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Resource theory of nonabsolute separability
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We develop a resource theory for non-absolutely-separable states (non-AS) in which absolutely separable
states (AS) that cannot be entangled by any global unitaries are recognized as free states and any convex
mixture of global unitary operations can be performed without incurring any costs. We employ two approaches
to quantify nonabsolute separability (NAS)—one based on distance measures and the other one through the use
of a witness operator. We prove that both of the NAS measures obey all the conditions that should be followed
by a “good” NAS measure. We demonstrate that NAS content is equal and maximal in all pure states for a
fixed dimension. We then establish a connection between the distance-based NAS measure and the entanglement
quantifier. We illustrate our results with a class of non-AS states, namely Werner states.
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I. INTRODUCTION

The physical processes that are permitted under a theory
are determined by some physical rules. For instance, some no-
go theorems in quantum mechanics, such as no-cloning [1,2],
no-deleting [3], and no-broadcasting [4] theorems, were dis-
covered since unitary operations do not permit these processes
to take place. Under quantum mechanics, if one confines
the class of operations, referred to as free operations, one
can identify a set of states, called a resource, that cannot be
prepared with free operations, [5,6]. According to this idea
of resources, some protocols that surpass their classical coun-
terparts can only be designed utilizing resourceful quantum
states. It is fascinating to learn how well the resource theory
can perform particular jobs when presented with a particular
collection of resources or a specific class of operations.

Over the years, several such frameworks have been devel-
oped, including the theory of entanglement [6,7], coherence
[8–12], purity [13], magic [14–16], asymmetry [17], and
quantum thermodynamics [13,18–21]. Each resource theory
identifies the resources that serve as the foundation for various
types of quantum-information processing. Specifically, shared
entangled states are proven to be advantageous for obtain-
ing quantum benefits in classical and quantum information
transmission [22,23], as well as in quantum key distribution
[24]. In contrast, all states with nonvanishing purity are the
resource in the theory of purity, which is related to quantum
thermodynamics [13]. Additionally, resource theory provides
a method for classifying states. A quantifier is said to be
valid if it satisfies certain requirements set forth by a resource
theory [25], such as non-negativity, monotonicity under free
operations, convexity, etc. Note, interestingly, that the essen-
tial prerequisites for a valid measure in a resource theory are
strikingly ubiquitous and consistent.

Based on the response to global unitary operations, ab-
solutely separable states (AS) [26,27], which cannot be
entangled by any global unitary operations, can be separated
from non-absolutely-separable states, which have no such

incapability [28–30]. Processing quantum information re-
quires identifying such states that can produce an entangled
state as an output from separable input states, as is the
case in several fields of quantum-information science such as
quantum tensor network theory [31]. There are mathematical
criteria based on eigenvalues in spectral decomposition and
experimentally friendly witness operators that can be used to
identify non-absolutely-separable states [32–37].

In this work, we develop a resource theory of nonabso-
lute separability (NAS). This theory describes the mixture
of global unitary operations as free operations that result in
absolutely separable states as free states. We argue that certain
desired qualities, such as positivity, monotonicity under free
operations, and convexity, should be satisfied by the measures
characterizing nonabsolute separability. Since the set of ab-
solutely separable states is convex and compact, we define
distance-based measures to quantify the content of nonabso-
lute separability. Specifically, we prove that independent of
the distance measures, the quantifiers follow all the properties
required to be valid nonabsolute separability measures. We
demonstrate that all pure states possess maximal resources for
a given dimension. It is worth noting that the NAS measures
are more fine-grained than the entanglement measures, since
they are capable of detecting both entangled and a class of
non-absolutely-separable states. Employing relative entropy,
Bures, and Hilbert-Schmidt metrics, we obtain exact expres-
sions for NAS measures of pure states. We also establish a
connection between distance-based NAS and entanglement
measures.

Furthermore, we provide a different class of NAS quan-
tifiers based on witness operators, which similarly meets all
requirements for a legitimate NAS measure and reduces to
a fixed value for all two-qudit pure states in a given dimen-
sion. We illustrate and compare the behavior of all the NAS
measures by considering modified Werner states [38], which
is a mixture of a non-maximally-entangled state and white
noise. In particular, we discover that the NAS measures for
modified Werner states are independent of the parameters in
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non-maximally-entangled states, and they depend solely on
the noise strength.

The paper is organized in the following way. In Sec. II,
we propose the resource theory for nonabsolute separability
and its requirements. After discussing the basic conditions
to be satisfied by a NAS measure, we present distance-based
measures in Sec. III and witness-based measures in Sec. IV.
We make concluding remarks in Sec. V.

II. RESOURCE THEORY FOR
NON-ABSOLUTELY-SEPARABLE STATES

To measure the advantage offered by some resources in
quantum-information processing tasks, the conceptual frame-
work for quantum resource theory has been developed [5,6].
Under that structure, quantification and manipulation of quan-
tum resources can be accomplished. Any resource theory has
three fundamentally important characteristics: I. A class of
free operations, FO—resource cannot be created by using FO.
II. A class of free states, FS—these states can be produced via
free operations. III. Convertibility between resource states un-
der FO with an unlimited supply of free states. In particular, it
is argued that the transformation between states using free op-
erations should follow a certain rule, which is given the term
“monotones.” It implies that the transformation ρ → ρ̃ under
FO is possible with the condition that a specific function, f ,
decreases during the transformation, i.e., f (ρ) � f (ρ̃). More
generally, during ρ → {pi, ρ̃i}, f (ρ) � ∑

i pi f (ρ̃i ), implying
that f decreases on average in this picture, thereby obeying
the monotonicity under free operations by a measure f of a
given resource theory. Based on this, several resource theories
have been proposed in the literature [6,7,12,13–21]. Starting
from a set of free states, FS , we obtain a set of free operations,
FO, by which the set of free states remain invariant. By taking
this route, our aim is to develop a resource theory that is more
fine-grained than the theory of entanglement.

We are interested in studying a class of separable states
that remains separable under any global unitary operations
[28–30], known as absolutely separable (AS) states [26,27]. It
can be shown that AS states constitute a compact and convex
set, DAS [36]. From the definition, one finds that under any
global unitary operations, an AS state remains AS, otherwise
a successive application of several global unitary operations
would be able to transform an AS state to an entangled one.
Moreover, a mixture of unitary operations,

�(pi,Ui )(ρ) =
∑

i

piUiρU †
i ,

where
∑

i pi = 1 and 0 � pi � 1, also maps an AS state to
an another AS state, since the set DAS is convex. We refer to
any state outside the set DAS as a non-absolutely-separable
(non-AS) state. Thus the set of non-AS states contains both
entangled and separable states, which can be made entangled
by some global unitary operations. See Fig. 1 for a pictorial
realization.

Let us now introduce a resource theory of non absolute
separability (NAS), where we define AS states as free states.
Therefore, the mixture of global unitary operations �(pi,Ui )(ρ)
can be considered as free operations for this resource theory.

FIG. 1. A schematic diagram to realize the set of absolutely
separable states (DAS) and the set of separable states (DS) in the
set of whole states space (D ).

Hence, the non-AS states get the status of resourceful states
under the NAS resource theory.

The choice of free operations in quantum resource theory
is, in fact, the foundation of its physicality and is physically
reasonable and consistent with the principles of quantum in-
formation theory. To argue it, let us recall that the resource
theory of purity [39] is based on different types of free
operations, namely the mixture of unitaries, (�MU), noisy
operations (�NO), and the unital operations (�U). Note that
these operations form a subset hierarchy, �MU ⊂ �NO ⊂ �U.
When only the mixture of unitaries is available to us, in that
case, the resource theory of purity reduces to the resource
theory of NAS.

In addition, the NAS resource theory, as we will discuss
later, can provide an upper bound of entanglement quantity,
and NAS measures are also easily accessible in experiments
compared to the entanglement measures. In the succeed-
ing section, we argue that the NAS measure of a state (ρ)
depends on its eigenvalue distribution. There are several ex-
perimentally feasible techniques to estimate the spectrum of
a quantum state [40,41], without going through full state
tomography. In particular, it is shown how to estimate the
spectrum of a quantum state with minimal information in a
single experimental setting that can be implemented in linear
optical and superconducting systems [40]. Moreover, in the
case of thermally equilibrium states, one can perform the von-
Neumann measurement in the energy eigenbasis to find the
spectrum. Using these aforementioned techniques, an upper
bound of NAS similar to Eq. (16) can be evaluated easily,
which, in turn, provides an experimental bound on the amount
of entanglement, thereby establishing a connection with the
resource theory of entanglement.

Characterization of the AS states ρAS defined in Cm ⊗ Cn

can be mapped to the investigation of a set of real numbers
{λi}mn

i=1 such that λi � λi+1. Every state in that Hilbert space
with eigenvalues {λi}mn

i=1 is separable even under the action
of any unitary operation U ∈ Cm ⊗ Cn. In general it is not
easy to detect them, although for qubit-qudit states a crite-
rion to detect AS states is available [32–35]. Specifically in
a C2 ⊗ Cd (in short denoted as 2 ⊗ d) system, if a bipartite
state ρAB has 2d eigenvalues, {λ↓

i } with
∑2d

i=1 λ
↓
i = 1, where

λ
↓
i indicates that the elements are ordered in a nonincreasing
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manner, the absolute separability criteria reads λ
↓
1 − λ

↓
2d−1 −

2
√

λ
↓
2dλ

↓
2d−2 � 0. Note that the equality holds for the states

lying on the boundary of the set of AS states [42]. It is important
to note that the set of absolutely positive partially transposed
(PPT) states and absolutely separable states coincide in 2 ⊗ d ,
which is not the case in higher dimension [32]. However, the
characterization in higher-dimensional Hilbert space is still an
open problem that may be studied further.

Since AS states form a convex and compact set, the Hahn-
Banach theorem guarantees a hyperplane that can separate at
least one non-AS state from all the AS states. This hyperplane
is referred to as a witness operator for non-AS states [36],
which can be an alternative experimentally friendly method to
detect non-AS states. Consequently, we can quantify the non-
absolute separability of a non-AS state as the closest distance
from the set DAS.

To characterize non-AS states, we choose here two
approaches, namely distance-based and witness-based mea-
sures. We will prove that both of them follow an essential
aspect of resource theory, i.e., monotonicity.

Before proceeding further, let us specify the conditions that
a NAS measure, N (ρ), should obey.

C-I (Positivity). N (ρ) = 0 if and only if ρ is an absolutely
separable state, otherwise N (ρ) > 0.

C-II (Invariance under local unitary). N (ρ) remains in-
variant by local unitary operations. N (U1 ⊗ U2ρU1 ⊗ U2)
= N (ρ).

C-III (Monotonicity). Under the free operations (�), the
measure N (ρ) cannot increase, i.e., N (�(ρ)) � N (ρ).

C-IV (Convexity). N (ρ) is a convex function of the states,
i.e., N (

∑
i aiρi ) �

∑
i aiN (ρi ).

Note that conditions C-I to C-III can be considered as the
minimum requirement, thereby necessary conditions, for a
valid NAS measure to be satisfied. On the other hand, C-IV
can be perceived as an additional requirement which is typi-
cally fulfilled by a “good” resource quantifier.

III. DISTANCE-BASED NON-ABSOLUTE-SEPARABILITY
MEASURE

The set of AS states, DAS , is convex as well as compact
and hence it enables us to obtain a unique minimum distance
between a non-AS state and the set DAS.

Definition 1. We introduce a new class of measures of the
nonabsolute separability of a state ρ, through the distance
measure, D(ρ||ρAS), as

N χ (ρ) := min
ρAS∈DAS

Dχ (ρ||ρAS), (1)

where (Dχ ) is some measure of distance (not necessarily
a metric) between two states ρ and ρAS such that N χ (ρ)
satisfies the above three necessary conditions (C-I to C-III).
χ represents different distance measures, such as the relative
entropy measure (DR), the Bures measure (DB), the Hilbert-
Schmidt measure (DHS) [43,44], etc., and the minimization is
taken over the set of AS states, DAS.

Here we enlist the minimal required properties that any
distance measure Dχ should possess to establish it as a good
resource quantifier.

P-I. Dχ (ρ||σ ) � 0, where equality holds iff ρ = σ .

P-II. Dχ (ρ||σ ) should be invariant under unitary opera-
tions, i.e., Dχ (ρ||σ ) = Dχ (UρU †||UσU †).

P-III. Dχ (ρ||σ ) should be jointly convex in its both argu-
ments, i.e., Dχ (

∑
i aiρi||

∑
i aiσi ) �

∑
i aiDχ (ρi||σi ).

Remark 0. It is enough to consider that the distance mea-
sure has the property of contraction under a mixture of
unitaries, i.e., Dχ (ρ||σ ) � Dχ (�(ρ)||�(σ )), rather than joint
convexity in order to yield a valid measure. However, P-III
offers something more that will be explored throughout this
section.

The conditions for a valid NAS measure, C-I and C-II, are
directly followed from P-I and P-II, respectively, while we
will show that P-II and P-III together ensure the validity of
C-III.

Using the joint convexity property of Dχ , we find

Dχ (�(ρ)||�(σ )) = Dχ

(∑
i

piUiρU †
i ||

∑
i

piUiσU †
i

)

�
∑

i

piDχ (UiρU †
i ||UiσU †

i )

=
∑

i

piDχ (ρ||σ )

= Dχ (ρ||σ )

(
∵

∑
i

pi = 1

)
, (2)

where the penultimate line is written by using P-II.
Let ρ∗

AS be the nearest AS state from ρ. Since an AS
state remains an AS state under the mixture of global unitary
operations (�), N χ (ρ) satisfies

N χ (ρ) = Dχ (ρ||ρ∗
AS) � Dχ (�(ρ)||�(ρ∗

AS))

� min
ρAS∈DAS

Dχ (�(ρ)||ρAS)

= N χ (�(ρ)),

(3)

which implies the monotonicity condition of C-III for all
distance-based measures, satisfying P-I to P-III. As a con-
sequence, we obtain that under free operations of NAS
resource theory, the resource cannot rise. If we now reduce
the mixture of global unitary operations to a single global
unitary operation (U ), i.e., �(ρ) = UρU †, we have N χ (ρ) �
N χ (UρU †) = N χ (ρ ′). There exists also a unitary operator
U † for which we can write ρ = U †ρ ′U = �′(ρ ′), which leads
to N χ (ρ ′) � N χ (ρ). Therefore, it is only possible if and
only if N χ (ρ) = N χ (UρU †). Hence, the monotonicity of
the NAS measure reduces to the equality if the mixture of
global unitary operations is replaced by a single global unitary
operation. It implies that the NAS measure of a resource state
only depends on the eigenvalues of the state, i.e., all the states
having the same set of eigenvalues are equally resourceful.

Convexity. We are now going to prove an important prop-
erty, the convexity in its argument, of a good NAS measure.

Theorem 1. Any N χ as defined in Definition 1, and
equipped with specific distance measure χ having properties
P-I to P-III, is a convex function of the states, i.e.,

N χ (a1ρ1 + a2ρ2) � a1N χ (ρ1) + a2N χ (ρ2). (4)
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This means that the mixture of two resource states possesses
a less amount of resource than the sum of the individual ones.

Proof. Let ρ∗
1AS and ρ∗

2AS be the nearest AS states from ρ1

and ρ2, respectively. From the joint convexity property of the
distance measure (P-III), it follows that

N χ (a1ρ1 + a2ρ2) = min
ρAS∈DAS

Dχ (a1ρ1 + a2ρ2||ρAS)

� Dχ (a1ρ1 + a2ρ2||a1ρ
∗
1AS + a2ρ

∗
2AS)

� a1Dχ (ρ1||ρ∗
1AS) + a2Dχ (ρ2||ρ∗

2AS)

= a1N χ (ρ1) + a2N χ (ρ2).

Thus the joint convexity property of a distance measure not
only offers a valid but also a good NAS measure. �

In every resource theory, there exists a maximally re-
sourced state that has the maximum amount of resource, like
maximally entangled states in resource theory of entangle-
ment, maximally coherent states in coherence, and pure states
in purity resource theory, etc. Let us identify the maximally
resourceful state in the NAS resource theory.

Theorem 2. Pure states contain maximal resource in the
NAS resource theory.

Proof. Let us consider an arbitrary density operator ρ

acting on Cm ⊗ Cn, which can be written as a convex mix-
ture of pure states, |ψi〉 〈ψi|, i.e., ρ = ∑

i pi |ψi〉 〈ψi|. Since
all the states connected by global unitary transformations
(ρ → UρU †, where U is acting on Cm ⊗ Cn) have the same
resource, it implies that all the pure states in that Hilbert space
should have the same resource. It means that N χ (|ψi〉) =
N χ (|α〉) for any arbitrary pure state |α〉 in Cm ⊗ Cn. Hence,
by using Theorem 1, we arrive at

N χ (ρ) � N χ (|α〉) ∀ |α〉 ∈ Cm ⊗ Cn,

thereby establishing pure states having maximal resource un-
der the NAS resource theory. �

We will now focus on two well-known distance measures,
namely the relative entropy and the Bures measures [45],
which satisfy the properties P-I to P-III.

A. Relative entropy of nonabsolute separability

The quantum relative entropy between two states, ρ

and ρAS, is given by DR(ρ||ρAS) = tr(ρ log2 ρ − ρ log2 ρAS).
While it is not a metric since it fails to fulfill the property of
triangular inequality and is also not symmetric with respect to
ρ and ρAS, it satisfies all the required properties as a relevant
distance measure for quantifying NAS. As shown in Ref. [43],
the relative entropy is a jointly convex function in both of its
arguments, and hence N R(ρ) is also convex, thereby properly
quantifying the NAS. We will now show that for a specific
distance measure, we can achieve more.

Theorem 3. For pure states in 2 ⊗ d , the relative entropy
measure of NAS, N R(ρ) = log2

2d+2
3 .

Proof. Consider an arbitrary pure state |α〉 in 2 ⊗ d such
that ρ = |α〉 〈α|, for which the NAS measure reduces to

N R(ρ) = min
ρAS∈DAS

− tr{ρ log2 ρAS}

since for pure states, S(ρ) = −tr{ρ log2 ρ} = 0.
Let us write ρAS in spectral decomposition as ρAS =∑2d
i=1 λ

↓
i |λi〉 〈λi|, where {λ↓

i }2d
i=1 with the condition λ

↓
i � λ

↓
i+1

satisfies the absolute separability condition. Using this spec-
tral form, it immediately leads to

N R(|α〉) = min
ρAS∈DAS

− 〈α| log2 ρAS |α〉

= min
ρAS∈DAS

∑
i

log2
1

λi
↓ |〈λi| α〉 |2.

Note that
∑

i log2
1

λi
↓ |〈λi| α〉|2 � log2

1
λ

↓
1

.

Since DR(ρ||ρAS) attains its minimum value when ρAS is
on the boundary of the DAS and the necessary condition for an
AS state being on boundary (in 2 ⊗ d) is given by 1

2d < λ
↓
1 �

3
2(d+1) (see the Appendix for details), the minimum value that

can be achieved by log2
1
λ

↓
1

in the above inequality is log2
2d+2

3 .

Now construct an AS state ρ∗
AS as

ρ∗
AS = λ̃

↓
1 |λ1〉 〈λ1| + λ̃

↓
2 |λ2〉 〈λ2| + · · · + λ̃

↓
2d |λ2d〉 〈λ2d | ,

(5)

where

λ̃
↓
1 = 3

2d + 2
, λ̃

↓
i � λ̃

↓
i+1, and

λ̃
↓
1 − λ̃

↓
2d−1 − 2

√
λ̃

↓
2d λ̃

↓
2d−2 = 0, (6)

such that

|λ1〉 = |α〉 , 〈λi |α〉i =1 = 0. (7)

For this AS separable state (ρ∗
AS),

∑
i

log2
1

λ̃
↓
i

| 〈λi| α〉|2

∣∣∣∣∣
min

= log2
2d + 2

3
. (8)

Therefore, we can always construct an AS state ρ∗
AS for which

the minimum distance from an arbitrary pure state |α〉 be-
comes log2

2d+2
3 , and hence for any arbitrary pure state, the

relative entropy measure of NAS is log2
2d+2

3 . �
Example. Consider an arbitrary pure state |α〉 in 2 ⊗ 2. We

can build an AS state by mixing four mutually orthogonal pure
states {|α〉 , |α⊥〉 , |α⊥⊥〉 , |α⊥⊥⊥〉} as

ρ∗
AS = 1

2
|α〉 〈α| + 1

6
[|α⊥〉 〈α⊥| + |α⊥⊥〉 〈α⊥⊥|

+ |α⊥⊥⊥〉 〈α⊥⊥⊥|]

= 1

3
|α〉 〈α| + 2

3

I4×4

4
, (9)

where |α⊥〉 , |α⊥⊥〉 , and |α⊥⊥⊥〉 can be any three mutually
orthogonal vectors in 2 ⊗ 2 that are also orthogonal to |α〉.
It is evident that ρ∗

AS lies on the boundary of DAS in 2 ⊗ 2,
which leads to N R(|α〉) = 1.

Remark 1. From Theorems 2 and 3, it follows that in 2 ⊗ d ,
the maximum relative entropy measure of NAS, N R(ρ), can
be log2

2d+2
3 .
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B. Nonabsolute separability via the Bures distance

The Bures distance between two states ρ and ρAS,
dB(ρ, ρAS) =

√
2 − 2

√
F (ρ, ρAS) [46], is a valid metric

where F (ρ, ρAS) is the Uhlmann fidelity, F (ρ, ρAS) =
[tr{√√

ρρAS
√

ρ}]2 [47,48]. Like the measure of entangle-
ment, we take DB(ρ||ρAS) = d2

B(ρ, ρAS) = 2 − 2
√

F (ρ, ρAS)
[43,44] as the NAS measure. Note that, although DB(ρ||ρAS)
is not a valid metric, it still satisfies all the required properties,
i.e., P-I to P-III. In particular, since the Bures metric is a
true metric, the corresponding Bures measure, DB(ρ||ρAS),
satisfies P-I, and P-II is obvious from its definition, and
since

√
F (ρ, ρAS) is a jointly concave function in both of

its arguments [49], DB(ρ||ρAS) also enjoys the jointly convex
property, i.e., P-III.

Like relative entropy, the Bures measure of NAS reduces
to a compact form for pure states.

Theorem 4. For pure states in 2 ⊗ d , the Bures measure of

NAS, N B(ρ) = 2 − 2
√

3
2d+2 .

Proof. For an arbitrary pure state ρ = |α〉 〈α|,

N B(ρ) = min
ρAS∈DAS

[2 − 2 tr{
√√

ρρAS
√

ρ }]

= 2 − 2 max
ρAS∈DAS

√
〈α| ρAS |α〉

= 2 − 2 max
ρAS∈DAS

√∑
i

λ
↓
i | 〈α| λi〉|2,

where, in the second line, we use the fact that
√

ρ = ρ as ρ is
pure and the last line is obtained by using the spectral decom-
position of ρAS. Moreover, we again have

∑
i λ

↓
i | 〈α |λi〉|2 �

λ
↓
1 .

As we argued earlier, the minimum value of DB(ρ||ρAS)
can be achieved when ρAS lies on the boundary of DAS,
and the constraint for an AS state being on the boundary is
1

2d < λ
↓
1 � 3

2(d+1) . By choosing ρ∗
AS as in Eq. (5) with all the

conditions followed by Eqs. (6) and (7), we have

N B(|α〉) = 2 − 2

√
3

2d + 2
. (10)

Hence proved. �
Remark 2. From Theorems 2 and 4, it can be seen that the

maximum value of N B(ρ) in 2 ⊗ d is 2 − 2
√

3
2d+2 .

Example. To illustrate our results, let us consider a modi-
fied Werner state in 2 ⊗ 2 [38],

ρW = p |ξ 〉 〈ξ | + 1 − p

4
I4×4, (11)

where |ξ 〉 = cos γ |00〉 + eiφ sin γ |11〉, with 0 � γ � π and
0 � φ � 2π .

We find that the state is AS in 0 � p � 1
3 and it is entangled

in 1
1+2 sin 2γ

< p � 1, i.e., when 1
3 < p � 1

1+2 sin 2γ
, the state

is separable but not AS. However, the state is non-AS in the
range 1

3 < p � 1.
Let us compute the NAS measure for the state ρW with both

relative entropy and the Bures measure as the distance.

Proposition 1. The NAS content of the modified Werner
state (ρW ), in the range 1

3 < p � 1, reads

N R(ρW ) = log2 6 − 1 + 3p

4
log2 3 − S(ρ), and

N B(ρW ) = 2 −
[√

1 + 3p

2
+

√
3

2
(1 − p)

]
,

with respect to the relative entropy and Bures measures of
NAS, respectively.

Proof. For a mixed state ρ defined on 2 ⊗ d , we can write

N R(ρ) = min
ρAS∈DAS

[−S(ρ) − tr(ρ log2 ρAS)].

We write ρAS and ρ in spectral forms as

ρAS =
2d∑
i=1

λ
↓
i |λi〉 〈λi| , ρ =

2d∑
j=1

α
↓
j |α j〉 〈α j | , (12)

where α
↓
i � α

↓
i+1 and the same for λ

↓
i . Hence

N R(ρ) = min
ρAS∈DAS

[∑
i

log2
1

λ
↓
i

〈λi| ρ |λi〉 − S(ρ)

]

= min
ρAS∈DAS

[∑
i

pi log2
1

λ
↓
i

− S(ρ)

]
, (13)

where pi = 〈λi| ρ |λi〉 are the probabilities, i.e., 0 � pi � 1
and

∑
i pi = 1. Considering |λi〉 = ∑

j ci
j |α j〉, we have pi =∑

j α
↓
j |ci

j |2 with the condition
∑

j (c
k
j )

∗ci
j = δik .

Since the eigenvalues of ρAS are arranged in nonincreasing
order, so log2( 1

λ
↓
i

) � log2( 1
λ

↓
i+1

), hence to get the minimum

of N R(ρ), the probabilities pi should satisfy the condition
pi � pi+1 [32] with the inequality constraint α

↓
2d � pi � α

↓
1 .

In other words, we have to minimize the above expression
[Eq. (13)] with respect to pi’s (or ci

j’s) with the aforemen-

tioned conditions and λ
↓
i ’s with the constraint specified in

Eq. (6).
For the modified Werner state, ρW , we find that the min-

imum is achieved when λ
↓
1 = 1

2 , λ
↓
i=2,3,4 = 1

6 , and pi = α
↓
i

(i.e., |λi〉 = |αi〉). Note that, for the state ρW , α
↓
1 = 1+3p

4 ,

α
↓
i=2,3,4 = 1−p

4 . Hence the relative entropy measure of NAS
for the state ρW is found to be

N R(ρW ) = log2 6 − 1 + 3p

4
log2 3 − S(ρ). (14)

For the Bures measure of NAS, it reads

N B(ρW ) = 2 − 2
4∑

k=1

√
α

↓
k λ

↓
k

= 2 −
[√

1 + 3p

2
+

√
3

2
(1 − p)

]
. (15)

�
The above exercise has tempted us to conjecture that for

any state ρ in 2 ⊗ d , the minimization in Eq. (13) over pi’s
can be achieved if pi = α

↓
i , i.e., |λi〉i=1,...,2d = |αi〉i=1,...,2d .

Consider a state ρ̃AS lying on the boundary of DAS, with
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FIG. 2. Relative entropy measure [N R(ρW )] (solid line), Bures
measure [N B(ρW )] (dot-dashed line), and witness-based measures
[NW (ρW )] (dashed line) for NAS of the modified Werner state ρW

with respect to p (abscissa). Note here that the NAS measure is
independent of γ and φ involved in a non-maximally-entangled
state. Note further that p = 1 corresponds to a pure state for which
N R(ρW ) = 1, N B(ρW ) = 2 − √

2, and NW (ρW ) = 1/2. All the axes
are dimensionless.

eigenvalues λ
↓
1 = 3

2d+2 and λ
↓
i=2,3,...,2d = 1

2d+2 with |λi〉 =
|αi〉.

Upper bound on the distance-based measures of NAS for
any arbitrary state ρ in 2 ⊗ d. The relative entropy between ρ

and ρ̃AS, which is chosen via the above prescription, reduces
to

N R(ρ) � α
↓
1 log2

2d + 2

3
+ (1 − α

↓
1 ) log2(2d + 2) − S(ρ)

� log2(2d + 2) − α
↓
1 log2 3 − S(ρ), (16)

while in the case of the Bures measure of NAS, it reads

N B(ρ) � 2 − 2

⎡
⎢⎣ tr

√
ρ + (

√
3 − 1)

√
α

↓
1√

2d + 2

⎤
⎥⎦. (17)

Note that the inequality for pure states indeed reduces to
the equality as already shown in Theorems 3 and 4.

Figure 2 depicts N R(ρW ) and N B(ρW ) of the modified
Werner state ρW with respect to p. Note that the NAS measure
N χ (ρW ) does not depend on γ and φ; it depends only on the
state parameter p since the eigenvalues of ρW are functions of
p as proved in Proposition 1. We can see that both of the NAS
measures increase with respect to p and reach its maximum
value at p = 1, i.e., when ρW is a pure state.

C. Metric-based nonabsolute separability measure

Let us propose an NAS measure, based on a true metric,
following additional characteristics such as symmetry under
its arguments and triangular inequality, which are not obeyed
by relative entropy and Bures measures. Further, the metrics,
denoted by D�(ρ||ρAS), are jointly convex.

Theorem 5. Under a jointly convex metric D�(ρ||ρAS), if
ρ∗

AS is the nearest AS state from ρ, it remains so for all those

states which can be written as convex linear combination of
these two states ρ and ρ∗

AS.
Proof. Let ρ∗

AS be the nearest AS state from ρ. Now con-
sider a state ρx = xρ + (1 − x)ρ∗

AS, where 0 � x � 1. By
using the joint convexity of D�(ρ||σ ) and the properties of
a metric, we get

D�(ρ||ρx ) = D�(ρ||xρ + (1 − x)ρ∗
AS)

� (1 − x)D�(ρ||ρ∗
AS), and

D�(ρ∗
AS||ρx ) � x D�(ρ∗

AS||ρ),

which leads to D�(ρ||ρx ) + D�(ρx||ρ∗
AS) � D�(ρ||ρ∗

AS) by
using D�(ρ∗

AS||ρx ) = D�(ρx||ρ∗
AS).

On the other hand, from the triangular inequality, we can
write D�(ρ||ρx ) + D�(ρx||ρ∗

AS) � D�(ρ||ρ∗
AS). Combining

these, we obtain

D�(ρ||ρ∗
AS) = D�(ρ||ρx ) + D�(ρx||ρ∗

AS). (18)

To prove that ρ∗
AS is also the nearest AS state for ρx, consider

an arbitrary AS state ρAS for which we can write

D�(ρx||ρAS) − D�(ρx||ρ∗
AS)

= D�(ρx||ρAS)

+ D�(ρx||ρ) − D�(ρx||ρ∗
AS) − D�(ρx||ρ)

� D�(ρ||ρAS) − D�(ρ||ρ∗
AS) � 0.

Hence, we can claim that ρ∗
AS is also the nearest AS state for

ρx. �
Let us move to a family of metrics that have some special

properties. Consider two quantum states ρ and ρAS for which
we can define a family of metrics as [50]

dp(ρ, ρAS) = sup
{Pj}K

j=1

⎛
⎝ K∑

j=1

∣∣∣(tr ρPj )
1
p − (tr ρASPj )

1
p

∣∣∣p

⎞
⎠

1
p

,

where p is a fixed positive integer, and the supremum is
taken over all finite families of projectors {Pj}K

j=1 such

that
∑K

j=1 Pj = I. Note that for p = 1, d1(ρ, ρAS) = tr|ρ −
ρAS|, while with p = 2, we recover the Bures metric, i.e.,
d2(ρ, ρAS) = dB(ρ, ρAS). In Ref. [51], d1(ρ, ρAS) is shown to
be a jointly convex and contractive metric under a completely
positive and trace preserving (CPTP) map, and hence it can be
used to quantify both the entanglement and the nonabsolute
separability.

Corollary. The distance measures, which are jointly con-
vex, obey all the metric properties, and the contractive metric
under a CPTP map leads to NAS and entanglement measures
such that an upper bound on entanglement measure can be
given by

N�(ρ) − N�(ρx∗ ) � E (ρ),

where N�(ρ) and E (ρ) are the distance-based NAS and
entanglement measures [43] of ρ. Here ρx∗ is the nearest
separable state from ρ of the form ρx∗ = x∗ρ + (1 − x∗)ρ∗

AS.

Proof. Let ρ∗
AS be the nearest AS state from an entangled

state ρ, and let a state ρx be ρx = xρ + (1 − x)ρ∗
AS. From
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Eq. (18), we can write

D�(ρ||ρx ) = D�(ρ||ρ∗
AS) − D�(ρx||ρ∗

AS)

= N�(ρ) − N�(ρx ),

where the last line follows from Theorem 5 and Definition 1.
The distance-based entanglement measure can be defined

as [43] E (ρ) = min
ρS∈DS

D�(ρ||ρS ), where DS is the set of sepa-

rable states. If ρx is a separable state, E (ρ) � D�(ρ||ρx ).
The bound can be made tighter if ρx lies on the boundary

of DS . We consider ρx∗ to be such a state, which is the nearest
separable state from ρ of the form ρx∗ = x∗ρ + (1 − x∗)ρ∗

AS.
Hence, we obtain a tighter upper bound on the entanglement
content of ρ as

E (ρ) � D�(ρ||ρx∗ )

= N�(ρ) − N�(ρx∗ ). (19)

The boundary of DS can be characterized by all those states,
which cannot be written as a convex linear combination of a
maximally mixed state and another separable state, i.e.,

ρx∗ = y
I

d
+ (1 − y)ρS ∀ρS ∈ DS

and for any 0 � y � 1. �
Example. Let us take a pure state in 2 ⊗ 2, |ψ〉 = β |00〉 +

δ |11〉 with {β, δ} ∈ [0, 1]. We can obtain this form by com-
puting Schmidt decomposition of an arbitrary pure state in
2 ⊗ 2 and then transforming it via a local unitary trans-
formation. Note that both the measure of entanglement and
nonabsolute separability are invariant under a local unitary
transformation. The nearest separable state of |ψ〉 is given by
β2 |00〉 〈00| + δ2 |11〉 〈11| [44], whereas the nearest AS state
is ρ∗

AS = 1
3 |ψ〉 〈ψ | + 2

3
I4×4

4 [see Eq. (9)]. So, we can write

ρx = x |ψ〉 〈ψ | + (1 − x)ρ∗
AS = p |ψ〉 〈ψ | + (1 − p) I4×4

4 with
p = 2x+1

3 . Using Peres-Horodecki criteria [52,53] for separa-
bility in 2 ⊗ 2, we check that ρx is separable in the range 0 �
x � 1

2 ( 3
1+4βδ

− 1). Hence, we can maximize D�(ρx||ρ∗
AS)

over x in the aforementioned range in order to find N�(ρx∗ ).
Figure 3 shows the entanglement content of the state |ψ〉

and its upper bound as computed by our distance-based NAS
measure with the metric d1(ρ, σ ). Note that the upper bound
of entanglement coincides with its exact value for the maxi-
mally entangled state.

IV. CHARACTERIZATION
OF NON-ABSOLUTELY-SEPARABLE
STATES VIA WITNESS OPERATORS

We now move to prescribe another measure to quantify
NAS which is based on the witness operators. In d1 ⊗ d2

dimension with d1, d2 � 3, the characterization of AS states
is hard, although non-AS states can be detected by using wit-
ness operators [36,37], which are a useful method to identify
resourceful states in experiments. It was shown that entangle-
ment measures quantifying resources can be obtained from the
witness operators [54].

Following this idea, we propose here a NAS measure based
on witness operators. Since AS states constitute a convex and
compact set which enables the construction of a hyperplane to

FIG. 3. The entanglement measure [E (ρ )] (solid line) and the
upper bound of the entanglement [N�(ρ ) − N�(ρx∗ )] (dashed line)
of the state |ψ〉 with respect to β (abscissa). Note that at β = 1√

2
, the

state is maximally entangled and the upper bound of entanglement
coincides with its exact value. All the axes are dimensionless.

separate all the AS states from at least one non-AS state, this
hyperplane can witness that non-AS state. Consider a non-
AS state, ρ which may be separable or entangled. It implies
that there exist some unitary operators U which can turn this
state (if separable) into an entangled one or can increase its
(if already entangled) entanglement content. Anyway, one can
detect this state as a non-AS state through an entanglement
witness operator W after the operation of global unitary, U .
This is basically the standard way to detect a non-AS state
[36].

A witness operator (W̃ ) for detecting a non-AS state is
defined as tr{W̃ ρAS} � 0 ∀ ρAS ∈ DAS, and tr{W̃ ρ} < 0 for
at least one non-AS state ρ, with W̃ as U †WU , where U is
a global unitary operator and W is an entanglement witness
operator. Equipped with these notions, one can define an
NAS resource monotone called a witness-based NAS measure,
grounded on a witness operator (W̃ ).

Definition 2. The witness-based quantifier (NW (ρ)) of a
non-AS state ρ is defined as

NW (ρ) = max[0, − min
{W ∈M;U }

tr{U †WUρ}]

= max[0, −tr{U †
ρWρUρρ}]

= max[0, −tr{W̃ρρ}], (20)

where M = W ∩ C is the intersection of the set of entangle-
ment witnesses (W ) with some other set (C) such that M is
compact [54]. In Eq. (20), W̃ρ stands for the optimal non-AS
witness operator for the state ρ.

The witness-based NAS measure indeed satisfies all the
necessary conditions mentioned as C-I to C-III to be a valid
NAS measure. To verify this, consider the following. C-I is di-
rectly followed from the definition of the witness operator, and
the invariance of the NAS measure under the global unitary
operation is evident from the definition of the witness-based
NAS measure itself, which validates C-II as well. Now, we
prove the monotonicity condition, i.e., C-III.
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Proof of monotonicity. It is enough to show that −tr{W̃ρρ}
is monotone under free operations � : ρ → ∑

i piUiρU †
i .

Hence, we have

−tr{W̃ �(ρ)�(ρ)} = −
∑

i

pi [tr{W̃ �(ρ)ρi}]

� −
∑

i

pi min
W̃

tr{W̃ ρi}

= −
∑

i

pi tr{W̃ ρiρi} = −tr{W̃ ρρ},

where we have used UiρU †
i = ρi and the last line follows from

the fact that the witness-based NAS measure is invariant even
under the global unitary operation.

Theorem 6. For pure states in d ⊗ d , the witness-based
measure of NAS NW (ρ) = 1

d .

Proof. Consider a pure state ρ = |α〉 〈α| in d ⊗ d , which
may be separable or entangled. To find NW (ρ), we need
to find the optimal unitary Uρ and the optimal entangle-
ment witness operator Wρ for the state ρ. The minimum in
Eq. (20) can be achieved when Uρ : UρρU †

ρ = ρMES, where
ρMES stands for the maximally entangled state (MES) in d ⊗
d . Since the MES in d ⊗ d is a pure negative partially trans-
posed (NPPT) entangled state, its optimal witness operator
is Wρ = |φ〉 〈φ|TB , where |φ〉 is the eigenvector correspond-
ing to the smallest eigenvalue of ρ

TB
MES[55]. Now, using the

identity tr{|φ〉 〈φ|TB ρMES} = tr{|φ〉 〈φ| ρTB
MES}, we can see that

this is exactly the smallest eigenvalue of ρ
TB
MES. Since ρMES =

1
d

∑d
i, j=1 |ii〉 〈 j j|, we can find

−tr{WρUρρU †
ρ } = 1/d,

which leads to the same value for all pure states in d ⊗ d . �
Proposition 2. The witness-based NAS measure of the

modified Werner state (ρW ) is given by NW (ρW ) =
max[0,

3p−1
4 ].

Proof. In 2 ⊗ 2, the optimal unitary operator that can
generate entanglement can be characterized by only three
parameters [56], given by

U = exp
[
i(a1σx ⊗ σx + a2σy ⊗ σy + a3σz ⊗ σz )

]
.

Based on that unitary operator, we can find NW (ρ). Also,
in 2 ⊗ 2 and 2 ⊗ 3, every entangled state is NPPT due to
Peres-Horodecki criteria [52,53], and hence the optimal wit-
ness operator WρW can be found by the prescription described
in Theorem 6. Therefore, we obtain

NW (ρW ) = max{0, min
{a1,a2,a3}

tr{U †WρW UρW }}

= max

[
0,

3p − 1

4

]
.

�
In Fig. 2, we depict the witness-based NAS measure of the

modified Werner state, NW (ρW ), with respect to p. We can see
that like distance-based NAS measures, it also depends on the
noise parameter, p, and is also independent of the parameters
involved in pure states of ρW . As proven in Theorem 6, at
p = 1, it reaches 1/2.

V. DISCUSSION

Developing a framework for a resource theory plays a
pivotal role in quantum information science since it identi-
fies states that are the essential ingredient for certain tasks
to perform and recognizes operations that can be performed
without any cost. For example, it has been demonstrated that
entangled states are essential to gain a quantum advantage
in a variety of protocols, including quantum communica-
tion and measurement-based quantum computation. Hence,
in the theory of entanglement, local operations and classical
communication are considered free operations, by which en-
tangled states cannot be created while separable states are free
states. On the other hand, it has also been found that a class of
separable states, known as absolutely separable states, cannot
become entangled even with the help of global operations.

In summary, we provided a resource theory to characterize
the set of non-absolutely-separable states (NAS) in which
absolutely separable states and a mixture of global operations
are free states and free operations. We proposed that NAS
measures must satisfy certain requirements such as positivity,
invariance with local unitary operations, monotonicity under
mixture of global unitary operations, and convexity in order to
be considered “good” measures. We employ two approaches
for quantification: (i) distance-based measures grounded on
different metrics such as relative entropy, Bures, and Hilbert-
Schmidt, and (ii) witness-based measures adopting witness
operators used to detect non-absolutely-separable states. We
demonstrated that each measure adheres to each require-
ment for a legitimate NAS measure. Since two completely
different approaches are employed to quantify the resource
content of NAS, no such obvious connections exist between
these two kinds of measures. However, we noticed that the
witness-based measures are a linear function in state parame-
ter, whereas distance-based measures are not. Moreover, in the
case of distance-based measures, we observed that the relative
entropy-based measure shows higher value compared to the
Bures distance-based measure.

It is important to notice that the definitions of the NAS
measures are independent of the number of parties compris-
ing a state under evaluation. Specifically, our definition of
distance-based measures of NAS does not consider the num-
ber of parties incorporated in the state. Hence, some of the
main results (Theorems 1, 2, and 5) are valid even in the
multipartite domain. On the other hand, the definition of the
witness-based NAS measure is also applicable to multiparty
cases because it does not presume the number of parties
involved in a state. However, it should be noted that the
criteria for being an absolutely separable state in a multipartite
scenario are still not known and have not been thoroughly
investigated due to their extreme mathematical complexity.
Moreover, in the multipartite scenario, the notion of absolute
separability is not well characterized as in the bipartite case,
similar to the theory of entanglement. Therefore, in this work
we limited our analysis to the bipartite domain only.

We proved that all pure states in this picture possess an
equal and maximum amount of resources. For given distance
measures, we obtained a compact form of NAS measures for
all pure states which turn out to be an upper bound of an
arbitrary density matrix. By taking modified Werner states,
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which are a mixture of a nonmaximally entangled state and
white noise, we illustrated that NAS measures increase with
the decrease of noise, regardless of the measures used. How-
ever, witness-based measures exhibit linear growth, whereas
distance-based measures do not. The resource theory pre-
sented in this paper, like other resource theories, may offer the
opportunity to manipulate resources in novel ways, potentially
leading to the creation of quantum devices.
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APPENDIX: BOUNDS ON THE MAXIMUM EIGENVALUE

Consider a tuple of 2d numbers {λ↓
i }i=1,2,...,2d arranged in

a nonincreasing manner, i.e., λi � λi+1, with the condition∑2d
i=1 λ

↓
i = 1 and λi � 0. We are looking for the bounds on

λ
↓
1 so that the condition λ

↓
1 − λ

↓
2d−1 − 2

√
λ

↓
2d−2λ

↓
2d = 0 may

hold.
Note that the numbers {λ↓

i } can be parametrized as

λ
↓
1 = a1,

λ
↓
2 = a2(1 − a1),

λ
↓
3 = a3(1 − a2)(1 − a1),

· · ·
λ

↓
2d−1 = a2d−1(1 − a2d−2)(1 − a2d−3) · · · (1 − a2)(1 − a1),

λ
↓
2d = (1 − a2d−1)(1 − a2d−2) · · · (1 − a2)(1 − a1),

where 1
2d−i+1 � ai � min[1,

ai−1

1−ai−1
] with 1

2d � a1 � 1. To

satisfy the equation, λ
↓
1 − λ

↓
2d−1 − 2

√
λ

↓
2d−2λ

↓
2d = 0, the nec-

essary requirement is found to be

a1

1 − a1

∣∣∣∣
max

=
2d−3∏
i=2

(1 − ai,min)

=
2d−4∏
m=1

(
1 − 1

2d − m

)

= 3

2d − 1
.

Note that a1
1−a1

|max = a1,max

1−a1,max
. Hence, we obtain a1,max =

3
2(d+1) . Again, λ

↓
1 = a1, and hence the upper bound on λ

↓
1 is

3
2(d+1) . We now want to determine whether the lower bound,

i.e., 1
2d , is achievable. Consider λ

↓
1 = 1

2d , which immediately

leads to all λ
↓
i=2,3,...,2d = 1

2d , for which the equality condition
cannot be satisfied. Similarly, we can check the same for
the upper bound by considering λ

↓
1 = 3

2d+2 and λ
↓
i=2,3,...,2d =

1
2d+2 , for which we can see that the condition is satisfied.

Hence, 1
2d < λ

↓
1 � 3

2(d+1) .
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