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Detecting continuous-variable entanglement in phase space with the Q distribution
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We prove a general class of continuous variable entanglement criteria based on the Husimi Q distribution,
which represents a quantum state in canonical phase space, by employing a theorem by Lieb and Solovej. We
discuss their generality, which roots in the possibility to optimize over the set of concave functions, from the
perspective of continuous majorization theory and show that with this approach families of entropic as well as
second moment criteria follow as special cases. All derived criteria are compared with corresponding marginal
based criteria, and the strength of the phase-space approach is demonstrated for a family of prototypical example
states where only our criteria flag entanglement. Furthermore, we explore their optimization prospects in two
experimentally relevant scenarios characterized by sparse data: Finite detector resolution and finite statistics. In
both scenarios optimization leads to clear improvements enlarging the class of detected states and the signal-to-
noise ratio of the detection, respectively.
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I. INTRODUCTION

The quest for efficient methods for the detection of en-
tanglement in continuous variable systems dates back as far
as the Einstein-Podolsky-Rosen (EPR) paradox [1] and has
received renewed interest through the rise of optical quantum
technologies for which entanglement is a crucial ingredient
[2–5]. Over the past two decades, a plethora of entanglement
criteria1 emerged. Many of them root in demonstrating the
negativity of the partially transposed state [6,7] by means of
violating uncertainty relations of suitable chosen observables
[3,4,8].2

Widely used are nonlocal EPR-type operators X 1 + X 2

and P1 − P2, which capture correlations between two systems
labeled 1 and 2 [1]. For these variables, criteria have been
formulated in terms of second moments in seminal works by
Duan, Giedke, Cirac, and Zoller (DGCZ) [10] and Mancini,
Giovannetti, Vitali, and Tombesi (MGVT) [11,12] (see also
Ref. [13]). They have been shown to be necessary and suf-
ficient for separability in case of Gaussian states [2,5,14,15]
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1We use the terms entanglement criteria and separability criteria

interchangeably. Such criteria are usually stated as inequalities that
are fulfilled for all separable states, and thus their violation shows
that a state is entangled.

2This ansatz generically excludes the possibility of detecting bound
entanglement [9].

but are known to be rather weak beyond because second
moments only reveal partial information about a measured
distribution. Here, a significant upgrade have been entropic
criteria, derived by Walborn, Taketani, Salles, Toscano, and de
Matos Filho (WTSTD) in Ref. [16] and their generalization to
Rényi entropies by Saboia, Toscano and Walborn (STW) [17].
Strengthened versions of all these criteria to certify steering
have been discussed, too [18–22].

Besides other notable approaches utilizing modular vari-
ables [23,24], spin observables with discrete spectra [25],
moments of the bipartite density operator [26,27], as well
as the quantum Fisher matrix [28,29], all mentioned meth-
ods rely on the detection of marginal distributions of the
Wigner W distribution. However, the Husimi Q distribu-
tion also constitutes an adequate phase-space representation
of the quantum state [30–32] and can be accessed in a
single experimental setting [33,34]. Until recently [35,36],
the possibility of formulating entanglement criteria based on
the Husimi Q distribution has been overlooked. Here, we
derive an extremely general class of entanglement criteria
from the Husimi Q distribution based on concave functions,
generalizing the work in Ref. [36].

In the spirit of employing uncertainty relations for en-
tanglement detection, we make use of the most general
form of the uncertainty principle in phase space: The Lieb-
Solovej theorem [37–39]. It arose from generalizing a lower
bound on the differential entropy—the so-called Wehrl en-
tropy [40,41]—of the Husimi Q distribution [42–45] and has
been formulated for various algebras [46–49]. Ultimately, the
Lieb-Solovej theorem is a majorization relation stating that
the vacuum (or any coherent) distribution majorizes all other
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distributions (see also [50] for the relation between ma-
jorization and entanglement for finite dimensional Hilbert
spaces). A similar statement has been conjectured for the
Wigner W distribution when restricting to Wigner-positive
states [51–54], but is lacking for marginal distributions. In this
sense, the Husimi Q distribution offers the unique opportunity
to formulate such general relations for uncertainty and entan-
glement.

However, in experiments, it is of course not possible
to measure a distribution over a continuous space to arbi-
trary precision. Measuring the Husimi Q distribution means
to approximate it based on a finite experimental data set
[2,5,14,55]. Thus, a relevant question is not only whether our
criterion can flag entanglement in the limit of precise knowl-
edge of the distribution, but also how one can, based on a fixed
measurement budget and resolution, maximize the statistical
significance of the detection. We show in this work that the
generality of our witness leads to a significant advantage with
regard to this task by optimizing over different choices of the
concave function.

A common scheme for measuring the Husimi Q distribu-
tion is the application of a coherent displacement followed
by the detection of the vacuum projection [56–58]. The ex-
perimental capabilities for realizing this scheme have been
demonstrated for microwave photons in cavity QED systems
[59], including the bipartite setup [60], atomic gases in optical
cavities [61,62], and trapped ions [63,64]. In this scheme the
value of the Husimi Q distribution is obtained on a grid of
points in the four-dimensional phase space, where each grid
point corresponds to a separate experimental measurement in
which the corresponding displacement operation is applied.
Obtaining high-resolution data is thus challenging in terms of
the required experimental resources [65], which motivates us
to study the prospects of our entanglement criteria in the case
where the Husimi Q distribution is only known on a discrete
grid with finite resolution.

Another established way of accessing the Husimi Q dis-
tribution is heterodyne detection [33,66], where the system
modes are split by sending them on a lossless 50 : 50 beam
splitter and subsequently each output mode is interfered with
a so-called local oscillator field in a highly excited coherent
state. The phase of the local oscillator controls which field
quadrature is measured for each output mode and allows one
to simultaneously detect the local quadratures with minimal
uncertainty. This corresponds to direct sampling from the
Husimi Q distribution [67]. This scheme has been realized
with optical photons [68–71] and more recently with ultracold
atomic gases [72], including the bipartite setting [73]. In par-
ticular for cold atom experiments the experimental repetition
rate is rather low, making it challenging to obtain sample data
with high statistics. This motivates us to study the potential of
our entanglement criteria for optimizing the signal-to-noise
ratio of the entanglement detection for a given budget of
experimental samples.

Let us remark that in this work we discuss our entangle-
ment criteria in detail from both a theoretical and a practical
perspective. A more concise description of the criteria and
their application is provided in Ref. [74].

The remainder of this work is structured as follows: In
Sec. II we introduce the necessary background on canonical

phase space, including the formulation of the uncertainty prin-
ciple in terms of the Husimi Q distribution, and on continuous
majorization theory. After proving the general entanglement
criteria in Sec. III we discuss the effects of the various free
parameters entering them. In particular, the meaning of the
choice of the concave function f occurring in the criteria is
made accessible by means of continuous majorization theory.
Subsequently, we examine specific criteria, which includes
entropic and second moment criteria. We show that the latter
are the strongest possible state-independent criteria that can be
derived from our general criteria and that they are necessary
and sufficient for Gaussian states after optimizing over scaling
parameters. In Sec. IV we provide a comparison of our criteria
to well-known criteria based on marginals of the Wigner W
distribution. We show that our second moment criteria imply
the DGCZ criteria and are neither stronger nor weaker than
the MGVT criteria. We relate our criteria to marginal based
entropic criteria by WTSTD and STW, establishing a detailed
understanding of their strengths and limitations and show an
example state for which our criteria detect a class of states
that is not detectable by any other of the aforementioned
entanglement criteria. The various criteria are generalized
to arbitrary coarse-grained measurements in Sec. V, which
is accompanied with a comparison for the finite-resolution
Husimi Q distribution of the two-mode squeezed vacuum
state. Thereupon, we exemplify how the signal-to-noise ratio
can be improved by optimizing over the concave function in
the case of finite statistics in Sec. VI. A discussion of our
results and of possible future directions is given in Sec. VII.

Notation. We employ natural units h̄ = 1, write quantum
operators with bold letters, e.g., ρ, and use a bar, e.g., Q̄, to
mark vacuum quantities. If not specified differently, integrals
run over the Euclidean plane R2.

II. PRELIMINARIES

We start with introducing the reader to the Husimi Q
distribution and discuss in which way it is constrained by
the uncertainty principle from the perspective of continuous
majorization theory. Let us stress that all presented concepts
can be generalized to arbitrary simple Lie groups. Readers
familiar with these topics may want to omit this section.

A. Conjugate variables and coherent states

Throughout this work, we are concerned with continuous
variable quantum systems. In the monopartite setup these
are characterized by an infinite-dimensional Hilbert space,
dim H = ∞, and canonical commutation relations

[X , P] = i1 (1)

for two Hermitian operators X and P with continuous and un-
bounded spectra. A prime example for this description is the
harmonic oscillator, in which case X represents the position
while P describes the momentum, but it also applies to the
quadratures of an electromagnetic field or suitably chosen spin
components in a spinor Bose-Einstein condensate [72,73,75–
77]. We also introduce creation and annihilation operators

a† = 1√
2

(X − iP), a = 1√
2

(X + iP), (2)
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respectively, which fulfill bosonic commutation relations

[a, a†] = 1, (3)

and single out a unique vacuum state |0〉 via a |0〉 = 0.
We construct the set of coherent states axiomatically fol-

lowing the group-theoretic approach, which allows us to
associate a set of coherent states to any simple Lie group, for
example SU(2) describing quantum spins [78–80]. We start
from the Heisenberg-Weyl algebra H4, which consists out of
the four operators {a, a†, a†a,1} and is defined via the com-
mutation relation (3). The subgroup leaving the vacuum state
|0〉 invariant up to a phase is U(1) ⊗ U(1) as one might apply
rotations in the complex plane generated by a†a or 1 without
changing the vacuum. Then, the displacement operator

D(α) = eαa†−α∗a, (4)

with a complex phase conveniently parametrized as

α = 1√
2

(x + ip), (5)

is nothing but a unitary representation of the coset space
H4/U(1) ⊗ U(1). Applying this operator to the vacuum gen-
erates the set of canonical coherent states

|α〉 = D(α) |0〉 . (6)

Note that for conjugate operators defined via Eq. (1) one
may equally introduce coherent states as eigenvalues of the
annihilation operator

a |α〉 = α |α〉 . (7)

However, the latter definition does not generalize to systems
with degrees of freedom described by other algebras.

Coherent states have three interesting properties which are
of importance for our later considerations. First, they are not
orthogonal:

|〈α|α′〉|2 = e−|α−α′ |2 , (8)

but orthogonality is approximately restored for sufficiently
distinct α and α′. Second, they span an overcomplete basis

1 =
∫

dxd p

2π
|α〉 〈α|, (9)

and third, they minimize all uncertainty relations, for example
the Heisenberg uncertainty relation formulated in terms of
variances,

σxσp = 1
2 . (10)

B. Husimi Q distribution

Equation (9) shows that pure coherent-state projectors
Eα = |α〉 〈α| constitute a positive operator-valued mea-
sure (POVM), which defines the Husimi Q distribution
[30,39,66,81]:

Q(x, p) = Tr{ρEα} = 〈α|ρ|α〉 , (11)

with the parametrization (5) understood. It covers the
quantum-mechanical phase space and corresponds to a joint
measurement of position x and momentum p with minimum
(but still nonzero) uncertainty.

The Husimi Q distribution comes with several desired
properties. Most importantly, it is non-negative and bounded
from above by unity,

0 � Q(x, p) � 1, (12)

for all (x, p) ∈ R2. This is a profound advantage over the
Wigner W distribution, which can become negative and hence
measures of localization such as entropies are not defined for
all states. The two distributions are related via a Weierstrass
transform with respect to the vacuum,

Q(x, p) = (W ∗ W̄ )(x, p)

= 2π

∫
dx′d p′W (x′, p′)W̄ (x − x′, p − p′), (13)

with the vacuum distribution

W̄ (x, p) = 1

π
e−(x2+p2 ), (14)

which removes the negativities of the Wigner W distribution.
Furthermore, the Husimi Q distribution is normalized to

unity in the sense of

1 =
∫

dxd p

2π
Q(x, p), (15)

following from Tr{ρ} = 1. However, it cannot be considered a
probability density function in a strict sense as the underlying
random variables do not constitute mutually exclusive events
by non-orthogonality (8). It is therefore convenient to refer to
it as a quasiprobability distribution.

As a final remark, the Husimi Q distribution serves as the
quantum-mechanical extension of the Boltzmann distribution,
to which it converges in the classical limit h̄ → 0 [40,41].

C. Uncertainty principle

In simple words, the uncertainty principle expresses the
fact that noncompatible observables cannot be measured si-
multaneously with arbitrary precision [82]. Hence, it sets
bounds on measures of localization of the distributions ob-
tained when measuring the observables of interest. The
simplest example for a measure of localization is the vari-
ance [83–86], but over the last decades especially classical
entropies became reasonable alternatives [35,51,87–91].

The differential entropy associated with the Husimi Q dis-
tribution is the Wehrl entropy [40,41],

S(Q) = −
∫

dxd p

2π
Q(x, p) ln Q(x, p), (16)

which is bounded from below by the Wehrl-Lieb inequality

S(Q) � 1, (17)

with equality if and only if the state under consideration is a
pure coherent state [37,39,42,44,45].

The latter statement has been generalized to arbitrary con-
cave averages by allowing for a concave function f : [0, 1] →
R with f (0) = 0 in the integrand, which is the Lieb-Solovej
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theorem3 [37],∫
dxd p

2π
f (Q) �

∫
dxd p

2π
f
(
Q̄
)
, (18)

again with equality only for coherent states, containing (17) as
a special case for f (t ) = −t ln t . Therein, the vacuum Husimi
Q distribution is given by

Q̄(x, p) = e− 1
2 (x2+p2 ), (19)

which may be replaced on the right-hand side of (18) by any
coherent state. We remark that the condition f (0) = 0 ensures
the finiteness of both sides (for f (0) �= 0 both sides diverge
to +∞ or −∞), while the importance of f being concave
becomes apparent in the context of continuous majorization
theory, see Sec. II D.

We note that (18) is not tight for squeezed coherent states as
the unitary squeezing operator � does only reduce to a linear
symplectic map � = diag(ξ, 1/ξ ) with ξ > 0 in phase space
such that (x, p) → (ξx, p/ξ ) when applied to the Wigner
W distribution. More precisely, the correspondence between
Gaussian unitaries on states and affine symplectic maps on
the Husimi Q distribution is broken by the Weierstrass trans-
formation (13) in case of squeezing. From a quantum optics
perspective, this is due to the vacuum signal in the hetero-
dyne measurement being not equally squeezed with the input
signal. Therefore, one has to introduce a squeezing transfor-
mation in (18) and minimize with respect to ξ in order to end
up with a relation which is tight for all pure Gaussian states.

D. Continuous majorization theory

Most generally, measures of localization are described
within the framework of majorization theory. For continuous
distributions, localization replaces the notion of ordering in
case of discrete probability distributions. Some probability
density function ϕ(x, p) is said to be majorized by another
distribution ϕ′(x, p), written as ϕ ≺ ϕ′, if and only if∫

dxd p

2π
f (ϕ) �

∫
dxd p

2π
f (ϕ′) (20)

for all concave functions f : I → R with f (0) = 0 and I =
[0, max{ϕ, ϕ′}] [52–54,92]. Hence, ϕ ≺ ϕ′ expresses the intu-
ition that ϕ′ is more localized than ϕ in most general terms.

Interestingly, the Lieb-Solovej theorem (18) is fundamen-
tally a statement about localization of distributions in phase
space and states that no Husimi Q distribution Q is more
localized than the vacuum Husimi Q distribution Q̄ (or equiv-
alently all coherent ones), i.e., Q ≺ Q̄. Note that it is sufficient
for Q(x, p) to be continuous, non-negative and normalized in
order to apply (20) and hence the violation of Kolmogorov’s
third axiom can be safely disregarded.

To make these insights more explicit, we introduce some
techniques from continuous majorization theory. We begin
with the level function mQ(t ), which is associated with a
given Husimi Q distribution Q(x, p) and is defined as the

3For generalizations see Refs. [37,46] for SU(2), [47] for symmet-
ric SU(N ) and [48,49] for SU(1, 1).

phase-space measure of the domain A for which the value of
the distribution exceeds a given threshold t , i.e.,

mQ(t ) =
∫
A

dxd p

2π
with A = {(x, p) : Q(x, p) � t}, (21)

where t ∈ I = [0, 1] as a result of the boundedness of the
Husimi Q distribution (12). The definition (21) is conveniently
rewritten as

mQ(t ) =
∫

dxd p

2π
�[Q(x, p) − t], (22)

with � denoting the Heaviside � function. The negative
derivative of the latter quantity defines the density-level func-
tion

μQ(t ) = − d

dt
mQ(t ) =

∫
dxd p

2π
δ[Q(x, p) − t], (23)

where δ is the Dirac δ distribution.
With (23) at hand we can simplify the integrals appearing

in the Lieb-Solovej theorem (18) as∫
dxd p

2π
f (Q) =

∫
I

dt f (t )μQ(t ). (24)

If f is differentiable almost everywhere on I we can equally
write the following with (22):∫

dxd p

2π
f (Q) =

∫
I

dt
df (t )

dt
mQ(t ), (25)

where we used f (0) = 0 and mQ(1) = 0. The latter two equa-
tions show that continuous majorization relations ultimately
boil down to a comparison of density-level or level functions.
Note that these functions remain invariant for all transfor-
mations with unit determinant, i.e., those which preserve
phase-space area elements, including symplectic transforma-
tions such as rotations and squeezings of the coordinate axes
as well as displacements [see (74) for the case of Gaussian
distributions].

We illustrate all introduced concepts by comparing the
Husimi Q distributions and their localization of the vacuum
state (19) with the first excited Fock state |1〉, for which we
obtain

Q(x, p) = x2 + p2

2
e− 1

2 (x2+p2 ). (26)

The two distributions are shown in Figs. 1(a) and 1(b), re-
spectively. The corresponding level functions are obtained
by integrating over the area enclosed by the Husimi Q dis-
tribution (and dividing by 2π ) at a given height, which we
sketch for a few heights with black and dark orange circles,
respectively. The resulting level and density-level functions
are plotted in Fig. 1(c), where the aforementioned values are
represented by plot markers. While the vacuum curves take
positive values up to t = 1, the Fock curves evaluate to zero
for t > 1/e. If we multiply the density-level functions with
a concave function which overweighs small t , for example
f (t ) = t1/5, the integrated area of the Fock curve enclosed
with the t axis will be larger than the area below the vacuum
curve. Similarly, if we choose a function pronouncing large t ,
for example f (t ) = −t5, the area will again be larger for the
Fock curve due to the minus sign. This exemplifies the ma-
jorization relation Q ≺ Q̄ in form of the Lieb-Solovej theorem
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FIG. 1. Panels (a) and (b) show the Husimi Q distributions of the vacuum state (19) and the first Fock state (26), respectively. The areas
enclosed by the black and dark orange circles (divided by 2π ) give the values for the corresponding level functions at given height, which
are depicted as plot markers in panel (c), together with the level and density-level functions in a logarithmic plot. For t � 1/e we have
μQ(t ) � μQ̄(t ), while for 1/e < t � 1 we obtain μQ̄(t ) � μQ(t ) = 0. Irrespective of the concave function f (t ) multiplied to the density-level
functions, the area below this product for the vacuum state is always smaller than for the Fock state, which illustrates the majorization relation
Q ≺ Q̄.

(18) with (24) understood for two choices for f . The intuition
provided here will be useful later when choosing suitable f
for certifying entanglement.

III. ENTANGLEMENT CRITERIA

We extend the latter considerations to the bipartite case and
derive various classes of entanglement criteria using the Lieb-
Solovej theorem (18) for general nonlocal observables.

A. Bipartite setup and nonlocal operators

We now investigate two continuous-variable quantum sys-
tems forming a bipartition, which is described by a bipartite
quantum state ρ12. The degrees of freedom of the two sub-
systems are encoded in the local operators X j, P j , where
j ∈ {1, 2} labels the subsystem, which fulfill

[X j, Pk] = iδ jk1. (27)

For the sake of generality we incorporate the effect of rota-
tions in the local subsystems, which will play an important
role in the comparison of our criteria to criteria based on
marginal distributions. We describe a rotation around an angle
ϑ ∈ [0, 2π ) by a rotation matrix

T (ϑ ) =
(

cos ϑ sin ϑ

− sin ϑ cos ϑ

)
, (28)

leading to rotated operators via the transformation

(X j, P j ) → (R j, S j ) = T (ϑ j )(X j, P j ). (29)

As the canonical commutation relations (27) are conserved
by local rotations, we can associate Husimi Q distributions to
the full system as well as to both subsystems along the lines
of Secs. II A and II B. More precisely, the global Husimi Q
distribution is obtained by applying a POVM formed by local
coherent states E j = |α j〉 〈α j| to both subsystems

Q(r1, s1, r2, s2) = Tr{ρ12(E1 ⊗ E2)}
= (〈α1| ⊗ 〈α2|)ρ12(|α1〉 ⊗ |α2〉). (30)

The resulting distribution is still bounded in the sense of
(12), but now normalized to unity with respect to the

four-dimensional phase-space measure dr1ds1dr2ds2/4π2.
Local Husimi Q distributions result from integrating out the
complementary phase-space variables, for example,

Q(r1, s1) = Tr{ρ1E1}

=
∫

dr2ds2

2π
Q(r1, s1, r2, s2) (31)

for subsystem 1 and analogously for subsystem 2.
Following Refs. [1,10,12], we adopt nonlocal operators for

the study of entanglement by adding and subtracting local
operators. Additionally, we allow for relative scalings between
the four local operators, such that we end up with

R± = a1R1 ± a2R2, S± = b1S1 ± b2S2, (32)

with a1, b1, a2, b2 � 0 and a1b1 = a2b2. These operators
fulfill the commutation relations

[R±, S±] = i(a1b1 + a2b2)1, [R±, S∓] = 0, (33)

showing that pairs of operators with equal indices represent
independent oscillator modes with canonical commutation re-
lations.

To express the global Husimi Q distribution in terms of the
nonlocal variables (32), we employ a variable transformation

Q(r+, s+, r−, s−)

= 1

4a1b1a2b2
Q

(
r+ + r−

2a1
,

s+ + s−
2b1

,
r+ − r−

2a2
,

s+ − s−
2b2

)
,

(34)

where the determinant of the Jacobian matrix evaluates to
1/(4a1b1a2b2). For entanglement criteria, we are particularly
interested in the marginals over the mixed variables pairs
(r±, s∓) of the latter distribution

Q± ≡ Q±(r±, s∓) =
∫

dr∓ds±
2π

Q(r+, s+, r−, s−), (35)

which are not constrained by the uncertainty principle as the
underlying phase-space operators commute (33).
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In contrast, the distributions corresponding to equal signs,

Q(r±, s±) =
∫

dr∓ds∓
2π

Q(r+, s+, r−, s−), (36)

constitute true Husimi Q distributions and may equally be
defined via coherent-state projectors with respect to (R±, S±)
after a partial trace over the complementary degrees of
freedom. Therefore, they are restrained by the uncertainty
principle in the form of the Lieb-Solovej theorem (18).
However, the different normalization affects the size of the
codomain of the Husimi Q distribution (and hence the domain
of the concave function f ) as well as the form of the vacuum
expression (19), which now reads

Q̄(r±, s±) = 1

a1b1 + a2b2
exp

(
−1

2

r2
± + s2

±
a1b1 + a2b2

)
. (37)

Adapted to this setup, the Lieb-Solovej theorem states∫
dr±ds±

2π
f (Q) �

∫
dr±ds±

2π
f
(
Q̄
)
, (38)

for any concave f : [0, (a1b1 + a2b2)−1] → R with f (0) = 0.
As discussed at the end of Sec. II C, we additionally have to
allow for an optimization over a squeezing transformation �

in the nonlocal Wigner W distribution W±(r±, s∓) in order to
render the latter inequality tight for all pure Gaussian states.
As the tightness of an uncertainty relation is closely related
to the detection capabilities of entanglement criteria derived
from such a relation, we explicitly allow for this possibility in
the following.

B. General criteria

We now show that the distribution Q± is nontrivially con-
strained for all separable states. A bipartite quantum state ρ12
is called separable if it can be written as a convex combination
of product states, i.e.,

ρ12 =
∑

j

p j
(
ρ

j
1 ⊗ ρ

j
2

)
, (39)

where p j � 0 denotes a discrete probability distribution with∑
j p j = 1. A widespread method to investigate the separa-

bility of a given quantum state is to apply a positive but not
completely positive trace-preserving map and check whether
the resulting operator is still non-negative, i.e., constitutes a
valid density operator [3,4]. A prime example for this method
is the Peres-Horodecki (PPT) criterion [6,7] which utilizes
the partial transpose T 2 (conveniently applied to subsystem
two) leading to a necessary, but in general not sufficient,
condition for separability: For every separable state ρ12 the
operator ρ12 → ρ′

12 = (11 ⊗ T 2)(ρ12) is non-negative ρ′
12 �

0. In particular, ρ′
12 is physical for separable ρ12, and hence

the Lieb-Solovej theorem (38) applies also to Husimi Q dis-
tributions of ρ′

12.
To relate these distributions to observable distributions we

have to translate the action of the partial transpose T 2 on
the state ρ12 into an action onto the variable pairs (r±, s±)
spanning phase space. It is straightforward to show that the
partial transpose T 2 flips the sign of the local variable s2 →
−s2, which holds for all quasiprobability distributions cover-
ing phase space [13]. On the level of the nonlocal variables

(32) this is equivalent to s± → s∓ implying that the partial
transpose T 2 corresponds to the transformation Q(r±, s±) →
Q′(r±, s±) = Q±(r±, s∓).

By the PPT criterion the distribution Q±(r±, s∓) is thus
constrained by the Lieb-Solovej theorem (38), where the vac-
uum expression on the right-hand side has to be expressed in
the mixed variable pairs,

Q̄′
±(r±, s∓) = Q̄(r±, s∓)

= 1

a1b1 + a2b2
exp

(
−1

2

r2
± + s2

∓
a1b1 + a2b2

)
. (40)

To make this statement more explicit we introduce a witness
functional W f ,

W f =
∫

dr±ds∓
2π

[ f (Q±) − f (Q̄′
±)], (41)

with concave f : J → R fulfilling f (0) = 0 defined over
the interval J = [0, max{max Q±, (a1b1 + a2b2)−1}] ⊆ R+.
Then, our main result is that W f is non-negative for all sepa-
rable states, i.e.,

ρ12 separable ⇒ W f � 0. (42)

If the latter inequality is violated for a given state ρ12, entan-
glement is demonstrated.

Let us stress the generality of our criteria (42), as one
may optimize over the two local rotation angles ϑ1, ϑ2, the
four scaling parameters a1, b1, a2, b2 under the constraint
a1b1 = a2b2, the squeezing transformation � and the class of
concave functions f with f (0) = 0 to witness entanglement.
In the following, we discuss the influences of all quantities in
detail to develop a systematic understanding of their effect.

C. Rotation angles and scaling parameters

We begin our study with the rotation angles ϑ1, ϑ2 and the
scaling parameters a1, b1, a2, b2. While we already used a
matrix representation for the former in (28), we write

U (a1, a2, b1, b2) =

⎛
⎜⎜⎝

a1 0 a2 0
0 b1 0 −b2

a1 0 −a2 0
0 b1 0 b2

⎞
⎟⎟⎠ (43)

for the matrix mixing the local operators in (32), i.e.,
(R+, S−, R−, S+) = U (a1, a2, b1, b2)(R1, S1, R2, S2). Then,
the four initial local operators (X 1, P1, X 2, P2) transform as

(X 1, P1, X 2, P2) → (R+, S−, R−, S+)

= G(ϑ1, ϑ2, a1, a2, b1, b2)(X 1, P1, X 2, P2),

(44)

with the full transformation matrix

G(ϑ1, ϑ2, a1, a2, b1, b2)

= U (a1, a2, b1, b2)[T (ϑ1) ⊕ T (ϑ2)] (45)

describing the effects of our six parameters of interest.
For equal scaling in the local quadratures, i.e., a1 = b1 and

a2 = b2 (which includes the most relevant case a1 = b1 =
a2 = b2 = 1), the matrix G can be rewritten as a rotation
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(b) (c)(a)

(e) (f)(d)

FIG. 2. Distributions of the two-mode squeezed vacuum state (48) with a1 = b1 = a2 = b2 = 1, ϑ1 = ϑ2 = 0, and ξ = 1 for (a) λ = 0 and
λ = 1/3 in (b) (r+, s−) and (c) (r−, s+) variables, respectively. The areas enclosed by the circles give the values level functions at given height,
which are depicted as plot markers in panel (d), together with level and density-level functions from (49) of both variable pairs for selected
values of λ. For λ = 1/3, the integrand of the witness functional (47) is shown for (e) (r+, s−) and (f) (r−, s+) variables.

in subsystem 1 around an angle ϑ (subsystem 2 is left un-
changed) and a transformation to nonlocal variables (r±, s∓)
followed by a rotation in these variables around φ = −ϑ2, i.e.,

G(ϑ1, ϑ2, a1, a2, a1, a2)

= [T (φ) ⊕ T (φ)]G(ϑ, 0, a1, a2, a1, a2), (46)

when choosing ϑ = arctan(cos ϑ1 cos ϑ2 − sin ϑ1 sin ϑ2,

cos ϑ1 sin ϑ2 + sin ϑ1 cos ϑ2), where arctan(x, y) denotes the
arcus tangens in the Euclidean plane (x, y). As the final
rotations T (φ) ⊕ T (φ) leave our criteria (42) invariant, we
only need to optimize over one angle ϑ . In contrast, criteria
based on marginal distributions require angle tomography
over both angles ϑ1, ϑ2, which is substantially more costly in
terms of experimental runs.

D. Concave function f

Following the analysis in Sec. II D, our entanglement cri-
teria (42) state that all distributions Q± corresponding to
separable states are less localized than the vacuum distribu-
tion Q̄′

±. In contrast, some entangled states have sufficiently
localized distributions Q±, such that they are detected by the
criteria (42) for some f . The corresponding distribution Q±
majorizes the vacuum distribution Q̄′

± if and only if entangle-
ment can be certified for all f .

Using the definition of the density-level function (24), we
can rewrite the criteria as

W f =
∫
J

dt f (t )[μQ± (t ) − μQ̄′± (t )] � 0, (47)

showing that also our criteria (42) reduce to a comparison
of the density-level functions μQ± (t ) and μQ̄′± (t ) and an ap-
propriate choice for f (t ). Note that the vacuum expression
(40) is bounded from above by (a1b1 + a2b2)−1, such that

the second term in (47) is effectively integrated over the in-
terval [0, (a1b1 + a2b2)−1]. However, some entangled states
have sufficiently localized Q± such that their density-level
functions take positive values for t > (a1b1 + a2b2)−1.

As a simple example, we consider the two-mode squeezed
vacuum (TMSV) state

|ψ〉 =
√

1 − λ2
∞∑

n=0

(−λ)n |n〉 ⊗ |n〉 , (48)

with λ ∈ [0, 1] being the squeezing parameter, which is entan-
gled for all λ > 0. For a1 = b1 = a2 = b2 = 1, ϑ1 = ϑ2 = 0,
and ξ = 1 we obtain a Gaussian distribution with covariance
matrix V± = 2

1±λ
1. In Fig. 2(a) we show the vacuum case

λ = 0 (for which Q+ = Q−), while in Figs. 2(b) and 2(c) we
illustrate λ = 1/3 for Q+ and Q−, respectively. Entanglement
is only detected in the (r+, s−) variables as the corresponding
distribution is more localized than the vacuum. The rotational
symmetry of these distributions permits analytic calculations
of the level and density-level functions when working with
polar coordinates, which leads to

mQ± (t ) = −det1/2V± ln(tdet1/2V±),

μQ± (t ) = det1/2V±
t

, (49)

for t ∈ [0, det−1/2V±], respectively. Both are shown for both
variable pairs in Fig. 2(d) for the vacuum (black curves), λ =
1/3 (dark orange curves) and λ = 2/3 (light orange curves)
with solid (dashed) and dot-dashed (dotted) curves for the
+(–) level and density-level functions, respectively. The val-
ues at the plot markers in t steps of 1/12 correspond to the
phase-space measures, i.e., areas divided by 2π , of the circles
in Figs. 2(a)–2(c). Furthermore, we show the integrand of our
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witness functional (47) for the distributions of Figs. 2(b) and
2(c) in Figs. 2(e) and 2(f), respectively, for various choices
for the concave function f (t ), such that the sum of the shaded
areas corresponds to the value of the witness functional (47).
The black solid curves express normalization, while the blue
dashed and red dotted curves illustrate that the absolute value
of the witness (47) increases for smaller monomial exponents
for the state (48). However, entanglement is detected in Q+
for all choices of f as the state is Gaussian, which we discuss
further in Sec. III F 2.

E. Entropic criteria

Of particular interest are entropic functionals as there ex-
ist a variety of criteria formulated in terms of entropies of
measurement distributions [16,17,20,22,36,93–97]. In the fol-
lowing, we discuss entropic criteria as special choices for the
concave function f . To arrive at entropic criteria, it is addi-
tionally necessary to apply a monotonic function to both terms
in the witness functional (41). More precisely, we consider a
monotonically increasing function g : R → R such that the
witness functional becomes

W f ,g = g

[∫
dr±ds∓

2π
f (Q±)

]
− g

[∫
dr±ds∓

2π
f (Q̄′

±)

]
,

(50)

which still fulfills the entanglement criteria (42). As the con-
verse statement W f � 0 holds for − f (or equivalently for
convex f ), applying a monotonically decreasing function g
still results in W f ,g � 0. We note that this procedure does
neither strengthen nor weaken the entanglement criteria.

1. Rényi-Wehrl entropies

We start with the family of Rényi-Wehrl entropies

Sβ (Q±) = 1

1 − β
ln

[∫
dr±ds∓

2π
Qβ

±(r±, s∓)

]
, (51)

with entropic orders β ∈ (0, 1) ∪ (1,∞). Hence, we choose
f (t ) = tβ , which is concave (convex) and a monotonically in-
creasing (decreasing) function g(t ) = 1

1−β
ln t for β < 1 (β >

1), in which case (50) implies

Wβ = Sβ (Q±) − ln β

β − 1
− ln det V̄ ′

±
2

� 0, (52)

where V̄ ′
± = (a1b1 + a2b2)1 denotes the covariance matrix of

the vacuum Q̄′
±, for all separable states ρ12.

2. Tsallis-Wehrl entropies

For Tsallis-Wehrl entropies

Sγ (Q±) = 1

γ − 1

[
1 −

∫
dr±ds∓

2π
Qγ

±(r±, s∓)

]
, (53)

with γ ∈ (0, 1) ∪ (1,∞)4 we choose again monomials f (t ) =
tγ , but now we take g(t ) = 1−t

γ−1 , which is also monotonically

4For γ < 0 we have f (0) → ∞ and hence we have to restrict to
Tsallis-Wehrl entropies with γ > 0.

increasing (decreasing) for γ < 1 (γ > 1), leading to the cri-
teria

Wγ = Sγ (Q±) − 1

γ − 1

[
1 − (det V̄ ′

±)
1−γ

2

γ

]
� 0. (54)

As the function f agrees for both entropic families, the criteria
(52) and (54) are equally strong in the sense that they detect
the same set of entangled states. Therefore, an appropriate
choice regarding which entropic family is being considered
can be based on other decisive factors depending on the ap-
plication: While Tsallis’ entropy was designed to generalize
statistical mechanics to situations where an entropy is nonex-
tensive, Rényi’s aim was to formulate a family of entropies
which includes not only Shannon’s but also Hartley’s and
other entropies, which are of particular interest in the context
of communication protocols.

3. Wehrl entropy

In the limits β, γ → 1 we obtain from (52) and (54) the
entropic witness

W1 = S1(Q±) − 1 − ln det V̄ ′
±

2
� 0 (55)

in terms of the Wehrl entropy

S1(Q±) = −
∫

dr±ds∓
2π

Q±(r±, s∓) ln Q±(r±, s∓). (56)

Note that this result also follows directly from (41) for the
choice f (t ) = −t ln t . Note also that for a1 = b1 = a2 = b2 =
1 the corresponding criteria reduce to the criteria reported in
Ref. [36].

F. Second moment criteria

Another interesting class of witnesses comprises second
moments, which are the simplest quantities revealing informa-
tion about the localization of a distribution. We derive second
moment criteria from our general criteria and discuss them in
the context of Gaussian states.

1. Determinant of the covariance matrix

We start from the nonlocal covariance matrix γ± of an
arbitrary Wigner W distribution

γ± =
(

σ 2
r± σr±s∓

σr±s∓ σ 2
s∓

)
, (57)

which contains all three second moments, i.e., the two vari-
ances

σ 2
r± =

∫
dr±ds∓

2π
r2
±W±(r±, s∓),

σ 2
s∓ =

∫
dr±ds∓

2π
s2
∓W±(r±, s∓), (58)

as well as the covariance

σr±s∓ =
∫

dr±ds∓
2π

r±s∓W±(r±, s∓), (59)

which characterizes the correlations between r± and s∓. Note
here that we have assumed zero expectation values without
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loss of generality as the entanglement criteria (42) and all
marginal criteria we consider in Sec. IV are invariant under
displacements.

Moreover, we write for the covariance matrix V± of the
Husimi Q distribution

V± =
(

�2
r± �r±s∓

�r±s∓ �2
s∓

)
, (60)

with second moments

�2
r± =

∫
dr±ds∓

2π
r2
±Q±(r±, s∓),

�2
s∓ =

∫
dr±ds∓

2π
s2
∓Q±(r±, s∓),

�r±s∓ =
∫

dr±ds∓
2π

r±s∓Q±(r±, s∓). (61)

Using (13) adapted to the nonlocal variables, the latter covari-
ance matrix is related to the former via

V± = γ± + γ̄± =
⎛
⎝σ 2

r± + a2
1+a2

2
2 σr±s∓

σr±s∓ σ 2
s∓ + b2

1+b2
2

2

⎞
⎠, (62)

which shows that the variances of the Husimi Q distribution
are strictly larger than those of the Wigner W distribution,
while the covariances agree. Note here that γ̄± is obtained
when marginalizing the Wigner W distribution of the global
vacuum after transforming to nonlocal variables.

To derive second moment criteria, we use the fact that the
Wehrl entropy S1(Q±) is maximized by a Gaussian Husimi Q
distribution Q± for a fixed covariance matrix V±, i.e.,

S1(Q±) � 1 + 1
2 ln det V±. (63)

With this upper bound the Wehrl entropic witness functional
(55) reduces to the second moment witness

Wdet V± = det V± − det V̄ ′
± � 0, (64)

which is based on the determinant of the covariance matrix
V± and thus contains information about all three second mo-
ments, in particular about the correlations between r± and s∓.

2. Gaussian states

Gaussian states are characterized by Gaussian Husimi Q
distributions, which are of the form

Q±(r±, s∓) = 1

Z
e− 1

2 (r±,s∓ )T V −1
± (r±,s∓ ), (65)

with Z = det1/2 V± being a normalization constant. We have
again set the expectation values to zero without loss of gener-
ality.

Interestingly, for the class of Gaussian distributions (65),
the general entanglement criteria (42) are equivalent to the
second moment criteria Wdet V± � 0 for all concave f with
f (0) = 0. To prove this equivalence, we start from Simon’s
normal form of the bipartite Wigner covariance matrix [13]
(standard form II in Ref. [10]):

γ12 =

⎛
⎜⎜⎝

m1 0 m+ 0
0 m1 0 m−

m+ 0 m2 0
0 m− 0 m2

⎞
⎟⎟⎠, (66)

with m1, m2, m+, m− ∈ R (note that these parameters are also
constrained by the uncertainty principle formulated for γ12).
Every bipartite covariance matrix γ12 can be brought into
this form by local, single-mode symplectic transformations
S1 ⊗ S2 with S1,S2 ∈ Sp(2,R), which does not alter the
separability of the state as such transformations correspond
to the class of local operations and classical communications
(LOCCs). After adding the global vacuum γ̄12 to obtain V12,
transforming to the nonlocal variables (32) and integrating
out the mixed variable pairs according to (35), we find the
diagonal matrix

V± = 1

2

(
a2

1(1 + 2m1) + a2
2(1 + 2m2) ± 4a1a2m+ 0

0 b2
1(1 + 2m1) + b2

2(1 + 2m2) ∓ 4b1b2m−

)
. (67)

Starting from the vacuum Q̄′
±(r±, s∓), a general Gaussian

distribution Q±(r̃±, s̃∓) with a covariance matrix of the form
(67) can be obtained by applying an affine linear coordinate
transformation in phase space

(r±, s∓) → (r̃±, s̃∓) = M±(r±, s∓). (68)

Comparing (67) with (40) shows that the transformation ma-
trix M± is diagonal and reads

M± =
√

V±V̄ ′−1
± , (69)

which is always well defined because all involved components
are positive and real by definition. Indeed, with the transfor-

mation (68) we obtain for the quadratic form in the exponent

(r±, s∓)T V̄ −1
± (r±, s∓) → (r̃±, s̃∓)T V −1

± (r̃±, s̃∓)

= (r±, s∓)T MT
±V −1

± M±(r±, s∓)

= (r±, s∓)T V̄ −1
± (r±, s∓). (70)

Furthermore, (69) implies

det M2
± = det V±

det V̄ ′±
, (71)

such that we may obtain a relation between det V± and det V̄ ′
±

from det M2
±.
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Under the coordinate transformation (68), the vacuum dis-
tribution Q̄′

±(r±, s∓) transforms as

Q̄′
±(r±, s∓) → Q±(r̃±, s̃∓) = Q̄′

±(r±, s∓)

det M±
. (72)

Similarly, the level functions transform as

mQ̄′± (t ) → mQ± (t ) = det M±mQ̄′± (t det M±), (73)

while for the density-level functions we find

μQ̄′± (t ) → μQ± (t ) = det M2
±μQ̄′± (t det M±). (74)

This shows that the level as well as the density-level functions
of arbitrary Gaussian distributions are scaled versions of each
other, which is also evident in (49) and Fig. 2(d).

Plugging the relation (72) into our witness functional (41)
for the first or second term yields

W f =
∫

dr±ds∓
2π

[
det M± f

(
Q̄′

±
det M±

)
− f (Q̄′

±)

]
(75)

or

W f =
∫

dr̃±ds̃∓
2π

[
f (Q±) − f (Q± det M±)

det M±

]
, (76)

respectively. As f is concave with f (0) = 0, it is a subad-
ditive function and hence fulfills f (κt ) � κ f (t ) for all real
κ ∈ [0, 1] and all t ∈ J . Thus, det M± � 1 implies W f � 0
from (75), while det M± � 1 implies W f � 0 from (76). As
the latter is equivalent to W f � 0 implying det M± � 1 by
contraposition, we can conclude with (71) that the second mo-
ment criteria Wdet V± = det V± − det V̄ ′

± � 0 and the general
criteria W f � 0 are equivalent for all Gaussian states and for
all f under our standard assumptions.

3. Optimality

The considerations of the preceding section have strong
implications regarding the optimality of the second moment
witness (64): It is optimal in the sense that no stronger state-
independent bound on det V± can be implied from the general
criteria (42) as this would be in contradiction with the latter
equivalence in case of Gaussian distributions. More precisely,
if there existed such a stronger bound, it would have to hold
for all states, in particular for Gaussian states. But since the
general criteria (42) are equivalent to the second moment
criteria from (64) for Gaussian states, there cannot be any such
bound. Therefore, taking f (t ) �= −t ln t and maximizing the
witness functional W f over Q± for fixed V± cannot lead to
stronger second moment criteria.

We illustrate the aforementioned optimality by showing
the inferiority of second moment criteria stemming from
maximizing Rényi-Wehrl entropies Sβ (Q±) for fixed V±. De-
pending on the entropic order β > 1

2 , Rényi-Wehrl entropies
are maximized by the distributions [98,99]

Q±(r±, s∓)

= Z (β )

(
1 − 1

2

β − 1

2β − 1
(r±, s∓)T V −1

± (r±, s∓)

) 1
β−1

+
, (77)

with x+ = max(x, 0) as the support for β > 1 is defined as
the compact domain for which (r±, s∓)T V −1

± (r±, s∓) � ν [for

FIG. 3. Additional factor χ (β ) in the second moment criteria
(79) obtained from maximizing the left-hand side of the Rényi-Wehrl
criteria (52) for fixed covariance matrix V± (blue solid curve). We
observe χ (β ) � 1 with equality for β → 1 (see black dashed line),
illustrating the optimality of the main second moment criteria (64).

larger values of (r±, s∓) the distribution Q± would become
negative], a normalization factor

Z (β ) =

⎧⎪⎪⎨
⎪⎪⎩

�( 1
1−β )

�( β

1−β )
1−β

2β−1 det−1/2V± 1
2 < β < 1

�( β

β−1 +1)
�( β

β−1 )
β−1

2β−1 det−1/2V± β > 1,

(78)

and �(x) denoting the � function. These correspond to two-
dimensional Student-t and Student-r distributions, for 1

2 <

β < 1 with scale matrix �± = (ν − 2)V± and ν = 2β

1−β
de-

grees of freedom and for β > 1 with scale matrix �± = νV±
and ν = 2 2β−1

β−1 degrees of freedom, respectively.
Bounding the left-hand side of the Rényi-Wehrl witness

(52) from above by the Rényi-Wehrl entropy of the distri-
butions (77) and simplifying the result leads to the second
moment criteria

W̃det V± = det V± − χ (β ) det V̄ ′
± � 0, (79)

with the non-negative function

χ (β ) =
(

2 − 1

β

)− 2β

β−1

β
2

β−1 , (80)

which is shown in Fig. 3. Given that χ (β ) � 1 for all β ∈
( 1

2 , 1) ∪ (1,∞) with equality in the limit β → 1 [in which
case the distributions (77) converge to Gaussian distributions
(65)], the criteria (79) are indeed never stronger than (64).

IV. COMPARISON WITH MARGINAL APPROACH

Having discussed various families of entanglement criteria
following from our general criteria (42), we now compare the
performance of these criteria to their counterparts based on
marginal distributions.

A. Second moment criteria

There exists a simple relation between our second moment
witness (64) and the MGVT criteria [11,12]. Namely, using
that det V̄ ′

± = 4 det γ̄ ′
± and multiplying out the determinant
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(b) (c)(a)

(e) (f)(d)

FIG. 4. (upper row) Witnessed regions by the DGCZ, MGVT, and our second moment criteria are shown in panels (a)–(c), respectively,
with the light gray regions indicating the allowed regions from non-negativity of the covariance matrix γ±, i.e., σr±σs∓ � σr±s∓ (overall,
we restrict to σr±s∓ � 0 for simplicity). (lower row) Comparisons of witnessed regions between two criteria. Panels (d) and (e) show the
outperformance regions of the MGVT and our criteria, respectively, over the DGCZ criteria, exemplifying that the former two are strictly
stronger conditions than the latter. Our criteria are compared with the MGVT criteria in panel (f), highlighting their abilities to account for
improper angles and squeezings, respectively. A combined figure is provided in Ref. [74].

with (62) we find

Wdet V± =WMGVT + b2
1 + b2

2

2
σ 2

r± + a2
1 + a2

2

2
σ 2

s∓

+
(
a2

1 + a2
2

)(
b2

1 + b2
2

)− 3(a1b1 + a2b2)2

4
− σ 2

r±s∓ ,

(81)

where

WMGVT = σ 2
r±σ 2

s∓ − det V̄ ′
±

4
(82)

is the generalized witness functional for the MGVT criteria.
Another interesting set of criteria, which contain a sum rather
than a product of variances, are the DGCZ criteria [10], ex-
pressed through the witness functional

WDGCZ = σ 2
r± + σ 2

s∓ − det1/2V̄ ′
±. (83)

We show the witnessed regions of the DGCZ, MGVT, and
our second moment criteria in Figs. 4(a)–4(c), respectively,
together with the physically allowed regions by the non-
negativity of γ± (light gray shaded areas) for a1 = b1 = a2 =
b2 = 1, ϑ1 = ϑ2 = 0, and ξ = 1.

It is well known that the MGVT criteria imply the DGCZ
criteria, which follows from x2y2 � 1

4 (x2 + y2)2 for all x, y ∈
R, see Fig. 4(d). Similarly, our second moment criteria (64)
imply the DGCZ criteria (83) for all scaling parameters a1,
b1, a2, b2 due to σ 2

r±s∓ � 0 as well, which we exemplify in
Fig. 4(e). As the DGCZ criteria are necessary and sufficient
for separability in case of Gaussian states when optimized
over the scaling parameters a1, b1, a2, b2, the same holds true
for the MGVT and our criteria.

Furthermore, our criteria and the MGVT criteria are equiv-
alent after optimizing both criteria over the set of symplectic
transformations under which they are not invariant together
with an optimization over the scaling parameters a1, b1, a2,
b2. To that end, we consider symplectic transformations S± ∈
Sp(2,R) in the nonlocal phase spaces (r±, s∓) transforming
the Wigner W distribution as W±(r±, s∓) → W̃±(r̃±, s̃∓) with
(r̃±, s̃∓) = S±(r±, s∓). Then, the nonlocal covariance matrix
transforms as γ± → γ̃± = S±γST

± with det S± = 1 [13]. This
implies for our second moment witness functional (64)

WdetV± → W̃detV±

= det Ṽ± − det V̄ ′
±

= det
(
S±γ±ST

± + γ̄±
)− det V̄ ′

±

= det[γ± + γ̄±(ST
±S±)−1] − det V̄ ′

±, (84)

showing explicitly that the criteria remain invariant under
orthogonal transformations S±ST

± = 1, i.e., rotations, but not
under squeezing for which S± = � = diag(ξ, 1/ξ ) with ξ >

0. In contrast, the MGVT criteria (82) are invariant under
squeezing only, in which case

WMGVT → W̃MGVT = ξ 2σ 2
r±

1

ξ 2
σ 2

s∓ − det V̄ ′
±

4

= WMGVT. (85)

Note that the DGCZ criteria (83) are not invariant under either
of the two transformations.
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Let us now apply a squeezing transformation to our second
moment criteria (64) in the sense of (84), which yields

WdetV± =
(

ξ 2σ 2
r± + a2

1 + a2
2

2

)(
1

ξ 2
σ 2

s∓ + b2
1 + b2

2

2

)

− σ 2
r±s∓ − (a1b1 + a2b2)2. (86)

To optimize over ξ , we minimize the latter expression with
respect to ξ , which gives

ξ 2 = σs∓

σr±

√
a2

1 + a2
2

b2
1 + b2

2

, (87)

leading to

WdetV± =

⎛
⎜⎝σr±σs∓ +

√(
a2

1 + a2
2

)(
b2

1 + b2
2

)
2

⎞
⎟⎠

2

− σ 2
r±s∓ − (a1b1 + a2b2)2. (88)

The MGVT criteria become optimal for an appropriate choice
of the coordinate axes such that σr±s∓ = 0, and then the non-
negativity of the latter is equivalent to

σr±σs∓ +
√(

a2
1 + a2

2

)(
b2

1 + b2
2

)
2

− (a1b1 + a2b2) � 0. (89)

Finally, noting that [(a2
1 + a2

2)(b2
1 + b2

2)]1/2 � a1b1 + a2b2

with equality for b2 = (b1a2)/a1 shows that the statements
WdetV± � 0 and WMGVT � 0 are indeed equivalent after opti-
mizing over the angle φ, the squeezing ξ as well as the scaling
parameters a1, b1, a2, b2.5

The different invariances of our criteria (64) and the
MGVT criteria (82) cause differences in their performances
for fixed a1, b1, a2, b2, depending on whether the considered
Husimi Q distribution is sufficiently rotated or squeezed, see
Fig. 4(f). Furthermore, (81) provides an intuition for one set
of criteria to outperform the other. Roughly speaking, our cri-
teria outperform (are outperformed by) the MGVT criteria for
σr± ≈ σs∓ and |σr±s∓| > 0 (for σr± ≈ 1/σs∓ and |σr±s∓| ≈ 0).

B. Entropic criteria

Although there is no direct analog to the relation (81), we
can derive an inequality between our Wehrl entropic criteria
(55) and the marginal-based entropic criteria put forward by
WTSTD in Ref. [16], which will provide an intuition for the
later comparison.

We start by decomposing the Wehrl entropy (56) in the
sense of a joint entropy

S(Q±) = S(F±) + S(G∓) − I (F± : G∓), (90)

where the marginals of the Husimi Q distribution read

F± ≡ F±(r±) =
∫

ds∓√
2π

Q±,

G∓ ≡ G∓(s∓) =
∫

dr±√
2π

Q±. (91)

5Note that WdetV± and WMGVT themselves are still unequal.

Following (13), these distributions correspond to smeared-out
versions of the true marginal distributions associated with
measurements of the operators R± or S∓, i.e., f±(r±) =
〈r±|ρ|r±〉 or g∓(s∓) = 〈s∓|ρ|s∓〉, respectively, via

F±(r±) = ( f± ∗ f̄±)(r±)

=
√

2π

∫
dr′

± f±(r′
±) f̄±(r± − r′

±), (92)

with f±(r±) being normalized with respect to dr±/
√

2π , and
similarly for g∓(s∓).

Analogous to the covariance σr±s∓ , we have a term in the
decomposition (90) accounting for the correlations between
r± and s∓ in (90), which is the mutual information

I (F± : G∓) =
∫

dr±ds∓
2π

Q± ln
Q±

F±G∓
. (93)

Note that the mutual information is a non-negative measure
for the total correlations which is zero if and only if r± and
s∓ are uncorrelated. In contrast, a vanishing covariance σr±s∓
does not allow us to exclude the presence of correlations.

To relate the differential entropies of f± and F± we employ
the entropy power inequality

e2S(F±/
√

2π ) � e2S( f± ) + e2S( f̄±), (94)

use that the vacuum entropy sum is bounded from below
[51,88,89]

S( f̄±) + S(ḡ∓) = 1 + ln π + 1

2
ln
[(

a2
1 + a2

2

)(
b2

1 + b2
2

)]
� 1 + ln π + ln det V̄±

2
, (95)

and utilize midpoint concavity of the logarithm, i.e., that
ln[(x + y)/2] � (ln x + ln y)/2, to arrive at

W1 � 1
2WWTSTD − I (F± : G∓), (96)

where we introduced the witness functional corresponding to
the entropic criteria in Ref. [16] as

WWTSTD = S( f±) + S(g∓) − 1 − ln π − ln det V̄ ′
±

2
. (97)

The inequality (96) can be considered the entropic analog of
(81). Hence, a necessary (but not sufficient) condition for an
entangled state, which is undetected by the WTSTD criteria
(97), to be detected by our entropic criteria (55) is that suffi-
ciently strong correlations are present, i.e., that I (F± : G∓) >

WWTSTD � 0 [see Sec. IV C, especially Fig. 7(b)].
Unfortunately, a similar relation cannot be derived for the

Rényi-Wehrl criteria (52) and the Rényi entropic criteria by
STW, which are given by the witness functional

WSTW = Sα ( f±) + Sβ (g∓) − ln det V̄ ′
±

2

+ 1

2(1 − β )
ln

β

π
+ 1

2(1 − α)
ln

α

π
, (98)

with the condition

1

α
+ 1

β
= 2, (99)
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(b) (c)(a)

(e) (f)(d)

FIG. 5. The upper and lower rows show the Wigner W and Husimi Q distributions (A1) in the (r+, s−) variables, respectively, together with
their marginal distributions for a1 = b1 = a2 = b2 = 1, σ+ = 1, σ− = 1.2 and various choices for the angle φ and the squeezing parameter ξ .
Panels (a) and (d) represent the case φ = 0, ξ = 1. The rotation angle is set to φ = π/4 in panels (b) and (e), leading to strong correlations
between r+ and s−, while in panels (c) and (f) the squeezing parameter is changed to ξ = 3/2.

which can be traced back to the Babenko-Beckner inequality
[100] appearing in the proof of the corresponding entropic
uncertainty relation [88,101]. A decomposition like (90) in
terms of Rényi-type entropies would require a possibly neg-
ative third term, which does not coincide with the Rényi
generalization of the mutual information (93) (an inherently
non-negative quantity by definition) in general.

However, there is a crucial difference between the Rényi-
type criteria (52) and (98). While our criteria (52) can be
optimized over all entropic orders β, the marginal based crite-
ria (98) are constrained by the condition (99). More precisely,
one marginal distribution is always exponentiated by a real
number smaller or equal to one, while the other is always
exponentiated by a real number larger or equal to one. As
we will see in the following, this is a severe drawback as
some entangled states require an optimization where the full
phase-space distribution is exponentiated with a small or a
large number.

C. Example state

Following Refs. [16,17,25,102–104], we consider the fam-
ily of pure states corresponding to the global wave function in
position space

ψ (r1, r2)= r1 + r2√
πσ−σ 3+

exp

{
−1

4

[(
r1 + r2

σ+

)2

+
(

r1 − r2

σ−

)2
]}

,

(100)

which is entangled for all positive σ+, σ−. We generalize
this setting by explicitly implementing the effects of squeez-
ings � and rotations in the (r±, s∓) variables around an
angle φ ∈ [0, 2π ) (realized by tuning ϑ1 and ϑ2 as discussed
in Sec. III C) which leads to the nonlocal Wigner W and

Husimi Q distributions given explicitly for a1 = b1 = a2 =
b2 = 1 in the Appendix. We show both distributions for fixed
scalings a1 = b1 = a2 = b2 = 1, fixed σ+ = 1, σ− = 1.2 and
the three characteristic choices (ξ = 1, φ = 0), (ξ = 1, φ =
π/4), (ξ = 3/2, φ = 0) (from left to right) together with their
marginal distributions in Fig. 5.

We analyze the performance of all types of criteria consid-
ered in Sec. IV in detail. We evaluate the phase-space (solid
red curves) and marginal criteria (blue dashed curves) for the
triplet of values for φ, ξ as shown in Fig. 5 and compare their
performance in terms of σ+, σ−.

We start with our second moment criteria (64) and the
MGVT criteria (82) (first row in Fig. 6). For φ = 0, ξ = 1,
shown in Fig. 6(a), the MGVT criteria outperform our criteria,
while the converse is true for φ = π/4, ξ = 1 as depicted in
Fig. 6(b) as a result of strong correlations being present. When
optimizing over φ and ξ , the two become equivalent (see
Sec. IV A) as indicated in Fig. 6(c) where φ = 0, ξ = 3/2.
In all cases, the distributions shown in Fig. 5 corresponding to
σ+ = 1, σ− = 1.2 are not witnessed (circle), while the point
σ+ = 4, σ− = 1.5 (triangle) is an example for a state which
is witnessed by our criteria but not witnessed by the MGVT
criteria when the angle has been chosen unfavorably. The
angle dependence of our criteria (light orange dotted curve)
and the MGVT criteria (dark orange dashed to solid curve)
for this case as well as the covariance (black solid curve)
is shown in Fig. 7(a). Following the intuition provided by
(81), our criteria can outperform the MGVT criteria whenever
σ 2

r±s∓ > WMGVT, which is fulfilled for π/8 � φ � 3π/8 and
5π/8 � φ � π (orange shaded regions).

The same analysis is carried out for the Wehrl entropic
criteria (55) and the WTSTD criteria (97) in the middle row
of Fig. 6. We observe similar effects as for the second mo-
ment criteria. The main difference is that no straightforward
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(b) (c)(a)

(h) (i)(g)

(e) (f)(d)

FIG. 6. Witnessed regions of various marginal (dashed blue curves) and phase-space (solid red curves) criteria for the state (100). The
upper, middle, lower rows show second moment, entropic, optimized Rényi entropic criteria for the choices φ = 0, ξ = 1 (first column),
φ = π/4 (second column), and φ = 0, ξ = 3/2 (third column). For β → 0 our Rényi-Wehrl criteria (52) certify entanglement for all σ+ �= σ−
after optimizing over ξ as indicated from panels (g) and (i), and hence outperform the STW criteria. In particular, they witness the point σ+ = 1,
σ− = 1.2 (circle) corresponding to the distributions shown in Fig. 5. For highly correlated variables, i.e., for φ = π/4 (middle column), the
marginal criteria underperform, see, e.g., σ+ = 4, σ− = 1.5 (triangle) and also Fig. 7. A combined figure composed out of the three lower plots
is provided in Ref. [74].

(b)(a)

FIG. 7. Illustration of all quantities appearing in the second moment (entropic) relations (81) [(96)] in panels (a) [(b)] for the state (100)
with σ+ = 4, σ− = 1.5 (triangle in Fig. 6) and ξ = 1 as functions of φ. For sufficiently correlated r± and s∓, i.e., for π/8 � φ � 3π/8 and
5π/8 � φ � π , the marginal criteria (dark orange dashed to solid curves) fail, while the phase-space criteria (light orange dotted curves)
still witness entanglement. More precisely, the correlation measures (black solid curves) exceed the values of the marginal witnesses in these
regimes (orange shaded regions).
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(b) (c)(a)

FIG. 8. Three typical discretization schemes: Panel (a) shows regular quadratic tiles with spacing δ along both directions, panel (b) shows
an adaptive scheme with smaller tilings closer to the origin, and panel (c) shows a circular tiling around the origin.

optimization leads to an equivalence between them. The point
σ+ = 1, σ− = 1.2 is not witnessed by any of the two and the
point σ+ = 4, σ− = 1.5, which is always witnessed by the
Wehrl entropic criteria, is only witnessed by the marginal cri-
teria provided that the correlations between r± and s∓ remain
small. We also plot the quantities appearing in the inequality
(96) in Fig. 7(b) and find the same outperformance regions for
φ as for the second moment criteria.

At last, we compare the Rényi-Wehrl criteria (52) to the
STW criteria (98) and optimize over the entropic order for
every choice of φ, ξ . For φ = 0, the STW criteria become
optimal for α → 1/2 and β → ∞ in the variables (r+, s−)
and conversely for (r−, s+), i.e.,

WSTW = S1/2( f+) + S∞(g−) − ln 4π, (101)

where S∞(g−) = − ln gmax
− denotes the min-entropy of g−

with maximum value gmax
− and

WSTW = S∞( f−) + S1/2(g+) − ln 4π, (102)

respectively [17]. For φ = π/4, they instead become optimal
for α, β → 1 and reduce to the WTSTD criteria (97). In
contrast, the Rényi-Wehrl criteria (52) become optimal in the
limit β → 0 independent of φ, ξ .

The results are shown in the lower row of Fig. 6. For
φ = 0, ξ = 1, our criteria outperform the STW criteria around
σ+ ≈ σ−, see Fig. 6(g). When optimizing over ξ , our criteria
witness entanglement for all σ+, σ− �= σ+ (gray dashed line),
as indicated in Fig. 6(i), and hence outperform the STW
criteria completely. In particular, the point σ+ = 1, σ− = 1.2
corresponding to the distributions in Fig. 5 can only be wit-
nessed with the phase-space approach after optimization. For
φ = π/4 the outperformance occurs even without optimizing
over ξ , see Fig. 6(h).

V. COARSE-GRAINED MEASUREMENTS

We now discuss the influence of finite resolution on
the entanglement criteria (41). In particular, we analyze the
possibilities offered by an optimization over the concave
function f .

A. Discretization schemes

We aim for a description valid for measurements with
constant and adaptive resolution. The latter is relevant when
an experimental procedure produces samples of the Husimi
Q distribution, which are binned in a postmeasurement pro-
cess ensuring that the underlying distribution is approximated
well. A prime example of such schemes is the quadtree
method, which has been employed successfully to witness
entanglement of a non-Gaussian state using entropic methods
in Ref. [95].

To achieve this generality, we discretize phase space into
tiles δ jk , where the indices j, k run over integers, but depend-
ing on the discretization scheme it may be convenient to draw
them from subsets of integers, i.e., { j, k} ∈ Z ⊆ Z × Z. To
every tile δ jk we associate its phase-space measure, which
we denote by � jk , and discrete coordinates (r j

±, sk
∓), which

are located at the center of δ jk if it corresponds to a simply
connected region.

For regular tilings consisting of rectangles with � ≡ � jk

there is a simple relation between the continuous and the
discrete sets of coordinates which reads

r± → r j
± = jδr±, s∓ → sk

∓ = kδs∓, (103)

including the possibility that δr± �= δs∓. Then, the tile
δ jk is centered at (r j

±, sk
∓) and hence its domain is

given by δ jk = [δr±( j − 1/2), δr±( j + 1/2)] × [δs∓(k −
1/2), δs∓(k + 1/2)] with constant phase-space measure
� = δr±δs∓/(2π ). In general, such simple relations may
only be given recursively or implicitly and hence we work
with the discrete indices j, k in the following.

We illustrate three archetypal discretization schemes in
Fig. 8. A regular quadratic tiling with δ ≡ δr± = δs∓ and
� = δ2/(2π ), most relevant in the context of finite-resolution
measurements in quantum optics, is shown in Fig. 8(a). An
adaptive scheme with rectangular tiles is sketched in Fig. 8(b),
in which case relations like (103) can only be given recur-
sively. However, such schemes allow us to reconstruct the
underlying distribution in greater detail in regions where it
shows characteristic features, which can be advantageous
especially for non-Gaussian distributions. Another adaptive
scheme, which is based on radially symmetric tilings, is
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(b) (c)(a)

FIG. 9. Coarse-graining of the TMSV state (48) with λ = 0.1 in the (r+, s−) variables following the regular quadratic discretization scheme
shown in Fig. 8(a). Starting from the continuum limit δ → 0 in panel (a), the grid spacing δ increases from panels (a) to (c), resulting in coarser
distributions Q�

+ .

shown in Fig. 8(c). This method may be employed, for
example, when binning sampled data while assuming the
underlying distribution to be radially symmetric, such that
the discrete coordinates can be labeled with only one non-
negative integer-valued index, e.g., j ∈ Z+

0 .

B. Discretized distributions

The discretization procedure leads to a discrete distribution
over the coordinate points (r j

±, sk
∓) by integrating the continu-

ous distribution Q± over the corresponding tile δ jk , i.e.,

Q jk
± ≡ Q±(r j

±, sk
∓) =

∫
δ jk

dr±ds∓
2π

Q±(r±, s∓). (104)

This distribution is normalized to unity according to∑
j,k∈Z

Q jk
± = 1. (105)

Uncertainty relations and entanglement criteria for coarse-
grained measurements have been studied extensively in the
literature, see, e.g., Refs. [89,101,105,106]. The most impor-
tant conclusion from these studies is that both should not be
formulated in terms of measures of localization with respect to
the discrete distribution Q jk

± because they often underestimate
their continuous analogs. For example, consider an experi-
mental procedure with sufficiently low resolution such that
all measurement outcomes lie within a single tile. Then, vari-
ances as well as entropies of the resulting discrete distribution
evaluate to zero although their continuous analogs are strictly
non-zero.

Therefore, we work with the density of the discrete distri-
bution (104) over every tile instead. It is defined via

Q�
± ≡ Q�

±(r±, s∓) =
∑
j,k∈Z

⎧⎨
⎩

Q jk
±

� jk
, (r±, s∓) ∈ δ jk

0 else
(106)

and serves as an approximation to the true continuous Husimi
Q distribution Q± albeit being necessarily discontinuous it-
self. Thus, it is normalized with respect to the standard
phase-space measure dr±ds∓/(2π ) and converges to the con-
tinuous Husimi Q distribution in the continuum limit, i.e.,
Q�

±(r±, s∓) → Q±(r±, s∓) for � jk → 0.
As an example, we consider the effect of coarse-graining

for the Husimi Q distribution Q± of the TMSV state (48),

which we restate here for the reader’s convenience:

Q±(r±, s∓) = 1

Z
e− 1

2 (r±,s∓ )T V −1
± (r±,s∓ ), (107)

with normalization Z = det1/2 V± and covariance matrix V± =
2

1±λ
1. We show the case a1 = b1 = a2 = b2 = 1, ϑ1 = ϑ2 =

0, and λ = 0.1 in Fig. 9 for a regular quadratic tiling with
various spacings δ along both axes as shown in Fig. 8(a).

C. Discretized criteria

1. General criteria

To derive entanglement criteria which hold for the dis-
cretized approximation Q�

±, we apply Jensen’s inequality to
the integrals appearing in the witness functional (41) for every
tile individually. Adjusted to this setup, i.e., the continuous
Husimi Q distribution Q± restricted to δ jk with measure � jk

and concave f , Jensen’s inequality reads

1

� jk

∫
δ jk

dr±ds∓
2π

f (Q±) � f

(
1

� jk

∫
δ jk

dr±ds∓
2π

Q±

)
. (108)

Now, discretizing the first term in our witness functional W f

(41) by expanding the phase-space integral over all tiles,
inserting a multiplicative one, and using Jensen’s inequality
(108) together with the definition of the discrete distribution
(104) leads to∫

dr±ds∓
2π

f (Q±) =
∑
j,k∈Z

� jk
1

� jk

∫
δ jk

dr±ds∓
2π

f (Q±)

�
∑
j,k∈Z

� jk f

(
1

� jk
Q jk

±

)
. (109)

Now, the right-hand side of the latter inequality can be rewrit-
ten in terms of the continuous approximation

∑
j,k∈Z

� jk f

(
1

� jk
Q jk

±

)
=
∫

dr±ds∓
2π

f
(
Q�

±
)
, (110)

which is also a useful relation for computing the discretized
witness functional in practice as one might prefer to work with
Q jk

± over Q�
± to simplify calculations.
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Defining a discretized witness functional in terms of Q�
±

instead of Q±,

W�
f =

∫
dr±ds∓

2π
[ f (Q�

± ) − f (Q̄′
±)], (111)

allows us to conclude W f � W�
f and therefore our crite-

ria (41) imply that all separable states fulfill the discretized
criteria

ρ12 separable ⇒ W�
f � 0, (112)

which are weaker in general. We emphasize that the latter in-
equality is fulfilled for arbitrary discretization schemes. Since
the discretized witness functional W�

f is of the same form
as its continuous counterpart W f , we can follow the same
arguments as above to derive interesting classes of discrete
entanglement criteria.

2. Entropic criteria

Similar to (51), we obtain criteria for Rényi-Wehrl en-
tropies of the discretized approximations

Sβ (Q�
± ) = 1

1 − β
ln

[∫
dr±ds∓

2π
(Q�

± )β (r±, s∓)

]
, (113)

with entropic orders β ∈ (0, 1) ∪ (1,∞), by choosing mono-
mials f (t ) = tβ and applying a monotonic function in (111),
which yields the discretized witness functional

W�
β = Sβ (Q�

± ) − ln β

β − 1
− ln det V̄ ′

±
2

, (114)

analogous to (52). In general, we can write the Rényi-Wehrl
entropies (113) in terms of the discretized distribution Q jk

± as

Sβ (Q�
± ) = 1

1 − β
ln

⎡
⎣∑

j,k∈Z
�

1−β

jk (Q jk
± )β

⎤
⎦. (115)

The latter can only be simplified further for regular tilings
with � ≡ � jk , leading to

Sβ (Q�
± ) = Sβ (Q jk

± ) + ln �, (116)

with discrete Rényi-Wehrl entropies

Sβ (Q jk
± ) = 1

1 − β
ln

⎡
⎣∑

j,k∈Z
(Q jk

± )β

⎤
⎦. (117)

In the limit β → 1, the Rényi-Wehrl entropy (113) converges
to the Wehrl entropy

S1(Q�
± ) = −

∫
dr±ds∓

2π
Q�

±(r±, s∓) ln Q�
±(r±, s∓), (118)

for which the discretized witness functional reads

W�
1 = S1(Q�

± ) − 1 − ln det V̄ ′
±

2
. (119)

Irrespective of the discretization scheme we find the relation

S1(Q�
± ) = S1(Q jk

± ) +
∑
j,k∈Z

ln(� jk )Q jk
± , (120)

with the discrete Wehrl entropy being defined as

S1(Q jk
± ) = −

∑
j,k∈Z

Q jk
± ln Q jk

± , (121)

which also follows from (117) in the limit β → 1. For regular
tilings � ≡ � jk , (120) reduces to the simple relation

S1(Q�
± ) = S1(Q jk

± ) + ln �. (122)

3. Second moment criteria

Criteria for the second moments of the distribution Q�
±,

defined via (we assume vanishing expectation values without
loss of generality)

(
��

r±

)2 =
∫

dr±ds∓
2π

r2
±Q�

±(r±, s∓),

(
��

s∓

)2 =
∫

dr±ds∓
2π

s2
∓Q�

±(r±, s∓),

��
r±s∓ =

∫
dr±ds∓

2π
r±s∓Q�

±(r±, s∓), (123)

can be formulated in terms of the discretized covariance ma-
trix

V �
± =

⎛
⎝
(
��

r±

)2
��

r±s∓

��
r±s∓

(
��

s∓

)2

⎞
⎠, (124)

by using that S1(Q�
± ) � 1 + 1

2 ln det V �
± , which leads to the

second moment witness functional

W�
det V± = det V �

± − det V̄ ′
±. (125)

One can easily check that the means of the distributions Q�
±

and Q jk
± agree, i.e.,(

μ�
r± , μ�

s∓

) = (μr j
±
, μsk∓ ), (126)

with the continuous means given by

μ�
r± =

∫
dr±ds∓

2π
r±Q�

±(r±, s∓),

μ�
s∓ =

∫
dr±ds∓

2π
s∓Q�

±(r±, s∓), (127)

while the discrete means read

μr j
±

=
∑
j,k∈Z

r j
±Q jk

± ,

μsk∓ =
∑
j,k∈Z

sk
∓Q jk

± . (128)

In contrast, the second moments of Q�
± and Q jk

± differ.
For regular tilings with � = δr±δs∓/(2π ) we find (see also
Refs. [105,106])

(��
r± )2 = �2

r j
±

+ (δr±)2

12
,

(��
s∓ )2 = �2

sk∓
+ (δs∓)2

12
, (129)

��
r±s∓ = �r j

±sk∓
,
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(b) (c)(a)

(e) (f)(d)

FIG. 10. Comparison of discretized entanglement criteria for the TMSV state. As shown in panel (a), there is a strict hierarchy of second
moment (gray dotted curves), Wehrl entropic (black dashed curves), and optimized Rényi-Wehrl entropic (light orange solid curves) criteria
in the sense that, for a fixed λ, optimization allows us to work with a much coarser grid spacing δ before the witness breaks down (see also
Ref. [74]). The entanglement analysis of the Rényi-Wehrl criteria as a function of β is carried out explicitly in panels (c) and (f) for λ = 0.1
and λ = 0.9, respectively, where we distinguish between the optimal β overall (dark orange dot-dashed curves) and the optimal β for every
δ (light orange solid curves). The values of the four witnesses are shown in panels (b) and (e) as functions of the grid spacing δ for the same
choices of λ. The optimal choice for β depends on λ, as plotted in panel (d), showing that for small entanglement λ � 0.5 one should take
β � 1 and vice versa.

with discrete second moments (we assume vanishing expecta-
tion values again)

�2
r j
±

=
∑
j,k∈Z

(r j
±)2Q jk

± ,

�2
sk∓

=
∑
j,k∈Z

(sk
∓)2Q jk

± ,

�r j
±sk∓

=
∑
j,k∈Z

r j
±sk

∓Q jk
± . (130)

Equation (129) shows that the discrete second moments
�2

r j
±

and �2
sk∓

indeed underestimate the continuous variances

(��
r± )2 and (��

s∓ )2, an effect which is cured by taking the
variances induced by the finite tile sizes into account.

D. Example state

To exemplify the advantages offered by an optimization
over f in our general discretized criteria (112) we consider
again the Gaussian TMSV state (48) for a1 = b1 = a2 = b2 =
1 and ϑ1 = ϑ2 = 0. The corresponding distribution Q± is dis-
cretized following a regular quadratic tiling with grid spacing
δ shown in Fig. 8(a), leading to a discretized distribution
Q�

±, which is illustrated for various δ and λ = 0.1 in Fig. 9.
When statistical errors become negligible, which is a justified
assumption for many quantum optics setups, the discretized
distribution Q�

± can be measured directly.

Most importantly, the discretization breaks Gaussianity
and hence the choice of the function f matters. In Fig. 10(a)
we compare the performances of the discretized versions of
our second moment criteria (gray dotted curves), the Wehrl
entropic criteria (black dashed curves), and the optimized
Rényi-Wehrl entropic criteria (light orange solid curves) by
plotting the witnessed regions for every λ as a function of
the grid spacing δ. In general, we can say that entropic cri-
teria strongly outperform second moment criteria and that an
optimization over the order β for every λ provides a second
substantial improvement, especially for small λ ≈ 0.2.

We show the regions where the Rényi-Wehrl witness is
negative for λ = 0.1 and λ = 0.9 as a function of β in
Figs. 10(c) and 10(f), respectively, with the black dotted line
indicating where the witness evaluates to zero. Note here that
the witness functional becomes independent of β when δ → 0
because the underlying state is Gaussian. Therein, we also
show the curves obtained for β = 1 (black dashed curves), the
value for β maximizing entanglement detection (dark orange
dot-dashed curves), and the optimal value for β for every δ

(light orange solid curves).
The latter three curves are drawn in Figs. 10(b) and 10(e),

respectively, together with the curves for the second moment
criteria (gray). Considering for example λ = 0.1 in Fig. 10(b),
the Wehrl entropic witness already breaks down around δ ≈
1.5, which corresponds to the level of discreteness shown
in Fig. 9(c). In contrast, the optimal Rényi-Wehrl entropic
witness certifies entanglement up to δ ≈ 2.65.
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(b) (c)(a)

FIG. 11. (a) Mean (black dashed curve) and confidence intervals (shaded regions) of the Rényi-Wehrl criteria (52) for 103 samples of the
state (131) after 102 repetitions of this simulated experiment (see also Ref. [74]). Panels (b) and (c) show the computed values for all repetitions
for β → 1 and β = 10, respectively. Optimizing over β, i.e., for β on the order of 101, certification of entanglement within large confidence
intervals is improved substantially (squares, diamonds, triangles, and circles correspond to � ± 1σ , ±1σ , ±2σ , and � ±3σ , respectively).

Furthermore, the optimal choice for β is a monotonically
decreasing function of λ, which we plot in Fig. 10(d). Roughly
speaking, for large entanglement λ � 0.5 we need small β �
1, while for small entanglement λ � 0.5 we should choose
large β � 1.

VI. SAMPLING MEASUREMENTS

We investigate our entanglement criteria for the second
experimentally relevant scenario: Sampling from the Husimi
Q distribution with limited statistics.

A. Estimation of functionals of probability densities

Estimating functionals of a probability density function
(PDF), such as the witness functional W f (41), from samples
is a central problem in statistical data analysis. It generally
requires density estimation, the construction of an analytical
estimate of the underlying PDF based on observed data. A
plethora of methods exists for this, including nonparametric
approaches like simple data binning or kernel density estima-
tion [107], maximum entropy models [108], and parametric
deep-learning-based approaches [109,110].

For the specific case of entropies, studied here, also direct
estimation techniques have been devised (see Ref. [111] for
a review) including the popular k nearest-neighbor method
[112]. Generally, these methods rely on assumptions about the
smoothness of the underlying PDF which allow one to bound
the approximation error. In this respect, the Husimi Q distribu-
tion has favorable properties due to the uncertainty principle
which leads to an inherently smooth behavior. In contrast to
the Wigner W distribution, which can have arbitrarily sharp
features in the nonlocal phase space, the simultaneous detec-
tion of two conjugate quadratures leads to a coarse-graining
or smoothing of the distribution in the case of Husimi.

We generate synthetic sample data sets drawn from an
analytically known Husimi Q distribution and use a Gaussian
mixture model to reconstruct Q± and calculate the witness
functional Wβ (52). Using moderate sample set sizes of
O(103) we are able to reliably estimate the witness func-
tional. Crucially, by using different Rényi-Wehrl entropies
parametrized by β we find that values of small or large β

lead to a significantly increased signal-to-noise ratio of the en-

tanglement detection compared with the case of the standard
Wehrl entropy (β → 1).

B. Example state

We consider a mixture of two displaced TMSV states
with equal squeezing parameters λ, opposite displacements
±r with r � 0 along the r± axis and a mixing probability
p ∈ [0, 1] such that p = 0 selects the state displaced towards
positive values for r±. Its Husimi Q distribution over a pair of
nonlocal variables is

Q±(r±, s∓) = (1 − p)
1 + λ

2
e− 1+λ

4 [(r±−r)2+s2
∓]

+ p
1 + λ

2
e− 1+λ

4 [(r±+r)2+s2
∓]. (131)

Note that this setup is similar to the non-Gaussian state inves-
tigated in Refs. [16,17,74].

We test the performance of the Rényi-Wehrl criteria (52)
for the state (131) with λ = 0.8, r = 2, p = 0.3. This state
is not witnessed by the second moment criteria. We sim-
ulate measurements by drawing 103 samples and evaluate
the witness functional using a Gaussian mixture model from
the built-in machine-learning density estimation methods in
Mathematica. This method models the probability density us-
ing a mixture of multivariate normal distributions. For details
we refer to the documentation of the Mathematica function
“LearnDensity” and the associated method “GaussianMix-
ture.” We gather information on the statistical quantities, in
particular mean values and confidence intervals, by repeating
this procedure 102 times.

The β dependence of the mean value and the three σ

intervals is shown in Fig. 11(a). As the mean value (dashed
black) aligns with the exact result (solid gray), our estimation
method is justified a posteriori. We observe that the choice
of β has a strong influence on the signal-to-noise ratio, which
we exemplify for β → 1 and β = 10 in Figs. 11(b) and 11(c),
respectively. While the standard Wehrl witness (β → 1) is not
able to witness entanglement within ±1σ for all repetitions,
this can be achieved for β = 10. In the latter case entangle-
ment is even certified within ±3σ in 88% of all cases [see
orange circles in Fig. 11(c)].
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VII. CONCLUSIONS AND OUTLOOK

To summarize, using the Husimi Q distribution for con-
structing entanglement witnesses has several advantages. In
contrast to marginal distributions, it contains the full infor-
mation about the underlying quantum state, which can thus
be assessed though measurements in a single experimental
setting. Most importantly, the existence of general uncertainty
relations permits the derivation of entanglement criteria of
much more general form than any known families of marginal
based criteria. We showed the resulting strengths in different
ways, including derivations of classes of entropic and second
moment criteria as well as comparisons with marginal criteria.
For a well-known family of states we were able to certify en-
tanglement beyond the capabilities of marginal criteria based
on uncertainty relations.

For future work, it would be interesting to investigate
whether the requirement a1b1 = a2b2 can be relaxed, in which
case a tensor product decomposition of the bipartite Hilbert
space with respect to the nonlocal variables becomes impossi-
ble. However, we believe that our entanglement criteria do still
hold. This conjecture is motivated by the fact that the entropic
criteria (55) can be derived without the mentioned restriction
on the scaling parameters using the entropy power inequality
and local uncertainty relations along the lines of Ref. [36].

Whether our criteria are the strongest criteria following
from the uncertainty principle in phase space and what are
the limitations of the Husimi approach, i.e., whether there
exist any states which are witnessed by the STW but not by
our criteria, are questions of central importance for future
investigations. In general, we expect all entanglement criteria
based on the linear nonlocal variables (32) to work best when-
ever the correlations between the local quadratures are mostly
linear. In this case, an analysis of fluctuations in the non-
local variables resembles the typical statistical analysis with
Pearson’s coefficient, i.e., the search for linear correlations
between the two subsystems. Therefore, we believe that our
criteria become weak for states where entanglement manifests
itself in higher-order correlations, which are not accurately
captured by linear nonlocal variables. Such states are often
characterized by partly negative Wigner W distributions, con-
sider, for example, NOON states or the photonic qutrit state.
In both cases, we have confirmed that our witness does not
flag entanglement (in both cases, optimizing over β leads to
Wβ → 0 from above). Nevertheless, we do not see any argu-
ments that would generally exclude detecting entanglement of
states with negativities, and we consider finding such a state
as an interesting problem for future work.

Moreover, we wonder whether other positive but not com-
pletely positive maps beyond the partial transpose have a
faithful representation for the Husimi Q distribution, which
would allow us to formulate yet another different class
of entanglement criteria. Here, an approach compensating
for the lack of detecting bound entanglement is of special
interest.

As our derivation relies on the group-theoretic properties
of coherent states, another interesting possibility would be to
derive analogous criteria for physical systems described by
other algebras, for example, spin observables with an SU(2)
algebra. Furthermore, it would be desirable to generalize our

findings to incorporate entanglement measures in the spirit of
Refs. [22,89,96,97] (see also Ref. [113]) to set measurable
lower bounds on the amount of entanglement. Finally, other
potential directions where the Husimi approach might reveal
its strengths encompass criteria for (genuine) multipartite en-
tanglement as well as criteria based on higher-order moments
of the Husimi Q distribution in the sense of Ref. [26], which
we expect to be of simpler accessibility than those based on
higher-order moments of the Wigner W distribution.

Regarding practical applications, we have shown that
the optimization prospects of the generalized entanglement
criteria based on the Husimi Q distribution lead to clear
performance advantages compared with the Wehrl-entropic
criteria in situations with sparse experimental data. In a sce-
nario, where this distribution is only known at a finite number
of grid points within phase space, one effectively deals with
a step function approximation to the exact continuous distri-
bution. As a result, even for Gaussian states, optimizing the
witness functional W f over a parametrized family of concave
functions f —in our case monomials tβ , relating the wit-
ness functional to Rényi-Wehrl entropies—greatly enlarges
the range of measurement resolution in which entanglement
is detected compared with second-moment-based or Wehrl
entropic criteria.

In a second scenario, where experimental measurements
correspond to drawing samples from the Husimi Q distribu-
tion, we found that both large (�1) and small (�1) values
of β lead to an increased statistical significance of the entan-
glement detection compared with the standard Wehrl entropy.
Intuitively, increasing β allows us to reduce the influence
of regions of small probability on W f , i.e., reduce the in-
fluence of the tail behavior of the distribution. This can be
beneficial because, for finite statistics, these regions are very
sparsely sampled and thus incur a large statistical error. The
good performance for small β, where the contribution of the
tail regions to W f are amplified, might be explained by the
employed density estimation routine making justified assump-
tions about the functional form of the tails.

Overall, not only the generality of our entanglement cri-
teria but also the inherent smoothness of the Husimi Q
distribution are found to lead to practical advantages. While
one may expect that estimating functionals of a PDF is a
much harder task than estimating low moments, it turns out
that in the case of the Husimi Q distribution standard density
estimation methods work reliably, even for rather small sam-
ple sizes. Given that the Husimi Q distribution is a complete
representation of the state, this leads to advantages for entan-
glement detection compared with approaches based on second
moments or marginals of the Wigner W distribution.

In the future, one may exploit the prior knowledge about
the properties of the Husimi Q distribution—like smoothness,
tail behavior, or symmetries—more systematically by using
tailored density estimation methods [108]. Moreover, for spe-
cific choices of f direct ways of extracting f (Q±), or its
phase-space integral [111,112], from samples exist, circum-
venting full density estimation, which may lead to even more
data-efficient estimates. Combined with the flexibility of our
entanglement criteria to explore larger families of functions f ,
this has the potential to significantly reduce the experimental
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cost of certifying entanglement in continuous variable systems
beyond the results reported here.
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APPENDIX: PHASE-SPACE DISTRIBUTIONS

The nonlocal quasiprobability distributions corresponding
to the wave function (100) with arbitrary orientation and
squeezing read

W±(r±, s∓) = 1

2π
exp

{
−σ 2

∓
2

[
ξ sin (φ)r± − cos (φ)

ξ
s∓

]2

− 1

2σ 2±

[
ξ cos (φ)r± + sin (φ)

ξ
s∓

]2
}

×
⎧⎨
⎩

σ−
σ 3+

[
ξ cos (φ)r+ + sin (φ)

ξ
s−
]2

for (r+, s−)

σ 3
+

σ−

[
ξ sin (φ)r− − cos (φ)

ξ
s+
]2

for (r−, s+),

Q±(r±, s∓) = 1√
(ξ 2 + σ 2−)(ξ 2 + σ 2+)5

exp

{
− σ 2

∓
2(ξ 2 + σ 2∓)

[sin(φ)r± − cos(φ)s∓]2 − ξ 2

2(ξ 2 + σ 2±)
[cos (φ)r± + sin (φ)s∓]2

}

×
{

ξ 3σ−[ξ 2 + σ 2
+(1 + (cos(φ)r+ + sin(φ)s−)2)] for (r+, s−)

ξσ 3
+[σ 2

+ + ξ 2(1 + (sin(φ)r− − cos(φ)s+)2)] for (r−, s+).
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