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Universal quantum computing requires nonstabilizer (magic) quantum states. Quantifying the nonstabilizer-
ness and relating it to other quantum resources is vital for characterizing the complexity of quantum many-body
systems. In this work, we prove that a quantum state is a stabilizer if and only if all states belonging to its
Clifford orbit have a flat probability distribution on the computational basis. This implies, in particular, that
multifractal states are nonstabilizers. We introduce multifractal flatness, a measure based on the participation
entropy that quantifies the wave-function distribution flatness. We demonstrate that this quantity is analytically
related to the stabilizer entropy of the state and present several examples elucidating the relationship between
multifractality and nonstabilizerness. In particular, we show that the multifractal flatness provides an experimen-
tally and computationally viable nonstabilizerness certification. Our work unravels the direct relation between
the nonstabilizerness of a quantum state and its wave-function structure.
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I. INTRODUCTION

Originally developed in the context of fault-tolerant quan-
tum computation and error correction [1,2], stabilizer states
and operations play an essential role in quantum information
theory [3], in our understanding of thermalization [4,5] and
entanglement propagation in many-body systems [6–8], and
in providing insights on holography [9]. However, their clas-
sical simulability [10] implies that additional ingredients are
required to attain computational quantum speedup [11–13].
Quantifying the nonstabilizerness (or “magic”) of a quantum
state is therefore a key task in the resource theory of quantum
computation [14–21], related to the classical computational
cost of simulation quantum physics [18,22–24] and to the
onset of quantum chaos [25,26]. While various nonstabi-
lizerness monotones have been proposed [17,27–33], their
geometrical nature requires minimization over large spaces,
resulting in prohibitive computational costs already for few-
qubit systems. In fact, quantifying nonstabilizerness in many
qubit systems remains a major challenge. Stabilizer entropy
provides a (generally nonmonotone [34]) measure of nonsta-
bilizerness that is calculable for few-qubit states [35–38] and
that is related to the flatness of the entanglement spectrum
[39]. Recent works demonstrated that while being measurable
in present quantum devices via randomized measurement pro-
tocols or Bell measurements [40,41], the stabilizer entropy is
efficiently computable for many-body matrix product states
[34,42,43]. These results allow for studying the static and
dynamical properties of nonstabilizerness in one-dimensional
many-body systems.

A seemingly unrelated quantity is the inverse participa-
tion ratio and the participation entropy of many-body wave
functions. Originally developed in the context of Ander-
son localization [44–50], these quantities measure the spread
of the many-body states on a certain basis of the Hilbert

space. Studies on the ground states of many-body systems
[51–61], the problem of many-body localization [47,62–74],
and monitored unitary dynamics [75,76] demonstrated that
most quantum states have multifractal features [77]; that is,
they are described by different fractal properties in different
geometrical regions.

This work demonstrates that nonstabilizerness is directly
encoded in the structure of wave functions. Employing meth-
ods inspired by recent works [39,78], we show that a state
has a flat participation distribution along its Clifford orbit if
and only if it is a stabilizer state. Conversely, a state with
nonflat participation distribution, for instance, a multifractal
state, has nonstabilizerness. After reviewing the key concepts
of interest, we introduce a multifractal flatness, a measure of
the flatness of participation distributions that we prove is a
simple function of the stabilizer entropy. This allows us to
demonstrate that the participation entropy in the computa-
tional basis provides a useful magic witness that is amenable
to computational methods. We illustrate the relation between
nonstabilizerness and participation entropy using the exam-
ples of a single qubit, many-body product states, and Haar
random states. Finally, we demonstrate that the nonstabilizer-
ness quantifier introduced in this paper is measurable in noisy
intermediate-scale quantum devices [79–81].

II. STABILIZER AND PARTICIPATION ENTROPIES

We consider a system of N qubits with Hilbert space
dimension d = 2N and denote by {σα}α=0,1,2,3 the Pauli ma-
trices (σ 0 = 1), by |0〉 and |1〉 the local computational basis
of σ 3, and by PN the set of all N-qubit Pauli strings. The
Clifford group CN is the subset of unitary operations that map
a Pauli string into a single Pauli string. The stabilizer entropy
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is defined for a pure normalized state |�〉 as [35]

Mq(|�〉) = 1

1 − q
log2

∑
P∈PN

(〈�|P|�〉)2q

d
. (1)

It is a measure of nonstabilizerness because (i) Mq(|�〉) � 0,
with the equality holding if and only if the state is a stabilizer
|�〉 ∈ STAB, (ii) it is invariant under Clifford conjugation
Mq(C|�〉) = Mq(|�〉) for any C ∈ CN , and (iii) it is additive
Mq(|�〉 ⊗ |�〉) = Mq(|�〉) + Mq(|�〉) [35]. Despite the fact
that the stabilizer entropy is not a magic monotone for the
generic Rényi index q [34], it is computationally amenable
compared to the magic robustness and stabilizer fidelity [22].
We aim to show that the stabilizer entropy M2(|�〉) is related
to the structure of the wave function quantified by the partici-
pation entropy.

Given a pure state |�〉, we introduce the participation dis-
tribution in the computational basis B ≡ {|�σ 〉, σi = 0, 1, i =
1, . . . , N} as the probability distribution p(�σ ) ≡ |〈�σ |�〉|2.
Then, the participation entropy is

Sq(|�〉) = (1 − q)−1 log2 Iq(|�〉), (2)

where Iq(|�〉) = ∑
�σ∈B p(�σ )q is the inverse participation

ratio. The participation entropy (2) quantifies the spread-
ing of the state |�〉 over the basis B. Conventionally, in
condensed-matter settings, the system-size dependence of the
participation entropy is parametrized as [50,63,82]

Sq = DqN + cq, (3)

where Dq is the multifractal dimension and cq is a subleading
term. In the field of Anderson and many-body localization
transition [46], it is customary to denote the state |�〉 localized
(fully extended) when Dq = 0 (Dq = 1). The intermediate
regimes, for which 0 < Dq < 1 and Dq depend nontrivially
on the Rényi index q, are said to be multifractal [83]. Here,
we are concerned with the participation flatness, occurring
when Sq1 (|�〉) = Sq2 (|�〉) for all q1, q2 > 0. [This condition
is equivalent to p(�σ ) being uniform in its domain, hence
justifying the name.] Participation flatness implies the absence
of wave-function multifractality. However, we remark that
the two notions are not equivalent: Participation flatness is
defined for a given state at a fixed system size N . Instead, the
multifractality is intrinsically related to the N dependence of
the participation entropy (3). In particular, as we will discuss
in the following, a state can be fully extended (Dq = 1) or
localized (Dq = 0) and still not have a flat participation distri-
bution due to the nontrivial q dependence of cq.

Finally, let us note that the stabilizer entropy (1) has an
intrinsic basis dependence in the choice of Pauli strings as
generators of the operator space. This basis dependence is
a feature of the nonstabilizerness, and different frames yield
different results [28]. Similarly, the participation entropy (2),
and hence also the participation flatness, depends explicitly on
the choice of the many-body basis B. Therefore, we choose
the Pauli strings to quantify the degree of nonstabilizerness
and consider the computational basis to probe the many-body
wave-function structure.

III. NONSTABILIZERNESS AND MULTIFRACTALITY

Stabilizer states are not multifractal and always possess a
flat participation distribution, as shown in [75], which also
provides an efficient way to compute the participation entropy
of stabilizer state using its tableau representation [10,84]. As
we argue in the following, the converse statement is also true,
leading to a characterization of nonstabilizerness in terms of
the participation entropies of the many-body wave function.

Before stating the main results of this work, we introduce
the multifractal flatness F (|�〉) = I3(|�〉) − I2

2 (|�〉), which
is a measure of the participation flatness. By the concavity
of the participation entropy and using Jensen’s inequality, it
is easy to see that F (|�〉) � 0, with the equality holding
if and only if the participation distribution p(�σ ) is flat or,
equivalently, when Sq1 (|�〉) = Sq2 (|�〉) for all q1, q2 > 0.

Theorem 1. The average of the multifractal flatness F over
the Clifford orbit C� ≡ {C|�〉 |C ∈ CN } is a measure of non-
stabilizerness, with

F (|�〉) ≡ EC∈CN [F (C|�〉)] = 2(1 − 2−M2(|�〉) )

(d + 1)(d + 2)
. (4)

Let us highlight an immediate consequence that con-
ceptually bridges the participation flatness and that of
nonstabilizerness.

Corollary 1. A state is a stabilizer if and only if every
element of its Clifford orbit is participation flat. Conversely, a
state is a nonstabilizer if and only if a C ∈ CN exists for which
C|�〉 is not participation flat.

As already mentioned, a stabilizer state has a flat participa-
tion distribution [75]. In this case, Eq. (4) is trivially satisfied.
Conversely, we must prove the flatness of the participation dis-
tribution for all the states in C� , or, in other words, that there
is no C ∈ CN for which Sq(C|�〉) is q dependent. From the
positive monotonicity of F , this fact is equivalent to proving
Eq. (4) holds for generic states. To this end, let us rephrase Ir

q
in the replica formalism as

Ir
q = tr

[|�(rq)〉〈�(rq)|(�(q)
1

)⊗r · · · (�(q)
N

)⊗r]
, (5)

where |�(rq)〉 = |�〉⊗rq is the replica state and �
(q)
k =

(|0〉〈0|)q + (|1〉〈1|)q are the operators enforcing the book
replica boundary condition [52,75] (see Fig. 1). From Eq. (5)
we see that Ir

q has a permutation invariance S⊗r
q over the

replica space. This fact will allow for simplifications in eval-
uating the orbit average in Eq. (4). First, let us compute the
q = 3, r = 1 term. Using the three-design property of the
Clifford group [85,86], we have

ECN [C⊗3|�(3)〉〈�(3)|(C†)⊗3] = 6

d (d + 1)(d + 2)
�[3], (6)

with �[k] = ∑
π∈Sk

Uπ/k! being the projector onto the
symmetric permutation of k elements. It follows that
EC∈CN [I3(C|�〉)] = 6/[(d + 1)(d + 2)]. Instead, q = 2 and
r = 2 require the average of |�(4)〉. This object is less trivial
and requires insights into the commutant of the Clifford group
(cf. Refs. [87,88]). We have

ECN [C⊗4|�(4)〉〈�(⊗4)|(C†)4] = β+(|�〉)�+ + β−(|�〉)�−,

(7)
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|ΨC |Ψ C†≡

Λ(3)
1 Λ(3)

2 Λ(3)
N

· · ·

EC∈CN
EC∈CN

(I3) =

EC∈CN
(I2

2 ) =
Λ(2)

1 Λ(2)
N

· · ·

EC∈CN

Λ(2)
1 Λ(2)

N
· · ·

FIG. 1. Pictorial representation of the replica picture. Each page
is a folding of C|�〉 and its adjoint. Applying �

(q)
k on each site

implies a sum over the same physical index and results in book
boundary conditions.

with �+ = �N,4�[4] and �− = (1 − �N,4)�[4] being two
projectors and �N,4 = ∑

P∈PN
P⊗4/d2, while the coef-

ficients are defined as β+ = 6||
(|�〉)||22/[(d + 1)(d +
2)] and β− = 24[1 − ||
(|�〉)||22]/[(d2 − 1)(d + 2)(d + 4)],
with ||
(|�〉)||22 = ∑

P∈PN
〈�| P |�〉4 /d2. A simple compu-

tation imposing the book boundary condition in the replica
space [75] gives

EC∈CN

[
I2
2 (C|�〉)

] = 4 − 2d||
(|�〉)||22
(d + 1)(d + 2)

. (8)

Combining these results, Eq. (4) and the proof’s conclusion
for N � 3 follow. The cases with N = 1, 2 have a rank-
deficient Clifford group commutant [89,90] and must be
evaluated separately. Nevertheless, one can show that the final
result (4) holds, recalling d = 2N . �

A few remarks are in order here. At a practical level,
the right-hand side of Eq. (4) can be evaluated with Monte
Carlo sampling over the Clifford group CN , i.e., Fmc ≡∑

C F (C|�〉)/Nreal, with Nreal being the number of random
choices of Clifford unitaries C. We recall that randomly draw-
ing from the Clifford group is efficiently implementable [91],
and we present an explicit example of the Monte Carlo esti-
mation in the following sections.

While our theorem (4) links the multifractal flatness aver-
aged over the whole Clifford orbit C� to the stabilizer entropy
M2, we remark that F (C∗|�〉) for a fixed C∗ ∈ CN is a con-
venient witness of nonstabilizerness, being computationally
cheap compared to (1). Indeed, F (C|�〉) � 0 for any C and
|�〉 and is nonzero only if the state is not a stabilizer. Hence,
if F (C∗|�〉) > 0, we certify that the state has some amount
of nonstabilizerness.

Additionally, the multifractal flatness F can be extended
to the class F (|�〉; q, m) = Iq(|�〉) − Im

(k−1+q)/m(|�〉), with
m, q > 0. While we conjecture a result similar to (4) holds,
the rapidly growing commutant dimension of the Clifford
group already hinders analytical insights for q, k = 5 [92].
Nevertheless, these terms would scale as O(d−3), therefore

being more difficult to resolve than (4) for practical purposes.
Last, we note an expression similar to (4) resembles analogous
results for the entanglement spectrum [39], where an addi-
tional dependence on the entanglement bipartition is present.

In the following, we illustrate the relation between non-
stabilizerness and the multifractal flatness F for several
examples of quantum states. In particular, we show that re-
solving F generally requires exponential resources in system
size for generic systems, as shown using a numerical example
below. However, we show that F can be estimated in cur-
rent noisy intermediate-scale quantum devices, provided the
fidelity is preserved.

IV. MULTIFRACTALITY AND NONSTABILIZERNESS:
EXAMPLES

A. Single qubit

Let us start with the intuitive example of a single qubit
(N = 1) and highlight the relationship between the stabilizer
and participation entropies of the quantum state

|�1〉 = cos

(
θ

2

)
|0〉 + eiφ sin

(
θ

2

)
|1〉, (9)

where θ and φ are real parameters. The stabilizer entropy (1)
of this state is given by

Mq(|�1〉) = 1

1 − q
log2

(
1 + cos2q(θ ) + (θ, φ)

2

)
,

(θ, φ) = [sin(θ ) sin(φ)]2q + [sin(θ ) cos(φ)]2q, (10)

which is nonvanishing for a generic choice of θ and φ. The
calculation of the participation entropy (2) yields Sq(|�1〉) =
log2[cos2q(θ/2) + sin2q(θ/2)]/(1 − q), which depends non-
trivially on q for a generic parameter choice, providing an
example of a typical scenario in which a nonstabilizer state
does not have a flat participation distribution. However, for a
fine-tuned choice θ = π/2, the participation entropy is equal
to unity, independent of the value of q; hence, F (|�1〉) =
0. Still, the state |�1〉 has a nontrivial nonstabilizerness for
θ = π/2 and a generic value of φ. This shows that the
flatness of the participation distribution for a selected point
of the Clifford orbit C�1 does not imply that the state is
a stabilizer state, illustrating the importance of the average
over the whole Clifford orbit in (4). Indeed, for a sin-
gle choice of C ∈ CN , F is only a magic witness: If it is
nonzero, we know that the state has nonstabilizerness, but
the converse is not true. If we act with a Hadamard gate
H ∈ C1 on the state |�1〉, we discover a nontrivial q de-
pendency Sq(H |�1〉) = (log2{[(1 + sin θ cos φ)/2]q + [(1 −
sin θ cos φ)/2]q})/(1 − q) for generic values of φ even at
θ = π/2, consistent with the nonstabilizerness of the state
|�1〉 revealed by the nonvanishing value of Mq(�) (10).
Its multifractal flatness is F (H |�〉) = [sin2(θ ) cos2(φ) −
sin4(θ ) cos4(φ)]/4, which must be compared with the
Clifford orbit average in Eq. (4), given by F (|�〉) =
sin2(θ )[−2 sin2(θ ) cos(4φ) + 7 cos(2θ ) + 9]/96.
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B. Many-qubit product states

We consider now a state |�N 〉 of N qubits which is a
product state of the single-qubit states |�1〉 (9), i.e., |�N 〉 =
|�1〉⊗N . This state is not entangled but has an extensive sta-
bilizer entropy Mq(|�N 〉) = NMq(|�1〉), where Mq(|�1〉) is
given by (10), i.e., |�N 〉 is a magic state. Moreover, it is easy to
verify that Sq(|�N 〉) = NSq(|�1〉); that is, for a generic choice
of θ and φ, the state Mq(|�N 〉) is multifractal with the mul-
tifractal dimension Dq = Sq(|�1〉) and the subleading term
cq = 0. This is an example of a situation in which the presence
of multifractality at a given point of the stabilizer orbit of
|�N 〉 implies that the state is a nonstabilizer |�N 〉. However,
this is not the case for the fine-tuned choice θ = π/2, for
which the multifractality flatness vanishes, F (|�N 〉) = 0, and
the state |�N 〉 is fully extended, Dq = 1, while still being a
nonstabilizer for a generic value of φ. Like for the single
qubit, the action of the Hadamard gates on |�N 〉 yields a
state with a participation distribution that is not flat, with the
multifractal flatness depending on the number of Hadamard
gates considered, thus revealing the nonstabilizerness of the
state.

C. Random Haar states

We consider a random state |�〉 and quantify its nonsta-
bilizerness by calculating the stabilizer entropy via (4). Any
such state is obtainable for a (random) Haar unitary U ∈ U (d )
acting on a reference state |�0〉. For convenience and without
loss of generality, |�0〉 = |0〉⊗N . We begin by computing the
Haar average EU∈U (d )[F[U |�〉]]. As we shall argue, in the
limit of large systems N 	 1, F is self-averaging for any fixed
realization |�〉 = U |�0〉.

First, let us note that EU∈U (d )[F[U |�0〉]] =
EU∈U (d )F[U |�0〉]. This fact follows from the Clifford
group being a subgroup of the unitary ensemble
CN ⊂ U (d ) and from the unitary invariance of the Haar
measure. Recalling that EU∈U (d )[(U |�0〉〈�0|U †)⊗k] =
k!�[k]/[d (d + 1) · · · (d + k − 1)] and using the book
boundary conditions in replica space (see Fig. 1), it follows
that

EU∈U (d )
[
Ir
q (U |�0〉)

]

=
∑

λ�r d (d − 1) · · · (d − Kλ + 1)((λkq)!)nk aλ

d (d + 1) · · · (d + rq − 1)
. (11)

In Eq. (11), λ = {(λk, nk )}k=1,...,Kλ
runs over the partitions of

r = ∑Kλ

k=1 nkλk , and the remaining coefficients aλ are given
by

aλ = r![∏Kλ

k=1 (λk!)nk
][∏Kλ

k=1(nk!)
] . (12)

Specializing to q = 3, r = 1, and q = r = 2, we have

FU ≡ EU∈U (d )[F[U |�0〉]] = 2(d − 1)

(d + 1)(d + 2)(d + 3)
. (13)

In particular, we recover the stabilizer entropy computation
in Ref. [35], with EU∈U (d )[2−M2[U |�0〉]] = 4/(d + 3). For a

realization U ∈ U (d ), the state |�〉 = U |�0〉 has F � FU
,

with an exponentially small error in system size N as a

consequence of quantum typicality [93,94]. Indeed, the stan-
dard deviation of F over the Haar ensemble is, at leading
order in 1/d , given by stdU∈U (d )(F[U |�0〉]) � 2

√
34/d5/2 +

O(d−6) [95].
The random Haar states constitute an ensemble of nonsta-

bilizer states with stabilizer entropy M2[U |�0〉] = N − 2 +
O(1/d ), which is close to the maximal one, M2 = N . Their
wave function is fully extended over the many-body basis,
as shown by the participation entropy Sq(U |�0〉) = N + (1 −
q)−1 log2 �(1 + q); that is, the multifractal dimension is Dq =
1. Hence, according to our definition in this work, the random
Haar states are not multifractal. At the same time, the wave
function of a random Haar state does not have a flat participa-
tion distribution. The multifractality flatness is nonvanishing,
F (U |�0〉) > 0, and Sq(U |�0〉) depends nontrivially on the
index q via the subleading term cq in its system-size depen-
dence, consistent with their nonstabilizerness.

V. PROBING NONSTABILIZERNESS VIA
MULTIFRACTAL FLATNESS

A. Numerical example

Here, we show that sampling over the Clifford group in
Eq. (4) can be performed via the action of a circuit con-
sisting of local Clifford gates acting on the state of interest
|�〉. We consider a system of N ∈ [2, 10] qubits, and as the
initial state |�〉, we take either the random Haar state U |�0〉
or a product state |�1〉⊗N of N single-qubit states (9) with
φ = π/4 and θ = π/2. We assume that the qubits form a
one-dimensional lattice, select random site i, and act with a
random two-qubit Clifford gate U2 [84,91] on sites i and i + 1,
imposing periodic boundary conditions. After each action of
the Clifford gate, we compute the multifractal flatness F of
the obtained state. By repeating this process, we obtain results
F1,F2, . . . ,FNreal , which we average to calculate an estimator
F̂ = ∑

i F1/Nreal of the mean multifractal flatness F (|�〉)
over the Clifford orbit C� .

Reverting Eq. (4), we find that

M2(|�〉) = − log2

[
1 − (d + 1)(d + 2)

2
F̂

]
. (14)

This allows us to calculate the stabilizer entropy M2(|�〉)
using F̂ and also shows that the statistical uncertainty σ (F )
of the multifractal flatness has to be multiplied by a factor
exponential in the number of qubits N to yield the statistical
uncertainty σ (M2) of M2. For instance, the results from the
preceding section for random Haar states imply that σ (F ) ∼
d5/2/

√
N , which leads to σ (M2) ∼ √

d/N . This, in turn,
indicates that in order to keep the same uncertainty in M2 with
increasing system size, we need to increase the number N
of samples proportionally to the Hilbert space dimension d .
Numerical results shown in the top panel of Fig. 2 confirm this
expectation. Keeping the same uncertainty in the stabilizer
entropy with |�1〉⊗N as the initial state requires a number of
samples that is smaller but still exponential in the number of
qubits: N ∼ 2cN (since c ≈ 0.7).

We also consider an alternative protocol in which each
calculation of the multifractal flatness F is preceded by an
action of a layer of L/2 random two-qubit Clifford gates. The
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FIG. 2. Determining stabilizer entropy with multifractal flatness
F . Top: Statistical error σ (M2) of stabilizer entropy determined from
Nreal measurements of F for a random Haar state; the asymptotic
N−1/2

real scaling is denoted by the dashed line. Data are shown for num-
ber of qubits N = 2, 3, . . . , 10; the green line in the inset shows the
number of measurements N0.1 needed to achieve error σ (M2) = 0.1
as a function of N , and the orange line shows N0.1 for a protocol
in which a full layer of two-body Clifford gates acts between each
measurement of F . Bottom: The same as in the top panel, but for the
product state |�N 〉 with φ = π/2 and θ = π/2; the observed scaling
N0.1 ∼ 2cN is slower than for the random Haar state (since c ≈ 0.7)
but still exponential in N .

Clifford gates from each layer act on pairs of neighboring sites
covering the whole N-qubit chain, and the subsequent layers
are shifted by one site with respect to each other. Intuitively,
this protocol may allow for a more efficient exploration of
the Clifford orbit C� and a faster estimation of the stabilizer
entropy in (14). This intuition is confirmed by a comparison of
the values of N0.1 in the insets in Fig. 2 for the two protocols.
However, the asymptotic exponential scaling of the number of
samples required to achieve a prescribed accuracy of M2(|�〉)
remains the same for the two protocols: N ∼ 2cN .

The results of this numerical demonstration provide quan-
titative confirmation of our analytical calculations that relate
the stabilizer entropy to the multifractal flatness of the many-
body wave function. Moreover, the action of local two-body
Clifford gates is sufficient to probe the Clifford orbit C�

and obtain an accurate estimation of the multifractal flatness
F (|�〉). Nevertheless, the sensitivity of the stabilizer entropy
to the statistical uncertainty of F (|�〉) makes this method
of calculation of M2(|�〉) impractical—the computational

FIG. 3. Digital quantum simulation of the multifractal flatness
F using the IBM IBMQ Oslo transmon quantum device. The initial
state is prepared by acting with the RXX(θ ) gate on the |00〉 state
(see text). Application of a random Clifford gate C followed by a
readout allows for a Monte Carlo estimate (14) of the multifractal
flatness F dig. While the features in θ are qualitatively captured, we
notice a systematic shift of the quantum demonstration result Fdig

with respect to the exact analytical value F ex due to imperfections
of the IBM machine. Those errors can be mitigated, resulting in the
corrected value of multifractal flatness F corr , which agrees quantita-
tively with F ex for all values of θ considered. The error bars show
the statistical uncertainty of the results associated with the number of
circuit realizations, which was fixed as 60.

resources needed to compute M2(|�〉) for larger numbers of
qubits with a given accuracy are comparable to or larger than
a direct calculation of M2(|�〉) according to the definition
(1) [96].

B. Two-qubit system on a quantum device

Last, we demonstrate that the multifractal flatness F is a
quantity observable in current quantum devices. As a sim-
ple proof of principle, we consider an (N = 2)-qubit system
prepared in state |�θ 〉 = RXX(θ )|�0〉, where |�0〉 = |00〉 and
RXX(θ ) = exp[−iθ/2σ 1 ⊗ σ 1]. We simulate the system in the
IBM transmon quantum device [97]. For specific angles θ =
kπ/2 (where k is an integer) the initial state |�θ 〉 is a stabi-
lizer; otherwise, it contains nonstabilizerness. We estimate the
multifractal flatness F (|�θ 〉) = ∑

Ci
F (Ci|�θ 〉)/Nreal in the

IBMQ Oslo device using Nreal = 60 realizations of random
Clifford gates Ci. Our results are shown in Fig. 3.

The results of digital simulations Fdig (denoted with
orange dots) quantitatively agree with the exact analytic pre-
diction F ex in the vicinity of the maxima of the multifractal
flatness, where the stabilizer entropy of |�θ 〉 is close to max-
imal. However, in neighborhoods of minima of F ex, around
θ = kπ/2 (for integer k), we observe a systematic deviation of
Fdig from the exact value. Nevertheless, we would like to em-
phasize that even the bare results Fdig qualitatively describe
the variation of the multifractal flatness with the value of θ .

The remaining discrepancies are due to a combination of
decoherence and leakage errors, imperfect fidelity of gates,
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and readout errors. A closer inspection of the obtained vectors
of quasiprobabilities pnoisy(�σ ) [which approximate the prob-
abilities pideal(�σ ) = | 〈�σ |C|�θ 〉〉 |2] reveals that the errors in
pnoisy affect the value of the multifractal most severely for
θ around kπ/2. In those instances, the final state C|�θ 〉 is
likely to have pideal(�σ ) = 0 for two or three basis states |�σ 〉.
An error of order ε in pnoisy leads to an error of ε in the value
of multifractal flatness. Hence, already, errors on the level of
a few percent in the quasiprobability vector pnoisy lead to error
in F on the level of the signal in Fig. 3. In contrast, around
θ = (2k + 1)π/4, the probability pideal(�σ ) is distributed more
uniformly over the basis |�σ 〉 for the majority of the Clifford
gates C. Hence, some of the errors in pnoisy propagate only at
the second order in ε, while some errors cancel out, yielding
Fdig close to the exact value.

Below, we show that a passive readout-error-mitigation
scheme [98] is sufficient to correct the bare results Fdig. We
fix the Clifford gate C to be equal to unity and set θ = 0.01.
Considering all 4 = 2N (N = 2) initial states, we obtain the
quasiprobability vectors pnoisy and find matrix A, which links
them with the ideal results pideal:

pnoisy(�σ ) = A pideal(�σ ). (15)

We observe that the 4 × 4 matrix A can be parametrized in the
basis {|�σ 〉} = {|01〉 , |00〉 , |10〉 , |11〉} with good accuracy as

A=

⎡
⎢⎢⎢⎢⎣

1 − 2p − q p p q

p 1 − 2p − q q p

p q 1 − 2p − q p

q p p 1 − 2p − q

⎤
⎥⎥⎥⎥⎦,

(16)

where p and q are characteristic parameters for a given device.
For IBMQ Oslo we find that the results are broadly consistent
with p = 0.045 and q = 0.02. Inverting formula (15), given
the matrix A, allows us to find an estimate for pideal(�σ ). Per-
forming this error mitigation for the data gathered for arbitrary
θ and C, we obtain the corrected value of multifractal flatness
F corr, which agrees, within the error bars associated with
sampling over the Clifford orbit, with the exact result F ex.

The presented results illustrate that the multifractal flat-
ness F is, indeed, measurable on current quantum devices,
albeit for a very small number of qubits, N = 2. Finding
more controlled and scalable error-mitigation schemes is an
interesting future challenge, which might involve the use of
the zero-noise extrapolation [99] and active error-mitigation
techniques [100–102].

VI. CONCLUSION

This work puts forward a correspondence between the con-
cept of wave-function multifractality and nonstabilizerness.
Specifically, we introduced multifractal flatness, a combina-
tion of inverse participation ratios that quantifies the flatness
of the wave-function probability distribution. We showed that
multifractal flatness is a witness of nonstabilizerness and
translates to a measure of magic when the average over the
Clifford orbit is considered. We illustrated the relationship
between multifractality and nonstabilizerness using a few

examples of quantum states, for instance, recovering known
results [35] for random Haar states.

The connection put forward in this work has practical im-
plications, as we showed by computing the stabilizer entropies
by estimating the multifractal flatness with a repeated action
of a local Clifford circuit. As a proof of principle, we demon-
strated that nonstabilizerness, as estimated by the multifractal
flatness F , is detectable in current quantum devices.

Recent works [26,103] revealed a tight relationship be-
tween quantum chaos and nonstabilizerness. It would be
interesting to investigate this link through the lens of mul-
tifractality. For instance, in semiclassical quantum systems,
the generalized Lyapunov exponents present multifractal fea-
tures [104,105]. Furthermore, models of maximally chaotic
quantum many-body systems have been shown to display rich
multifractal behavior [106–108]. Additionally, it would be
interesting to reveal the equilibrium and out-of-equilibrium
nonstabilizerness of archetypal condensed-matter models
[37,43,109].

Note added. Recently, a paper appeared [110] that imple-
mented a scalable scheme for experimentally observing the
multifractal flatness.
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