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Collective-effects-enhanced multiqubit information engines
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We study a quantum information engine (QIE) modeled by a multiqubit working medium (WM) collectively
coupled to a single thermal bath. We show that one can harness the collective effects to significantly enhance
the performance of the QIE, as compared to equivalent engines lacking collective effects. We use one bit of
information about the WM magnetization to extract work from the thermal bath. We analyze the work output,
noise-to-signal ratio, and thermodynamic uncertainty relation (TUR), and contrast these performance metrics of
a collective QIE with that of an engine whose WM qubits are coupled independently to a thermal bath. We show
that in the limit of high temperatures of the thermal bath, a collective QIE always outperforms its independent
counterpart. In contrast to quantum heat engines, where collective enhancement in specific heat plays a direct
role in improving the performance of the engines, here the collective advantage stems from higher occupation
probabilities for the higher-energy levels of the positive magnetization states, as compared to the independent
case. Furthermore, we show that in the limit of high temperatures, the TUR for both the collective as well as the
independent QIEs violate the standard heat engine TUR bound of 2.
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I. INTRODUCTION

The relationship between information theory and thermo-
dynamics has been a topic of intense interest in the research
community during the last few decades [1], with information
engines, i.e., engines which use information to extract useful
work, playing a significant role in this regard [2–4]. The con-
cept of Maxwell’s demon [5], first proposed by James Clerk
Maxwell in 1867, was one of the earliest works suggesting the
possibility of using information to extract work from a single
heat bath in classical systems. Subsequently, the idea of using
information and measurements to extract work was extended
to the quantum regime [1,2,4,6–17], and also realized experi-
mentally in recent years [18,19].

One of the major aims of the field of quantum thermo-
dynamics is to study the effects of quantum physics on the
operation of quantum machines [20–23]. For example, quan-
tum coherence has been shown to improve the power output of
quantum heat engines [24], while squeezed thermal reservoirs
have been used to significantly enhance the efficiencies of
such engines [25–27]; nonadiabatic excitations in quantum
critical systems driven out of equilibrium have been shown
to aid in the charging of quantum batteries [28], and entan-
glement may help in extracting work from such batteries [29].
Quantum features have been used to design quantum informa-
tion engines (QIEs) as well. For example, a bosonic quantum
Szilard engine has been shown to outperform its fermionic
counterpart [2]. Reference [13] showcases the use of quan-
tum coherence to extract nontrivial work from the process of
unselective measurements, akin to information erasure. This
stands in contrast to the Landauer principle, which imposes
a thermodynamic work cost for both classical and quantum
erasure.
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In recent years, collective effects in many-body quantum
technologies comprising indistinguishable particles collec-
tively coupled to thermal baths have received significant
attention from the research community [30–35]. For example,
collective effects have been used to perform high-precision
quantum thermometry [32] and to obtain enhanced work out-
put [30–32], efficiency [36], and reliability [34] in quantum
thermal machines. In this paper, we propose a collective
effects enhanced many-body QIE, modeled by a working
medium (WM) of n noninteracting indistinguishable spin-
1/2’s, collectively coupled to a single heat bath. Information
about the magnetization direction of the WM allows us
to extract work. Our analysis shows that in comparison to
an equivalent QIE modeled by n noninteracting spin-1/2’s
independently coupled to heat baths, the collective effects
may result in significantly enhanced work output, a low
noise-to-signal ratio, and low thermodynamic uncertainty (Q).
The collective advantage originates from higher occupation
probabilities for the higher-energy levels of the positive mag-
netization states compared to the independent case.

The paper is organized as follows. In Sec. II, we discuss the
model of the many-body QIE, its operation, and the process of
work extraction, in detail. The different performance metrics
of the QIE are studied, and compared with their independent
QIE counterparts, in Sec. III. Finally, we summarize our re-
sults in Sec. IV.

II. MANY-BODY INFORMATION ENGINE

A. Information engine

We consider a working medium (WM) consisting of n spin-
1/2 systems. One can model a three-stroke information engine
as follows (see Fig. 1):

Stroke 1: In the first energizing stroke, the WM is cou-
pled to a thermal bath at an inverse temperature β. The WM
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FIG. 1. A schematic representation of an information engine
comprising n qubits, highlighting the three strokes of the cycle.

undergoes a nonunitary evolution, wherein energy flows from
the bath to the system, resulting in the WM reaching a steady-
state ρss at long times.

Stroke 2: In the second stroke, the WM is decoupled from
the bath, and the direction of the magnetization m of the
WM, or equivalently, the sign of m, is measured. A positive
magnetization implies the WM has nonzero ergotropy, i.e.,
the maximum work that can be extracted via suitable unitary
operations [37]. A part of the ergotropy can be extracted by
applying a global unitary Uflip to flip all the qubits of the WM.

Stroke 3: Following the result of the measurement in stroke
2, we apply a global unitary Uflip to flip all the qubits of the
WM for m > 0, thereby changing the sign of m, and extract-
ing work in the process. On the other hand, a negative m is
detrimental to work extraction under the above unitary Uflip.
Consequently, no unitary is applied in the case of m � 0.

Finally, we couple the WM with the Markovian bath intro-
duced in stroke 1, and repeat all the steps mentioned above,
thereby giving rise to a cyclic information engine.

B. Model and dynamics

In this section, we discuss in detail the dynamics involved
in stroke 1 of the information engine, introduced above. To
this end, we consider a WM composed of multiple noninter-
acting qubits with a bare Hamiltonian given by H = h̄ωJz,
where we define the collective angular momentum operators
as Ji := 1

2

∑n
k=1σ

k
i . Here, the Pauli matrix σ k

i is the spin
operator along the i axis (i = x, y, z), acting on the kth spin.
The spins are collectively coupled to a thermal bath during
the nonunitary stroke 1 through the system-bath interaction
Hamiltonian Hint = γJx ⊗ B. Here, γ denotes the coupling
strength, while B is an operator acting on the thermal bath.
As shown in Refs. [30,32,38], such a collective system-bath

interaction may generate quantum coherence in the steady-
state density matrix ρss

col of the WM, characterized by the
presence of off-diagonal elements in the WM density matrix
in the local spin basis. The dynamics of the WM is described
by the master equation [30,32,38]

dρ

dt
= − i

h̄
[H, ρ] + �(ω)D(J +)ρ + �(−ω)D(J −)ρ, (1)

where D[O]ρ = (2O†ρO − OO†ρ − ρOO†)/2, the collective
ladder operators of the spin system are given by J ± :=
Jx ± iJy, and �(ω) is the spectral function of the bath at
frequency ω. The spectral functions �(ω) and �(−ω) are
related to each other via the Kubo-Martin-Schwinger con-
dition �(−ω) = exp(−β h̄ω)�(ω) [39]. The steady-state ρss

col
can be expressed in the collective basis | j, m〉i of the common
eigenvectors of Jz and J 2 = J 2

x + J 2
y + J 2

z as [38]

ρss
col(β, ω) =

n/2∑
j= j0

l j∑
i=1

Pj,i ρ th
j,i(β, ω),

ρ th
j,i(β, ω) = 1

Zj

j∑
m=− j

e−βmh̄ω| j, m〉i i〈 j, m|. (2)

Here, Zj = ∑ j
m=− j e−βmh̄ω is the partition function of the an-

gular momentum subspace j, − j � m � j, j ∈ [ j0; n/2], and
j0 = 1/2 for odd n and j0 = 0 for even n. The index i ∈ [1; l j],
where l j is the multiplicity of the eigenspaces associated with
the eigenvalue j of the operator J 2 [40]. The initial state ρ0

of the WM determines the probability Pj,i through the relation
Pj,i = ∑ j

m=− j i〈 j, m|ρ0| j, m〉i.
Previous studies have shown that an initial state prepared

in the j = n/2 subspace is the most favorable for obtaining
collective advantage in quantum thermal machines [30,32,34].
Consequently, here we restrict ourselves to the j = n/2 sub-
space, such that l j=n/2 = 1, Pj=n/2 = 1, and the corresponding
steady state is given by [23,32]

ρss
col(β, ω) = 1

Zn/2

n/2∑
m=−n/2

e−βmh̄ω
∣∣∣n

2
, m

〉〈n

2
, m

∣∣∣. (3)

We note that in contrast to the setup introduced above, one
can consider an independent WM-bath coupling, described by
an interaction Hamiltonian of the form Hint = γ

2

∑n
k=1 σ k

x ⊗
Bk , where Bk denotes an operator acting on the bath coupled
to the kth spin. In the latter scenario, the steady state reached
at the end of the nonunitary thermal interaction stroke is a
direct product state of the form [23,30,32,38,39]

ρss
ind(β, ω) = ⊗n

k=1ρ
ss
k (β, ω), (4)

where ρss
k (β, ω) = exp(−β h̄ωσ k

z /2)
Tr[exp(−β h̄ωσ k

z /2)] is the steady-state density
matrix corresponding to the kth spin.

III. STATISTICS OF THE OUTPUT WORK

The unitary operation Uflip considered in the second stroke
introduced in Sec. II A acts only the states |n/2, m〉 with m >

0; a part of the ergotropy of such states is extracted in the
form of output work, while those states are transformed to
|n/2,−m〉 at the end of this stroke. For the independent bath
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coupling as well, a state |m〉 with m > 0 denotes the presence
of nonzero ergotropy, which can be used to perform useful
work through unitary transformation to the state |−m〉. We
take the sign of energy outflow from the WM as positive and
the inflow as negative. If wm = 2mh̄ω is the amount of work
extracted from the state |n/2, m〉 or from |m〉 with probability
pα

m (α = col., ind.), then the average work takes the form

〈Wα〉 =
∑
m�0

wm pα
m, (5)

and its variance, var(Wα ) = 〈W 2
α 〉 − 〈Wα〉2, is given by

var(Wα ) =
∑
m�0

w2
m pα

m − 〈Wα〉2. (6)

In Eqs. (5) and (6), m = 0, 1, 2, . . . , n/2 for even n, while
m = 1/2, 3/2, 5/2, . . . , n/2 for odd n. For the collective en-
gine, the probability is given by [see Eq. (3)]

pcol
m = e−βmh̄ω

Zn/2
, (7)

while in the case of the independent engine, we have [see
Eq. (4)]

pind
m = nCn/2−m

e−βmh̄ω

Zind
, rCs ≡ r!

(r − s)!s!
. (8)

Here, Zind = (e−βω/2 + eβω/2)n is the partition function cor-
responding to the thermal state of the independent engine’s
WM. The factor nCn/2−m in Eq. (8) denotes the number
of combinations of spin arrangements that give rise to a
magnetization m.

A. Information engine in the high-temperature limit

In the limit β = 1
kBT → 0, all the basis states will have an

equal probability of being occupied, and hence from Eq. (5),
we get the collective work output as (see Appendix),

lim
β→0

〈Wcol〉 = lim
β→0

∑
m�0

wm pcol
m = h̄ω

n + 1

rmax∑
r=0

(n − 2r). (9)

Here, pcol
m (β → 0) = 1/(n + 1), wm = 2h̄ωm = h̄ω(n − 2r)

with r = n/2 − m, rmax = n/2 for even n, and rmax =
(n − 1)/2 for odd n. The above equation simplifies to 〈Wcol〉 =
(n + 1)h̄ω/4 for odd n, and to 〈Wcol〉 = n(n+2)

4(n+1) h̄ω for even n,
which, in the limit of large n, can be approximated to nh̄ω/4.
Similarly, the work output for the independent case can be
obtained as

lim
β→0

〈Wind〉 = lim
β→0

∑
m�0

pind
m wm = h̄ω

2n

rmax∑
r=0

nCr (n − 2r), (10)

where pind
m (β → 0) = nCr/2n and wm = h̄ω(n − 2r).

The above equation readily simplifies to 〈Wind〉 =
2−(n+1) nC n+1

2
(n + 1)h̄ω for odd n and 〈Wind〉 = 1

2n+1
nC n

2
nh̄ω

for even n. By identifying the Catalan number Cr = 1
r+1

2rCr

[41,42] which approximates to 4r/(r
√

rπ ) in the large r limit,
we get 〈Wind〉 ≈ √ n

2π
h̄ω for both odd and even n. From the

above, the ratio of the work output of the collective to the

FIG. 2. The average work outputs 〈Wcol〉 and 〈Wind〉 are plotted
as functions of β for n = 3 and n = 10. In the inset, we present the
variation of the ratio λw = 〈Wcol〉/〈Wind〉 with respect to n and T =
1/β. The green contour line represents λw = 1. The values of h̄, kB,
and ω are set to 1.

independent case can be calculated to be

λw = 〈Wcol〉
〈Wind〉 ≈

√
2πn

4
, (11)

for large n values (see Fig. 2). Therefore we get a quadratic
increase in the output work for the collective engine over the
independent one, as also shown in Fig. 3.

We note that as discussed in Refs. [32,34], in the case
of a collective quantum heat engine, the improvement in its
performance is a direct consequence of the collective enhance-
ment in the specific heat, which depends on the populations
and the energies of all the magnetization m states of the
WM. In contrast, in the QIE introduced here, only the m > 0
states contribute to work extraction (see Sec. II A); in this
case, the collective advantage stems from higher occupation
probabilities pcol

m for large m > 0 (see the inset of Fig. 3), as

⟨ ⟩

⟨ ⟩

⟨ ⟩

FIG. 3. The work output of the collective and independent en-
gines given in Eqs. (9) and (10) are plotted as functions of the
number of qubits n, for β → 0. The dashed and dotted-dashed lines
represent the work output obtained in the large n limit. Inset: The
figure depicts the ratios of the occupation probabilities, denoted as
Rm ≡ pcol

m /pind
m , for m = 1, 2, 3 against the inverse temperature β for

a system comprising n = 6 spin particles. The plot illustrates that
the collective occupation probabilities for the higher-energy levels
(m = 2, 3) remain larger than the corresponding independent proba-
bilities over a range of high temperatures. The values of h̄, kB, and ω

are set to 1.

042219-3



NOUFAL JASEEM AND VICTOR MUKHERJEE PHYSICAL REVIEW A 108, 042219 (2023)

.:
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.:

FIG. 4. The plot shows the noise-to-signal ratios for the collec-
tive (nsrcol) and the independent (nsrind) cases as functions of the
number of qubits n, for β → 0. The values of h̄, kB, and ω are set to
1.

compared to pind
m for an independent QIE, which we discuss

below. In the limit of high temperatures (β → 0), the partition
functions for the collective and independent cases are given by
Zcol = n + 1 and Zind = 2n. With the working medium state
constrained to the j = n/2 subspace, there is a unique eigen-
state corresponding to |n/2, m〉, while for the independent
case, there are nCn/2−m degenerate eigenstates |m〉; the degen-
eracy nCn/2−m increases with decreasing |m|. Consequently,
pind

m surpasses pcol
m for smaller values of |m|. A similar analysis

for finite temperatures shows that collective advantages persist
for nβ 
 2/(h̄ω), as shown by the ratio Rm = pcol

m /pind
m for

large m > 0 [see Eqs. (7) and (8) and Fig. 3].

Noise-to-signal ratio and TUR

The reliability of an engine can be quantified through the
noise-to-signal ratio nsr = var(W )/〈W 〉2. One can calculate
the variance of work for the collective and independent cases
for β → 0 as [see Eqs. (6)–(8)]

var(Wcol ) = h̄2ω2

n + 1

rmax∑
r=0

(n − 2r)2

−
(

h̄ω

n + 1

rmax∑
r=0

(n − 2r)

)2

, (12)

and

var(Wind) = h̄2ω2

2n

rmax∑
r=0

nCr (n − 2r)2

−
(

h̄ω

2n

rmax∑
r=0

nCr (n − 2r)

)2

. (13)

As shown in Fig. 4, for small values of n, odd values yield a
lower nsr compared to even values, both for collective as well
as independent engines. However, as n increases, the nsr’s for
both even and odd values converge asymptotically, with the
asymptotic value in the collective case being smaller than that
in the independent case, demonstrating a collective advantage
in engine performance.

As discussed in Ref. [43], a low nsr can be accompanied by
a large entropy production � in heat engines, which in turn,
can be expected to reduce the efficiencies of such engines. A
trade-off between nsr and � can be quantified using the ther-
modynamic uncertainty, expressed as Q ≡ nsr �/kB, which is
generally lower bounded by the inequality Q � 2 in the case
of classical [44–46] and incoherent quantum [47–49] heat
engines. Recently, violations of this inequality have been ob-
served for quantum-coherent and quantum-entangled systems
[34,47,50–54]. The behavior of Q in the case of information
engines can be an interesting question as well [55]. In the case
of the collective and independent QIEs considered here, anal-
ogous to Szilard engines [2], the minimum entropy production
arising due to memory erasure is given by �Smin

era = kB ln 2.
Consequently, in contrast to what is expected for incoherent
quantum heat engines [47–49], the minimum thermodynamic
uncertainty Qmin = ln 2 nsr, which in the limit of large n,
is less than the standard limit of Q = 2 discussed above
(see Fig. 4). The above result of Q < 2 for large n raises
important questions regarding the validity of the standard
thermodynamic uncertainty bound in the case of information
engines. However, a detailed study of thermodynamic uncer-
tainty bounds for generic QIEs is beyond the scope of the
present work. Furthermore, we note that collective WM-bath
coupling leads to the emergence of nontrivial steady states,
signified by nonzero off-diagonal elements in ρss

col in the local
eigenbasis [see Eq. (3)] [32]. This in turn have been shown to
reduce the thermodynamic uncertainty Q below the standard
bound of 2, for quantum heat engines [34].

B. Finite-temperature information engine

We now focus on the finite-temperature regime. The mean
and variance of the output work, as well as the nsr, can be
evaluated using Eqs. (5) and (6) for arbitrary n and β [see Figs.
2, 5(a), and 6(a)]. Detailed equations for calculating the mean
and variance can be found in the Appendix [see Eqs. (A1)–
(A8)]. In the limit of large n, the analysis for the collective
case can be simplified by replacing the summations in Eqs. (5)
and (6) with integrations to get

〈Wcol〉 = [β h̄ω(n − 2rmax) + 2] eβ h̄ωrmax − nβ h̄ω − 2

β(eβnh̄ω − 1)
. (14)

As expected, Eq. (14) simplifies to 〈Wcol〉 ≈ nh̄ω/4 in the
limit of β → 0 (see Sec. III A). Furthermore, as discussed
above, the collective advantage manifests itself for high
temperatures nβ 
 2/(h̄ω). In contrast, numerical analysis
confirms that independent engines outperform their collective
counterparts for low temperatures [see Fig. 5(a)].

We note that in accordance with the second law of thermo-
dynamics, in an information engine operating at a temperature
T , the maximum extractable work ∼kBT (see above). Again,
as discussed in Sec. III A, in the limit of large temperatures
(kBT � nh̄ω), 〈Wcol〉 ∼ nh̄ω (〈Wind〉 ∼ √

nh̄ω) for the collec-
tive (independent) case, which increases with increasing n,
until 〈Wcol〉 ∼ kBT (〈Wind〉 ∼ kBT ). Consequently, the optimal
system size scales as n(col)

opt ∼ kBT/h̄ω [n(ind)
opt ∼ (kBT/h̄ω)2]

for high temperatures for the collective (independent) case,
as also verified by the inset of Fig. 5(a). For n � n(col)

opt
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FIG. 5. (a) The work output of the collective and independent engines are plotted as functions of the number of qubits n, for β = 0.01
and 0.1 [see Eqs. (5), (7), and (8)]. Inset: The optimal qubit number n(α)

opt (α = col., ind.), at which the work output is maximum for a given

temperature, is plotted as functions of temperature T . Numerical fitting suggests n(col)
opt ≈ 2.1kBT/h̄ω and n(ind)

opt ≈ 1.51(kBT/h̄ω)2. (b) The
graph depicts the probability of obtaining a positive m during the measurement stroke 2, given by Pm>0, at finite temperature β = 0.1 for both
collective and independent engines. The values of h̄, kB, and ω are all set to 1 in both figures.

(n � n(ind)
opt ), 〈Wcol〉 (〈Wind〉) decreases with increasing n

[see Figs. 5(a) and 7], owing to the small probabilities
Pα

m>0 = ∑
m>0 pα

m [α = col., ind.; see Eqs. (7) and (8)] of
getting positive m in the measurement stroke 2 [see Fig. 5(b)].

As shown in Figs. 4 and 6(a), collective effects result in
QIEs with low nsr in the high-temperature limit, as com-
pared to their independent counterparts. However, for low
temperatures, independent QIEs may be more reliable than
the collective ones, as signified by the nsr of collective QIEs
surpassing that for independent QIEs, with increasing β, for a
fixed finite n [see the Fig. 6(a)].

For a finite-temperature information engine, the entropy
change due to the heat exchange between the WM and the
heat source is given by �S(α)

h = −〈Wα〉/Th for α = col., ind.,
where we have considered the conservation of energy, so
that on an average, the work output equals the heat input
from the bath. Further, the process of memory erasure re-
sults in an increase of entropy of the universe by �Sera �
kB ln 2. Therefore, the total entropy production is given by
〈�α〉 = �Sh + �Sα

era = −〈Wα〉/Th + �Sα
era. Utilizing the re-

sults for 〈Wcol〉 and 〈Wind〉 [cf. Eqs. (A1)–(A4)], it can be
shown that the entropy production is always non-negative, as
depicted in Fig. 6(b), thereby satisfying the second law of
thermodynamics.

Furthermore, the collective effects enhance 〈Wcol〉 at high
temperatures for a given n, resulting in reduced entropy
production (〈�col〉 < 〈�ind〉) and reduced thermodynamic
uncertainty (Qcol < Qind) for the collective QIE, as compared
to its independent counterpart. Assuming the minimal erasure
entropy production �Sera to be equal to kB ln 2, both the in-
dependent and the collective cases violate the standard TUR
at high temperatures for a given n (i.e., Qcol < Qind < 2), as
shown in Fig. 6(c). Qcol may surpass Qind at low temperatures,
thus again showing the importance of high temperatures for
achieving collective advantage in QIEs.

IV. DISCUSSION

In this paper, we have studied a many-body QIE that relies
on one bit of information to extract work from a single heat
bath. The engine considered here is modeled by a multiqubit
system WM interacting collectively with a heat reservoir. The
collective effects observed in this system arise from the bath’s
inability to distinguish between the qubits as they exchange
energy, which results in a nontrivial steady state of the WM.
Based on the measurement outcome of the net magnetization
direction of the steady state, a unitary operation may be per-
formed to extract useful work.

(a) (b) (c)

FIG. 6. The plots depict (a) the noise-to-signal ratio nsr, (b) the total average entropy production 〈�〉, and (c) the thermodynamic
uncertainty Q = nsr〈�〉/kB as functions of β for n = 25 and n = 50. The values of h̄, kB, and ω are all set to 1.
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Our findings demonstrate that by utilizing effects
stemming from the collective system-bath coupling, the
QIE can achieve a quadratic advantage in the mean work
output, as compared to its independent counterpart in the
large temperature limit. Additionally, we have shown that
this collective advantage is present in other performance
metrics as well, such as a low noise-to-signal ratio and low
thermodynamic uncertainty, for appropriate parameter values.
However, we emphasize that these collective advantages are
limited to high temperatures only (nβ 
 2/h̄ω). In contrast,
low temperatures favor independent operation of the setup,
both in terms of the mean work output (see Fig. 2), as well
as in terms of the thermodynamic uncertainty [see Fig. 6(c)].
Our research is motivated by recent findings that demonstrate
that such collective effects can significantly enhance the per-
formance of quantum heat engines [30–32,34,36]. However,
in contrast to collective quantum heat engines, where the
improvement in performance follows from collective en-
hancement in the specific heat of the WM, here the collective
advantage stems from the higher occupation probabilities of
the high positive magnetization states of the WM.

The quantum information engine proposed here can be
expected to be experimentally realizable using already exist-
ing platforms. The details of the experimental protocols will
depend on the details of the particular setups used. However,
we note that a collective system-bath interaction, proposed
in stroke 1, has been achieved using Rydberg atoms placed
in a cavity [56], atomic sodium [57], quantum dots [58], and

organic microcavities [59]. Independent system-bath coupling
may be experimentally realized using nuclear spins in the
presence of radio-frequency fields [60]. The measurement
required in stroke 2 may be implemented by quantum mag-
netometers based on nitrogen-vacancy centers in diamond,
which have been shown to be suitable for performing high-
precision magnetometry [61–63]. Finally, the unitary Uflip in
stroke 3 may be realized by applying a magnetic field aligned
along the x axis [64]. The isolation of the WM from the bath
during the strokes 2 and 3 can be achieved by ensuring that
both the measurement process and the unitary operation occur
rapidly compared to the thermalization time of the WM [65].
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APPENDIX: FINITE-TEMPERATURE WORK
AND ITS VARIANCE

The work outputs and their variances for the independent
and collective engines can be calculated from Eqs. (5) and (6),
as shown below for even and odd numbers of qubits,

〈
W even n

ind

〉 = nh̄ω

[
2n�

(
n+1

2

)
e

1
2 β(n+2)h̄ω

2F1
(

n
2 , n + 1, n

2 + 2,−eβ h̄ω
)

√
π (eβ h̄ω + 1)�

(
n
2 + 2

) − tanh
β h̄ω

2

]
, (A1)

〈
W odd n

ind

〉 = 2nh̄ω�
(

n
2 + 1

)
e

1
2 β(n+1)h̄ω

[
2 2F1

(
2, 1−n

2 , n+3
2 ,−eβ h̄ω

) − 2F1
(
1, 1−n

2 , n+3
2 ,−eβ h̄ω

)]
√

π�
(

n+3
2

)
(eβ h̄ω + 1)n − nh̄ω tanh

β h̄ω

2
, (A2)

〈
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col

〉 = h̄ω
[
2e

1
2 β(n+2)h̄ω − (n + 2)eβ h̄ω + n

]
(eβ h̄ω − 1)(eβ(n+1)h̄ω − 1)

, (A3)

〈
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[
e

1
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, (A4)

var(W )even n
ind = 1
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and

var(W )odd n
col = h̄2ω2e
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where � represents the gamma function, and pFq(a; b; z) de-
notes the hypergeometric function, which is defined as

pFq(a; b; z) ≡ pFq(a1, . . . , ap; b1, . . . , bq; z)

=
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
. (A9)

Here, the rising factorial (x)n is given by (x)n = x(x + 1)(x +
2) · · · (x + n − 1), n � 1.

The above finite-temperature equations can be simplified
further by assuming the large n limit where the summation in
Eqs. (5) and (6) can be replaced by integration, and we get
Eq. (14) [see also Fig. 5(a)]. As expected, Eq. (14) simplifies
to 〈Wcol〉 ≈ nh̄ω/4 in the limit of β → 0 (see Sec. III A). The
variance of the output work can be obtained using Eq. (6),
where the expression for the average of the square of the work
in the large n limit takes the form

〈
W 2

col

〉 = eβ h̄ωrmax B − A

β2(ea − 1)
,

A = [a(a + 4) + 8], B = [b(b + 4) + 8], a = βnh̄ω, and
b = β h̄ω(n − 2rmax).

The mean work output 〈Wind〉 is shown as a function of
n for finite β in Fig. 7. 〈Wind〉 increases with n until nopt ∼
(kBT/h̄ω)2, beyond which it decreases with increasing n [see
Sec. III B and Fig. 5(a)].

FIG. 7. The graph illustrates the mean work output of the in-
dependent engine at finite temperatures, for β = 0.01 and β = 0.2.
The values of h̄, kB, and ω are set to 1. The plots clearly indicate
a decrease in finite-temperature work output for higher n values,
agreeing with the discussion in Sec. III B.
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