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Continuous-variable (CV) quantum computing has shown great potential for building neural network models.
These neural networks can have different levels of quantum-classical hybridization depending on the complexity
of the problem. Previous work on CV neural network protocols required the implementation of non-Gaussian
operators in the network. These operators were used to introduce nonlinearity, an essential feature of neural
networks. However, these protocols are hard to execute experimentally. We built a CV hybrid quantum-classical
neural network protocol that can be realized experimentally with current photonic quantum hardware. Our
protocol uses Gaussian gates only with the addition of ancillary qumodes. We implemented nonlinearity through
repeat-until-success measurements on ancillary qumodes. To test our neural network, we studied canonical
machine-learning and quantum computer problems in a supervised learning setting—state preparation, curve
fitting, and classification problems. We achieved high fidelity in state preparation of single-photon (99.9%), cat
(99.8%), and Gottesman-Kitaev-Preskill (93.9%) states, a well-fitted curve in the presence of noise at a cost of
less than 1%, and more than 95% accuracy in classification problems. These results bode well for real-world
applications of CV quantum neural networks.
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I. INTRODUCTION

Continuous-variable (CV) quantum computing (QC) takes
advantage of the wave-like properties of particles. For ex-
ample, it can be realized by photonic quantum hardware
manipulating electromagnetic fields. Thus, CV QC is achiev-
able in quantum optics by utilizing continuous quadratures of
the quantized electromagnetic field [1], enabling the essential
steps in quantum algorithms [preparation, unitary manipula-
tion, and measurement of (entangled) quantum states]. CV
quantum algorithms have been developed for various appli-
cations, ranging from quantum field theory [2–4] to machine
learning [5]. Another interesting application of CV architec-
ture is in calculating the quantum averages using squeezed
states. This feature was studied in Ref. [6], where the advan-
tage of quantum averaging compared to a standard arithmetic
mean strategy was demonstrated.

It has recently been shown that CV is a good architecture
for building quantum neural network (QNN) models on quan-
tum computers [7]. The developed CV QNN architecture has
been applied to various practical real-world problems, e.g.,
function fitting, fraud detection of credit card transactions,
image classification of handwritten digits, data encryption
and decryption in a secure cryptography algorithm [8], and
entangled state detection [9]. In addition to these applications,
CV QNN has been utilized as the generator and discriminator
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in a CV quantum adversarial network (CV QGAN) [10] to re-
produce the data outputs of the calorimeters for data collected
in high-energy physics experiments at CERN. The authors
of Ref. [11] utilized a quantum convolutional neural network
(QCNN) for detecting quantum phase transitions in axial next-
nearest-neighbor Ising (ANNNI) models. While the QCNN
approach emphasized bolstering out-of-distribution general-
ization through a partial supervised strategy and showcased
resilience against barren plateaus [12], our work diverges by
focusing on CV quantum systems. This adaptation is partic-
ularly advantageous for scenarios such as optical systems,
enabling seamless integration into specific experimental se-
tups, thus streamlining hardware realization.

In the CV QNN model discussed in Ref. [7], a non-
Gaussian Kerr gate provides the nonlinearity required for
neural networks. However, experimentally realizing these
non-Gaussian operations is challenging due to their weakly
interacting nature. Therefore, we developed an alternative CV
QNN model in which nonlinearities are introduced through
measurements on ancillary qumodes following the proposal
in Ref. [13] based on repeat-until-success measurements. In
this paper, we propose a variational hybrid quantum-classical
circuit implementing a neural network that solves well-known
problems such as function fitting, state preparation, binary
classification, and image recognition. The quantum circuit
uses only Gaussian gates that can be implemented with optical
elements, such as beam splitters and squeezers. Thus, our CV
hybrid neural network can be realized experimentally using
current photonic quantum hardware.

Similar measurements on ancillary qumodes as a means
towards creating desired quantum states have been consid-
ered before. Single- and two-mode quantum gates acting on
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(a)

(b)

FIG. 1. Two-qumode Gaussian quantum circuit element intro-
ducing nonlinearity in a CV QNN. (a) The ancillary qumode, initially
in the coherent state |α〉anc = D(α) |0〉anc, is entangled with the pri-
mary qumode with a controlled displacement [CX (s)] gate. The
primary qumode goes through a feedback loop until the detector on
the ancillary qumode clicks [13]. (b) The CX (s) gate with parameters
given in Eq. (1).

photonic qubits were generated with single photon sources,
linear optical elements, and measurements of ancillary modes
[14]. To generate the cubic phase gate, nonlinear quadra-
ture measurements were implemented using ancillary states,
homodyne measurements, and nonlinear feedforwards based
on the measurement results [15]. Photon-number-resolving
(PNR) measurements were used for the production of mul-
timode Gaussian states, including cat (superpositions of
coherent states), ON, Gottesman-Kitaev-Preskill (GKP) [16],
NOON [17], and bosonic code states [18]. Cat and GKP states
were also created experimentally within a CV cluster state by
performing PNR measurements [19].

The structure of this paper is as follows. We begin with a
description of the CV neural network in Sec. II, followed by
a detailed account of our proposal to introduce nonlinearities
that avoids non-Gaussian gates. In Sec. III, we study several
problems involving varying degrees of hybridization between
quantum and classical neural networks. We conclude with a
discussion of the potential of this work in Sec. IV.

II. THE METHOD

A general CV QNN was discussed in Ref. [7]. It included
N-port linear optical interferometers consisting of beam split-
ter (BS), rotation (R), displacement (D), and squeezing (S)
gates. It also featured a non-Gaussian Kerr gate (�) intro-
ducing nonlinearity to the neural network. In our setup, we
have replaced this single-mode gate with a two-mode quantum
circuit element consisting of Gaussian gates and a photon
detector, which is experimentally feasible with current tech-
nology (shown in Fig. 1).

In more detail, our nonlinear circuit element is imple-
mented by adding an ancilla qumode in a coherent state
|α〉 = D(α) |0〉anc to the primary qumode, where α ∈ R. The
two modes are then entangled by a controlled displacement
[CX (s)] gate that uses the q-quadrature of the primary mode to

(a)

(b)

FIG. 2. Detailed CV neural network architecture for (a) single-
mode and (b) two-mode layer.

shift the qanc quadrature by sq, where s ∈ R. It is implemented
with beam splitters and a two-mode squeezer of parameters

cot 2θ = sinh r = −s . (1)

If the incoming state of the primary mode is |ψ〉 =∫
dq ψ (q) |q〉, then the final two-mode state is the entangled

state ∫
dq ψ (q) |α + sq〉anc ⊗ |q〉 . (2)

Then we use a photon detector to measure the photon num-
ber of the ancilla qumode. If the detector clicks, the process
is considered successful, and the primary qumode proceeds
to the next layer. For small α and s parameters, the ancilla
qumode decouples and the outgoing primary qumode is in the
(unnormalized) state∫

dq (α + sq)ψ (q) |q〉 , (3)

showing that we have effectively applied the non-Gaussian
gate α + sq. For larger values of the parameters, the expres-
sion for this effective gate is more complicated, but it is still a
non-Gaussian gate.

If there is no click in the detector, the output state of the
primary mode is approximately the same as the input state,
|ψ〉 for small α and s, changing slightly for larger values of the
parameters (with insertions of factors of e−|α+sq|2/2). We feed
the state back into the input port and repeat the process shown
in Fig. 1. This loop continues until the detector clicks and
the primary qumode can advance (repeat-until-success pro-
cess [13]). We fix the coherence parameter α of the ancillary
qumode, treating it as a hyperparameter and not a trainable
parameter. In our simulations, we set α = 1.

A detailed neural network architecture for single-mode and
two-mode layers is shown in Fig. 2. We create a multiple-
layer structure by arranging each layer as a building block of
the neural network with the gate variables (θ, φ, χ, x, α, β)
being free parameters, collectively denoted by �ζ . We want
to find �ζ such that the value of the cost function [C(�ζ )]
is minimum. This can be done using various optimization
techniques available in deep learning (for example, gradient
descent, stochastic gradient descent, and, most commonly, the
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Adam optimizer). The parameters are updated by the rule

�ζ −→ �ζ + η∇�ζ C(�ζ ), (4)

where η is the step size, also known as the learning rate.
This procedure continues until the model cannot modify the
cost function further. Then, the parameters associated with
the lowest observed cost function offer the best solution to
the given task. Note that the free parameters correspond to a
circuit; hence, the circuit is the solution.

In principle, only one layer (L) is sufficient to parametrize
every possible unitary affine transformation on N modes.
However, deeper architectures provide increased expressive
power, better learning capabilities, and a more efficient rep-
resentation of complex transformations.

To test our neural network, we studied various machine-
learning and quantum computation problems, namely, state
preparation, curve fitting, binary classification, and image
recognition with varying degrees of hybridization in quantum
and classical neural networks, as discussed in Sec. III.

We conducted our simulations using STRAWBERRY FIELDS

quantum computing software. The realization of the quantum
circuit element implementing nonlinearity depicted in Fig. 1
in a QNN setting turned out to be challenging. To obtain a
good approximation to our setup that could be implemented
with software available to us, we adjusted the coherent pa-
rameter of the ancillary qumode so that a single photon would
be detected in that mode with a high success probability. To
estimate the number of ancillary qumode measurements (or
feedback loops) necessary for the successful application of
the quantum circuit element, we utilized BOSONIC QISKIT soft-
ware [20] for simulating an elementary circuit and tracking
the number of measurements required for success in various
applications.

Sample results are illustrated in Fig. 3. Using the architec-
ture of the binary classification circuit discussed in Sec. III C
as a concrete example, we counted the number of repeated
ancillary qumode measurements required for a successful pass
of the primary qumodes during forward propagation through
the network. We plotted the success rates per layer for setups
utilizing various numbers of layers. Evidently, most success-
ful measurements occur at the first photon detection of the
ancillary qumode.

Due to the constraints in the STRAWBERRY FIELDS library,
we were compelled to perform postselection of a single Fock
state during the ancilla measurement step to collapse the
wave function, thus effectively implementing measurements
by photon-number-resolving detectors. It would also be in-
teresting to simulate photon detectors that cannot resolve
photon number and are widely available. This would alter
the effective nonlinear operation slightly (depending on the
choice of the laser intensity for the ancillary qumodes) but
would simplify the experimental setup. To demonstrate that
a high success rate can be achieved even without a photon-
number-resolving detector, we trained two distinct models
that performed multilabel classification on the MNIST hand-
written digit data set discussed in Sec. III D. The training
and testing loss values for these classical-quantum hybrid
models are presented in Fig. 4. Model 1 was designed to suc-
cessfully select the required state in the ancilla measurement

(a)

(b)

FIG. 3. Number of measurements necessary on the ancillary
qumode to achieve successful measurement for each quantum layer
of sample hybrid networks for binary classification, consisting of two
classical and (a) four or (b) eight quantum layers.

(a)

(b)

FIG. 4. Training and testing loss of MNIST classification models
with successful measurement of the ancilla within (a) one feedback
loop (Model 1) and (b) two feedback loops (Model 2).
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Homodyne
measurement

FIG. 5. CV QNN architecture for quantum state preparation. The
input to the network is the vacuum state, and at the end, a homodyne
measurement is performed.

on the initial attempt, whereas Model 2 was set up to fail
the first measurement attempt and succeed on the second
measurement. Even though the loss function and classification
accuracy experienced a slight decline at the end of training
from 97.25% to 96.49%, we were still able to train Model
2 successfully and achieve a reasonably high classification
accuracy for the four-class MNIST handwritten digit data set
classification.

III. CASE STUDIES

In this section, we develop CV QNN models for various
applications, including quantum state preparation (Sec. III A),
curve fitting (Sec. III B), binary classification of fraud and
genuine credit card transactions (Sec. III C), and multilabel
classification of MNIST handwritten digits (Sec. III D). In
order to observe the effect of the classical and quantum neural
network layers, we analyze both hybrid quantum-classical and
fully quantum layers.

We simulated our CV QNN models using the STRAWBERRY

FIELDS software platform [21]. The quantum machine-
learning toolbox application is built on top of it with
TENSORFLOW features [22]. We used the quantum circuit
simulator, optimized the algorithm, and trained the neural
network to obtain the desired results.

A. State preparation

The CV QNN model for quantum state preparation trains
a quantum circuit to generate a target quantum state. To this
end, we provide a canonical input state |�0〉 and target output
state |�t 〉 and aim to find out the circuit U (a unitary transfor-
mation) such that

|�t 〉 = U |�0〉 . (5)

For simplicity, we fixed the input state to be the vacuum,
|�0〉 = |0〉. We considered a basic single-mode architecture
of a quantum neural network with a fixed number of layers,
as shown in Fig. 5. As described earlier, our goal was to find
parameters �ζ determining a unitary U (�ζ ) such that U (�ζ ) |0〉 =
|�t 〉, or equivalently, | 〈�t |U (�ζ ) |0〉 | = 1. The fidelity of the
output states is defined in terms of the overlap between the
target and optimized states as

F = | 〈�t |U (�ζ ) |0〉 |2. (6)

Then, the cost function to be minimized can be defined in
terms of the fidelity as

C = |
√

F − 1| = || 〈�t |U (�ζ ) |0〉 | − 1|. (7)

It should be noted that a slightly different definition of the
cost function has been used before, C = | 〈�t |U (�ζ ) |0〉 − 1|,
which involves the phase of the output state. Including the
phase adds flexibility to the search space determining the
unitary U (�ζ ) which is lost if our definition (7) is used. How-
ever, this turned out not be an impediment in all cases we
considered. The advantage of using the definition (7) is that
the cost function can be deduced experimentally through the
Wigner function by performing homodyne measurement on
the output state at each optimization step.

In detail, to obtain C, we perform homodyne tomography
on the output state U (�ζ ) |0〉. We measure the quadrature Xφ =
1
2 (eiφa† + e−iφa), and obtain a series of output pairs (φk, xk )
(k = 1, . . . , N). They allow us to obtain an estimate of the
Wigner function of the final state, WU (ζ )|0〉(q, p). By compar-
ing with the Wigner function of the desired state, W|�t 〉(q, p),
we deduce the cost function C from the fidelity (overlap)

F = 2π

∫
dqd pWU (ζ )|0〉(q, p)W|�t 〉(q, p). (8)

To test the performance of the QNN, we prepared two differ-
ent states, the single-photon state |�t 〉 = |1〉 = a† |0〉 and the
cat state

|cat, θ〉 = 1√
2

[D(α0) + eiθD(−α0)] |0〉 , (9)

where θ, α0 ∈ R.
Since we were using STRAWBERRY FIELDS software, we

could quickly get the Wigner function after performing the ho-
modyne measurement. However, these Wigner functions are
incompatible with the commonly used efficient TENSORFLOW

framework to perform the optimization. Hence, we used the
PYTHON library Scipy [23] to optimize cost, as Scipy provided
the Nelder-Mead optimization technique [24]. This technique
is nongradient based and designed for high-dimensional mini-
mization, which worked best for our purposes as our goal was
to minimize the cost built from two-dimensional (2D) Wigner
functions obtained via homodyne detection.

We noticed that just in a few steps, the model started to
learn the state. For best results, we ran the model with a differ-
ent number of layers, as shown in Fig. 6. In these simulations,
we did not include any possible quantum hardware errors. A
small number of layers yields a higher cost, but fewer layers
require fewer gates and lead to fewer errors due to quantum
hardware imperfections. Ignoring such errors, as the number
of layers increases, the cost is lowered. Notice that the cost
starts to increase again beyond a certain number of layers
due to overfitting, e.g., for more than six layers in the case
of the single-photon state. There is an optimum number of
layers which would be important to determine by including a
realistic model of quantum hardware.

For the single-photon state, six quantum layers gave the
best results with a fidelity of 99.9%. The cost achieved after
optimization was 0.008 after 5000 steps. We used a cutoff
dimension of 6, and the maximum number of steps was
fixed at 5000. It should be noted that in the Nelder-Mead
optimization, the number of steps is determined by the differ-
ence between two consecutive cost values. This difference is
treated as another hyperparameter during the training process.
The result of comparing other numbers of layers is shown in
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FIG. 6. Value of cost function for different number of layers
for preparation of single-photon (blue circles) and cat (red squares)
states. Values averaged over five independent runs. Cutoff dimension
was set to 6 (10) for the single-photon (cat) state.

Fig. 7. We plotted the 2D Wigner function for two and six
layers to demonstrate the importance of the optimal number
of layers. We also showed the one-dimensional (1D) Wigner
function for different quantum layers. We integrated the 2D
Wigner function over the momentum using the Scipy library
to obtain the 1D Wigner function. The plot shows that the
results improve up to six quantum layers, and beyond that,
they worsen due to overfitting.

(a)

(b)

FIG. 7. Study of the effect of changing the number of layers of
the QNN for the preparation of a single-photon state. (a) 2D Wigner
function comparison for two and six quantum layers, with fidelities
78.3% and 99.9%, respectively. (b) 1D Wigner function for various
numbers of quantum layers. Six quantum layers produce the best
fidelity. The maximum number of steps was kept fixed at 5000 and
the cutoff dimension at 6.

FIG. 8. Preparation of an even cat state [Eq. (9) with α0 = 1.5,
θ = 0]. 2D Wigner function comparison for two and eight quantum
layers with fidelity 79% and 99.8%, respectively. A cutoff dimension
of 10 was used in both cases. Two (eight) layers were optimized in
2000 (9800) steps, resulting in a cost of 2.64 (0.03).

Turning to state preparation of the cat state (9), which is
a superposition of two coherent states, we concentrated on
the even cat state with α0 = 1.5 and θ = 0. As the cat state
is more complicated than the single-photon state, we had to
increase the cutoff dimension to 10. We achieved high fidelity
with eight quantum layers. The comparison of the 2D Wigner
functions of two and eight layers is shown in Fig. 8. We
obtained excellent fidelity of 99.8% with eight layers, and
after training, the cost was minimized to the value of 0.03
after 9800 steps. For comparison, with two layers, we obtained
fidelity of 79% with cost at 2.64 after 2000 steps.

We also prepared a realistic GKP state [16]. Ideal GKP
states are linear combinations of an infinite number of eigen-
states of the q-quadrature. We concentrated on the state

|GKP〉ideal =
∞∑

n=−∞
|q = 2n

√
π h̄〉 . (10)

However, such states are not normalizable and impossible to
create experimentally because they have infinite energy and
each component would require an infinite amount of squeez-
ing. For a realistic case, we applied an energy cutoff and
defined the realistic GKP state [25]

|GKP〉real = e−εa†a |GKP〉ideal . (11)

We chose ε = 0.1. Since this state is more complex than a cat
state, we had to increase the cutoff dimension even further to
15 and employ 15 layers. After 15 000 steps, we achieved a
fidelity of 93.9% at a cost of 1.1. The comparison between 10
and 15 layers is shown in Fig. 9.

Comparing with the fidelity of single-photon and cat states,
it should be noted that the cost for the number of layers
depicted in Fig. 6 is larger than 4. To lower the cost to levels
comparable with single-photon and cat states, more than 12
layers are needed. Due to computational resource limitations,
we could only go up to 15 layers. Considering more layers will
improve the results for GKP state preparation as the number
of learning parameters would increase. Another critical factor
affecting the complexity of the GKP state preparation is the
decay parameter (ε). The smaller this parameter is, the closer
we are to the ideal GKP state. Our computational resources
allowed us to go as low as ε = 0.1.
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FIG. 9. Preparation of a realistic GKP state [Eq. (11) with ε =
0.1]. 2D Wigner function comparison for 10 and 15 quantum layers
with fidelity 70.6% and 93.9%, respectively. A cutoff dimension of
15 was used in both cases. Ten (15) layers were optimized in 18 000
(15 000) steps, resulting in a cost of 4.87 (1.1).

To understand the effects of loss on state preparation,
we applied a loss channel operation to every qumode at the
completion of each quantum layer. This operation connects a
given qumode, created by a†, with an environmental qumode,
created by b†, which is initially in the vacuum state. At the end
of the operation, the latter is traced out. The corresponding
transformation is modeled by a beam splitting operation,

a �→
√

T a + √
1 − T b, (12)

where T represents the energy transmissivity. The effect of
this operation, leading to a decrease in overall fidelity due
to the introduction of loss in our simulations, is depicted in
Fig. 10. The average fidelity remains notably high for some
prepared states under a realistic loss scenario with T = 0.9.
As shown in Fig. 11, the single photon state exhibits ex-
ceptional performance, achieving an average fidelity of 92%,
down from peak fidelity of 96% at T = 1 (no loss). Cat states
drop to an average fidelity of 74%, down from a peak of
88% in the ideal case. The GKP state exhibits the lowest
performance, with average fidelity at T = 0.9 dropping to
69%, showing that a lot more layers are needed for a decent
performance.

B. Curve fitting

Next, we build a CV QNN in a supervised learning set-
ting to learn the relationship between input (x) and output
[ f (x)], also known as curve fitting. It is an essential part of

FIG. 10. Impact of transmissivity (T ) on fidelity for single-
photon, cat, and GKP states.

(a) (b)

(c) (d)

FIG. 11. Wigner functions of the single-photon state at trans-
missivity (T ) values of (a) T = 1, (b) T = 0.9, (c) T = 0.5, and
(d) T = 0.2, respectively. T = 1 corresponds to the noiseless case.

data analysis and a classic machine-learning problem. The
architecture for our CV QNN is shown in Fig. 12. We encoded
the classical input x, sampled from a noisy function f (x), as
the coherence parameter of the input qumode, |x〉 = D(x) |0〉.
The objective was to train the CV QNN to generate output
states |ψx〉 that have an expectation value of the quadrature
q close to f (x) [i.e., 〈ψx| q |ψx〉 ≈ f (x)] for a given input x.
We studied the noisy sine function. The data were prepared
as f (x) = f0(x) + � f , where � f is a normal distribution
with zero mean and standard deviation ε. The parameter ε

determines the amount of error present in the training data. We
chose the noisy sine function with f0(x) = sin x in the range of
x ∈ (−2, 2). We used six quantum layers in this process. The
training was done on 1000 steps with a Hilbert-space cutoff
dimension of 6. The training and test data were prepared as
tuples [xi, f (xi )], and xi was chosen uniformly at random in
the chosen interval. For training, we chose the cost function
to be the mean square error (MSE) value between the circuit
outputs and the desired function values,

C = 1

N

N∑
i=1

[ f (xi ) − 〈ψxi | q |ψxi〉]2. (13)

To learn about the performance of CV QNN, we studied
how the cost would change if we increased the number of
layers. This helped us determine the optimum number of

Encoding
of data Homodyne

measurement

FIG. 12. CV QNN architecture for curve fitting.
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(a)

(b)

FIG. 13. The effect of changing the number of layers on curve
fitting of a noisy sine function: (a) two layers, cost = 0.318, and
(b) six layers, cost = 0.008. 100 data points were used for training
and testing in 1000 steps with error parameter ε = 0.1 and cutoff
dimension 6.

layers required for the desired results. We started with a single
quantum layer and increased the number of quantum layers up
to ten. We kept the number of steps fixed at 1000 with 100 data
points and a cutoff dimension of 6. We used the Adam opti-
mizer to minimize the cost function value. Some interesting
results of how testing data behaved with a changing number
of layers are shown in Fig. 13. The final result of the study is
summarized in the cost vs the number of layers in Fig. 14. We
found that the cost function value decreases as we increase the
number of layers, making the curve fit better. However, this
improvement saturates around six quantum layers. One also
has to keep in mind that more layers corresponds to a greater
number of training parameters. Hence, finding a number that
yields good results and keeps the training parameters manage-
able is important. In the case considered here, optimal results
were obtained with six layers.

We also studied how the noise present in data affected our
results by varying the error parameter ε discussed above. We
kept the number of steps fixed at 1000 with 100 data points, a
cutoff dimension of 6, and six quantum layers. The results of
ε = 0.2, 0.5 are shown in Fig. 15. The value of cost increases
from 0.037 to 0.232 as we increase the error from ε = 0.2 to
ε = 0.5, and the fitting worsens as we increase the noise; this
is expected as the model is training on noisy data. Although
the fitting is getting worse with increased noise, the CV QNN
still performs well in learning the shape of the sine function.
The complete study of the dependence of the cost function on
data noise (ε) is shown in Fig. 16.

FIG. 14. Cost function values vs the number of layers plot ob-
tained after performing learning on our CV quantum neural network
model for fitting the noisy sine function curve. Each data point in the
scatter plot corresponds to the five independent runs average. The
training was done for 1000 steps with 100 data points (with ε = 0.1)
and a cutoff dimension of 6.

C. Binary classification

For the third problem, we constructed a CV quantum-
classical hybrid neural network to demonstrate its effec-
tiveness in detecting fraudulent transactions on credit card
purchase data. This is a binary classification problem, a
canonical problem in machine learning. The main reason for

(a)

(b)

FIG. 15. The effect of increasing the error in the data on curve
fitting of a noisy sine function: (a) ε = 0.2 and cost = 0.037, and
(b) ε = 0.5 and cost = 0.232. 100 data points were used for training
and testing in 1000 steps with cutoff dimension 6 using six quantum
layers.
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FIG. 16. Plot of cost function value vs noise in data determined
by the parameter ε, obtained after learning on a QNN to fit the noisy
sine function curve. Each data point in the scatter corresponds to the
average of five independent runs. The training was done for 1000
steps with 100 data points, a cutoff dimension of 6, and using six
quantum layers.

Credit Card transaction data 

Genuine (G)Fraudulent (F)

F1 F2 G1 G2 G3

Training  
dataset 

Testing dataset 

FIG. 17. The description of data preparation done for the binary
classification problem. Note that the smaller parts of fraudulent and
genuine transactions are denoted by the letters F1 and F2 and G1
and G2, respectively. The size of G1 and G2 are equal but three
times more than F1 and F2 because of 3:1 undersampling. In the
end, the training data set consists of F1 and G1, and the testing data
set consists of F2, G2, and G3.

including the classical layers in this problem is that we want
to encode the data with the help of classical layers.

The credit card transaction data is taken from Kaggle [26],
a publicly available database. Each transaction was flagged as
either genuine or fraudulent with 28 features. Only 0.172% of
transactions were fraudulent out of a total number of 284 807.

First, we split the data into training and testing parts. In the
training data set, we undersampled the genuine transactions
by selecting them randomly and ensuring that the genuine-
to-fraudulent transaction ratio was 3:1. All the remaining
genuine transactions were added to the test data set. This data
preparation is explained in detail in Fig. 17.

The network architecture is shown in Fig. 18. Four fully
connected feed-forward classical layers are followed by five
quantum layers with four modes (two are ancillary qumodes).
The credit card data is fed into the first classical layer of
size 10, followed by two hidden layers of the same size. The
last classical layer of size 12 controls the gate parameters in
the first quantum input layer. This layer marks the beginning
of the quantum part of the neural network. And because we
are letting the last classical layer control the gate parame-
ters, the quantum layer is the encoding layer. We start with
four vacuum qumodes. These layers contain two single-mode
squeezing gates S, one interferometer gate U , two displace-
ment gates D, and two CX gates, which provide nonlinearity
through measurement on the ancilla qumode. At the end of
the encoding quantum layer, a photon number measurement
is performed on the two ancillary qumodes. The two pri-
mary qumodes are allowed to advance when the detectors on
the ancillary qumodes click. If they do not click, the main
qumodes are fed back into the quantum circuit, as shown in
Fig. 18. The feedback loops are repeated until the detectors
on the ancillary qumodes click, thus implementing the de-
sired nonlinearity in the CV quantum neural network [13].
We repeat this process for four more hidden layers. Finally,
we measure the photon number on the two output primary
qumodes that emerge after the last quantum output layer. If we
find the photon in the first qumode, we call it a genuine trans-
action; if we find it in the second qumode, it is a fraudulent
transaction.

Classical layers

Quantum layers

Encoding layer Hidden layers

Genuine

Fraudulent

FIG. 18. CV hybrid NN for fraudulent transaction detection in credit card data. The parameters of each gate in the encoding layer are
obtained from the values of the last classical layer.
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(a)

(b)

FIG. 19. Results of fraud detection in credit card transactions:
(a) confusion matrix showing accuracy of 95.48%, and (b) ROC
curve with area under it 0.9. The CV hybrid NN had two classical
and four quantum hidden layers.

The training was performed using the Adam optimizer with
a batch size 24. We minimized the cost function defined by

C = �i∈data (1 − pi )
2, (14)

where pi is the probability of detecting a photon for input i
in the correct mode. We used a cutoff dimension of 8 in each
mode for 10 000 batches. Once the model was trained, we
tested it by choosing a threshold probability closest to the
optimal receiver operating characteristic (ROC) required for
a transaction to be classified as genuine.

There are various ways to measure the accuracy of binary
classification problems; for this case, we used a confusion ma-
trix and ROC curve. The confusion matrix is a table containing
four actual and predicted value combinations. The four quad-
rants of the confusion matrix contain results for true positive
(TP), false negative (FN), false positive (FP), and true negative
(TN) events. Various quantities of interest can be deduced
from the confusion matrix, such as accuracy, precision, recall,
and specificity. We calculated accuracy using the matrix

Accuracy = T P + T N

T P + T N + FP + FN
. (15)

The confusion matrix is shown in Fig. 19. The accuracy of the
model calculated from the confusion matrix came out to be

74.15

95.48 93.21
85.14

Number of layers - classical : quantum

Ac
cu

ra
cy

0

25

50

75

100

2:2 2:4 2:6 2:8

FIG. 20. Plot showing the effect of changing the number of clas-
sical and quantum layers in a hybrid CV NN on the accuracy of the
results for binary classification.

95.48%. The TP quadrant shows that the model predicts the
genuine data correctly more than 95% of the time. The number
in the second quadrant representing FN events appears to be
high. However, credit card companies can alert their users
about such transactions, and by verifying these transactions,
the FN rate can be brought down. The essential quadrant
to consider is the third one that represents FP events, i.e.,
the fraudulent transactions that are incorrectly predicted as
genuine. Fortunately, this number is very low for the trained
model. Also, the testing data set (which was used to plot
the confusion matrix) contains a tiny number of fraudulent
transactions, all identified almost correctly, as the percentage
of fraudulent transactions in the testing data set matches the
fourth quadrant.

The ROC curve is an essential tool in the analysis of a
classification model. It shows the trade-off between the TP
and FP rates at different threshold values. It can help de-
termine the optimal threshold for a given model and aid in
evaluating the model’s overall performance. The solid black
circle in Fig. 19(b) represents the ideal binary classifier, at TN
rate of 1 and FN rate of 0, whereas the solid black triangle is
the closest point to the optimal within the chosen threshold.
The area under the curve (AUC) is 0.90, which is close to the
ideal value of 1. The AUC value is a good measure of the
separability of the data being classified.

It should be pointed out that the number of features of
the credit card transaction data we are interested in is equal
to the number of parameters in the quantum circuit used
for data encoding. Therefore, we investigated the role of the
classical layer in this hybrid quantum-classical neural net-
work architecture. We kept the classical layers constant at 2
and changed the quantum layer at an increment of 2. The
results are plotted as accuracy calculated from the confusion
matrices vs different layers in Fig. 20. There is an optimal
number of hybrid layers scenario which give out the best
results. When we use two classical and two quantum layers,
the accuracy is around 74%, meaning there are not enough
layers for learning. However, when we increased the quantum
layers to eight, the accuracy went slightly down, indicating
the overtraining for a simple case of binary classification. We
also understand that hyperparameters play a major role in
training, but we found this for the set of hyperparameters we
chose.

042414-9



BANGAR, SUNNY, YETER-AYDENIZ, AND SIOPSIS PHYSICAL REVIEW A 108, 042414 (2023)

Quantum layers

0

1

2

3

Classical layers

0

1

3

2

H
id

de
n 

La
ye

r

H
id

de
n 

La
ye

r

En
co

di
ng

 la
ye

r

FIG. 21. CV hybrid NN architecture used for MNIST image
classification.

D. Multilabel classification

Extending the results for binary classification, we devel-
oped a CV quantum-classical hybrid NN to classify MNIST
handwritten digits [27] into their respective classes. The
MNIST data set comprises 60 000 training images and 10 000
testing images, each normalized to 28×28 pixels in size
and grayscale in color. Each data point is labeled with the
corresponding digit (0–9). Our current hardware limitations
allowed our model to train and classify images up to four
classes (0–3).

The network architecture we used is illustrated in Fig. 21
with details of the encoding layer in Fig. 22(a) and the
quantum layers in Fig. 22(b). The network consists of fully
connected feed-forward classical neural network layers that
take the input data, feeding into an encoding quantum layer,
followed by regular quantum layers that can be repeated
as needed. Each quantum layer comprises several primary
qumodes, each representing a class of the MNIST data set,
as well as ancillary qumodes that implement nonlinearity.

During training, we calculated the probability or accuracy
of classification by considering the overlap of the final state
of the circuit, which comprises only the primary qumodes,
with the one-hot encoded ground truth value of the training
data sample. We counted all probabilities corresponding to
nonzero values of the Fock number of the correct class to-
wards the accuracy, indicating a “click” or “nonclick” on a
detector. The loss was then calculated using Eq. (14). For
training, we used the Adam optimizer with a batch size of
16 and a decaying learning rate beginning at 0.001 and de-
creasing by a factor of 0.9 every 5000 steps. During validation
or testing runs, we interpreted the probabilities corresponding
to each primary qumode as logits. The predicted class was
determined by selecting the logit with the highest value.

To assess the versatility of our model, we performed
multiple experiments, exploring different configurations of
classical and quantum layers in the hybrid model. We con-
sidered a range of ratios, starting from one classical layer

S

S

S

S

(a)

S

S

S

S

(b)

FIG. 22. MNIST hybrid NN. (a) Encoding layer of MNIST hy-
brid neural network that embeds the output of the classical layers into
the quantum circuit. (b) Detailed architecture of the quantum layer.

and five quantum layers (1:5) up to five classical layers and
one quantum layer (5:1). In total, we examined eight different
layer ratios, including ratios such as 2:2, 2:6, and 2:8. The
classical layers comprised 128 nodes each, except for the final
layer (or only layer in the case of a single classical layer
model), which had the same number of nodes as required by
the quantum encoding layer. The latter is determined by the
formula 7p − 2, where p denotes the number of classes or
primary qumodes.

The loss function values over the epochs for select ratios
of classical and quantum layers are displayed in Fig. 23. All
of our models converged within 100 epochs and demonstrated
successful training and testing, achieving testing accuracies of
96.47% ± 0.86%. Interestingly, we did not observe a signifi-
cant impact on changing the number of classical and quantum
layers. Nevertheless, our hybrid networks demonstrated high
levels of accuracy for the four-class MNIST classification
problem.

IV. CONCLUSION

We proposed CV QNN models that can be realized ex-
perimentally. We introduced a quantum circuit element that
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(a)

(b)

(c)

FIG. 23. Training and testing loss plots for select ratios of classi-
cal and quantum layers, networks (a) 1:5, (b) 3:3, and (c) 5:1, with the
first (second) number indicating the number of classical (quantum)
layers.

involves an ancillary qumode with a controlled-X, i.e., CX,
gate on the primary qumode. For a good success rate, it
relies on repeat-until-success measurements of the photon
number of ancillary qumodes [13]. It offers a simple and
feasible solution to introducing nonlinearity using current
photonic quantum hardware, considering the high complexity
of implementing non-Gaussian operators experimentally. Our
study demonstrated that our experimentally realizable circuit
element could efficiently solve many machine-learning and
quantum computation problems.

It would be interesting to test our CV quantum al-
gorithms on photonic quantum hardware. Unfortunately,
currently available cloud-accessed photonic quantum devices

have limitations that prevent implementation of the algo-
rithms discussed here. A prominent example is Xanadu’s
cloud-accessed Borealis quantum chip that includes squeez-
ers, beam splitters, and interferometers. While the parameters
of the interferometers can be modified, the parameters of
the squeezers are fixed. This prevents implementation of
our CV QNN which requires squeezing parameters that can
be updated. These limitations on current photonic quantum
hardware highlight the importance of codesign of quantum
hardware and software. Codesign is critical in overcoming
hardware limitations and addressing efficient use of limited
resources. We are exploring the possibility of collaborating
with a national laboratory or university partner with photonic
quantum computing capabilities in order to experimentally
test our model.

We created a CV quantum circuit that can prepare a single-
photon state with 99.9% fidelity, a cat state with 99.8%
fidelity, and a GKP state of fidelity 93.9%. In Ref. [28],
they performed the state preparation using CV QNNs and
use the Kerr gate for nonlinearity, making the entire process
experimentally hard to achieve. However, our CV QNN can
prepare the states in a way that can be realized experimentally.
Although we could not achieve high fidelity for the GKP
state because of the high computational requirements, we
would need a higher cutoff dimension with more layers and
optimization steps, leading to numerous training parameters
for preparing such a complex state. However, it can be done,
in principle, using high computational resources. GKP states
could be a key factor in creating a scalable photonic fault-
tolerant quantum computer [29]. We delved into the impact
of noise, particularly loss, on quantum state preparation and
discerned that different states respond variably to noise, with
an overall fidelity reduction in all cases. Single-photon and cat
state preparations performed well under realistic loss, whereas
GKP states exhibited low performance under the influence
of loss. Looking ahead, it is essential to investigate strate-
gies to improve the fidelity of GKP states in the presence
of loss. This could involve exploring novel quantum error
correction techniques to mitigate the impact of loss and ex-
tending the study to other types of noise and losses, thus
broadening our understanding of quantum state preparation
in noisy environments. For example, it is worth exploring us-
ing the continuous-variable quantum erasure-correcting code
introduced in Ref. [30], which is based on experimentally
realizable linear optical elements.

We developed models (from CV QNNs) capable of fitting
functions using noisy data sets. We thoroughly analyzed the
layers and noise effects on the curve fitting. As we increased
the noise five times, the accuracy only went down by 24%.
Our model could still learn and accurately reproduce the
curve’s shape. This insight is valuable as our model can per-
form well even with noisy data sets. We encountered some
challenges while attempting to approximate complex func-
tions using our hybrid model for curve fitting. We discovered
that these functions required a higher cutoff dimension and
more layers to achieve a lower cost. This, in turn, neces-
sitated additional computational resources for fitting more
complex functions. Despite the issues, we successfully per-
formed curve fitting on various functions such as sine decay.
It would be interesting to further study how quickly the QNN
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learns compared to its classical counterpart based on the com-
plexity of the function and available data points for training.
For the sine function we studied, the quantum and classical
circuits reach the same accuracy after training, although there
has been some work showing that with few training data, the
quantum circuits could learn faster [31]. They do not provide
an advantage over classical machine learning, but it has been
argued that quantum circuits can outperform their classical
counterparts under certain assumptions. The importance of
data in quantum machine learning has also been studied; see,
e.g., Ref. [32], where it was discussed how one could achieve
quantum advantage based on chosen data and other machine-
learning techniques.

The binary classification problem achieved high classifica-
tion accuracy, with an AUC score of 0.9 and accuracy of more
than 95% on a highly unbalanced data set. Similar work has
been done to study fraud detection in credit card transactions
using the quantum support vector machine [33]. They used
a quantum-classical method to select the best features for the
training process. They also focused on the importance of using
quantum machine learning in selecting these features to im-
prove the model’s accuracy, which complements the classical
approach in finance.

Image recognition done on the MNIST classification model
can classify handwritten digits with up to 97% accuracy. We
did not observe a significant change in the results as we
varied the mix of classical and quantum layers. Hence, fu-
ture research could investigate the efficacy of quantum layers
in hybrid neural networks and quantum neural networks in
general. Quantum computation has the potential to provide
exponential speedup over classical computation for certain
problems, and quantum layers can exploit this speedup to
perform computations more efficiently than classical layers
for tasks that can benefit from quantum algorithms. Quantum
layers can also leverage the properties of superposition and
entanglement to process and represent information in ways
that are not possible with classical layers. Quantum layers
can also be utilized as nonlinear feature mappings that are
challenging for classical layers. Quantum feature maps can
be used to transform input data into higher dimensions for
richer representation to later be utilized by classical neural
networks, leading to potentially more accurate classification.
Moreover, even though CV QGANs (quantum generative ad-
versarial networks) have been previously studied (see, e.g.,
Ref. [10]), it would be interesting to explore the performance
of CV QGANs utilizing our proposed experimentally feasible
setup. The proposed prototype of QGANs in Ref. [10] requires
the use of non-Gaussian gates within its quantum layers for
both the quantum generator and the quantum discriminator.
Since our prescribed quantum layer only requires Gaussian
gates, we can simulate the effectiveness of an experimentally
viable QGAN.

An important issue to address is benchmarking the per-
formance of QNNs and identifying advantages over their
classical counterparts. This has been addressed in the case
of discrete-variable (DV) quantum computing. The authors of
Ref. [34] compared the expressibility of classical and quan-
tum neural networks by calculating effective dimensions for
different cases. They showed that QNNs have higher effective
dimensions and train faster than their classical counterparts.
They used the Fisher information spectrum to demonstrate
the resilience of QNNs in terms of barren plateaus and the
problem of vanishing gradients. It is important to perform
a similar study with CV QNNs and benchmark the various
models considered here in terms of an appropriate measure,
such as effective dimension. A related study has been per-
formed on barren plateaus in bosonic variational circuits [35].
They used an energy-dependent circuit to prepare Gaussian
and number states. It would be interesting to extend this to
other problems in quantum machine learning by calculating
effective dimensions for different models and comparing them
with classical as well as DV quantum models. We hope to
report on progress on these issues in the near future.

While we have concentrated on quantum optical systems,
there are other promising candidates for CV QC. One such
platform is based on microwave quantum systems, also known
as circuit QED (cQED), in which nonlinearities are introduced
through Josephson junctions [36]. They have been shown to
lead to superpositions of Fock states [37], cat states [38,39],
and GKP states [40]. Through a superconducting nonlinear
asymmetric inductive element (SNAIL), a universal set of
gates can be implemented for CV QC [41]. Experimental
challenges remain, as high resonator quality factors [O(105)]
are needed [42], as well as O(ns) pulse synthesis resolution
[43]. Nevertheless, it is an interesting avenue to explore for
the CV QNNs discussed here.

In conclusion, with our proposed CV quantum algorithm,
we have obtained promising results in solving a wide range
of machine-learning problems. The nonlinear quantum circuit
element we introduced, which was based on an earlier pro-
posal for universal CV quantum computing [13], offers an
experimentally feasible solution to introducing nonlinearity
using current photonic quantum hardware, avoiding the high
complexity in experimentally realizing non-Gaussian opera-
tors.
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