task. This leads to the following
lemma.

Lemma 4 (from [28]). For a coherent state ρ there exists
a stochastic incoherent operation �S such that �S (ρ) = ϕ.
There must be an incoherent operator Kα belonging to �S such

that KαρK†
α

Tr(KαρK†
α )

is the pure coherent state ϕ.

It is known that IOs, SIOs, and DIOs have the same power
in pure to pure transformations, which can be completely
characterized by majorization relations [17,19]. This yields
P(S)IO(�m → ϕn) = 1 (n � m) and [18]

P(S)IO(ϕn → �m) =
{

0, n < m
mink∈[1,m]

m
k

∑d
i=m−k+1 ϕ2

i , n � m,

where we have assumed without loss of generality that the
coefficients of |ϕn〉 = ∑d

i=1 ϕi|i〉 are arranged in nonincreas-
ing order. Therefore, ϕm can be probabilistically transformed
into �m and vice versa. Apparently, it suffices to consider the
maximally coherent state �m as the target state of the mixed to
pure transformation under stochastic IOs. Equipped with the
above knowledge, we can present the following theorem.

Theorem 1. Given a d-dimensional coherent state ρ, write√
ρ = (|ρ1〉, |ρ2〉, . . . , |ρd〉). Then the following statements

are equivalent.
(a) There exists a stochastic incoherent operation �S (·)

such that the resultant state �S (ρ) is a pure coherent state ϕ2.
(b) There is a subset S ⊆ {1, . . . , d} (S �= ∅) such that

	(ρ)[S] =
∑
i∈S

〈ρi|ρi〉|l (i)〉〈l (i)| (6)

is positive-definite and the equation

det(ρ[S]) = det[(〈ρi|ρ j〉)i, j∈S] = 0 (7)

holds, where l : S → {1, . . . , |S|} is a strictly increasing bi-
jection.

(c) There is a subset S ⊆ {1, . . . , d} (S �= ∅) such that the
column vectors |ρi〉 (i ∈ S) are nonzero vectors and linearly
dependent.

Proof. (a) ⇒ (c). First, we show if the maximally coherent
state �2 can be obtained from the initial state ρ via a stochas-
tic IO �s, then there is a subset S ⊆ {1, . . . , d} (S �= ∅) such
that the linear system

√
ρ
S|x〉 = 0 has nonzero solutions,

which means that the column vectors |ρi〉 (i ∈ S), which make
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up the coefficient matrix of
√

ρ
S|x〉 = 0, are linearly depen-
dent, while the diagonal entries of ρ[S] = (〈ρi|ρ j〉)i, j∈S are
nonzero.

According to Lemma 4, let us assume that we can obtain
the pure coherent state �2 from the coherent state ρ by using
an incoherent operator Kα , which belongs to �S . We have

KαρK†
α

Tr(KαρK†
α )

= (
√

ρK†
α )†√ρK†

α

Tr[(
√

ρK†
α )†√ρK†

α ]
= �2, (8)

where |�2〉 = ( 1√
2
, 1√

2
,�)T and � represents the all-zero

matrix of appropriate size. According to Lemma 1(b), the
incoherent operator Kα has the form

Kα =

⎛
⎜⎝

a∗
1 a∗

2 · · · a∗
k 0 · · · 0

0 0 · · · 0 b∗
k+1 · · · b∗

d

� � · · · � � · · · �

⎞
⎟⎠Pα, (9)

where Pα is a permutation, � represents the all-zero matrix of
appropriate size, and rank(Kα ) = 2. Substituting Eq. (9) into
Eq. (8), we can deduce the identity

√
ρK†

α = |γ 〉〈�2| (|γ 〉 �= 0),

where |γ 〉 = √
2a1|ρ1′ 〉+ · · · + √

2ak|ρk′ 〉 = √
2bk+1|ρ(k+1)′ 〉

+ · · · + √
2bd |ρd ′ 〉 [i = P†

α (i′) and i, i′ = 1, . . . , d]. Thus, we
obtain that (a1, . . . , ak,−bk+1, . . . ,−bd )T is a nonzero solu-
tion of the linear system

√
ρP†

α |x〉 = 0. Considering Lemma
2, we obtain that, as a positive-semidefinite matrix ρ, its
elements of the rows and columns corresponding to the zero-
diagonal elements, i.e., 〈ρi|ρi〉 = 0, are all zero. This means
that the linear system

√
ρ
S|x〉 = 0 also has nonzero solu-

tions. Here S = {i | |ρi〉 is a nonzero vector, i = 1, . . . , d}.
(c) ⇒ (a). First, we assume that S = {1, . . . , d ′} (d ′ �

d) and that the column vectors |ρi〉 (i ∈ S) are nonzero
vectors as well as linearly dependent. It follows that d ′ >

r = rank(ρ[S]). Without loss of generality, we assume that
the vectors |ρ1〉, |ρ2〉, . . . , |ρr〉 are linearly independent.
Second, suppose that a nonzero solution of the linear sys-
tem x1|ρ1〉 + x2|ρ2〉 + · · · + xr+1|ρr+1〉 = 0 (r + 1 � d ′) is
(a1, a2, . . . , ar, ar+1)T . Then we get the equation

a1|ρ1〉 + a2|ρ2〉 + · · · + ar+1|ρr+1〉 = 0.

Then it is easy to get the following equation in terms of
complex conjugation:

a∗
1〈ρ1| + a∗

2〈ρ2| + · · · + a∗
r+1〈ρr+1| = 0.

Since |ρr+1〉 is a nonzero vector, it means that ar+1 is also a
nonzero number. Using these two equations, we construct an
incoherent operator Kα ,

Kα =
⎛
⎝a∗

1 a∗
2 · · · a∗

r 0 �

0 0 · · · 0 −a∗
r+1 �

� � · · · � � �

⎞
⎠ (10)

for which � represents the all-zero matrix of appropriate size.
We can check that the equations

KαρK†
α = (

√
ρK†

α )†√ρK†
α (11)

=

⎛
⎜⎝

1√
2
〈γ |

1√
2
〈γ |

�

⎞
⎟⎠(

1√
2
|γ 〉, 1√

2
|γ 〉,�

)
(12)

= 〈γ |γ 〉�2 (13)

hold, where |γ 〉 = √
2a1|ρ1〉 + · · · + √

2ar |ρr〉 = −√
2ar+1|

ρr+1〉 �= 0. Third, we carefully choose
∑r

i=1 |ai|2 = 1 (0 <

|ar+1|2 � 1) or
∑r

i=1 |ai|2 � 1 (|ar+1|2 = 1) by the follow-
ing method. Assume that (x1, x2, . . . , xr+1)T is feasible for
the linear system (|ρ1〉, |ρ2〉, . . . , |ρr+1〉)|x〉 = 0. Then, if∑r

i=1 |xi|2 � |xr+1|2, let

(a1, a2, . . . , ar, ar+1)T = 1√∑r
i=1 |xi|2

(x1, x2, . . . , xr+1)T ,

and if not, let

(a1, a2, . . . , ar, ar+1)T = 1√
|xr+1|2

(x1, x2, . . . , xr+1)T .

Thus, clearly K†
αKα � I, as follows from ‖K†

αKα‖∞ =
max{‖K†

αKαu‖ : u ∈ H, ‖u‖ � 1} = 1.
Finally, according to Lemma 2, we can easily get the im-

plications (b) ⇒ (c) and (c) ⇒ (b). This completes the proof.
Note that Theorem 1(b) is equivalent to Theorem 1 in

Ref. [29], which provides the criterion for a state to be dis-
tillable under stochastic IOs. Furthermore, we note that the
coherent state ρ with rank(ρ) = rank[	(ρ)] = r actually can-
not be converted into any coherent pure state because there is
no subset S, which makes 	(ρ)[S] > 0 and det(ρ[S]) = 0 si-
multaneously hold. In a sense, this state is a full-rank coherent
state for the corresponding r-dimensional subsystem. In fact,
there is no incoherent operator that allows us to distill any co-
herent pure state from a full-rank state, even probabilistically
[27]. Further, this situation cannot be improved by embedding
a full-rank state in a larger quantum system.

Theorem 1 manifests that stochastic IOs are generally
stronger than stochastic SIOs when we want to transform a
mixed coherent state into the maximally coherent state �2,
i.e., the probabilistic coherence distillation [27]. Theorem 1
shows that, under probabilistic coherence distillation, stochas-
tic IOs suit more general conditions than stochastic SIOs. In
addition, we note that each nonzero solution of the linear
system

√
ρ
S|x〉 = 0 always corresponds to an incoherent

operator Kα such that KαρK†
α ∝ �2.

As a supplement, we remind the reader that, for any two
incoherent operations �1 with Kraus operators {K1

α} and �2

with Kraus operators {K2
β }, the operation � = �1 ◦ �2 is also

an incoherent operation with Kraus operators {Kγ = K1
αK2

β }
because Kγ IK†

γ ⊆ I and
∑

γ K†
γ Kγ = I. In addition, we know

that any permutation P and its inverse are SIOs. With this
knowledge, it is easy to show that, for an IO or a stochas-
tic IO, there is always an incoherent operator that can be

042415-4



COHERENCE MANIPULATION WITH STOCHASTIC … PHYSICAL REVIEW A 108, 042415 (2023)

given in the form

Kα =

⎛
⎜⎜⎝

a11 a12 · · · a1t1 0 · · · 0 0 · · · 0
0 0 · · · 0 a21 · · · a2t2 0 · · · 0

· · ·
0 0 · · · 0 0 · · · 0 am1 · · · amtm

⎞
⎟⎟⎠. (14)

Theorem 1 establishes necessary and sufficient criteria for
the existence of a stochastic IO mapping a given mixed state
ρ to any pure coherent state ϕ2 of coherence rank 2. In
particular, the explicit condition (b) is in terms of principal
subdeterminants of the incoherent basis representation of ρ.
In Theorem 2 we generalize analogous results to the target
pure coherent state of higher coherence rank.

Theorem 2. Given a d-dimensional coherent state ρ, write√
ρ = (|ρ1〉, |ρ2〉, . . . , |ρd〉). Then the following statements

are equivalent.
(a) There exists a stochastic incoherent operation �S (·)

such that the resultant state �S (ρ) is a pure coherent state ϕm
(d � m � 2).

(b) There is a subset S ⊆ {1, . . . , d} (S �= ∅) which can
be partitioned into m disjoint subsets Ss (s = 1, . . . , m)
such that, for all s = 1, . . . , m the column vectors |ρi〉
(i ∈ Ss) are nonzero vectors and the intersection of the
subspaces span({|ρi〉}i∈Ss ) includes nonzero vectors, i.e.,
dim[

⋂m
s=1 span({|ρi〉}i∈Ss )] > 0.

(c) There is a subset S ⊆ {1, . . . , d} (S �= ∅) which can be
partitioned into m disjoint subsets Ss (s = 1, . . . , m) such that,
for all s = 1, . . . , m, the column vectors |ρi〉 (i ∈ Ss) are not
only nonzero vectors but also linearly independent and the
intersection of the subspaces span({|ρi〉}i∈Ss ) includes nonzero
vectors, i.e., dim[

⋂m
s=1 span({|ρi〉}i∈Ss )] > 0.

Proof. (a) ⇒ (b). By Lemma 4, it suffices to show that
if an incoherent operator Kα transforms the initial state ρ

into the maximally coherent state �m, then there is a sub-
set S ⊆ {1, . . . , d} (S �= ∅) which can be partitioned into m
disjoint subsets Ss (s = 1, . . . , m) such that the column vec-
tors |ρi〉 (i ∈ S) are nonzero vectors and the intersection of
the subspaces span({|ρi〉}i∈Ss ) includes nonzero vectors, i.e.,
dim[

⋂m
s=1 span({|ρi〉}i∈Ss )] > 0.

Suppose KαρK†
α ∝ �m; then we have (

√
ρK†

α )†√ρ

K†
α ∝ |�m 〉 〈�m|, i.e.,

√
ρK†

α = |γ 〉〈�m|, where 〈�m| =
( 1√

m
, 1√

m
, . . . , 1√

m
,�) and |γ 〉 is a nonzero vector of d ele-

ments. Here � represents the all-zero matrix of appropriate
size. Consider the form of Kα as

Kα =

⎛
⎜⎜⎜⎜⎝

a∗
11 a∗

12 · · · a∗
1t1

0 · · · 0 · · · 0
0 0 · · · 0 a∗

21 · · · 0 · · · 0
· · ·
0 0 · · · 0 0 · · · a∗

m1 · · · a∗
mtm

� � · · · � � · · · � · · · �

⎞
⎟⎟⎟⎟⎠, (15)

while rank(Kα ) = m. There are nonzero vectors
(a11, a12, . . . , a1t1 )T , (a21, . . . , a2t2 )T , . . . , (am1, . . . , amtm )T

such that the following equations hold:

1√
m

|γ 〉 = (a11|ρ11〉 + · · · + a1t1 |ρ1t1〉)

= (a21|ρ21〉 + · · · + a2t2 |ρ2t2〉)

...

= (am1|ρm1〉 + · · · + amtm |ρmtm〉).

Here there is a bijection f : {1, . . . , d} →
{11, . . . , 1t1, 21, . . . , 2t2, . . . , m1, . . . , mtm} such that
f (i) = s j ( j > 0) for which the boldface type of s = 1, . . . , m
is used to mark the partition. Therefore, we can obtain the
subset S = {s j | |ρs j〉 is a nonzero vector; s = 1, . . . , m; j >

0}, which can be partitioned into m disjoint subsets
Ss = {s j | |ρs j〉 is a nonzero vector, j > 0}, and meet the
conditions in (b) due to |γ 〉 ∈ ⋂m

s=1 span({|ρi〉}i∈Ss ).
(b) ⇒ (c). For all s = 1, . . . , m there is always a sub-

set S′
s (S′

s ⊆ Ss) such that the principal submatrix ρ[S′
s] is

nonsingular, i.e.,

det(ρ[S′
s]) > 0,

and the principal submatrix ρ[S′
s ∪ { j}] ( j ∈ Ss − S′

s) is singu-
lar, i.e.,

det(ρ[S′
s ∪ { j}]) = 0 ( j ∈ Ss − S′

s).

Thus, according to Lemma 2, the vectors |ρi′ 〉 (i′ ∈ S′
s) are

linearly independent, while the vectors |ρi′ 〉 (i′ ∈ S′
s ∪ { j} and

j ∈ Ss − S′
s) are linearly dependent for each s = 1, . . . , m.

Therefore, for all s = 1, . . . , m there are vectors |ρi′ 〉 (i′ ∈ S′
s

and S′
s ⊆ Ss) such that the vectors |ρi′ 〉 (i′ ∈ S′

s) are linearly
independent and

span({|ρi′ 〉}i′∈S′
s
) = span({|ρi〉}i∈Ss ).

(c) ⇒ (a). For all s = 1, . . . , m, the subspace
span({|ρi〉}i∈Ss ) is equal to the space of all vectors that may
be written as a linear combination of elements of {|ρi〉}i∈Ss .
Suppose that there is a nonzero vector |γ 〉 such that |γ 〉 ∈⋂m

s=1 span({|ρi〉}i∈Ss ). Specifically, there are nonzero vectors
(a11, a12, . . . , a1t1 )T , (a21, . . . , a2t2 )T , . . . , (am1, . . . , amtm )T
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such that the following equations hold:

1√
m

|γ 〉 = (a11|ρ11〉 + · · · + a1t1 |ρ1t1〉)

= (a21|ρ21〉 + · · · + a2t2 |ρ2t2〉)
...

= (am1|ρm1〉 + · · · + amtm |ρmtm〉).

Then we can construct an incoherent operator such that a
stochastic IO transformation ρ → �m can be achieved. We
choose that

∑ltl
l1 |ali|2 = 1 holds for some l ∈ {1, 2, . . . , m}

and
∑ktk

k1 |aki|2 � 1 holds for all k �= l and k ∈ {1, 2, . . . , m},
similarly to Theorem 1. There exists an incoherent operator
Kα such that the coherent state ρ is transformed into �m. Here
is the form of Kα ,

Kα =

⎛
⎜⎜⎜⎜⎜⎝

a∗
11 a∗

12 · · · a∗
1t1

0 · · · 0 · · · 0 �

0 0 · · · 0 a∗
21 · · · 0 · · · 0 �

· · ·
0 0 · · · 0 0 · · · a∗

m1 · · · a∗
mtm �

� � · · · � � · · · � · · · � �

⎞
⎟⎟⎟⎟⎟⎠, (16)

for which � represents the all-zero matrix of appropriate size.
It is easy to check that

KαρK†
α

Tr(KαρK†
α )

= �m, K†
αKα � I,

because ‖K†
αKα‖∞ = max{‖K†

αKαu‖ : u ∈ H, ‖u‖ � 1} = 1.
This completes the proof. �

Compared with the necessary and sufficient conditions for
the probabilistic mixed to pure transformation via stochastic
SIOs in Lemma 3(c), the conditions of stochastic IOs in The-
orem 2(c) cover these of stochastic SIOs. This is consistent
with the fact that SIO ⊂ IO, i.e., a strict inclusion relation.

We already know that a full-rank state cannot be converted
to a pure coherent state by IOs with certainty. For non-full-
rank states, we can make the following observation through
Theorem 2. We show that if the rank of the mixed coherent
state ρ is too large (rank[	(ρ)] − 1), it cannot be converted
to any pure coherent state by using IOs.

Proposition 1. Given a d-dimensional coherent state
ρ, write

√
ρ = (|ρ1〉, |ρ2〉, . . . , |ρd〉). Then the implication

(a) ⇒ (b) holds.
(a) There is a subset S ⊆ {1, . . . , d} satisfying Tr(ρ[S]) =

1 which contains a subset S1 with |S1| = |S| − 1 such that

	(ρ)[S] =
∑
i∈S

〈ρi|ρi〉|l (i)〉〈l (i)| (17)

is positive-definite and the equations

det(ρ[S]) = 0, (18)

det(ρ[S1]) > 0 (19)

hold, where l : S → {1, . . . , |S|} is a strictly increasing bijec-
tion.

(b) There exists no incoherent operation �(·) such that the
resultant state �(ρ) is a maximally coherent state �m (d �
m � 2).

Proof. Note first that the initial state ρ is both a mixed
coherent state and a non-full-rank state, so we obtain
|S| > 2, that is, the case for qubits is excluded. With-
out loss of generality, we assume directly that 	(ρ) =∑d

i=1〈ρi|ρi〉|i〉〈i| > 0. Here S = {1, . . . , d}. Since det(ρ) =
0 and there is a subset S1 with |S1| = d − 1 such that

det(ρ[S1]) > 0, the rank of ρ is d − 1. We suppose that
the vectors {|ρ1〉, |ρ2〉, . . . , |ρd−1〉} are linearly independent.
The linear equation x1|ρ1〉 + x2|ρ2〉 + · · · + xd |ρd〉 = 0 has
a unique nonzero solution (a1, a2, . . . , ad )T which satisfies∑d−1

i=1 |ai|2 = 1, 0 < |ad |2 � 1, due to the one-dimensional
solution space. Then we obtain two equations

a1|ρ1〉 + a2|ρ2〉 + · · · + ad |ρd〉 = 0

and

a∗
1〈ρ1| + a∗

2〈ρ2| + · · · + a∗
d〈ρd | = 0.

Based on these two equations, we can construct an incoherent
operator

Kα =
(

a∗
1 · · · a∗

d−1 0
0 · · · 0 −a∗

d

)

and obtain KαρK†
α/Tr(KαρK†

α ) = �2. It is easy to check that
K†

αKα � I with ‖K†
αKα‖∞ = 1. At the same time, we get

Tr(KαρK†
α ) = Tr(|a′〉〈a′|ρ[S1]) + |ad |2〈ρd |ρd〉 < 1,

due to

Tr(|a′〉〈a′|ρ[S1]) �
∑

j

λ
↓
j (|a′〉〈a′|)λ↓

j (ρ[S1])

� λmax(ρ[S1]) <

d−1∑
i=1

〈ρi|ρi〉

and
d∑

i=1

〈ρi|ρi〉 = 1,

where {λ↓
j (M )} j are the eigenvalues of positive-semidefinite

matrix M in nonincreasing order, |a′〉 = (a1, . . . , ad−1)T , and
S1 = {1, . . . , d − 1}.

We note that any two disjoint subsets S1 and S2 such
that the intersection space span({|ρi〉}i∈S1 ) ∩ span({|ρi〉}i∈S2 )
includes nonzero vectors is equivalent to the linear system
x1|ρ1〉 + x2|ρ2〉 + · · · + xd |ρd〉 = 0 with nonzero solutions.
Consider that the incoherent operator Kα needs at least one
different incoherent operator Kβ to achieve completion iden-
tity. However, any vector that is linearly independent with
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(a1, a2, . . . , ad )T cannot construct an incoherent operator to
distill �2, i.e., any vector that is linearly independent with
(a1, a2, . . . , ad )T is not a feasible solution to the linear system
x1|ρ1〉 + x2|ρ2〉 + · · · + xd |ρd〉 = 0. This means that any IO
satisfying completion identity cannot be used to transform ρ

into the maximally coherent state �2 with certainty.
For the case of the maximally coherent state �m (d �

m > 2),
√

ρ = {|ρ1〉, . . . , |ρd〉} has at most two disjoint sub-
sets which meet the conditions of Theorem 2(c). Thus, no
incoherent operators can transform ρ into �m (m > 2). This
completes the proof of Proposition 1. �

This result establishes a no-go theorem for deterministic
coherence distillation [33], showing that there is no IO that
can distill any perfect coherence from a d-dimensional coher-
ent state, which has nonzero diagonal entries and rank d − 1
(d > 2). According to Theorem 2, the result of Proposition 1
is also suitable for a generic pure state ϕm and covers the result
of Theorem 3 in Ref. [28], which presents the same viewpoint
for three-dimensional quantum states.

However, the conditions in Theorem 2 are very complex
and difficult to verify. It could thus be interesting to provide
an uncomplicated condition that involves the principal subde-
terminant of the incoherent basis representation of ρ. To do
this, we now make an observation that shows the relation be-
tween the maximal linearly independent vectors among given
vectors and the principal subdeterminant of the corresponding
Gram matrix.

Lemma 5. Let |v1〉, . . . , |vd〉 be vectors in an inner product
space V with inner product 〈·|·〉 and let G = (〈vi|v j〉)i, j=1,...,d .
If vectors |v1〉, . . . , |vd〉 are linearly dependent, i.e., det(G) =
0, then there is always a nonempty proper subset S such
that det(G[S]) > 0 and det(G[S ∪ { j}]) = 0 hold for all j ∈ S̄.
Here S̄ is the complement of the subset S.

We define the above vectors |vi〉 (i ∈ S) as a maxi-
mal linearly independent set of |v1〉, . . . , |vd〉, where S ⊂
{1, 2, . . . , d}. By Lemma 5, we readily obtain one sufficient
condition with an explicit expression, which is a common
way to find a partition of the incoherent basis associated with
maximal linearly independent sets.

Theorem 3. Given a d-dimensional coherent state ρ, write√
ρ = (|ρ1〉, |ρ2〉, . . . , |ρd〉). Then the implication (a) ⇒ (b)

holds.
(a) There is a subset S ⊆ {1, . . . , d} (S �= ∅) which can be

partitioned into m (m � 2) disjoint subsets Ss (s = 1, . . . , m)
such that the equations

det(ρ[Ss]) > 0, (20)

det(ρ[Ss ∪ { j}]) = 0 (21)

hold, where s = 1, . . . , m and j ∈ ⋃m
k=s+1 Sk .

(b) There exists a stochastic incoherent operation �S (·)
such that the resultant state �S (ρ) is a pure coherent state ϕm
(m � 2).

Proof. Without loss of generality, we suppose that, for√
ρ = (|ρ1〉, |ρ2〉, . . . , |ρd〉), the column vectors |ρi〉 (i =

1, . . . , d) are all nonzero vectors and S = {1, . . . , d}.
By Lemma 5, we can find a maximal linearly in-

dependent set of |ρ1〉, |ρ2〉, . . . , |ρd〉 and represent it by
|ρ11〉, |ρ12〉, . . . , |ρ1t1〉. We repeat this process, finding a

maximal linearly independent set of the remaining vectors.
Suppose that the second maximal linearly independent set is
denoted by |ρ21〉, |ρ22〉, . . . , |ρ2t2〉. We continue to do the same
thing and get the vector sets

{|ρ1〉, |ρ2〉, . . . , |ρd〉}, S = {1, . . . , d},
{|ρ11〉, |ρ12〉, . . . , |ρ1t1〉}, S1 = {11, 12, . . . , 1t1},
{|ρ21〉, |ρ22〉, . . . , |ρ2t2〉}, S2 = {21, 22, . . . , 2t2},

...
...

{|ρr1〉, |ρr2〉, . . . , |ρrtr 〉}, Sr = {r1, r2, . . . , rtr}

and employ the following relations, respectively:

det(ρ[S1]) > 0, det(ρ[S1 ∪ { j}]) = 0 ∀ j ∈ S − S1,

det(ρ[S2]) > 0, det(ρ[S2 ∪ { j}]) = 0 ∀ j ∈ S − S1 − S2,

...

det(ρ[Sr]) > 0, Sr = S − ∪r−1
s=1Ss.

Distinctly, there is a bijection f : {1, . . . , d} →
{11, . . . , 1t1, 21, . . . , 2t2, . . . , r1, . . . , rtr} such that
f (i) = s j (i = 1, . . . , d and j > 0) for which the boldface
type of s = 1, . . . , r is used to mark the partition. According
to statement (a), which shows there is an m partition
associated with maximal linearly independent sets under
the subset S = {1, . . . , d}, we thus have r � m. For the case
of r < m we need to do the previous process after applying
a permutation operator to the subset S until we get the
desired result. Altogether, an m partition of maximal linearly
independent sets is obtained by the above method.

Subsequently, there are nonzero vectors
(am1, . . . , amtm )T , . . . , (a21, . . . , a2t2 )T , (a11, a12, . . . , a1t1 )T

such that the following equations hold:

1√
m

|γ 〉 = am1|ρm1〉 + · · · + amtm |ρmtm〉 �= 0

and

am1|ρm1〉 + · · · + amtm |ρmtm〉
= am−11|ρm−11〉 + · · · + am−1tm−1 |ρm−1tm−1〉
...

= a11|ρ11〉 + · · · + a1t1 |ρ1t1〉. (22)

Here we start from the last maximal linearly independent set.
Because the latter maximal linearly independent set always
can be linearly represented by the former, this construction
method is feasible.

Then we can construct an incoherent operator in a similar
way to Theorem 2 such that a stochastic IO transformation
ρ → �m can be achieved. This completes the proof. �

Theorem 3 provides a relatively simple and operable
method for the probabilistic transformation via stochastic IOs,
for the mixed to pure transformation task. We illustrate the
strategy in Theorem 3 by the following example.
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Example 1. Let ρ = 1
2 |ϕ1〉〈ϕ1| + 1

2 |ϕ2〉〈ϕ2|, where

|ϕ1〉 = 1

5
√

2
(4, 3,

√
5, 2

√
5)T ,

|ϕ2〉 = 1

5
√

2
(−3, 4,−2

√
5,

√
5)T .

We can get

ρ = 1
4

⎛
⎜⎜⎜⎜⎜⎝

1 0 2
√

5
5

√
5

5

0 1 −
√

5
5

2
√

5
5

2
√

5
5 −

√
5

5 1 0√
5

5
2
√

5
5 0 1

⎞
⎟⎟⎟⎟⎟⎠

and

√
ρ = 1

2
√

2

⎛
⎜⎜⎜⎜⎜⎝

1 0 2
√

5
5

√
5

5

0 1 −
√

5
5

2
√

5
5

2
√

5
5 −

√
5

5 1 0√
5

5
2
√

5
5 0 1

⎞
⎟⎟⎟⎟⎟⎠.

We thus obtain the following vectors:

|ρ1〉 = 1

2
√

2

(
1, 0,

2
√

5

5
,

√
5

5

)T

,

|ρ2〉 = 1

2
√

2

(
0, 1,−

√
5

5
,

2
√

5

5

)T

,

|ρ3〉 = 1

2
√

2

(
2
√

5

5
,−

√
5

5
, 1, 0

)T

,

|ρ4〉 = 1

2
√

2

(√
5

5
,

2
√

5

5
, 0, 1

)T

.

The maximal linearly independent partition of the vectors
|ρ1〉, |ρ2〉, |ρ3〉, and |ρ3〉 is provided,

S1 = {|ρ1〉, |ρ2〉},
S2 = {|ρ3〉, |ρ4〉},

by straightforwardly computing the corresponding principal
subdeterminants of ρ.

Furthermore, we have ( 4
5 , 3

5 )T , ( 1√
5

2√
5

)T and

(− 4
5 , 3

5 )T , (− 2√
5
, 1√

5
)T , which are nonzero solutions of

the linear system x1|ρ1〉 + x2|ρ2〉 = x3|ρ3〉 + x4|ρ4〉. We thus
construct the incoherent operators K0 and K1,

K0 =
(

4
5

3
5 0 0

0 0 1√
5

2√
5

)
,

K1 =
(

− 3
5

4
5 0 0

0 0 − 2√
5

1√
5

)
.

By directly calculating, we have K†
0 K0 + K†

1 K1 = I and
K0ρK†

0 = K1ρK†
1 = 1

2�2.
In fact, different selection orders of vectors may lead to dif-

ferent numbers of components concerning the corresponding

partition of maximal linearly independent sets. That reflects
different coherence ranks for the final pure state. The follow-
ing is an explicit example.

Example 2. Let ρ = 1
6 |ψ1〉〈ψ1| + 5

6 |ψ2〉〈ψ2|, where

|ψ1〉 = 1√
2

(1,−1, 0, 0)T ,

|ψ2〉 = 1√
10

(1, 1, 2, 2)T .

We can get a partition with maximal linearly independent sets
{1, 2}, {3}, and {4}, while the density matrix

ρ = 1
6

⎛
⎜⎜⎝

1 0 1 1
0 1 1 1
1 1 2 2
1 1 2 2

⎞
⎟⎟⎠,

with

√
ρ = 1

2
√

6

⎛
⎜⎜⎜⎜⎜⎝

1+√
5√

5
1−√

5√
5

2√
5

2√
5

1−√
5√

5
1+√

5√
5

2√
5

2√
5

2√
5

2√
5

4√
5

4√
5

2√
5

2√
5

4√
5

4√
5

⎞
⎟⎟⎟⎟⎟⎠,

has another partition with maximal linearly independent sets
{1, 3} and {2, 4}.

We note that the deterministic conver-
sion of a general quantum state into a
coherent pure state under IOs has not been fully characterized.
This leads us to investigate other relationships between the
submatrices of the initial state ρ and the column vectors of

√
ρ

as shown in Lemma 3. For two index sets S1, S2 ⊆ {1, . . . , d},
we denote by M[S1, S2] the submatrix of entries that lie in the
rows of M indexed by S1 and the columns of M indexed by
S2. We observe that the unitary equivalence between column
vectors is equivalent to the identity relationship between
submatrices of the corresponding Gram matrix.

Lemma 6. Let |v1〉, . . . , |vd〉 be vectors in an inner product
space V with inner product 〈·|·〉 and let G = (〈vi|v j〉)i, j=1,...,d .
Then the following statements are equivalent.

(a) For two disjoint subsets S1, S2 ⊆ {1, . . . , d} with |S1| =
|S2|, the vectors |vi〉 (i ∈ S1) and |v j〉 ( j ∈ S2) are unitarily
equivalent, i.e., there is a unitary matrix U , which is an |S1| ×
|S1| matrix, such that (|vi〉)i∈S1U = (|v j〉) j∈S2 .

(b) The principal submatrices G[S1] and G[S2] satisfy one
of the two equations

G[S1] =
√

G[S1, S2]G[S2, S1], (23)

G[S2] =
√

G[S2, S1]G[S1, S2]. (24)

Proof. First, let us show our proof with the following ex-
ample, i.e., if

G[{a, b, c}] =
⎛
⎝〈va|

〈vb|
〈vc|

⎞
⎠(|va〉, |vb〉, |vc〉) (25)

=
√

G[{a, b, c}, {a′, b′, c′}]G[{a′, b′, c′}, {a, b, c}],
(26)
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then vectors |va〉, |vb〉, |vc〉 and |va′ 〉, |vb′ 〉, |vc′ 〉 are unitar-
ily equivalent, where {a, b, c}, {a′, b′, c′} ⊆ {1, . . . , d} and
{a, b, c} ⋂{a′, b′, c′} = ∅. According to the singular value the-
orem, there are unitary matrices UL and VR such that

G[{a, b, c}, {a′, b′, c′}] =
⎛
⎝〈va|

〈vb|
〈vc|

⎞
⎠(|va′ 〉 |vb′ 〉 |vc′ 〉) = ULDV †

R

and

G[{a′, b′, c′}, {a, b, c}] =
⎛
⎝〈va′ |

〈vb′ |
〈vc′ |

⎞
⎠(|va〉 |vb〉 |vc〉) = VRDU †

L

due to G[{a, b, c}, {a′, b′, c′}] = G[{a′, b′, c′}, {a, b, c}]† for
the Hermitian matrix G following Lemma 2(a), where the
matrix D is a diagonal matrix. Then, combined with Eq. (26),
the following reasoning process is presented:

D = U †
L

⎛
⎝〈va|

〈vb|
〈vc|

⎞
⎠(|va′ 〉 |vb′ 〉 |vc′ 〉)VR

= U †
L

⎛
⎝〈va|

〈vb|
〈vc|

⎞
⎠(|va〉 |vb〉 |vc〉)UL.

We get the desired result,

(|va〉 |vb〉 |vc〉)UL = (|va′ 〉 |vb′ 〉 |vc′ 〉)VR.

For more general cases, it can be proved in the same way.
On the other hand, it is obvious that if vectors |vi〉 (i ∈ S1)
and |v j〉 ( j ∈ S2), with S1, S2 ⊂ {1, . . . , d}, S1 ∩ S2 = ∅, and
|S1| = |S2|, are unitarily equivalent, then the corresponding
submatrices are easily checked to satisfy Eqs. (23) and (24).

Using Lemma 6, we construct a class of IO deterministic
transformations that contain the important example presented
by Theorem 4 in Ref. [28], which demonstrates a mixed to
pure transformation beyond the capabilities of SIOs. In partic-
ular, the following theorem characterizes a sufficient condition
of mixed to pure transformations by IOs. We will see later that
this type of mixed to pure transformation can be achieved by
DIOs too, because we construct concrete incoherent operators
that also satisfy the properties required by DIOs.

Theorem 4. Given a d-dimensional coherent state ρ, write√
ρ = (|ρ1〉, |ρ2〉, . . . , |ρd〉). Then the implication (a) ⇒ (b)

holds.
(a) There is a subset S ⊆ {1, . . . , d} satisfying Tr(ρ[S]) =

1, which can be partitioned into m (m � 2) disjoint subsets Ss

(s = 1, . . . , m) with |S1| = |S2| = · · · = |Sm| such that

	(ρ)[S] =
∑
i∈S

〈ρi|ρi〉|l (i)〉〈l (i)| (27)

is positive-definite and, for s = 1, . . . , m − 1, the equation

ρ[Ss] =
√

ρ[Ss, Ss+1]ρ[SsSs+1] (28)

holds, where l : S → {1, . . . , |S|} is a strictly increasing bi-
jection.

(b) There exists an incoherent operation �(·) such that the
resultant state �(ρ) is a pure coherent state ϕm (m � 2).

Proof. Without loss of generality, we assume directly that
	(ρ) = ∑d

i=1〈ρi|ρi〉|i〉〈i| > 0. According to Lemma 6, there
are m, Vs and t × t (t = d

m and s = 1, . . . , m) unitary matri-
ces such that (|ρi〉)i∈S1V1 = (|ρi〉)i∈S2V2 = · · · = (|ρi〉)i∈SmVm,
where the disjoint subsets satisfy

⋃m
s=1 Ss = {1, . . . , d}. Then,

without loss of generality, we suppose that

ρ = √
ρ

†√
ρ =

⎛
⎜⎜⎜⎜⎝

V1DV †
1 V1DV †

2 · · · V1DV †
m

V2DV †
1 V2DV †

2 · · · V2DV †
m

...
...

...

VmDV †
1 VmDV †

2 · · · VmDV †
m

⎞
⎟⎟⎟⎟⎠, (29)

where D is a diagonal matrix. We construct the IO �, whose
incoherent operators {Kα} have the form

Kα =

⎛
⎜⎜⎜⎜⎝

〈V1α| � · · · �

� 〈V2α| · · · �

...
...

. . .
...

� � · · · 〈Vmα|

⎞
⎟⎟⎟⎟⎠, (30)

where |Vsα〉 is the αth column vector of Vs and � repre-
sents the all-zero matrix of appropriate size (s = 1, . . . , m
and α = 1, . . . , t). In other words, we express Vs as
(|Vs1〉, |Vs2〉, . . . , |Vst 〉). According to the above incoherent op-
erators’ definition, we get

KαρK†
α =

⎛
⎜⎜⎜⎜⎝

〈α|D|α〉 〈α|D|α〉 · · · 〈α|D|α〉
〈α|D|α〉 〈α|D|α〉 · · · 〈α|D|α〉

...
...

. . .
...

〈α|D|α〉 〈α|D|α〉 · · · 〈α|D|α〉

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

dα dα · · · dα

dα dα · · · dα

...
...

. . .
...

dα dα · · · dα

⎞
⎟⎟⎟⎟⎠

= (mdα )�m,

where dα = 〈α|D|α〉, α = 1, . . . , t . Thus, we get that �(ρ) =∑
α KαρK†

α = �m. In addition, we can verify the completion
identity of IO � through the following steps. Noting that

K†
αKα =

⎛
⎜⎜⎝

|V1α〉〈V1α| � · · · �

� |V2α〉〈V2α| · · · �
...

...
. . .

...

� � · · · |Vmα〉〈Vmα|

⎞
⎟⎟⎠,
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we obtain that

∑
α

K†
αKα =

⎛
⎜⎜⎝

∑
α |V1α〉〈V1α| � · · · �

�
∑

α |V2α〉〈V2α| · · · �
...

...
. . .

...

� � · · · ∑
α |Vmα〉〈Vmα|

⎞
⎟⎟⎠

= I.

Finally, because the maximally coherent state �m can be
transformed into any pure coherence ϕm and the concatenation
of IOs is still an IO, we can always find an IO �′ to make the
equation �′(ρ) = ϕm hold. This completes the proof. �

It was shown in Ref. [34] that almost all states, except
for states whose density matrix contains a rank-1 submatrix,
are bound coherent under SIOs. Theorem 4 shows that there
exist bound states under SIOs such that the probability of
the coherent distillation by IOs can be reached up to 1, as
illustrated by Example 1. Here

ρ = 1
2 |ϕ1〉〈ϕ1| + 1

2 |ϕ2〉〈ϕ2|

= 1
4

⎛
⎜⎜⎜⎜⎜⎝

1 0 2
√

5
5

√
5

5

0 1 −
√

5
5

2
√

5
5

2
√

5
5 −

√
5

5 1 0
√

5
5

2
√

5
5 0 1

⎞
⎟⎟⎟⎟⎟⎠

=
(
I �

� V

)
⎛
⎜⎜⎜⎜⎝

1
4 0 1

4 0

0 1
4 0 1

4
1
4 0 1

4 0

0 1
4 0 1

4

⎞
⎟⎟⎟⎟⎠

(
I �

� V †

)
,

where

V =
(

2
√

5
5 −

√
5

5√
5

5
2
√

5
5

)

and � represents the all-zero matrix of appropriate size.
Next we remind the reader of the notion |Vj|i〉 denoted by

[16]

|Vj|i〉 :=

⎛
⎜⎜⎜⎝

〈 j|K1|i〉
〈 j|K2|i〉

...

〈 j|Km|i〉

⎞
⎟⎟⎟⎠ (31)

and the following lemma.
Lemma 7 (from [16]). Using the notion of Eq. (31), a

CPTP map � is a dephasing-covariant incoherent operation if
and only if there exists a conditional probability distribution
{r j|i} such that

〈Vj′|i|Vj|i〉 = r j|iδ j j′ ,

〈Vj|i|Vj|i′ 〉 = r j|iδii′ .

Corollary 1. The incoherent operation in Theorem 4 is a
dephasing-covariant incoherent operation.

Proof. With the construction of incoherent operators as
shown in Eq. (30), we can easily check that 〈Vj|i|Vj|i′ 〉 =
δii′ and 〈Vj′|i|Vj|i〉 = δ j j′ , when |Vj|i〉, |Vj′|i〉 �= 0, where i, i′ =
1, . . . , m and j, j′ = 1, . . . , d . We note that if

|Vj∗|i〉 =

⎛
⎜⎝�

...

�

⎞
⎟⎠,

then

|Vj|i〉 =

⎛
⎜⎝0

...

0

⎞
⎟⎠

when j �= j∗, where � represents a nonzero number, i ∈
{1, . . . , m}, and j, j∗ ∈ {1, . . . , d}, because nonzero elements
in each row of Kα for all α are in the same positions. We obtain
the equations

〈Vj′|i|Vj|i〉 = r j|iδ j j′ ,

〈Vj|i|Vj|i′ 〉 = r j|iδii′ ,

where if |Vj∗|i〉 �= 0, r j∗|i = 1; otherwise r j|i = 0, with i, i′ ∈
{1, . . . , m} and j, j′, j∗ ∈ {1, . . . , d}. �

Corollary 1 shows that DIOs also possess an opera-
tional advantage compared with SIOs, which is an unex-
pected conclusion and was not suggested in any previous
work.

IV. CONCLUSION

In summary, we have investigated the mixed to pure
transformation by using both stochastic IOs and IOs. Under
stochastic IOs, we first proved two equivalence conditions for
the case of coherence rank 2 and greater coherence rank of the
target pure state. Then we provided two sufficient conditions
with explicit expressions for the mixed to pure transformation
under stochastic IOs and IOs, respectively. We showed that
such sufficient conditions are in favor of the construction of
concrete operators of stochastic IOs and IOs. Our results show
that stochastic IOs and IOs for extracting pure coherent states
do not depend on the nonzero pure coherent subspace of the
initial state, which is the sufficient and necessary condition for
these transformations under stochastic SIOs and SIOs [28].
This means that IOs are generally stronger than SIOs when
we want to transform a mixed coherent state into a pure co-
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herent one. Our work enriches the study of the mixed to pure
transformation under stochastic IOs and IOs. In addition to the
problems of obtaining maximum probability under concrete
incoherent operators, it would be of interest to analyze the
equivalence condition of the mixed to pure transformation
under IOs.
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