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Multimode non-Gaussian secure communication under mode mismatch
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In this paper we analyze entanglement-based (EB) continuous-variable (CV) quantum-key distribution (QKD)
with bright multimode non-Gaussian light. Our analysis is centered around the role of non-Gaussianity in
mitigating the excess noise arising due to the mismatch between the signal modes and the local oscillators
used for measurements. To be specific, we consider the non-Gaussian resources generated by single-photon
subtraction and zero-photon catalysis applied on a two-mode squeezed vacuum (TMSV) state. We show that,
at a given strength of the mode-mismatch noise, zero-photon catalysis leads to the maximum transmission
distance, compared to the TMSV. However, considering the unavoidable issue of photon loss in the linear optical
scheme for implementing zero-photon catalysis, our results hints at the single-photon-subtracted TMSV being
the optimal choice for maximizing the transmission distance in EB CV QKD.

DOI: 10.1103/PhysRevA.108.042412

I. INTRODUCTION

Encryption and decryption of messages between two dis-
tant parties have been of great interest over a long period
in modern scientific endeavors [1,2]. While classical pre-
scriptions are secure up to technical limitations in obtaining
prime divisors of a large number [3], quantum protocols rely
upon the fundamental laws of nature [4–9]. Moreover, recent
advances indicate the vulnerability of classical cryptography
further [10], thereby pointing towards the indispensability of
quantum cryptography, which provides security beyond the
scope of classical physics with both asymptotic [11–17] and
finite resources [18–23].

Over the past three decades there have been extensive stud-
ies on cryptographic aspects of quantum systems, in particular
generating and distributing a quantum key or password known
as quantum key distribution (QKD) [24]. Communication pro-
tocols involving quantum systems could be broadly classified
into two groups, discrete variable (DV) QKD [4,5] and con-
tinuous variable (CV) QKD [6–9]. While DV QKD requires
expensive single-photon sources, CV QKD protocols are read-
ily implementable within the current technology. Nonetheless,
CV protocols have been proved to be unconditionally secure
against the most general collective attack and have been ex-
perimentally implemented [25–32].

Although quantum optical entangled states with low en-
ergy are the ideal choices for performing QKD, it is always
challenging to control and manipulate such microscopic sys-
tems in practice. On the other hand, classical light beams are
generally multimode, bright (intense), and easy to operate but
are devoid of quantum character. This often sets off a trade-off
between quantumness and macroscopicity of physical systems
[33], two practical concerns for performing tasks outside the
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classical domain. In recent times, there have been numer-
ous findings revealing interesting quantum features of such
macroscopic systems [34–40].

Another compelling factor of such multimode light is that
for such light fields all the modes do not always match the
local oscillators used for the quadrature measurements. As a
consequence, the excess unmatched signal modes yield addi-
tional undesired noise in the quadrature value. One can still
perform QKD using such multimode light fields under this
type of mode mismatch if the field energy is low, i.e., it con-
tains a small number of photons as in that case the additional
noise could be suppressed by making the local oscillators
very intense [41]. However, when the source light becomes
bright (high average photon number) additional noise due to
mode mismatch plays a significant role in reducing key length
[42,43] as well as serving as a security concern [44]. However,
it must be noted that previous analyses in this context were
primarily restricted to the Gaussian premises only.

On the other hand, over the past decade, authors have
pointed out the efficiency of various non-Gaussian operations
in CV QKD [45–54]. In particular, non-Gaussianity induced
by photon subtraction [45,47,48,52] or catalysis [51,53,54]
enhances the distance between the parties and provides ro-
bustness against the detector inefficiency. However, it remains
an open question whether such non-Gaussian operations have
any practical impact on the macroscopic optical systems that
play an important role in quantum information processing
with optical resources [55]. It is quite interesting to analyze
such non-Gaussian aspects of CV QKD with macroscopic
light.

In the present paper we analyze the QKD with multimode
non-Gaussian light under mode mismatch between the source
and the detectors. We consider the entanglement-based proto-
col for key distribution with no-switching assumption [56] as
it yields more distance [57]. In this protocol, two parties gen-
erate a key by performing heterodyne (instead of homodyne)
measurements on the shared entangled state of light. Although
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FIG. 1. (a) Schematic of the EB QKD protocol with multimode non-Gaussian light under mode mismatch. The matched (unmatched)
signal modes are represented by red solid (dashed) lines coming out of the green (red) box of the multimode-squeezed-light generator. First,
the desired non-Gaussian operations (blue box) are performed only on the matched signal modes (green box) at on Alice’s side. Subsequently,
both Alice and Bob follow the rest of the QKD protocol (as discussed in the text) using balanced heterodyne measurements that use a balanced
(50:50) beam splitter and two homodyne detectors (with efficiency η). (b) Description of the non-Gaussian operations for a single signal
mode. First the incoming signal is mixed with an ancilla vacuum in an unbalanced beam splitter (with transmittivity T ). The T needs to be
chosen suitably to optimize the performance. Subsequent projection of the outgoing ancilla onto a photon-number state yields the desired
non-Gaussian operation on the outgoing signal mode. Projection along |0〉〈0| leads to zero-photon catalysis, while projection along |1〉〈1|
yields single-photon subtraction on the outgoing signal.

there are many ways of introducing non-Gaussianity to a
two-mode squeezed vacuum (TMSV) state, here we consider
only single-photon subtraction and zero-photon catalysis as
they appear to yield optimal results [58]. We show that both
the single-photon-subtracted TMSV (1PSTMSV) and zero-
photon-catalyzed TMSV (ZPCTMSV) states considerably
enhance the transmission distance, compared to the Gaussian
case (TMSV), at all strengths of noise due to mode mismatch.
In particular, the ZPCTMSV yields the maximum transmis-
sion distance of approximately 160 km. However, considering
the effect of photon loss, a very natural phenomenon in zero-
photon catalysis, we find that the 1PSTMSV appears to be
the optimal non-Gaussian resource in entanglement-based CV
QKD with a maximum distance of approximately 70 km.

Our paper is organized as follows. In Sec. II we dis-
cuss the basic protocol for the entanglement-based (EB)
scheme for CV QKD. We also discuss the generation of
non-Gaussian resources. In Sec. III we briefly describe the
multimode-homodyne measurement under mode mismatch
and its ramifications in the case of heterodyne measurements.
We also provide a brief description of the choice of mode-
mismatch noise. Section IV provides a concise description
of the effect of mode mismatch on the entanglement for a
Gaussian state. Section V contains an analysis of the secured
key rate for both the Gaussian and the non-Gaussian cases.
We first discuss the role of non-Gaussianity in maximizing
the transmission distance followed by an analysis of the de-
pendence of key rate upon detector inefficiency. In Sec. VI
we discuss a physical situation where the performance of
the ZPCTMSV could be compromised. We summarize our
observations in Sec. VII.

II. PROTOCOL

In Fig. 1 we describe the schematic for the entanglement-
based scheme for generating a quantum key with multimode
non-Gaussian bright light under mode mismatch (when some

of the source modes do not match the local oscillators). The
protocol could be understood in the following way.

Step 1. Alice first generates multiple pairs (numbers M+N)
of the TMSV state. She keeps one mode from each pair to
herself (solid line) and she sends the other mode to a distant
party Bob (dashed line). Of all the modes only M modes
match the local oscillators and the remaining N modes do not
match.

Step 2. Alice then performs the desired non-Gaussian
operations, i.e., the zero-photon catalysis and single-photon
subtraction on each of the M matching modes (the vertical
rectangular box) while the other N modes remain intact.

Step 3. Subsequently, Alice performs heterodyne measure-
ment (measuring both x and p quadratures) on the incoming
modes. The data set corresponding to the M matching modes
leads to the quadrature value. However, the N remaining un-
matched modes lead to the additional noise (see Sec. III A).

Step 4. Bob also performs heterodyne measurement on all
the modes he receives in a similar fashion, where M modes
match the local oscillators and N modes do not match.

Step 5. After generating the data set (measurement out-
comes), both Alice and Bob go for the postprocessing. Here
they perform privacy amplification and then evaluate the final
secured key rate.

We also elaborate a simple linear optical model for per-
forming the desired non-Gaussian operations for a single
signal mode [Fig. 1(b)]. The schematic is described as follows.

(i) Each of the incoming signal modes is fed to one of the
inputs of a passive beam splitter (BS) with transmittivity TBS

while the other input is left in the vacuum (ancilla mode). The
transmittivity TBS describes how much light is passed through
the BS. For example, TBS = 0.9 stands for 90% transmission
and 10% reflection.

(ii) On the outgoing ancilla mode, Alice performs
a photon-detection measurement using a photon-number-
resolving detector; the measurements are described in
terms of the set of projective operators {�k = |k〉〈k| : k =
0, 1, . . . ,∞}.
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(iii) Upon detection of k photons in the ancilla mode, the
outgoing signal mode becomes k-photon subtracted. We con-
sider two particular choices of k that give rise to single-photon
subtraction and zero-photon catalysis [45,47,48,51–54].
Our aim is to analyze these cases to understand the role
of these de-Gaussification operations in the present context.
These cases are as follows.

Case k = 0. In this case the outgoing ancilla is projected
along the state |0〉〈0|. This could be seen as if no actual photon
is taken from or added to the signal mode. This is referred to
as zero-photon catalysis [51,53,54].

Case k = 1. In this case the outgoing ancilla is projected
along the state |1〉〈1|. In a similar way this could be seen as a
single unit of the photon being taken out of the signal mode,
which is known as single-photon subtraction [45,47,48,52].

(iv) The process of photon subtraction is probabilis-
tic where the probability of k photon subtraction is given
by P(k) = 1

μ2
τ 2k (1−TBS )k

(1−τ 2TBS )k+1 , where μ = cosh r and τ = tanh r.
The variance matrix for the k-photon-subtracted TMSV

is given by (Appendix B) V (k) =
(

x(k)I z(k)σ3

z(k)σ3 y(k)I

)
, where

I is the 2×2 identity matrix, σ3 = diag(1,−1) is the
Pauli matrix, x(k) = 2(1+k)

1−τ 2TBS
− 1, y(k) = 2(1+kτ 2TBS )

1−τ 2TBS
− 1, and

z(k) = 2
√

TBSτ (1+k)
1−τ 2TBS

. However, the coefficient z(k) as shown here
differs from that of Ref. [48].1

III. MULTIMODE QUADRATURE MEASUREMENT
UNDER MODE MISMATCH

A. Multimode homodyning under mode mismatch

Let us first consider the basic outline of homodyne detec-
tion of a multimode light with the mode mismatch elaborated
in a simple diagram as in Fig. 2. Suppose the emitter emits
M signal modes ai that match the M local oscillators αi

(i = 1, 2, . . . , M). It also emits N signal modes b j , which are
mixed with N vacuum modes Vj ( j = 1, 2, . . . , N) in the BS.
For the sake of simplicity, we consider balanced homodyne
detection, i.e., we use a 50:50 BS.

We consider that the detectors can detect the additional
modes with efficiency ε, i.e., the detector D1 can register
the average photon number as n1 = ∑

k a′†
ka′

k + ε
∑

l b′†
l b′

l ,
where primed operators correspond to the respective output
modes of the BS. In a simple and straightforward manner
it could be shown that in the presence of this mode mis-
match the measured quadrature for the signal modes changes
as [42] Ri → Ri + ε

αi

∑
j (b

†
jVj + b jV

†
j ), leading to the vari-

ance �Ri → �Ri + ε2

α2

∑
j〈b†

jb j〉. Since there are M matched
modes, the normalized variance per mode is obtained by di-
viding the measured result by the factor M. Furthermore, for

1We note that in the expression of zk in [48], a factor of 2 is missing.
This additional factor of 2, as shown here, could be easily appreciated
by a comparison with the variance of the TMSV in the shot-noise
unit (the ground-state quadrature variance is unity). The case of
the TMSV could be obtained within the present setup by choosing
TBS → 1 and k → 0. Detailed and explicit results are presented in
Appendix B.

a1

a2.
.
aM

b1

b2.
.
bN

α1α2.αMV1V2.VN

D1

D2

FIG. 2. Schematic of homodyne measurement of a multimode
light with mode mismatch. Various lines correspond to incoming
light, i.e., signal modes (black lines) and local oscillators (blue lines),
and outgoing light, i.e., the signal to D1 (red lines) and the signal to
D2 (green lines). Solid and dotted lines correspond to the matched
modes and the unmatched modes, respectively. Here D1 and D2

are the photon-number-resolving detectors. The BS (slanted narrow
rectangular box) is considered to be balanced (50:50).

the sake of simplicity, we consider that the additional (un-
matched) modes are equally strong, i.e., 〈b†

jb j〉 = 〈b†
kbk〉 =

n̄ ∀ j, k. As a consequence, the normalized variance becomes
[42]

vi → vi + Nε2

Mα2
n̄ = vi + δ, (1)

where δ is the mode-mismatch noise (Appendix A).

B. Multimode heterodyning under mode mismatch

Here we consider heterodyne measurement instead of ho-
modyne measurement. In Fig. 3 we present the schematic
difference between homodyne and heterodyne measurements.

FIG. 3. Schematic of (a) homodyne measurement and (b) hetero-
dyne measurement of the signal source. In the case of heterodyning,
two homodyne measurements are performed after splitting the signal
at a 50:50 beam splitter.
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In contrast to the homodyne measurement [Fig. 3(a)], in
the case of heterodyne measurement [Fig. 3(b)] first the
signal mode is split into two equal halves at a 50:50 BS.
Subsequently, two individual homodyne measurements are
performed on each of the halves.

In line with the standard procedure for heterodyne mea-
surement, the present protocol is as follows. First, each of
the incoming signal modes is split into two parts by using
a 50:50 beam splitter. Then we proceed with the multimode
homodyne measurement under mode mismatch (as discussed
in Fig. 2) on both parts for each of the signal modes. This
completes the procedure for multimode heterodyne measure-
ment under mode mismatch. The effect of this multimode
heterodyne measurement under mode mismatch could be
mathematically summarized in the following way. Let us con-
sider any particular signal mode with variance matrix Vin =(
vxx vxp

vxp vpp

)
. Due to heterodyne measurement, the diagonal en-

tries acquire one additional unit of contribution arising from
the splitting at the 50:50 beam splitter. Then the same diagonal
entries acquire an additional contribution in the form of noise
due to the mode mismatch. As a consequence, the final mea-

sured variance matrix becomes Vout =
(

vxx + 1 + δ 0
0 vpp + 1 + δ

)
,

which can be obtained by a straightforward calculation.

C. Choice of mode-mismatch noise

It might be interesting to discuss the physical limits of δ.
There could be several ways of tuning the value of δ such as
changing the ratio of M and N and the strength of unmatched
modes (n̄). In the present work we are interested in under-
standing the role non-Gaussianity in mitigating this additional
noise. Consequently, for the sake of simplicity, we consider
a scenario where the number of modes matching the local
oscillators is equal to the number of modes that do not match,
i.e., M = N . We also assume that the heterodyne detectors
used in Alice’s and Bob’s laboratories do not differentiate be-
tween the matched and the unmatched modes. In other words,
the detectors detect the unmatched modes with complete ef-
ficiency, i.e., ε = 1.0. As a consequence, the additional noise
appearing in the quadrature measurements (mode-mismatch
noise) is essentially δ = n̄/|α|2. As discussed in [43], the
average strength of the local oscillators is varied between 105

and 2×106. If we consider the local oscillators to be as strong
as |α|2 = 105, then the source light could be made as bright as
n̄ ∼ 103 to yield the mode-mismatch noise 0.01 � δ � 0.05.
However, by reducing the efficiency of detecting the excess
unmatched modes with a better apparatus, i.e., making ε < 1,
one can further increase the brightness of the signal modes.

IV. MODE MISMATCH VS ENTANGLEMENT
FOR GAUSSIAN STATES

In any EB QKD protocol the first step is to check for
the nonzero mutual information between the distant parties
that separates it from non-EB protocols. As described in the
preceding section, the mismatch between the modes generated
and the available modes for heterodyning yields additional
noise on the measured quadrature. Consequently, before pre-
senting the results on the key rate, here we discuss the impact

of this mode mismatch on the entanglement of the initial
Gaussian resource, i.e., the TMSV. A TMSV is given by

|ψ〉 = Sab(r)|0, 0〉, (2)

where Sab(r) = exp[r(a†b† − ab)] is the two-mode squeezing
operator and r is the squeezing strength. It could be efficiently
described in terms of the variance matrix V = (A C

C B

)
, where

A = B = diag(ζ , ζ ) correspond to the individual subsystems
and C = diag(c,−c) represents the intermode correlation
with ζ = cosh 2r and c = sinh 2r. Due to mode mismatch, the
measured quantities for the subsystems ζ would acquire an
additional contribution while the intermode terms c would be
unaffected. As a consequence, under multimode heterodyning
with mode mismatch, the measured variance matrix for the
TMSV becomes

Vmeas =

⎛
⎜⎜⎝

ζ + δ 0 c 0
0 ζ + δ 0 −c
c 0 ζ + δ 0
0 −c 0 ζ + δ

⎞
⎟⎟⎠, (3)

where δ = Nε2

Mα2 n̄.
It could be easily checked that the mode mismatch intro-

duces mixedness in the variance matrix as det Vmeas > 1. As
a consequence, we consider the logarithmic negativity as the
check for entanglement. Logarithmic negativity for a bipartite

Gaussian state with variance matrix V =
(

A C
C B

)
is given in

terms of its minimum symplectic eigenvalue (under partial
transposition) lmin as [59] EN = max{0,− log2 lmin}, where

lmin =
√

� − √
�2 − 4 det V

2
. (4)

Here � is given as � = det A + det B − 2 det C. Conse-
quently, in the present case of macroscopic heterodyne
detection with mode mismatch, logarithmic negativity for the
variance matrix Vmeas (3) is given by

EN = − 1
2 log2[−1 + δ2 + 2(δ + μ)(μ − ν)], (5)

which is a strictly decreasing function of the noise δ

introduced solely due to the macroscopic nature of the
source, where μ = cosh 2r and ν = sinh 2r. In a simple
and straightforward calculation it could be shown that
for Vmeas the condition of nonzero logarithmic negativity
�meas > det Vmeas + 1 yields

δ < 1 − cosh 2r + sinh 2r. (6)

For δ � 1 − cosh 2r + sinh 2r, Vmeas represents a separable
state. Moreover, for δ = 1, the state is always separable, i.e.,
for δ = 1 there is no entanglement.

V. ANALYSIS OF KEY RATE: GAUSSIAN
VS NON-GAUSSIAN RESOURCES

In this section we analyze the role of non-Gaussianity in
mitigating the effect of mode mismatch in obtaining a secured
key over distance. To be specific, we compare the attainable
secured key rate for the TMSV, 1PSTMSV, and ZPCTMSV
for various values of mode-mismatch noise. A brief account of
the other channel parameters and evaluation of key rate could
be found in Appendix C. It is important to note the operating
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FIG. 4. Key rate vs length for the TMSV for different values of
the noise parameter δ and η = 1.0.

parameter region for the squeezing strength at which CV QKD
is performed. In line with [47,48,51–54,58], throughout the
paper we consider cosh 2r = 50.

A. Key rate vs transmission distance with an ideal detector

To ascertain the effectiveness of non-Gaussian operations,
in Figs. 4–6 we plot the dependence of key rate on the distance
L with ideal detectors (η = 1) for the TMSV, 1PSTMSV,
and ZPCTMSV, respectively. In the case of the lowest
value of mode-mismatch noise considered, i.e., δ = 0.01,
the ZPCTMSV yields the maximum attainable transmission
distance of approximately 150 km, while it is limited to ap-
proximately 75 km and approximately 45 km for 1PSTMSV
and TMSV, respectively. However, as it is evident from the
figures, for all three resources, the maximum transmission
distance uniformly decreases as the mode-mismatch noise
increases. This implies that zero-photon catalysis appears to
be highly efficient in the optimizing key rate vs transmission
distance at a given noise strength.
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FIG. 5. Key rate vs length for the 1PSTMSV for different values
of the noise parameter δ and η = 1.0.
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FIG. 6. Key rate vs length for the ZPCTMSV for different values
of the noise parameter δ and η = 1.0.

B. Key rate vs transmission distance with a nearly
perfect detector

From Figs. 4–6 it is evident that with an ideal detector
(η = 1.0), one can attain a maximum transmission distance
of approximately 150 km with the ZPCTMSV. However, in
a realistic setup, detection efficiency is limited by the pho-
ton loss. Here we consider a case of 1% photon loss at the
detector, leading to a detection efficiency of η = 0.99. In
Fig. 7 we plot the secured key rate as a function of trans-
mission distance for the TMSV, 1PSTMSV, and ZPCTMSV
for η = 0.99. Compared to the case of an ideal detector, here
the maximum transmission distance is reduced greatly for all
three resources. To be specific, at δ = 0.01, the ZPCTMSV
yields a maximum distance of approximately 22 km, while it
is limited to below 20 km for the 1PSTMSV and TMSV.

C. Key rate vs detection inefficiency

Figure 7 naturally poses the question of whether non-
Gaussian resources are useful in obtaining robustness against
the detector inefficiencies in CVQKD. To apprehend the situ-
ation better, in Fig. 8 we plot the dependence of the key rate
K on the detector efficiency η for the TMSV, 1PSTMSV and
ZPCTMSV at L = 10 km. As it is evident from the figure that
even when two laboratories are separated by a distance of
10 km, below 98% detection efficiency (η = 0.98) there is
hardly any obtainable secured key.

VI. PHOTON LOSS AS A LIMITING FACTOR
FOR ZPS TMSV

Before we conclude, it is important to look at the
practical concern of photon loss in generating the zero-
photon-catalyzed TMSV. As described in Sec. II, a zero-
photon-catalyzed TMSV is generated when the detector at the
outgoing ancilla mode registers no photon or, in other words,
the detector does not click. Under ideal conditions or, say,
a perfect experimental setup, no click in the detector means
collapse of the state in the |0〉〈0| state, yielding zero-photon
catalysis. However, in reality, there is an intrinsic technical
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FIG. 7. Key rate vs length for the TMSV, 1PSTMSV, and
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(black solid line), δ = 0.02 (yellow dashed line), δ = 0.03 (green
dotted line), δ = 0.04 (blue dash-dotted line), and δ = 0.05 (magenta
dash–double-dotted line).

issue in generating a zero-photon-catalyzed TMSV using this
method, as discussed below.

The no-click condition can appear in two characteristically
different situations: when the photon in the outgoing ancilla
mode is (a) collapsed in the |0〉〈0| state or (b) lost. As a
consequence, the effective variance matrix between Alice and
Bob becomes

VAB = pVlost + (1 − p)VZPC, (7)

where p is the probability of losing the outgoing ancilla
photon and VZPC is the variance matrix for the zero-photon-
catalyzed TMSV. The variance matrix for the photon-loss case
(Vlost) is given by Vlost = (cosh 2rI 0

0 I

)
, where I and 0 are the

2×2 identity and null matrices, respectively.
To illustrate the effect of photon loss in the generation of a

zero-photon-catalyzed TMSV, in Fig. 9 we plot the maximum
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FIG. 8. Key rate vs detection efficiency for the TMSV,
1PSTMSV, and ZPCTMSV at L = 10 km. Different curves corre-
spond to δ = 0.01 (black solid line), δ = 0.02 (yellow dashed line),
δ = 0.03 (green dotted line), δ = 0.04 (blue dash-dotted line), and
δ = 0.05 (magenta dash–double-dotted line).

transmission distance as a function of probability of photon
loss at different key rates for two different choices of mode-
mismatch-noise strength, i.e., δ = 0.01 and 0.02. As it is
evident from the figure, as the probability increases the max-
imum attainable distance drops drastically. For a photon-loss
probability as low as 0.5% (p = 0.005) there is no available
key for any transmission distance. This may be interpreted
as follows. The variance matrix for the photon-loss case (7)
essentially represents a Gaussian lossy channel. Now, at the
operating parameter region cosh 2r = 50, the additional noise
pVlost in the variance matrix VAB is significantly high to reduce
the effective correlation and thus the key rate between Alice
and Bob.

In Fig. 10 we further show the dependence of the secured
key rate as a function of the transmission distance for the 0.2%
probability of photon loss, i.e., p = 0.002, for different values
of mode-mismatch noise. Compared to the no-photon-loss
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FIG. 9. Maximum transmission distance vs probability of photon loss for the ZPCTMSV at different key rates for (a) δ = 0.01 and (b)
δ = 0.02. The other parameters are TBS = 0.85 and η = 1.0.

case (Fig. 6), even for such a small probability, the trans-
mission distance is reduced significantly, from approximately
150 km to approximately 35 km.

VII. CONCLUSION

In this paper we have analyzed the role of non-Gaussianity
in CV QKD with macroscopic light under mode mismatch.
We have shown that non-Gaussian operations are helpful in
mitigating the detrimental presence of unmatched modes and
improve the overall performance reasonably well in com-
parison to the Gaussian case. To be specific, with the ideal
detectors (η = 1.0) and low mode-mismatch noise (δ = 0.01),
the zero-photon catalysis and the single-photon subtraction
lead to maximum transmission distances of approximately
150 km and approximately 70 km, while it is limited to
approximately 45 km with the TMSV. The apparent superi-
ority of the 1PSTMSV and ZPCTMSV over the TMSV could
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FIG. 10. Key rate vs transmission distance for the ZPCTMSV
under the effect of photon loss for different δ. The photon loss
probability is kept very low at p = 0.002. The other parameters are
TBS = 0.85 and η = 1.0. Different curves correspond to δ = 0.01
(black solid line), δ = 0.02 (yellow dashed line), δ = 0.03 (green
dotted line), δ = 0.04 (blue dash-dotted line), and δ = 0.05 (purple
dash–double-dotted line).

possibly be understood in terms of the entanglement-vs-loss
relation for a state undergoing photon loss.

Transmission through a noisy channel (here optical fiber)
could be seen as the state undergoing an effective photon loss,
where the loss percentage is proportional to the transmission
distance. In the case of the 1PSTMSV, photon subtraction
leads to the excitation of higher-energy levels, which in turn
increases the average energy of the initial TMSV. We be-
lieve that, due to this additional energy, it takes a longer
transmission distance for the 1PSTMSV to lose the entangle-
ment compared to the TMSV. On the other hand, zero-photon
catalysis could be seen as a noiseless attenuation [53] that
preserves the quantum coherence at a lower amplitude. This
implies that the ZPCTMSV, at a fixed squeezing strength,
experiences less loss compared to the TMSV, which in turn
allows the ZPCTMSV to maintain the entanglement over a
longer distance.

It is also intriguing to consider the fact that physical sys-
tems with higher mean energy, in general, are more fragile
under noise, which is a well-known limiting factor in per-
forming quantum tasks with macroscopic systems. In the case
of the 1PSTMSV, while excitation of higher-energy levels
contributes to more entanglement, their fragility under noise
limits maximum attainable transmission distance. However,
for the ZPCTMSV such a situation of competition between
the fragility and mean energy is less dominant. We believe that
this interplay between more mean energy and more fragility at
higher energy plays a crucial role in improving the transmis-
sion distance with the non-Gaussian operations.

However, the practical concerns in performing zero-photon
catalysis using linear optical setup limits the efficacy of the
ZPCTMSV. In a realistic setup, zero-photon catalysis yields
a maximum transmission distance of approximately 35 km,
which is lower than the case of the TMSV. From this point
of view, single-photon subtraction appears to be the optimal
non-Gaussian operation, contrary to the result in [58].

Nonetheless, the non-Gaussian operations fail to offer
improvement in resistance against the inefficiency of the ho-
modyne detectors. It could be inferred from Fig. 7 that with
a near-perfect detector, the maximum transmission distance
decreases drastically Even for just 1% photon loss at the
detector (η = 0.99), the maximum transmission distance be-
comes limited to approximately 22 km for the ZPCTMSV. In
the case of the 1PSTMSV and TMSV it is further reduced
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to below 20 km. Furthermore, Fig. 7 indicates that below
an almost ideal detection condition (η ∼ 98%) there is no
secured key, irrespective of the mode-mismatch noise. This
could in general be considered a common issue with the CV
QKD protocols [29,60,61].

In the present work we have considered a simple model of
additional noise that is present in the communication channel.
We considered symmetric mode mismatch, i.e., the noise aris-
ing due mode mismatch in all the detectors is same. Although
it serves as the primary motivation of the analysis, in practice,
this is a serious restriction. Under a realistic setup the mode
mismatch at different detectors could be different. Thus, for
a comprehensive analysis one can consider different mode
mismatch in different detectors. In addition, there may be am
additional factor such as gain of the homodyne measurement
or electronic noise of the detector that further reduces the
key rate as well as the maximum transmission distance [48].
Moreover, our work was limited to the linear regime of the de-
tectors. If the brightness of the signal is increased arbitrarily it
may lead to the nonlinear response regime of the detectors. In
that case there will be contributions from the additional modes
which may in turn introduce additional noises. One can also
extend the analysis on the role of non-Gaussianity in CV QKD
with a different kind of noise such as state-preparation error
[62–64] where the initial state suffers from side-channel loss
prior to modulation. Nonetheless, compared to the simplistic
entanglement-based protocol, one may further go for a more
theoretically motivated model, such as a measurement-device-
independent protocol, which is more promising from the point
of view of ensuring security [48,49,52,54].

It may be noted that earlier analysis of CV QKD with
macroscopic Gaussian light around mitigating the effect of
mode mismatch by considering bright light [42] as well as
rearranging the multiple modes [41]. The present work offers
a different perspective in terms of enhancement in the perfor-
mance of CV QKD with bright multimode light under mode
mismatch by using non-Gaussianity as a resource. Here we
have shown that certain non-Gaussian operations, in partic-
ular single-photon subtraction, can significantly enhance the
transmission distance compared to the Gaussian case. More-
over, here we considered a key distribution protocol with both
quadratures unlike the earlier works [41–43], where only one
of the quadratures was taken into account. In view of the
recent advances on the non-Gaussian operations [65,66], we
believe that our work provides further understanding of non-
Gaussianity as a resource in CV QKD with bright multimode
light under the practical concern of mismatch between the
signal and local oscillator modes.
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APPENDIX A: QUADRATURE MEASUREMENT OF
MULTIMODE LIGHT UNDER MODE MISMATCH

In standard homodyne detection of a single-mode incom-
ing light field, the mode is mixed with a local oscillator with a
well-defined phase. This local oscillator is considered classi-
cal as its intensity is very high compared to the signal and it is
described by the laser light with coherent amplitude α. In the
case of multimode homodyne measurement or detection, one
uses multiple local oscillators in different modes described by
the set of coherent states {αi}, where i = 1, 2, . . . , K , with K
the total number of modes in the signal.

Let us consider that there is a total of M + N incoming
modes of light, out of which only M modes ak match the local
oscillators and the remaining N modes bl do not match. For
reference, consider Fig. 2. In the measurement setup M modes
are mixed with the local oscillators in coherent states {αi} and
the rest of the N modes are mixed with the vacuum states Vj .
Consequently, the output numbers M + N of signal modes of
the balanced BS (transmission is 50%) are given as

aout
hor,i = 1√

2
(ai + αi ), bout

hor,i = 1√
2

(bi + Vi ),

aout
ver,i = 1√

2
(−ai + αi ), bout

ver,i = 1√
2

(−bi + Vi ), (A1)

where hor and ver stand for horizontal and vertical, respec-
tively. Horizontal light fields go to detector D1 and the vertical
light fields go to detector D2. For the sake of simplicity, we
further consider that all the coherent states have the same
amplitude, i.e., αi = α ∀ i = 1, 2, . . . , M.

If we assume that the detectors are identical and they detect
the unmatched modes with efficiency ε, then the photons
detected in detectors D1 (n1) and D2 (n2) are given as

n1 =
M∑

i=1

(
aout

hor,i

)†
aout

hor,i + ε

N∑
j=1

(
bout

hor,i

)†
bout

hor,i

= 1

2

M∑
i=1

{a†
i ai + (a†

i α + aiα
∗) + α∗α}

+ ε

2

N∑
j=1

{b†
jb j + (b†

jVj + b jV
†
j ) + V †

j Vj},

n2 =
M∑

k=1

(
aout

ver,k

)†
aout

ver,k + ε

N∑
l=1

(
bout

ver,l

)†
bout

ver,l

= 1

2

M∑
k=1

{a†
kak − (a†

kα + akα
∗) + α∗α}

+ ε

2

N∑
l=1

{b†
l bl − (b†

l Vl + blV
†

l ) + V †
l Vl}. (A2)

Let us consider α = |α|eiφ . This leads to the photon-
number difference � (n1 − n2) as

� = |α|
M∑

i=1

(a†
i eiφ + aie

−iφ ) + ε

N∑
j=1

(b†
jVj + b jV

†
j ). (A3)
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As it is quite explicit from Eq. (A3), by setting the phase
of the local oscillators (φ), we can measure the quadrature.
For example, φ = 0 and φ = π/2 yield x and p quadratures,
respectively. Let us consider the specific case of φ = 0. This
yields

� = |α|
M∑

i=1

xi + ε

N∑
j=1

(b†
jVj + b jV

†
j ). (A4)

The variance of an operator A is given as Var(A) = 〈A2〉 −
〈A〉2. In consideration of the fact that in the present case of
multimode homodyne measurement all the modes are identi-
cal, we obtain the variance of � [Eq. (A4)] as

Var(�) = |α|2
M∑

i=1

Var(xi ) + ε2
N∑

j=1

〈b†
jb j〉

= M|α|2Var(x) + Nε2n̄, (A5)

where n̄ is the average photon number in the signal modes.
However, this measurement result needs to be normalized. In
the absence of the signal, the effective variance is given by
M|α|2, arising solely due to the presence of local oscillators.
Thus the normalized variance of the x quadrature for a mul-
timode light under mode mismatch is obtained by dividing
Var(�) by the zero-signal count M|α|2 as

Var(x)norm = Var(x) + Nε2n̄

M|α|2 . (A6)

Similarly, we can write for p the quadrature also by setting
φ = π/2. As a consequence, we can write for both quadra-
tures in a compact form

vi → vi + Nε2n̄

M|α|2 = vi + δ, (A7)

where vi = {Var(x), Var(p)}.

APPENDIX B: VARIANCE MATRIX FOR A k-PHOTON SUBTRACTED TMSV

Here we work with the Wigner function description for convenience. The Wigner functions for the TMSV and a single-mode
photon-number state |n〉, in the shot-noise unit, are given as

WTMSV(R1, R2) = 4 exp

(
−μ2 + ν2

2

(
x2

1 + p2
1 + x2

2 + p2
2

) + 2μν(x1x2 − p1 p2)

)
,

W|n〉(R) = 2(−1)n

n!
e−(x2+p2 )/2Ln(x2 + p2) = 2(−1)n

n!
e−(x2+p2 )/2∂n

η∂n
ζ (eηζ+(x+ip)η−(x−ip)ζ )η,ζ→0, (B1)

where Ri = {xi, pi} (i = 1, 2), R = (x, p), and Ln(x) is the nth-order Laguerre polynomial.
Let us now consider Fig. 1, where the linear optical model for photon subtraction is discussed (Sec. II A). In the very first

step of photon subtraction, we mix one of the modes of the TMSV (say, mode 2) with the vacuum of an ancilla (say, mode 3)
through a passive BS with transmittivity TBS, leading to the three-mode Wigner function

WTMSV(R1, R2)W|0〉(R3)
BS−→ Wout (R1, R2, R3)

= 8 exp

(
−μ2 + ν2

2

(
x2

1 + p2
1

))
exp

(
−μ2 − (1 − 2TBS)ν2

2

(
x2

2 + p2
2

) + 2μν
√

TBS(x1x2 − p1 p2)

)

× exp

(
−μ2 + (1 − 2TBS)ν2

2

(
x2

3 + p2
3

) + [2ν
√

1 − TBS(ν
√

TBSx2 − μx1)]x3

+ 2ν
√

1 − TBS(ν
√

Tbs p2 + μp1)p3

)
. (B2)

Consequently, the Wigner function for the reduced state after projecting the ancilla mode on the number state |n〉 becomes

Wred =
∫

dx3d p3

4π
Wout (R1, R2, R3)W k

|n〉(R3)

= 16
(−1)k

k!
exp

(
−μ2 + ν2

2

(
x2

1 + p2
1

))
exp

(
−μ2 − (1 − 2TBS)ν2

2

(
x2

2 + p2
2

) + 2μν
√

TBS(x1x2 − p1 p2)

)

× ∂k
η∂

k
ζ

[
eηζ

∫
dx3d p3

4π
exp

{−(μ2 − TBSν
2)

(
x2

3 + p2
3

) + [(η − ζ ) + 2ν
√

1 − TBS(ν
√

TBSx2 − μx1)]x3

+ [i(η + ζ ) + 2ν
√

1 − TBS(ν
√

TBS p2 + μp1)]p3
}]

η=0
ζ=0

= 4(−1)k

k!(μ2 − TBSν2)
exp

(
−μ2 + ν2

2

(
x2

1 + p2
1

))
exp

(
−μ2 − (1 − 2TBS)ν2

2

(
x2

2 + p2
2

) + 2μν
√

TBS(x1x2 − p1 p2)

)
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× ∂k
η∂

k
ζ

[
eηζ exp

(
1

4(μ2 − TBSν2)
{[(η − ζ ) + 2ν

√
1 − TBS(ν

√
TBSx2 − μx1)]2 + [i(η + ζ )

+ 2ν
√

1 − TBS(ν
√

TBS p2 + μp1)]2}
)]

η=0
ζ=0

= 4(−1)k

k!(μ2 − TBSν2)
exp

(
−μ2 + ν2

2

(
x2

1 + p2
1

))
exp

(
−μ2 − (1 − 2TBS)ν2

2

(
x2

2 + p2
2

) + 2μν
√

TBS(x1x2 − p1 p2)

)

× exp

(
ν2(1 − TBS)

μ2 − TBSν2
[(ν

√
TBSx2 − μx1)2 + (ν

√
TBS p2 + μp1)2]

)

× ∂k
η∂

k
ζ

[
exp

(
ν2(1 − TBS)

μ2 − TBSν2
ηζ +

√
1 − TBS

μ2 − TBSν2
[ν2√TBS(x2 + ip2) − μν(x1 − ip1)]η

−
√

1 − TBS

μ2 − τν2
[ν2√TBS(x2 − ip2) − μν(x1 + ip1)]ζ

)]
η=0
ζ=0

= (−A)kW0(R1, R2) Lk

( |R12|2
ν2(μ2 − TBSν2)

)
, (B3)

where

A = ν2(1 − TBS)

(μ2 − TBSν2)
, R12 = ν2√TBS(x2 + ip2) − μν(x1 − ip1),

W0(R1, R2) = 4

μ2 − TBSν2
exp

(
−μ2 + ν2

2

(
x2

1 + p2
1

))
exp

(
−μ2 − (1 − 2TBS)ν2

2

(
x2

2 + p2
2

) + 2μν
√

TBS(x1x2 − p1 p2)

)

× exp

(
1 − TBS

μ2 − TBSν2
|R12|2

)
. (B4)

The probability of obtaining the k TMSV is given as

Pk =
∫

dx1d p1

4π

∫
dx2d p2

4π
Wred(R1, R2) = Ak

μ2 − TBSν2
, (B5)

leading to the normalized Wigner function for the k TMSV,

W k
TMSV(R1, R2) = 1

Pk
Wred(R1, R2) = (μ2 − TBSν

2)(−1)kW0(R1, R2) Lk

( |R12|2
ν2(μ2 − TBSν2)

)
. (B6)

To evaluate the variance matrix for the k TMSV, we first derive the general expression for the moment generating function as

Ck,l
i, j = 〈

xi
1 pj

1xk
2 pl

2

〉 =
∫

dx1d p1

4π

∫
dx2d p2

4π
W k

TMSV(R1, R2)xi
1 pj

1xk
2 pl

2

= ∂ i
a∂

j
b∂k

c ∂ l
d

(∫
dx1d p1

4π

∫
dx2d p2

4π
W k

TMSV(R1, R2)eax1+bp1+cx2+d p2

)
a=0,b=0
c=0,d=0

= 1

Pk

(−1)k

k!(μ2 − TBSν2)
∂ i

a∂
j

b∂k
c ∂ l

d

{
exp

(
μ2 + TBSν

2

2(μ2 − TBSν2)
(a2 + b2 + c2 + d2) + 2μν

√
TBS

μ2 − TBSν2
(ac − bd )

)

× ∂k
η∂

k
ζ

[
exp

(
−ν2(1−TBS)

μ2−TBSν2
ηζ

)
exp

(
− Z

√
1−TBS

2(μ2−TBSν2)
η + Z∗√1−TBS

2(μ2−TBSν2)
ζ

)]
η=0
ζ=0

}
a=0,b=0
s=0,t=0

= ∂ i
a∂

j
b∂k

c ∂ l
d

[
exp

(
μ2 + TBSν

2

2(μ2 − TBSν2)
(a2 + b2 + c2 + d2) + 2μν

√
TBS

μ2 − TBSν2
(ac − bd )

)
Lk

(
− |Z|2

4ν2(μ2 − TBSν2)

)]
a=0,b=0
c=0,d=0

,

(B7)
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where Z = 2μν(a − ib) + 2
√

τν2(c + id ). By considering
the symmetry of the state in a straightforward but tedious
calculation, it could be shown that the variance matrix for the
k TMSV is of the form

( X I Zσ3
Zσ3 Y I

)
, where I and σ3 are the

2×2 identity matrix and the Pauli Z matrix, respectively. The
coefficients are given as

X = C0,0
2,0 = C0,0

0,2 = μ2 + TBSν
2

μ2 − TBSν2
+ 2μ2

μ2 − TBSν2

L1
k−1(0)

Lk (0)

= μ2(2k + 1) + TBSν
2

μ2 − TBSν2
= 2(k + 1)

1 − TBSτ 2
− 1, (B8)

Y = C2,0
0,0 = C0,2

0,0 = μ2 + TBSν
2

μ2 − TBSν2
+ 2ν2TBS

μ2 − TBSν2

L1
k−1(0)

Lk (0)

= μ2 + TBSν
2(2k + 1)

μ2 − TBSν2
= 2(1 + kTBSτ

2)

1 − TBSτ 2
− 1, (B9)

and

Z = C1,0
1,0 = −C0,1

0,1 = 2μν
√

TBS

μ2 − TBSν2

(
1 + L1

k−1(0)

Lk (0)

)

= 2μν
√

TBS(1 + k)

μ2 − TBSν2
. (B10)

APPENDIX C: CHANNEL PARAMETERS AND KEY RATE

In the entanglement-based scheme, one of the parties, say,
Alice, generates a two-mode entangled resource and sends
one of the modes to a distant party, say, Bob, through op-
tical cables which are lossy in general. The transmittance
loss of the channel is quantified as T = 1

2 10−lL/10, where
l = 0.2 (dB/km) is the loss per kilometer and L is the distance
between Alice and Bob. This transmittance through lossy
channel leads to the line noise given as χline = 1−T

T . On the
other hand, the homodyne detectors, used by Alice and Bob,
are not perfect, in general. The imperfection in the detector
further leads to homodyne noise as χhomo = 1−η

η
, where η

is the efficiency of the detectors. Under these assumptions,
the total additional noise, introduced in the variance matrix,
due to channel transmission and a noisy detector, could be
written as

χtot = χline + 2χhomo

T
. (C1)

Let us consider the variance matrix generated by Alice

given as V =
(

VA VC

V T
C VB

)
, where VA and VB correspond to

the subsystems of Alice and Bob, while VC is the correla-
tion between them. Under the effect of channel transmission
and noisy detectors, the final variance matrix becomes V ′ =(

V ′
A V ′

C

V ′T
C V ′

B

)
=

(
VA

√
TVC√

TV T
C T (VB + χtotI2 )

)
, where I2 is the 2×2 iden-

tity matrix. Here T stands for transposition.
It is natural to think of an adversary, say, Eve, trying to hack

and obtain information about the communication or quantum
state between Alice and Bob. We assume that Eve can perform

independent one-mode collective attacks on each channel. In
this scenario, the secured raw key rate is given by [67]

K = βIAB − χHol, (C2)
where IAB is the mutual information between Alice and Bob
and χHol is the maximum information available to Eve which
is given by the Holevo bound [68]. Here we have considered
reverse reconciliation, i.e., Bob tallies his measurement data
with Alice, as it offers a better key rate and it is more robust
than the direct reconciliation where Alice tallies her results
with Bob. As a consequence, χHol is given by the maximum
information bound on Eve due to Bob’s data and is denoted
by χBE . We now consider the transmitted variance matrix
between Alice and Bob, V ′, to evaluate the key rate.

In any CV QKD protocol, the key rate is obtained by con-
sidering the equivalent prepare-and-measure (P&M) protocol.
Moreover, we consider the no-switching protocol, i.e., instead
of homodyne measurements (measuring either of x and p), we
consider heterodyne measurement (measuring both x and p).
Consequently, the mutual information between Alice and Bob
is given by

IAB = 1

2
log2

(
V ′x

Am

V ′x
Am|Bm

)
+ 1

2
log2

(
V ′p

Am

V ′p
Am|Bm

)
, (C3)

with a contribution coming from the measurements of both
x and p quadratures. Here V ′ζ

Am
and V ′ζ

Am|Bm
(ζ = x, p) are the

measured quadratures for Alice’s subsystem and Alice’s con-
ditional subsystem based on Bob’s measurement. These are
mathematically described as V ′ζ

Am
= (V ′ζ

A + 1)/2 and V ′ζ
Am|Bm

=
(V ′ζ

A|B + 1)/2, where

V ′
A|B = V ′

A − V ′T
C (V ′

B + I )−1V ′
C . (C4)

On the other hand, the Holevo bound between Bob and Eve
is defined as [68]

χBE = S(ρBE ) −
∫

dmBP(mB)S(ρmB
BE )

= S(ρAB) − S(ρA|B), (C5)

where S(ρ) denotes the von Neumann entropy of the state ρ,
mB is Bob’s measurement outcome with probability P(mB),
and ρ

mB
BE is Eve’s state conditioned on Bob’s corresponding

measurement. In terms of the total variance matrix between
Alice and Bob (V ′) and Alice’s conditional variance matrix
based on Bob’s measurement (V ′

A|B), we can easily obtain the
Holevo bound as

S(ρAB) = G

(
λ1 − 1

2

)
+ G

(
λ2 − 1

2

)

S(ρA|B) = G

(
λ3 − 1

2

)
, (C6)

where G(x) = (x + 1) log2(x + 1) − x log2 x, and {λ1, λ2}
and λ3 are the symplectic eigenvalues of V ′ and V ′

A|B,
respectively.
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